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ax=ax+x(j)
ay=ay+y(j)

enddo 11

ax=ax/n
ay=ay/n
sxx=0.
syy=0.
sxy=0.
do 12 j=1,n Compute the correlation coefficient.

xt=x(j)-ax
yt=y(j)-ay
sxx=sxx+xt**2
syy=syy+yt**2
sxy=sxy+xt*yt

enddo 12

r=sxy/(sqrt(sxx*syy)+TINY)
z=0.5*log(((1.+r)+TINY)/((1.-r)+TINY)) Fisher’s z transformation.
df=n-2
t=r*sqrt(df/(((1.-r)+TINY)*((1.+r)+TINY))) Equation (14.5.5).
prob=betai(0.5*df,0.5,df/(df+t**2)) Student’s t probability.

C prob=erfcc(abs(z*sqrt(n-1.))/1.4142136) For large n, this easier computation of
prob, using the short routine erfcc,
would give approximately the same
value.

return
END

CITED REFERENCES AND FURTHER READING:

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York: Wiley).

Hoel, P.G. 1971, Introduction to Mathematical Statistics, 4th ed. (New York: Wiley), Chapter 7.

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), Chapters IX(A) and IX(B).

Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed.
(New York: McGraw-Hill), §19.7.

Norusis, M.J. 1982, SPSS Introductory Guide: Basic Statistics and Operations; and 1985, SPSS-
X Advanced Statistics Guide (New York: McGraw-Hill).

14.6 Nonparametric or Rank Correlation

It is precisely the uncertainty in interpreting the significance of the linear
correlation coefficient r that leads us to the important concepts of nonparametric or
rank correlation. As before, we are givenN pairs of measurements (xi, yi). Before,
difficulties arose because we did not necessarily know the probability distribution
function from which the xi’s or yi’s were drawn.

The key concept of nonparametric correlation is this: If we replace the value
of each xi by the value of its rank among all the other xi’s in the sample, that
is, 1, 2, 3, . . . , N , then the resulting list of numbers will be drawn from a perfectly
known distribution function, namely uniformly from the integers between 1 and N ,
inclusive. Better than uniformly, in fact, since if the xi’s are all distinct, then each
integer will occur precisely once. If some of the xi’s have identical values, it is
conventional to assign to all these “ties” the mean of the ranks that they would have
had if their values had been slightly different. This midrank will sometimes be an
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integer, sometimes a half-integer. In all cases the sum of all assigned ranks will be
the same as the sum of the integers from 1 to N , namely 1

2N(N + 1).
Of course we do exactly the same procedure for the yi’s, replacing each value

by its rank among the other yi’s in the sample.
Now we are free to invent statistics for detecting correlation between uniform

sets of integers between 1 and N , keeping in mind the possibility of ties in the ranks.
There is, of course, some loss of information in replacing the original numbers by
ranks. We could construct some rather artificial examples where a correlation could
be detected parametrically (e.g., in the linear correlation coefficient r), but could not
be detected nonparametrically. Such examples are very rare in real life, however,
and the slight loss of information in ranking is a small price to pay for a very major
advantage: When a correlation is demonstrated to be present nonparametrically,
then it is really there! (That is, to a certainty level that depends on the significance
chosen.) Nonparametric correlation is more robust than linear correlation, more
resistant to unplanned defects in the data, in the same sort of sense that the median
is more robust than the mean. For more on the concept of robustness, see §15.7.

As always in statistics, some particular choices of a statistic have already been
invented for us and consecrated, if not beatified, by popular use. We will discuss
two, the Spearman rank-order correlation coefficient (rs), and Kendall’s tau (τ ).

Spearman Rank-Order Correlation Coefficient

Let Ri be the rank of xi among the other x’s, Si be the rank of yi among the
other y’s, ties being assigned the appropriate midrank as described above. Then the
rank-order correlation coefficient is defined to be the linear correlation coefficient
of the ranks, namely,

rs =

∑
i(Ri −R)(Si − S)√∑

i(Ri − R)2

√∑
i(Si − S)2

(14.6.1)

The significance of a nonzero value of rs is tested by computing

t = rs

√
N − 2

1− r2
s

(14.6.2)

which is distributed approximately as Student’s distribution with N − 2 degrees of
freedom. A key point is that this approximation does not depend on the original
distribution of the x’s and y’s; it is always the same approximation, and always
pretty good.

It turns out that rs is closely related to another conventional measure of
nonparametric correlation, the so-called sum squared difference of ranks, defined as

D =

N∑
i=1

(Ri − Si)2 (14.6.3)

(This D is sometimes denoted D**, where the asterisks are used to indicate that
ties are treated by midranking.)
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When there are no ties in the data, then the exact relation between D and rs is

rs = 1− 6D

N3 −N (14.6.4)

When there are ties, then the exact relation is slightly more complicated: Let fk be
the number of ties in the kth group of ties among theRi’s, and let gm be the number
of ties in the mth group of ties among the Si’s. Then it turns out that

rs =
1−

6

N3 −N
[
D + 1

12

∑
k(f3

k − fk) + 1
12

∑
m(g3

m − gm)
]

[
1−

∑
k(f3

k − fk)

N3 −N

]1/2 [
1−

∑
m(g3

m − gm)

N3 −N

]1/2
(14.6.5)

holds exactly. Notice that if all the fk’s and all the gm’s are equal to one, meaning
that there are no ties, then equation (14.6.5) reduces to equation (14.6.4).

In (14.6.2) we gave a t-statistic that tests the significance of a nonzero rs. It is
also possible to test the significance of D directly. The expectation value of D in
the null hypothesis of uncorrelated data sets is

D =
1

6
(N3 −N) − 1

12

∑
k

(f3
k − fk) − 1

12

∑
m

(g3
m − gm) (14.6.6)

its variance is

Var(D) =
(N − 1)N2(N + 1)2

36

×
[
1−

∑
k(f3

k − fk)

N3 −N

] [
1−

∑
m(g3

m − gm)

N3 −N

] (14.6.7)

and it is approximately normally distributed, so that the significance level is a
complementary error function (cf. equation 14.5.2). Of course, (14.6.2) and (14.6.7)
are not independent tests, but simply variants of the same test. In the program that
follows, we return both the significance level obtained by using (14.6.2) and the
significance level obtained by using (14.6.7); their discrepancy will give you an idea
of how good the approximations are. You will also notice that we break off the task
of assigning ranks (including tied midranks) into a separate routine, crank.

SUBROUTINE spear(data1,data2,n,wksp1,wksp2,d,zd,probd,rs,probrs)
INTEGER n
REAL d,probd,probrs,rs,zd,data1(n),data2(n),wksp1(n),wksp2(n)

C USES betai,crank,erfcc,sort2
Given two data arrays, data1(1:n) and data2(1:n), each of length n, and given two
workspaces of the same length, this routine returns their sum-squared difference of ranks as
D, the number of standard deviations by which D deviates from its null-hypothesis expected
value as zd, the two-sided significance level of this deviation as probd, Spearman’s rank
correlation rs as rs, and the two-sided significance level of its deviation from zero as
probrs. The workspaces can be identical to the data arrays, but in that case the data
arrays are destroyed. The external routines crank (below) and sort2 (§8.2) are used. A
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small value of either probd or probrs indicates a significant correlation (rs positive) or
anticorrelation (rs negative).

INTEGER j
REAL aved,df,en,en3n,fac,sf,sg,t,vard,betai,erfcc
do 11 j=1,n

wksp1(j)=data1(j)
wksp2(j)=data2(j)

enddo 11

call sort2(n,wksp1,wksp2) Sort each of the data arrays, and convert the entries to
ranks. The values sf and sg return the sums

∑
(f3
k − fk)

and
∑

(g3
m − gm), respectively.

call crank(n,wksp1,sf)
call sort2(n,wksp2,wksp1)
call crank(n,wksp2,sg)
d=0.
do 12 j=1,n Sum the squared difference of ranks.

d=d+(wksp1(j)-wksp2(j))**2
enddo 12

en=n
en3n=en**3-en
aved=en3n/6.-(sf+sg)/12. Expectation value of D,
fac=(1.-sf/en3n)*(1.-sg/en3n)
vard=((en-1.)*en**2*(en+1.)**2/36.)*fac and variance of D give
zd=(d-aved)/sqrt(vard) number of standard deviations,
probd=erfcc(abs(zd)/1.4142136) and significance.
rs=(1.-(6./en3n)*(d+(sf+sg)/12.))/sqrt(fac) Rank correlation coefficient,
fac=(1.+rs)*(1.-rs)
if(fac.gt.0.)then

t=rs*sqrt((en-2.)/fac) and its t value,
df=en-2.
probrs=betai(0.5*df,0.5,df/(df+t**2)) give its significance.

else
probrs=0.

endif
return
END

SUBROUTINE crank(n,w,s)
INTEGER n
REAL s,w(n)

Given a sorted array w(1:n), replaces the elements by their rank, including midranking of
ties, and returns as s the sum of f3 − f , where f is the number of elements in each tie.

INTEGER j,ji,jt
REAL rank,t
s=0.
j=1 The next rank to be assigned.

1 if(j.lt.n)then “do while” structure.
if(w(j+1).ne.w(j))then Not a tie.

w(j)=j
j=j+1

else A tie:
do 11 jt=j+1,n How far does it go?

if(w(jt).ne.w(j))goto 2
enddo 11

jt=n+1 If here, it goes all the way to the last element.
2 rank=0.5*(j+jt-1) This is the mean rank of the tie,

do 12 ji=j,jt-1 so enter it into all the tied entries,
w(ji)=rank

enddo 12

t=jt-j
s=s+t**3-t and update s.
j=jt

endif
goto 1
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endif
if(j.eq.n)w(n)=n If the last element was not tied, this is its rank.
return
END

Kendall’s Tau

Kendall’s τ is even more nonparametric than Spearman’s rs or D. Instead of
using the numerical difference of ranks, it uses only the relative ordering of ranks:
higher in rank, lower in rank, or the same in rank. But in that case we don’t even
have to rank the data! Ranks will be higher, lower, or the same if and only if
the values are larger, smaller, or equal, respectively. On balance, we prefer rs as
being the more straightforward nonparametric test, but both statistics are in general
use. In fact, τ and rs are very strongly correlated and, in most applications, are
effectively the same test.

To define τ , we start with the N data points (xi, yi). Now consider all
1
2N(N − 1) pairs of data points, where a data point cannot be paired with itself,
and where the points in either order count as one pair. We call a pair concordant
if the relative ordering of the ranks of the two x’s (or for that matter the two x’s
themselves) is the same as the relative ordering of the ranks of the two y’s (or for
that matter the two y’s themselves). We call a pair discordant if the relative ordering
of the ranks of the two x’s is opposite from the relative ordering of the ranks of the
two y’s. If there is a tie in either the ranks of the two x’s or the ranks of the two
y’s, then we don’t call the pair either concordant or discordant. If the tie is in the
x’s, we will call the pair an “extra y pair.” If the tie is in the y’s, we will call the
pair an “extra x pair.” If the tie is in both the x’s and the y’s, we don’t call the pair
anything at all. Are you still with us?

Kendall’s τ is now the following simple combination of these various counts:

τ =
concordant− discordant√

concordant + discordant + extra-y
√

concordant + discordant + extra-x
(14.6.8)

You can easily convince yourself that this must lie between 1 and −1, and that it
takes on the extreme values only for complete rank agreement or complete rank
reversal, respectively.

More important, Kendall has worked out, from the combinatorics, the approx-
imate distribution of τ in the null hypothesis of no association between x and y.
In this case τ is approximately normally distributed, with zero expectation value
and a variance of

Var(τ ) =
4N + 10

9N(N − 1)
(14.6.9)

The following program proceeds according to the above description, and
therefore loops over all pairs of data points. Beware: This is an O(N2) algorithm,
unlike the algorithm for rs, whose dominant sort operations are of order N logN . If
you are routinely computing Kendall’s τ for data sets of more than a few thousand
points, you may be in for some serious computing. If, however, you are willing to
bin your data into a moderate number of bins, then read on.



638 Chapter 14. Statistical Description of Data

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

SUBROUTINE kendl1(data1,data2,n,tau,z,prob)
INTEGER n
REAL prob,tau,z,data1(n),data2(n)

C USES erfcc
Given data arrays data1(1:n) and data2(1:n), this program returns Kendall’s τ as tau,
its number of standard deviations from zero as z, and its two-sided significance level as prob.
Small values of prob indicate a significant correlation (tau positive) or anticorrelation (tau
negative).

INTEGER is,j,k,n1,n2
REAL a1,a2,aa,var,erfcc
n1=0 This will be the argument of one square root in (14.6.8),
n2=0 and this the other.
is=0 This will be the numerator in (14.6.8).
do 12 j=1,n-1 Loop over first member of pair,

do 11 k=j+1,n and second member.
a1=data1(j)-data1(k)
a2=data2(j)-data2(k)
aa=a1*a2
if(aa.ne.0.)then Neither array has a tie.

n1=n1+1
n2=n2+1
if(aa.gt.0.)then

is=is+1
else

is=is-1
endif

else One or both arrays have ties.
if(a1.ne.0.)n1=n1+1 An “extra x” event.
if(a2.ne.0.)n2=n2+1 An “extra y” event.

endif
enddo 11

enddo 12

tau=float(is)/sqrt(float(n1)*float(n2)) Equation (14.6.8).
var=(4.*n+10.)/(9.*n*(n-1.)) Equation (14.6.9).
z=tau/sqrt(var)
prob=erfcc(abs(z)/1.4142136) Significance.
return
END

Sometimes it happens that there are only a few possible values each for x and
y. In that case, the data can be recorded as a contingency table (see §14.4) that gives
the number of data points for each contingency of x and y.

Spearman’s rank-order correlation coefficient is not a very natural statistic
under these circumstances, since it assigns to each x and y bin a not-very-meaningful
midrank value and then totals up vast numbers of identical rank differences. Kendall’s
tau, on the other hand, with its simple counting, remains quite natural. Furthermore,
itsO(N2) algorithm is no longer a problem, since we can arrange for it to loop over
pairs of contingency table entries (each containing many data points) instead of over
pairs of data points. This is implemented in the program that follows.

Note that Kendall’s tau can be applied only to contingency tables where both
variables are ordinal, i.e., well-ordered, and that it looks specifically for monotonic
correlations, not for arbitrary associations. These two properties make it less general
than the methods of §14.4, which applied to nominal, i.e., unordered, variables and
arbitrary associations.

Comparing kendl1 above with kendl2 below, you will see that we have
“floated” a number of variables. This is because the number of events in a
contingency table might be sufficiently large as to cause overflows in some of the
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integer arithmetic, while the number of individual data points in a list could not
possibly be that large [for an O(N2) routine!].

SUBROUTINE kendl2(tab,i,j,ip,jp,tau,z,prob)
INTEGER i,ip,j,jp
REAL prob,tau,z,tab(ip,jp)

C USES erfcc
Given a two-dimensional table tab of physical dimension (ip,jp) and logical dimension
(i,j), such that tab(k,l) contains the number of events falling in bin k of one variable
and bin l of another, this program returns Kendall’s τ as tau, its number of standard
deviations from zero as z, and its two-sided significance level as prob. Small values of prob
indicate a significant correlation (tau positive) or anticorrelation (tau negative) between
the two variables. Although tab is a real array, it will normally contain integral values.

INTEGER k,ki,kj,l,li,lj,m1,m2,mm,nn
REAL en1,en2,pairs,points,s,var,erfcc
en1=0. See kendl1 above.
en2=0.
s=0.
nn=i*j Total number of entries in contingency table.
points=tab(i,j)
do 12 k=0,nn-2 Loop over entries in table,

ki=k/j decoding a row index,
kj=k-j*ki and a column index.
points=points+tab(ki+1,kj+1) Increment the total count of events.
do 11 l=k+1,nn-1 Loop over other member of the pair,

li=l/j decoding its row
lj=l-j*li and column.
m1=li-ki
m2=lj-kj
mm=m1*m2
pairs=tab(ki+1,kj+1)*tab(li+1,lj+1)
if(mm.ne.0)then Not a tie.

en1=en1+pairs
en2=en2+pairs
if(mm.gt.0)then Concordant, or

s=s+pairs
else discordant.

s=s-pairs
endif

else
if(m1.ne.0)en1=en1+pairs
if(m2.ne.0)en2=en2+pairs

endif
enddo 11

enddo 12

tau=s/sqrt(en1*en2)
var=(4.*points+10.)/(9.*points*(points-1.))
z=tau/sqrt(var)
prob=erfcc(abs(z)/1.4142136)
return
END
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14.7 Do Two-Dimensional Distributions Differ?

We here discuss a useful generalization of the K–S test (§14.3) to two-dimensional
distributions. This generalization is due to Fasano and Franceschini [1], a variant on an
earlier idea due to Peacock [2].

In a two-dimensional distribution, each data point is characterized by an (x, y) pair of
values. An example near to our hearts is that each of the 19 neutrinos that were detected
from Supernova 1987A is characterized by a time ti and by an energy Ei (see [3]). We
might wish to know whether these measured pairs (ti, Ei), i = 1 . . . 19 are consistent with a
theoretical model that predicts neutrino flux as a function of both time and energy — that is,
a two-dimensional probability distribution in the (x, y) [here, (t, E)] plane. That would be a
one-sample test. Or, given two sets of neutrino detections, from two comparable detectors,
we might want to know whether they are compatible with each other, a two-sample test.

In the spirit of the tried-and-true, one-dimensional K–S test, we want to range over
the (x, y) plane in search of some kind of maximum cumulative difference between two
two-dimensional distributions. Unfortunately, cumulative probability distribution is not
well-defined in more than one dimension! Peacock’s insight was that a good surrogate is
the integrated probability in each of four natural quadrants around a given point (xi, yi),
namely the total probabilities (or fraction of data) in (x > xi, y > yi), (x < xi, y > yi),
(x < xi, y < yi), (x > xi, y < yi). The two-dimensional K–S statistic D is now taken
to be the maximum difference (ranging both over data points and over quadrants) of the
corresponding integrated probabilities. When comparing two data sets, the value of D may
depend on which data set is ranged over. In that case, define an effective D as the average
of the two values obtained. If you are confused at this point about the exact definition of D,
don’t fret; the accompanying computer routines amount to a precise algorithmic definition.

Figure 14.7.1 gives a feeling for what is going on. The 65 triangles and 35 squares seem
to have somewhat different distributions in the plane. The dotted lines are centered on the
triangle that maximizes the D statistic; the maximum occurs in the upper-left quadrant. That
quadrant contains only 0.12 of all the triangles, but it contains 0.56 of all the squares. The
value of D is thus 0.44. Is this statistically significant?

Even for fixed sample sizes, it is unfortunately not rigorously true that the distribution
of D in the null hypothesis is independent of the shape of the two-dimensional distribution.
In this respect the two-dimensional K–S test is not as natural as its one-dimensional parent.
However, extensive Monte Carlo integrations have shown that the distribution of the two-
dimensional D is very nearly identical for even quite different distributions, as long as they
have the same coefficient of correlation r, defined in the usual way by equation (14.5.1). In
their paper, Fasano and Franceschini tabulate Monte Carlo results for (what amounts to) the
distribution ofD as a function of (of course)D, sample size N , and coefficient of correlation
r. Analyzing their results, one finds that the significance levels for the two-dimensional K–S
test can be summarized by the simple, though approximate, formulas,

Probability (D > observed ) = QKS

( √
N D

1 +
√

1− r2(0.25− 0.75/
√
N)

)
(14.7.1)

for the one-sample case, and the same for the two-sample case, but with

N =
N1N2

N1 +N2
. (14.7.2)

The above formulas are accurate enough when N >∼ 20, and when the indicated
probability (significance level) is less than (more significant than) 0.20 or so. When the
indicated probability is > 0.20, its value may not be accurate, but the implication that the
data and model (or two data sets) are not significantly different is certainly correct. Notice
that in the limit of r → 1 (perfect correlation), equations (14.7.1) and (14.7.2) reduce to
equations (14.3.9) and (14.3.10): The two-dimensional data lie on a perfect straight line, and
the two-dimensional K–S test becomes a one-dimensional K–S test.


