should provide (i) parameters, (ii) error estimates on the parameters, and (iii) a statistical measure of goodness-of-fit. When the third item suggests that the model is an unlikely match to the data, then items (i) and (ii) are probably worthless. Unfortunately, many practitioners of parameter estimation never proceed beyond item (i). They deem a fit acceptable if a graph of data and model "looks good." This approach is known as chi-by-eye. Luckily, its practitioners get what they deserve.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill).
Brownlee, K.A. 1965, Statistical Theory and Methodology, 2nd ed. (New York: Wiley).
Martin, B.R. 1971, Statistics for Physicists (New York: Academic Press).
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), Chapter X.
Korn, G.A., and Korn, T.M. 1968, Mathematical Handbook for Scientists and Engineers, 2nd ed. (New York: McGraw-Hill), Chapters 18-19.

15.1 Least Squares as a Maximum Likelihood Estimator

Suppose that we are fitting N data points $\left(x_{i}, y_{i}\right) i=1, \ldots, N$, to a model that has M adjustable parameters $a_{j}, j=1, \ldots, M$. The model predicts a functional relationship between the measured independent and dependent variables,

$$
\begin{equation*}
y(x)=y\left(x ; a_{1} \ldots a_{M}\right) \tag{15.1.1}
\end{equation*}
$$

where the dependence on the parameters is indicated explicitly on the right-hand side.
What, exactly, do we want to minimize to get fitted values for the a_{j} 's? The first thing that comes to mind is the familiar least-squares fit,

$$
\begin{equation*}
\text { minimize over } a_{1} \ldots a_{M}: \quad \sum_{i=1}^{N}\left[y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)\right]^{2} \tag{15.1.2}
\end{equation*}
$$

But where does this come from? What general principles is it based on? The answer to these questions takes us into the subject of maximum likelihood estimators.

Given a particular data set of x_{i} 's and y_{i} 's, we have the intuitive feeling that some parameter sets $a_{1} \ldots a_{M}$ are very unlikely - those for which the model function $y(x)$ looks nothing like the data - while others may be very likely - those that closely resemble the data. How can we quantify this intuitive feeling? How can we select fitted parameters that are "most likely" to be correct? It is not meaningful to ask the question, "What is the probability that a particular set of fitted parameters $a_{1} \ldots a_{M}$ is correct?" The reason is that there is no statistical universe of models from which the parameters are drawn. There is just one model, the correct one, and a statistical universe of data sets that are drawn from it!

That being the case, we can, however, turn the question around, and ask, "Given a particular set of parameters, what is the probability that this data set could have occurred?" If the y_{i} 's take on continuous values, the probability will always be zero unless we add the phrase, "...plus or minus some fixed Δy on each data point." So let's always take this phrase as understood. If the probability of obtaining the data set is infinitesimally small, then we can conclude that the parameters under consideration are "unlikely" to be right. Conversely, our intuition tells us that the data set should not be too improbable for the correct choice of parameters.

In other words, we identify the probability of the data given the parameters (which is a mathematically computable number), as the likelihood of the parameters given the data. This identification is entirely based on intuition. It has no formal mathematical basis in and of itself; as we already remarked, statistics is not a branch of mathematics!

Once we make this intuitive identification, however, it is only a small further step to decide to fit for the parameters $a_{1} \ldots a_{M}$ precisely by finding those values that maximize the likelihood defined in the above way. This form of parameter estimation is maximum likelihood estimation.

We are now ready to make the connection to (15.1.2). Suppose that each data point y_{i} has a measurement error that is independently random and distributed as a normal (Gaussian) distribution around the "true" model $y(x)$. And suppose that the standard deviations σ of these normal distributions are the same for all points. Then the probability of the data set is the product of the probabilities of each point,

$$
\begin{equation*}
P \propto \prod_{i=1}^{N}\left\{\exp \left[-\frac{1}{2}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma}\right)^{2}\right] \Delta y\right\} \tag{15.1.3}
\end{equation*}
$$

Notice that there is a factor Δy in each term in the product. Maximizing (15.1.3) is equivalent to maximizing its logarithm, or minimizing the negative of its logarithm, namely,

$$
\begin{equation*}
\left[\sum_{i=1}^{N} \frac{\left[y_{i}-y\left(x_{i}\right)\right]^{2}}{2 \sigma^{2}}\right]-N \log \Delta y \tag{15.1.4}
\end{equation*}
$$

Since N, σ, and Δy are all constants, minimizing this equation is equivalent to minimizing (15.1.2).

What we see is that least-squares fitting is a maximum likelihood estimation of the fitted parameters if the measurement errors are independent and normally distributed with constant standard deviation. Notice that we made no assumption about the linearity or nonlinearity of the model $y\left(x ; a_{1} \ldots\right)$ in its parameters $a_{1} \ldots a_{M}$. Just below, we will relax our assumption of constant standard deviations and obtain the very similar formulas for what is called "chi-square fitting" or "weighted least-squares fitting." First, however, let us discuss further our very stringent assumption of a normal distribution.

For a hundred years or so, mathematical statisticians have been in love with the fact that the probability distribution of the sum of a very large number of very small random deviations almost always converges to a normal distribution. (For precise statements of this central limit theorem, consult [1] or other standard works on mathematical statistics.) This infatuation tended to focus interest away from the
fact that, for real data, the normal distribution is often rather poorly realized, if it is realized at all. We are often taught, rather casually, that, on average, measurements will fall within $\pm \sigma$ of the true value 68 percent of the time, within $\pm 2 \sigma 95$ percent of the time, and within $\pm 3 \sigma 99.7$ percent of the time. Extending this, one would expect a measurement to be off by $\pm 20 \sigma$ only one time out of 2×10^{88}. We all know that "glitches" are much more likely than that !

In some instances, the deviations from a normal distribution are easy to understand and quantify. For example, in measurements obtained by counting events, the measurement errors are usually distributed as a Poisson distribution, whose cumulative probability function was already discussed in $\S 6.2$. When the number of counts going into one data point is large, the Poisson distribution converges towards a Gaussian. However, the convergence is not uniform when measured in fractional accuracy. The more standard deviations out on the tail of the distribution, the larger the number of counts must be before a value close to the Gaussian is realized. The sign of the effect is always the same: The Gaussian predicts that "tail" events are much less likely than they actually (by Poisson) are. This causes such events, when they occur, to skew a least-squares fit much more than they ought.

Other times, the deviations from a normal distribution are not so easy to understand in detail. Experimental points are occasionally just way off. Perhaps the power flickered during a point's measurement, or someone kicked the apparatus, or someone wrote down a wrong number. Points like this are called outliers. They can easily turn a least-squares fit on otherwise adequate data into nonsense. Their probability of occurrence in the assumed Gaussian model is so small that the maximum likelihood estimator is willing to distort the whole curve to try to bring them, mistakenly, into line.

The subject of robust statistics deals with cases where the normal or Gaussian model is a bad approximation, or cases where outliers are important. We will discuss robust methods briefly in $\S 15.7$. All the sections between this one and that one assume, one way or the other, a Gaussian model for the measurement errors in the data. It it quite important that you keep the limitations of that model in mind, even as you use the very useful methods that follow from assuming it.

Finally, note that our discussion of measurement errors has been limited to statistical errors, the kind that will average away if we only take enough data. Measurements are also susceptible to systematic errors that will not go away with any amount of averaging. For example, the calibration of a metal meter stick might depend on its temperature. If we take all our measurements at the same wrong temperature, then no amount of averaging or numerical processing will correct for this unrecognized systematic error.

Chi-Square Fitting

We considered the chi-square statistic once before, in $\S 14.3$. Here it arises in a slightly different context.

If each data point $\left(x_{i}, y_{i}\right)$ has its own, known standard deviation σ_{i}, then equation (15.1.3) is modified only by putting a subscript i on the symbol σ. That subscript also propagates docilely into (15.1.4), so that the maximum likelihood
estimate of the model parameters is obtained by minimizing the quantity

$$
\begin{equation*}
\chi^{2} \equiv \sum_{i=1}^{N}\left(\frac{y_{i}-y\left(x_{i} ; a_{1} \ldots a_{M}\right)}{\sigma_{i}}\right)^{2} \tag{15.1.5}
\end{equation*}
$$

called the "chi-square."
To whatever extent the measurement errors actually are normally distributed, the quantity χ^{2} is correspondingly a sum of N squares of normally distributed quantities, each normalized to unit variance. Once we have adjusted the $a_{1} \ldots a_{M}$ to minimize the value of χ^{2}, the terms in the sum are not all statistically independent. For models that are linear in the a 's, however, it turns out that the probability distribution for different values of χ^{2} at its minimum can nevertheless be derived analytically, and is the chi-square distribution for $N-M$ degrees of freedom. We learned how to compute this probability function using the incomplete gamma function gammq in $\S 6.2$. In particular, equation (6.2.18) gives the probability Q that the chi-square should exceed a particular value χ^{2} by chance, where $\nu=N-M$ is the number of degrees of freedom. The quantity Q, or its complement $P \equiv 1-Q$, is frequently tabulated in appendices to statistics books, but we generally find it easier to use gammq and compute our own values: $Q=\operatorname{gammq}\left(0.5 \nu, 0.5 \chi^{2}\right)$. It is quite common, and usually not too wrong, to assume that the chi-square distribution holds even for models that are not strictly linear in the a 's.

This computed probability gives a quantitative measure for the goodness-of-fit of the model. If Q is a very small probability for some particular data set, then the apparent discrepancies are unlikely to be chance fluctuations. Much more probably either (i) the model is wrong - can be statistically rejected, or (ii) someone has lied to you about the size of the measurement errors σ_{i} - they are really larger than stated.

It is an important point that the chi-square probability Q does not directly measure the credibility of the assumption that the measurement errors are normally distributed. It assumes they are. In most, but not all, cases, however, the effect of nonnormal errors is to create an abundance of outlier points. These decrease the probability Q, so that we can add another possible, though less definitive, conclusion to the above list: (iii) the measurement errors may not be normally distributed.

Possibility (iii) is fairly common, and also fairly benign. It is for this reason that reasonable experimenters are often rather tolerant of low probabilities Q. It is not uncommon to deem acceptable on equal terms any models with, say, $Q>0.001$. This is not as sloppy as it sounds: Truly wrong models will often be rejected with vastly smaller values of $Q, 10^{-18}$, say. However, if day-in and day-out you find yourself accepting models with $Q \sim 10^{-3}$, you really should track down the cause.

If you happen to know the actual distribution law of your measurement errors, then you might wish to Monte Carlo simulate some data sets drawn from a particular model, cf. §7.2-§7.3. You can then subject these synthetic data sets to your actual fitting procedure, so as to determine both the probability distribution of the χ^{2} statistic, and also the accuracy with which your model parameters are reproduced by the fit. We discuss this further in $\S 15.6$. The technique is very general, but it can also be very expensive.

At the opposite extreme, it sometimes happens that the probability Q is too large, too near to 1 , literally too good to be true! Nonnormal measurement errors cannot in general produce this disease, since the normal distribution is about as "compact"
as a distribution can be. Almost always, the cause of too good a chi-square fit is that the experimenter, in a "fit" of conservativism, has overestimated his or her measurement errors. Very rarely, too good a chi-square signals actual fraud, data that has been "fudged" to fit the model.

A rule of thumb is that a "typical" value of χ^{2} for a "moderately" good fit is $\chi^{2} \approx \nu$. More precise is the statement that the χ^{2} statistic has a mean ν and a standard deviation $\sqrt{2 \nu}$, and, asymptotically for large ν, becomes normally distributed.

In some cases the uncertainties associated with a set of measurements are not known in advance, and considerations related to χ^{2} fitting are used to derive a value for σ. If we assume that all measurements have the same standard deviation, $\sigma_{i}=\sigma$, and that the model does fit well, then we can proceed by first assigning an arbitrary constant σ to all points, next fitting for the model parameters by minimizing χ^{2}, and finally recomputing

$$
\begin{equation*}
\sigma^{2}=\sum_{i=1}^{N}\left[y_{i}-y\left(x_{i}\right)\right]^{2} /(N-M) \tag{15.1.6}
\end{equation*}
$$

Obviously, this approach prohibits an independent assessment of goodness-of-fit, a fact occasionally missed by its adherents. When, however, the measurement error is not known, this approach at least allows some kind of error bar to be assigned to the points.

If we take the derivative of equation (15.1.5) with respect to the parameters a_{k}, we obtain equations that must hold at the chi-square minimum,

$$
\begin{equation*}
0=\sum_{i=1}^{N}\left(\frac{y_{i}-y\left(x_{i}\right)}{\sigma_{i}^{2}}\right)\left(\frac{\partial y\left(x_{i} ; \ldots a_{k} \ldots\right)}{\partial a_{k}}\right) \quad k=1, \ldots, M \tag{15.1.7}
\end{equation*}
$$

Equation (15.1.7) is, in general, a set of M nonlinear equations for the M unknown a_{k}. Various of the procedures described subsequently in this chapter derive from (15.1.7) and its specializations.

CITED REFERENCES AND FURTHER READING:
Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), Chapters 1-4.
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), §VI.C. [1]

15.2 Fitting Data to a Straight Line

