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Preface to the First Edition

The book is based on several years of experience of both authors in teaching
linear models at various levels. It gives an up-to-date account of the theory
and applications of linear models. The book can be used as a text for
courses in statistics at the graduate level and as an accompanying text for
courses in other areas. Some of the highlights in this book are as follows.

A relatively extensive chapter on matrix theory (Appendix A) provides
the necessary tools for proving theorems discussed in the text and offers a
selection of classical and modern algebraic results that are useful in research
work in econometrics, engineering, and optimization theory. The matrix
theory of the last ten years has produced a series of fundamental results
about the definiteness of matrices, especially for the differences of matrices,
which enable superiority comparisons of two biased estimates to be made
for the first time.

We have attempted to provide a unified theory of inference from linear
models with minimal assumptions. Besides the usual least-squares theory,
alternative methods of estimation and testing based on convex loss func-
tions and general estimating equations are discussed. Special emphasis is
given to sensitivity analysis and model selection.

A special chapter is devoted to the analysis of categorical data based on
logit, loglinear, and logistic regression models.

The material covered, theoretical discussion, and a variety of practical
applications will be useful not only to students but also to researchers and
consultants in statistics.

We would like to thank our colleagues Dr. G. Trenkler and Dr. V. K. Sri-
vastava for their valuable advice during the preparation of the book. We
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wish to acknowledge our appreciation of the generous help received from
Andrea Schöpp, Andreas Fieger, and Christian Kastner for preparing a fair
copy. Finally, we would like to thank Dr. Martin Gilchrist of Springer-Verlag
for his cooperation in drafting and finalizing the book.

We request that readers bring to our attention any errors they may
find in the book and also give suggestions for adding new material and/or
improving the presentation of the existing material.

University Park, PA C. Radhakrishna Rao
München, Germany Helge Toutenburg
July 1995



Preface to the Second Edition

The first edition of this book has found wide interest in the readership.
A first reprint appeared in 1997 and a special reprint for the Peoples Re-
public of China appeared in 1998. Based on this, the authors followed
the invitation of John Kimmel of Springer-Verlag to prepare a second edi-
tion, which includes additional material such as simultaneous confidence
intervals for linear functions, neural networks, restricted regression and se-
lection problems (Chapter 3); mixed effect models, regression-like equations
in econometrics, simultaneous prediction of actual and average values, si-
multaneous estimation of parameters in different linear models by empirical
Bayes solutions (Chapter 4); the method of the Kalman Filter (Chapter 6);
and regression diagnostics for removing an observation with animating
graphics (Chapter 7).

Chapter 8, “Analysis of Incomplete Data Sets”, is completely rewrit-
ten, including recent terminology and updated results such as regression
diagnostics to identify Non-MCAR processes.

Chapter 10, “Models for Categorical Response Variables”, also is com-
pletely rewritten to present the theory in a more unified way including
GEE-methods for correlated response.

At the end of the chapters we have given complements and exercises.
We have added a separate chapter (Appendix C) that is devoted to the
software available for the models covered in this book.

We would like to thank our colleagues Dr. V. K. Srivastava (Lucknow,
India) and Dr. Ch. Heumann (München, Germany) for their valuable ad-
vice during the preparation of the second edition. We thank Nina Lieske for
her help in preparing a fair copy. We would like to thank John Kimmel of
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Springer-Verlag for his effective cooperation. Finally, we wish to appreciate
the immense work done by Andreas Fieger (München, Germany) with re-
spect to the numerical solutions of the examples included, to the technical
management of the copy, and especially to the reorganization and updating
of Chapter 8 (including some of his own research results). Appendix C on
software was written by him, also.

We request that readers bring to our attention any suggestions that
would help to improve the presentation.

University Park, PA C. Radhakrishna Rao
München, Germany Helge Toutenburg
May 1999
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1
Introduction

Linear models play a central part in modern statistical methods. On the
one hand, these models are able to approximate a large amount of metric
data structures in their entire range of definition or at least piecewise. On
the other hand, approaches such as the analysis of variance, which model
effects such as linear deviations from a total mean, have proved their flex-
ibility. The theory of generalized models enables us, through appropriate
link functions, to apprehend error structures that deviate from the normal
distribution, hence ensuring that a linear model is maintained in principle.
Numerous iterative procedures for solving the normal equations were de-
veloped especially for those cases where no explicit solution is possible. For
the derivation of explicit solutions in rank-deficient linear models, classical
procedures are available, for example, ridge or principal component regres-
sion, partial least squares, as well as the methodology of the generalized
inverse. The problem of missing data in the variables can be dealt with by
appropriate imputation procedures.

Chapter 2 describes the hierarchy of the linear models, ranging from the
classical regression model to the structural model of econometrics.

Chapter 3 contains the standard procedures for estimating and testing in
regression models with full or reduced rank of the design matrix, algebraic
and geometric properties of the OLS estimate, as well as an introduction
to minimax estimation when auxiliary information is available in the form
of inequality restrictions. The concepts of partial and total least squares,
projection pursuit regression, and censored regression are introduced. The
method of Scheffé’s simultaneous confidence intervals for linear functions as
well as the construction of confidence intervals for the ratio of two paramet-
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ric functions are discussed. Neural networks as a nonparametric regression
method and restricted regression in connection with selection problems are
introduced.

Chapter 4 describes the theory of best linear estimates in the general-
ized regression model, effects of misspecified covariance matrices, as well
as special covariance structures of heteroscedasticity, first-order autore-
gression, mixed effect models, regression-like equations in econometrics,
and simultaneous estimates in different linear models by empirical Bayes
solutions.

Chapter 5 is devoted to estimation under exact or stochastic linear re-
strictions. The comparison of two biased estimations according to the MDE
criterion is based on recent theorems of matrix theory. The results are the
outcome of intensive international research over the last ten years and ap-
pear here for the first time in a coherent form. This concerns the concept
of the weak r-unbiasedness as well.

Chapter 6 contains the theory of the optimal linear prediction and
gives, in addition to known results, an insight into recent studies about
the MDE matrix comparison of optimal and classical predictions according
to alternative superiority criteria. A separate section is devoted to Kalman
filtering viewed as a restricted regression method.

Chapter 7 presents ideas and procedures for studying the effect of single
data points on the estimation of β. Here, different measures for revealing
outliers or influential points, including graphical methods, are incorporated.
Some examples illustrate this.

Chapter 8 deals with missing data in the design matrix X. After an in-
troduction to the general problem and the definition of the various missing
data mechanisms according to Rubin, we describe various ways of handling
missing data in regression models. The chapter closes with the discussion
of methods for the detection of non-MCAR mechanisms.

Chapter 9 contains recent contributions to robust statistical inference
based on M-estimation.

Chapter 10 describes the model extensions for categorical response and
explanatory variables. Here, the binary response and the loglinear model are
of special interest. The model choice is demonstrated by means of examples.
Categorical regression is integrated into the theory of generalized linear
models. In particular, GEE-methods for correlated response variables are
discussed.

An independent chapter (Appendix A) about matrix algebra summarizes
standard theorems (including proofs) that are used in the book itself, but
also for linear statistics in general. Of special interest are the theorems
about decomposition of matrices (A.30–A.34), definite matrices (A.35–
A.59), the generalized inverse, and particularily about the definiteness of
differences between matrices (Theorem A.71; cf. A.74–A.78).

Tables for the χ2- and F -distributions are found in Appendix B.
Appendix C describes available software for regression models.
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The book offers an up-to-date and comprehensive account of the theory
and applications of linear models, with a number of new results presented
for the first time in any book.



2
Linear Models

2.1 Regression Models in Econometrics

The methodology of regression analysis, one of the classical techniques of
mathematical statistics, is an essential part of the modern econometric
theory.

Econometrics combines elements of economics, mathematical economics,
and mathematical statistics. The statistical methods used in econometrics
are oriented toward specific econometric problems and hence are highly
specialized. In economic laws, stochastic variables play a distinctive role.
Hence econometric models, adapted to the economic reality, have to be
built on appropriate hypotheses about distribution properties of the ran-
dom variables. The specification of such hypotheses is one of the main tasks
of econometric modeling. For the modeling of an economic (or a scientific)
relation, we assume that this relation has a relative constancy over a suffi-
ciently long period of time (that is, over a sufficient length of observation
period), because otherwise its general validity would not be ascertainable.
We distinguish between two characteristics of a structural relationship, the
variables and the parameters. The variables, which we will classify later on,
are those characteristics whose values in the observation period can vary.
Those characteristics that do not vary can be regarded as the structure of
the relation. The structure consists of the functional form of the relation,
including the relation between the main variables, the type of probabil-
ity distribution of the random variables, and the parameters of the model
equations.
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The econometric model is the epitome of all a priori hypotheses re-
lated to the economic phenomenon being studied. Accordingly, the model
constitutes a catalogue of model assumptions (a priori hypotheses, a pri-
ori specifications). These assumptions express the information available a
priori about the economic and stochastic characteristics of the phenomenon.

For a distinct definition of the structure, an appropriate classification of
the model variables is needed. The econometric model is used to predict
certain variables y called endogenous, given the realizations (or assigned
values) of certain other variables x called exogenous, which ideally requires
the specification of the conditional distribution of y given x. This is usually
done by specifiying an economic structure, or a stochastic relationship be-
tween y and x through another set of unobservable random variables called
error.

Usually, the variables y and x are subject to a time development, and
the model for predicting yt, the value of y at time point t, may involve the
whole set of observations

yt−1, yt−2, . . . , (2.1)
xt, xt−1, . . . . (2.2)

In such models, usually referred to as dynamic models, the lagged en-
dogenous variables (2.1) and the exogenous variables (2.2) are treated
as regressors for predicting the endogenous variable yt considered as a
regressand.

If the model equations are resolved into the jointly dependent variables
(as is normally assumed in the linear regression) and expressed as a function
of the predetermined variables and their errors, we then have the econo-
metric model in its reduced form. Otherwise, we have the structural form
of the equations.

A model is called linear if all equations are linear. A model is called
univariate if it contains only one single endogenous variable. A model with
more than one endogenous variable is called multivariate.

A model equation of the reduced form with more than one predetermined
variable is called multivariate or a multiple equation. We will get to know
these terms better in the following sections by means of specific models.

Because of the great mathematical and especially statistical difficulties in
dealing with econometric and regression models in the form of inequalities
or even more general mathematical relations, it is customary to almost
exclusively work with models in the form of equalities.

Here again, linear models play a special part, because their handling
keeps the complexity of the necessary mathematical techniques within rea-
sonable limits. Furthermore, the linearity guarantees favorable statistical
properties of the sample functions, especially if the errors are normally
distributed. The (linear) econometric model represents the hypothetical
stochastic relationship between endogenous and exogenous variables of a
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complex economic law. In practice any assumed model has to be examined
for its validity through appropriate tests and past evidence.

This part of model building, which is probably the most complicated
task of the statistician, will not be dealt with any further in this text.

Example 2.1: As an illustration of the definitions and terms of econometrics,
we want to consider the following typical example. We define the following
variables:

A: deployment of manpower,

B: deployment of capital, and

Y : volume of production.

Let e be the base of the natural logarithm and c be a constant (which
ensures in a certain way the transformation of the unit of measurement of
A, B into that of Y ). The classical Cobb-Douglas production function for
an industrial sector, for example, is then of the following form:

Y = cAβ1Bβ2eε .

This function is nonlinear in the parameters β1, β2 and the variables A, B,
and ε. By taking the logarithm, we obtain

lnY = ln c + β1 lnA + β2 lnB + ε .

Here we have

lnY the regressand or the endogenous variable,
lnA
lnB

}
the regressors or the exogenous variables,

β1, β2 the regression coefficients,
ln c a scalar constant,
ε the random error.

β1 and β2 are called production elasticities. They measure the power and
direction of the effect of the deployment of labor and capital on the volume
of production. After taking the logarithm, the function is linear in the
parameters β1 and β2 and the regressors ln A and lnB.

Hence the model assumptions are as follows: In accordance with the mul-
tiplicative function from above, the volume of production Y is dependent
on only the three variables A, B, and ε (random error). Three parameters
appear: the production elasticities β1, β2 and the scalar constant c. The
model is multiple and is in the reduced form.

Furthermore, a possible assumption is that the errors εt are indepen-
dent and identically distributed with expectation 0 and variance σ2 and
distributed independently of A and B.
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2.2 Econometric Models

We first develop the model in its economically relevant form, as a sys-
tem of M simultaneous linear stochastic equations in M jointly dependent
variables Y1, . . . , YM and K predetermined variables X1, . . . , XK , as well
as the error variables U1, . . . , UM . The realizations of each of these vari-
able are denoted by the corresponding small letters ymt, xkt, and umt, with
t = 1, . . . , T , the times at which the observations are taken. The system of
structural equations for index t (t = 1, . . . , T ) is

y1tγ11 + · · · + yMtγM1 + x1tδ11 + · · · + xKtδK1 + u1t = 0
y1tγ12 + · · · + yMtγM2 + x1tδ12 + · · · + xKtδK2 + u2t = 0

...
...

...
y1tγ1M + · · · + yMtγMM + x1tδ1M + · · · + xKtδKM + uMt = 0


(2.3)

Thus, the mth structural equation is of the form (m = 1, . . . , M)

y1tγ1m + · · · + yMtγMm + x1tδ1m + · · · + xKtδKm + umt = 0 .

Convention

A matrix A with m rows and n columns is called an m × n-matrix A, and
we use the symbol A

m×n
. We now define the following vectors and matrices:

Y
T×M

=



y11 · · · yM1
...

...
y1t · · · yMt

...
...

y1T · · · yMT

 =



y′(1)
...

y′(t)
...

y′(T )

 =
(

y1
T×1

, · · · , yM
T×1

)
,

X
T×K

=



x11 · · · xK1
...

...
x1t · · · xKt

...
...

x1T · · · xKT

 =



x′(1)
...

x′(t)
...

x′(T )

 =
(

x1
T×1

, · · · , xK
T×1

)
,

U
T×M

=



u11 · · · uM1
...

...
u1t · · · uMt

...
...

u1T · · · uMT

 =



u′(1)
...

u′(t)
...

u′(T )

 =
(

u1
T×1

, · · · , uM
T×1

)
,



2.2 Econometric Models 9

Γ
M×M

=

 γ11 · · · γ1M

...
...

γM1 · · · γMM

 =
(

γ1
M×1

, · · · , γM
M×1

)
,

D
K×M

=

 δ11 · · · δ1M

...
...

δK1 · · · δKM

 =
(

δ1
K×1

, · · · , δM
K×1

)
.

We now have the matrix representation of system (2.3) for index t:

y′(t)Γ + x′(t)D + u′(t) = 0 (t = 1, . . . , T ) (2.4)

or for all T observation periods,

Y Γ + XD + U = 0 . (2.5)

Hence the mth structural equation for index t is

y′(t)γm + x′(t)δm + umt = 0 (m = 1, . . . , M) (2.6)

where γm and δm are the structural parameters of the mth equation. y′(t)
is a 1 × M -vector, and x′(t) is a 1 × K-vector.

Conditions and Assumptions for the Model
Assumption (A)

(A.1) The parameter matrix Γ is regular.

(A.2) Linear a priori restrictions enable the identification of the parameter
values of Γ, and D.

(A.3) The parameter values in Γ are standardized, so that γmm =
−1 (m = 1, . . . , M).

Definition 2.1 Let t = . . . − 2,−1, 0, 1, 2, . . . be a series of time indices.

(a) A univariate stochastic process {xt} is an ordered set of random
variables such that a joint probability distribution for the variables
xt1 , . . . , xtn

is always defined, with t1, . . . , tn being any finite set of
time indices.

(b) A multivariate (n-dimensional) stochastic process is an ordered
set of n × 1 random vectors {xt} with xt = (xt1 , . . . , xtn) such that for
every choice t1, . . . , tn of time indices a joint probability distribution is
defined for the random vectors xt1 , . . . , xtn

.

A stochastic process is called stationary if the joint probability distri-
butions are invariant under translations along the time axis. Thus any
finite set xt1 , . . . , xtn has the same joint probability distribution as the set
xt1+r, . . . , xtn+r for r = . . . ,−2,−1, 0, 1, 2, . . . .
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As a typical example of a univariate stochastic process, we want to men-
tion the time series. Under the assumption that all values of the time series
are functions of the time t, t is the only independent (exogenous) variable:

xt = f(t). (2.7)

The following special cases are of importance in practice:

xt = α (constancy over time),
xt = α + βt (linear trend),
xt = αeβt (exponential trend).

For the prediction of time series, we refer, for example, to Nelson (1973) or
Mills (1991).

Assumption (B)

The structural error variables are generated by an M -dimensional station-
ary stochastic process {u(t)} (cf. Goldberger, 1964, p. 153).

(B.1) Eu(t) = 0 and thus E(U) = 0.

(B.2) Eu(t)u′(t) = Σ
M×M

= (σmm′) with Σ positive definite and hence

regular.

(B.3) Eu(t)u′(t′) = 0 for t �= t′.

(B.4) All u(t) are identically distributed.

(B.5) For the empirical moment matrix of the random errors, let

p limT−1
T∑

t=1

u(t)u′(t) = p limT−1U ′U = Σ. (2.8)

Consider a series {z(t)} = z(1), z(2), . . . of random variables. Each random
variable has a specific distribution, variance, and expectation. For example,
z(t) could be the sample mean of a sample of size t of a given population.
The series {z(t)} would then be the series of sample means of a successively
increasing sample. Assume that z∗ < ∞ exists, such that

lim
t→∞ P{|z(t) − z∗| ≥ δ} = 0 for everyδ > 0.

Then z∗ is called the probability limit of {z(t)}, and we write p lim z(t) = z∗

or p lim z = z∗ (cf. Definition A.101 and Goldberger, 1964, p. 115).

(B.6) The error variables u(t) have an M -dimensional normal distribution.

Under general conditions for the process {u(t)} (cf.Goldberger, 1964),
(B.5) is a consequence of (B.1)–(B.3). Assumption (B.3) reduces the num-
ber of unknown parameters in the model to be estimated and thus enables
the estimation of the parameters in Γ, D, Σ from the T observations (T
sufficiently large).
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The favorable statistical properties of the least-squares estimate in the
regression model and in the econometric models are mainly independent
of the probability distribution of u(t). Assumption (B.6) is additionally
needed for test procedures and for the derivation of interval estimates and
predictions.

Assumption (C)

The predetermined variables are generated by a K-dimensional stationary
stochastic process {x(t)}.

(C.1) Ex(t)x′(t) = Σxx, a K × K-matrix, exists for all t. Σxx is positive
definite and thus regular.

(C.2) For the empirical moment matrix (sample moments)

Sxx = T−1
T∑

t=1

x(t)x′(t) = T−1X ′X , (2.9)

the following limit exists, and every dependence in the process {x(t)}
is sufficiently small, so that

p limSxx = lim
T→∞

Sxx = Σxx .

Assumption (C.2) is fulfilled, for example, for an ergodic stationary pro-
cess. A stationary process {x(t)} is called ergodic if the time mean of every
realization (with probability 1) is the same and coincides with the expec-
tation of the entire time series. Thus, according to (C.2), {x(t)} is called
ergodic if

lim
T→∞

Sxx = Σxx .

In practice, ergodicity can often be assumed for stationary processes. Er-
godicity means that every realization (sample vector) has asymptotically
the same statistical properties and is hence representative for the process.

(C.3) The processes {x(t)} and {u(t)} are contemporaneously uncorrelated ;
that is, for every t we have E (u(t)|x(t)) = E (u(t)) = 0. For the
empirical moments we have

p limT−1
T∑

t=1

x(t)u′(t) = p limT−1X ′U = 0. (2.10)

Assumption (C.3) is based on the idea that the values of the predeter-
mined variables are not determined by the state of the system at the actual
time index t. Hence these values may not have to be dependent on the errors
u(t).

Assume that lim T−1X ′X exists. In many cases, especially when the
predetermined variables consist only of exogenous variables, the alternative
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assumption can be made that the predetermined variables remain fixed for
repeated samples. In this case, {x(t)} is a nonstochastic series.

Using selected assumptions and according to our definition made in
Section 2.2, the linear econometric model has the following form:

Y Γ + XD + U = 0,

E(U) = 0, E u(t)u′(t) = Σ,

Eu(t)u(t′) = 0 (t �= t′),
Γ nonsingular,
Σ positive definite,
p limT−1U ′U = Σ, p limT−1X ′U = 0,

p limT−1X ′X = Σxx (positive definite).


(2.11)

The general aim of our studies is to deal with problems of estima-
tion, prediction, and model building for special types of models. For more
general questions about econometric models, we refer to the extensive
literature about estimation and identifiability problems of econometric
model systems, for example Amemiya (1985), Goldberger (1964), and
Dhrymes (1974; 1978), and to the extensive special literature, for exam-
ple, in the journals Econometrica, Essays in Economics and Econometrics,
and Journal of Econometrics and Econometric Theory.

2.3 The Reduced Form

The approach to the models of linear regression from the viewpoint of
the general econometric model yields the so-called reduced form of the
econometric model equation. The previously defined model has as many
equations as endogenous variables. In addition to (A.1), we assume that
the system of equations uniquely determines the endogenous variables, for
every set of values of the predetermined and random variables. The model is
then called complete. Because of the assumed regularity of Γ, we can express
the endogenous variable as a linear vector function of the predetermined
and random variables by multiplying from the right with Γ−1:

Y = −XDΓ−1 − UΓ−1 = XΠ + V , (2.12)

where

Π
K×M

= −DΓ−1 = (π1, . . . , πM ) . (2.13)
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This is the coefficient matrix of the reduced form (with πm being K-vectors
of the regression coefficients of the mth reduced-form equation), and

V
T×M

= −UΓ−1 =



v′(1)
...

v′(t)
...

v′(T )

 = (v1, . . . , vM ) (2.14)

is the matrix of the random errors. The mth equation of the reduced form
is of the following form:

ym = Xπm + vm. (2.15)

The model assumptions formulated in (2.11) are transformed as follows:

E(V ) = −E(U)Γ−1 = 0,

E[v(t)v′(t)] = Γ′−1 E[u(t)u′(t)]Γ−1 = Γ′−1ΣΓ−1 = Σvv,

Σvv is positive definite (since Γ−1 is nonsingular
and Σ is positive definite),

E[v(t)v′(t′)] = 0 (t �= t′),
p limT−1V ′V = Γ−1(p limT−1U ′U)Γ−1 = Σvv,

p limT−1X ′V = 0, p limT−1X ′X = Σxx (positive definite).


(2.16)

The reduced form of (2.11) is now

Y = XΠ + V with assumptions (2.16). (2.17)

By specialization or restriction of the model assumptions, the reduced form
of the econometric model yields the essential models of linear regression.

Example 2.2 (Keynes’s model): Let C be the consumption, Y the income,
and I the savings (or investment). The hypothesis of Keynes then is

(a) C = α + βY ,

(b) Y = C + I.

Relation (a) expresses the consumer behavior of an income group, for ex-
ample, while (b) expresses a condition of balance: The difference Y − C is
invested (or saved). The statistical formulation of Keynes’s model is

Ct = α + βYt + εt

Yt = Ct + It

}
(t = 1, . . . , T ), (2.18)

where εt is a random variable (error) with

E εt = 0, E ε2t = σ2, E εsεt = 0 for t �= s . (2.19)

Additionally, autonomy of the investments is assumed:

E Itεt = 0 ∀t . (2.20)
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We now express the above model in the form (2.4) as

(Ct Yt)
( −1 1

β −1

)
+ (1 , It)

(
α 0
0 1

)
+ (εt , 0) = (0 , 0). (2.21)

Hence K = M = 2.
We calculate the reduced form:

Π = −DΓ−1 = −
(

α 0
0 1

)( −1 1
β −1

)−1

= −
(

α 0
0 1

)( −1
(1−β)

−1
(1−β)

−β
(1−β)

−1
(1−β)

)

=
1

1 − β

(
α α
β 1

)
. (2.22)

Thus, the reduced form is (cf. (2.12))

(Ct , Yt) = (1 , It)

(
α

(1−β)
α

(1−β)
β

(1−β)
1

(1−β)

)
+ (v1t v2t) (2.23)

with v1t = v2t = εt/(1 − β). Here we have

Ct, Yt jointly dependent,
It predetermined.

2.4 The Multivariate Regression Model

We now neglect the connection between the structural form (2.11) of the
econometric model and the reduced form (2.17) and regard Y = XΠ + V
as an M -dimensional system of M single regressions Y1, . . . , YM onto the
K regressors X1, . . . , XK . In the statistical handling of such systems, the
following representation holds. The coefficients (regression parameters) are
usually denoted by β̃ and the error variables by ε̃. We thus have Π = (β̃km)
and V = (ε̃mt).

Then Y = XΠ + V , which in the expanded form is( y11 · · · yM1
...

...
y1T · · · yMT

)
=

( x11 · · · xK1
...

...
x1T · · · xKT

) β̃11 · · · β̃1M
...

...
β̃K1 · · · β̃KM


+

 ε̃11 · · · ε̃M1
...

...
ε̃1T · · · ε̃MT


or (after summarizing the column vectors)

(y1, . . . , yM ) = X(β̃1, . . . , β̃M ) + (ε̃1, . . . , ε̃M ). (2.24)
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We write the components (T × 1-vectors) rowwise as
y1
y2
...

yM

 =


X 0 · · · 0
0 X · · · 0
...

...
...

0 0 · · · X




β̃1

β̃2
...

β̃M

+


ε̃1
ε̃2
...

ε̃M

 . (2.25)

The mth equation of this system is of the following form:

ym = Xβ̃m + ε̃m (m = 1, . . . , M). (2.26)

In this way, the statistical dependence of each of the M regressands Ym

on the K regressors X1, . . . , XK is explicitly described.
In practice, not every single regressor in X will appear in each of the M

equations of the system. This information, which is essential in econometric
models for identifying the parameters and which is included in Assumption
(A.2), is used by setting those coefficients β̃mk that belong to the vari-
able Xk, which is not included in the mth equation, equal to zero. This
leads to a gain in efficiency for the estimate and prediction, in accordance
with the exact auxiliary information in the form of knowledge of the co-
efficients. The matrix of the regressors of the mth equation generated by
deletion is denoted by Xm, the coefficient vector belonging to Xm is de-
noted by βm. Similarly, the error ε̃ changes to ε. Thus, after realization of
the identification, the mth equation has the following form:

ym = Xmβm + εm (m = 1, . . . , M). (2.27)

Here

ym is the T -vector of the observations of the mth regressand,
Xm is the T × Km-matrix of the regressors, which remain in the mth

equation,
βm is the Km-vector of the regression coefficients of the mth equation,
εm is the T -vector of the random errors of the mth equation.

Given (2.27) and K̃ =
∑M

m=1 Km, the system (2.25) of M single
regressions changes to

y1
y2
...

yM

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
...

0 0 · · · XM




β1
β2
...

βM

+


ε1
ε2
...

εM

 , (2.28)

or in matrix form,

y
MT×1

= Z
MT×K̃

β
K̃×1

+ ε
MT×1

. (2.29)

Example 2.3 (Dynamic Keynes’s model): The consumption Ct in Example
2.2 was dependent on the income Yt of the same time index t. We now want
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to state a modified hypothesis. According to this hypothesis, the income of
the preceding period t − 1 determines the consumption for index t:

(a) Ct = α + βYt−1 + εt,

(b) Yt = Ct + It.

Assume the investment is autonomous, as in Example 2.2. Then we have
the following classification of variables:

jointly dependent variables: Ct, Yt

predetermined variables: Yt−1, It

endogenous variables: Yt−1, Ct, Yt

lagged endogenous variable: Yt−1
exogenous variable: It

Assumption (D)

The variables Xk include no lagged endogenous variables. The values xkt

of the nonstochastic (exogenous) regressors Xk are such that

rank(Xm) = Km (m = 1, . . . , M) and thus
rank(Z) = K̃ with K̃ =

∑M
m=1 Km .

}
(2.30)

Assumption (E)

The random errors εmt are generated by an MT -dimensional regular
stochastic process. Let

E(εmt) = 0, E(εmt εm′t′) = σ2wmm′(t, t′)
(m, m′ = 1, . . . , M ; t, t′ = 1, . . . , T ), (2.31)

and therefore

E(εm) = 0, E(ε) = 0 , (2.32)

E(εmε′
m′) = σ2 Wmm′

T×T
= σ2

 wmm′(1, 1) · · · wmm′(1, T )
...

...
wmm′(T, 1) · · · wmm′(T, T )

(2.33)

E(εε′) = σ2 Φ
MT×MT

= σ2

 W11 · · · W1M

...
...

WM1 · · · WMM

 . (2.34)

Assumption (E.1)

The covariance matrices σ2Wmm of the errors εm of the mth equation and
the covariance matrix σ2Φ of the error ε of the system are positive definite
and hence regular.
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Assumption (F)

The error variable ε has an MT -dimensional normal distribution N(0, σ2Φ).
Given assumptions (D) and (E), the so-called multivariate (M -dimensio-

nal) multiple linear regression model is of the following form:

y = Zβ + ε,
E(ε) = 0, E(εε′) = σ2Φ,

Z nonstochastic, rank(Z) = K̃ .

 (2.35)

The model is called regular if it satisfies (E.1) in addition to (2.28). If (F)
is fulfilled, we then have a multivariate normal regression.

2.5 The Classical Multivariate Linear Regression
Model

An error process uncorrelated in time {ε} is an important special case of
model (2.35). For this process Assumption (E) is of the following form.

Assumption (Ẽ)

The random errors εmt are generated by an MT -dimensional regular
stochastic process. Let

E(εmt) = 0, E(εmtεm′t) = σ2wmm′ ,

E(εmtεm′t′) = 0 (t �= t′) ,

E(εm) = 0, E(ε) = 0 ,

E(εmε′
m′) = σ2wmm′I

E(εε′) = σ2Φ = σ2

 w11I · · · w1MI
...

...
wM1I · · · wMMI


= σ2

 w11 · · · w1M

...
...

wM1 · · · wMM

⊗ I

= σ2W0 ⊗ I (2.36)

where I is the T ×T identity matrix and ⊗ denotes the Kronecker product
(cf. Theorem A.99).

Assumption (Ẽ.1)

The covariance matrix σ2Φ is positive definite and hence regular.
Model (2.35) with Φ according to (Ẽ) is called the classical multivariate

linear regression model.
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Independent Single Regressions

W0 expresses the relationships between the M equations of the system. If
the errors εm are uncorrelated not only in time, but equationwise as well,
that is, if

E(εmtεm′t′) = σ2wmm′ = 0 for m �= m′, (2.37)

we then have

W0 =

 w11 · · · 0
...

...
0 · · · wMM

 . (2.38)

(Thus (Ẽ.1) is fulfilled for wmm �= 0 (m = 1, . . . M).)
The M equations (2.27) of the system are then to be handled inde-

pendently. They do not form a real system. Their combination in an
M -dimensional system of single regressions has no influence upon the
goodness of fit of the estimates and predictions.

2.6 The Generalized Linear Regression Model

Starting with the multivariate regression model (2.35), when M = 1 we
obtain the generalized linear regression model. In the reverse case, every
equation (2.27) of the multivariate model is for M > 1 a univariate linear
regression model that represents the statistical dependence of a regressand
Y on K regressors X1, . . . , XK and a random error ε:

Y = X1β1 + . . . + XKβK + ε . (2.39)

The random error ε describes the influence of chance as well as that of
quantities that cannot be measured, or can be described indirectly by other
variables Xk, such that their effect can be ascribed to chance as well.

This model implies that the Xk represent the main effects on Y and that
the effects of systematic components on Y contained in ε, in addition to
real chance, are sufficiently small. In particular, this model postulates that
the dependence of Xk and ε is sufficiently small so that

E(ε|X) = E(ε) = 0 . (2.40)

We assume that we have T observations of all variables, which can be
represented in a linear model

yt =
K∑

k=1

xtkβk + εt = x′
t

1×K

β + εt (t = 1, . . . T ) , (2.41)

or in matrix representation as

y = Xβ + ε . (2.42)
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The assumptions corresponding to (D), (E), and (F) are (G), (H), and
(K), respectively.

Assumption (G)

The regressors Xk are nonstochastic. Their values xkt are chosen such that
rank(X) = K.

Assumption (H)

The random errors εt are generated by a T -dimensional regular stochastic
process. Let

E(εt) = 0, E(εtεt′) = σ2wtt′ , (2.43)

and hence

E(εε′) = σ2 W
T×T

= σ2(wtt′) , (2.44)

where W is positive definite.

Assumption (K)

The vector ε of the random errors εt has a T -dimensional normal
distribution N(0, σ2W ).

Given (G), (H), and (2.42), the generalized linear regression model is of
the following form:

y = Xβ + ε,
E(ε) = 0, E(εε′) = σ2W,
X nonstochastic, rank(X) = K.

 (2.45)

The model (2.45) is called regular if additionally Assumption (H) is ful-
filled. If (K) is fulfilled, we then have a generalized!normal regression. If
wtt′ = 0 for t �= t′ and wtt = 1 for all t in (H), we have the classical linear
regression model

y = Xβ + ε,
E(ε) = 0, E(εε′) = σ2I,
X nonstochastic, rank(X) = K.

 (2.46)

If (H) holds and W is known, the generalized model can be reduced
to the classical model: Because of (H), W has a positive definite inverse
W−1. According to well-known theorems (cf. Theorem A.41), product
representations exist for W and W−1:

W = MM, W−1 = NN (M,N quadratic and regular).

Thus (NN) = (MM)−1, including NMMN = NWN = I. If the gen-
eralized model y = Xβ + ε is transformed by multiplication from the left
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with N , the transformed model Ny = NXβ + Nε fulfills the assumptions
of the classical model:

E(Nεε′N) = σ2NWN = σ2I; E(Nε) = N E(ε) = 0,
rank(NX) = K (since rank(X) = K and N regular).

For the above models, statistics deals, among other things, with problems
of testing models, the derivation of point and interval estimates of the
unknown parameters, and the prediction of the regressands (endogenous
variables). Of special importance in practice is the modification of models in
terms of stochastic specifications (stochastic regressors, correlated random
errors with different types of covariance matrices), rank deficiency of the
regressor matrix, and model restrictions related to the parameter space.

The emphasis of the following chapters is on the derivation of best es-
timates of the parameters and optimal predictions of the regressands in
regular multiple regression models. Along the way, different approaches for
estimation (prediction), different auxiliary information about the model
parameters, as well as alternative criteria of superiority are taken into
consideration.

2.7 Exercises

Exercise 1. The CES (constant elasticity of substitution) production func-
tion relating the production Y to labor X1 and capital X2 is given
by

Y = [αX−β
1 + (1 − α)X−β

2 ]−
1
β .

Can it be transformed to a linear model?

Exercise 2. Write the model and name it in each of the following sets of
causal relationships:

X1

X2

y (X1 + X2)2 X1

y1

y2
X2

X1

y1

y2
X2

X1

y1

y2

X2

X3

Exercise 3. If the matrix Γ in the model (2.4) is triangular, comment on
the nature of the reduced form.
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Exercise 4. For a system of simultaneous linear stochastic equations, the
reduced form of the model is available. Can we recover the structural
form from it in a logical manner? Explain your answer with a suitable
illustration.



3
The Linear Regression Model

3.1 The Linear Model

The main topic of this chapter is the linear regression model and its basic
principle of estimation through least squares. We present the algebraic,
geometric, and statistical aspects of the problem, each of which has an
intuitive appeal.

Let Y denote the dependent variable that is related to K independent
variables X1, . . . XK by a function f . When the relationship is not exact,
we write

Y = f(X1, . . . , XK) + e . (3.1)

When f is not linear, equation (3.1) is referred to as the nonlinear regression
model. When f is linear, equation (3.1) takes the form

Y = X1β1 + · · · + XKβK + e , (3.2)

which is called the linear regression model.
We have T sets of observations on Y and (X1, . . . , XK), which we

represent as follows:

(y, X) =

 y1 x11 · · · xK1
...

...
...

yT x1T · · · xKT

 = (y, x(1), . . . , x(K)) =

 y1, x′
1

...
yT , x′

T


(3.3)
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where y = (y1, . . . , yT )′ is a T -vector and xi = (x1i, . . . , xKi)′ is a K-vector
and x(j) = (xj1, . . . , xjT )′ is a T -vector. (Note that in (3.3), the first, third
and fourth matrices are partitioned matrices.)

In such a case, there are T observational equations of the form (3.2):

yt = x′
tβ + et , t = 1, . . . , T , (3.4)

where β′ = (β1, . . . , βK), which can be written using the matrix notation,

y = Xβ + e , (3.5)

where e′ = (e1, . . . , eT ). We consider the problems of estimation and testing
of hypotheses on β under some assumptions. A general procedure for the
estimation of β is to minimize

T∑
t=1

M(et) =
T∑

t=1

M(yt − x′
tβ) (3.6)

for a suitably chosen function M , some examples of which are M(x) = |x|
and M(x) = x2. More generally, one could minimize a global function of e
such as maxt |et| over t. First we consider the case M(x) = x2, which leads
to the least-squares theory, and later introduce other functions that may
be more appropriate in some situations.

3.2 The Principle of Ordinary Least Squares (OLS)

Let B be the set of all possible vectors β. If there is no further information,
we have B = RK (K-dimensional real Euclidean space). The object is to
find a vector b′ = (b1, . . . , bK) from B that minimizes the sum of squared
residuals

S(β) =
T∑

t=1

e2
t = e′e = (y − Xβ)′(y − Xβ) (3.7)

given y and X. A minimum will always exist, since S(β) is a real-valued,
convex, differentiable function. If we rewrite S(β) as

S(β) = y′y + β′X ′Xβ − 2β′X ′y (3.8)

and differentiate by β (with the help of Theorems A.91–A.95), we obtain

∂S(β)
∂β

= 2X ′Xβ − 2X ′y , (3.9)

∂2S(β)
∂β2 = 2X ′X (nonnegative definite). (3.10)

Equating the first derivative to zero yields what are called the normal
equations

X ′Xb = X ′y. (3.11)
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If X is of full rank K, then X ′X is nonsingular and the unique solution of
(3.11) is

b = (X ′X)−1X ′y . (3.12)

If X is not of full rank, equation (3.11) has a set of solutions

b = (X ′X)−X ′y + (I − (X ′X)−X ′X)w , (3.13)

where (X ′X)− is a g-inverse (generalized inverse) of X ′X and w is
an arbitrary vector. [We note that a g-inverse (X ′X)− of X ′X sat-
isfies the properties X ′X(X ′X)−X ′X = X ′X, X(X ′X)−X ′X = X,
X ′X(X ′X)−X ′ = X ′, and refer the reader to Section A.12 in Appendix A
for the algebra of g-inverses and methods for solving linear equations, or to
the books by Rao and Mitra (1971), and Rao and Rao (1998).] We prove
the following theorem.

Theorem 3.1

(i) ŷ = Xb, the empirical predictor of y, has the same value for all
solutions b of X ′Xb = X ′y.

(ii) S(β), the sum of squares defined in (3.7), attains the minimum for
any solution of X ′Xb = X ′y.

Proof: To prove (i), choose any b in the set (3.13) and note that

Xb = X(X ′X)−X ′y + X(I − (X ′X)−X ′X)w
= X(X ′X)−X ′y (which is independent of w).

Note that we used the result X(X ′X)−X ′X = X given in Theorem A.81.
To prove (ii), observe that for any β,

S(β) = (y − Xb + X(b − β))′(y − Xb + X(b − β))
= (y − Xb)′(y − Xb) + (b − β)′X ′X(b − β) + 2(b − β)′X ′(y − Xb)
= (y − Xb)′(y − Xb) + (b − β)′X ′X(b − β) , using (3.11)
≥ (y − Xb)′(y − Xb) = S(b)
= y′y − 2y′Xb + b′X ′Xb = y′y − b′X ′Xb = y′y − ŷ′ŷ . (3.14)

3.3 Geometric Properties of OLS

For the T × K-matrix X, we define the column space

R(X) = {θ : θ = Xβ, β ∈ RK} ,

which is a subspace of RT . If we choose the norm ‖x‖ = (x′x)1/2 for x ∈ RT ,
then the principle of least squares is the same as that of minimizing ‖ y−θ ‖
for θ ∈ R(X). Geometrically, we have the situation as shown in Figure 3.1.

We then have the following theorem:
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X1

X2

ŷ

ε̂ ⊥ ŷ

y

Figure 3.1. Geometric properties of OLS, θ ∈ R(X) (for T = 3 and K = 2)

Theorem 3.2 The minimum of ‖ y − θ ‖ for θ ∈ R(X) is attained at θ̂ such
that (y− θ̂)⊥R(X), that is, when y− θ̂ is orthogonal to all vectors in R(X),
which is when θ̂ is the orthogonal projection of y on R(X). Such a θ̂ exists
and is unique, and has the explicit expression

θ̂ = Py = X(X ′X)−X ′y , (3.15)

where P = X(X ′X)−X ′ is the orthogonal projection operator on R(X).

Proof: Let θ̂ ∈ R(X) be such that (y − θ̂)⊥R(X), that is, X ′(y − θ̂) = 0.
Then

‖ y − θ ‖2 = (y − θ̂ + θ̂ − θ)′(y − θ̂ + θ̂ − θ)

= (y − θ̂)′(y − θ̂) + (θ̂ − θ)′(θ̂ − θ) ≥ ‖ y − θ̂ ‖2

since the term (y − θ̂)′(θ̂ − θ) vanishes using the orthogonality condition.
The minimum is attained when θ = θ̂. Writing θ̂ = Xβ̂, the orthogonality
condition implies X ′(y − Xβ̂) = 0, that is, X ′Xβ̂ = X ′y. The equation
X ′Xβ = X ′y admits a solution, and Xβ is unique for all solutions of β as
shown in Theorem A.79. This shows that θ̂ exists.

Let (X ′X)− be any g-inverse of X ′X. Then β̂ = (X ′X)−X ′y is a solution
of X ′Xβ = X ′y, and

Xβ̂ = X(X ′X)−X ′y = Py ,

which proves (3.15) of Theorem 3.2.

Note 1: If rank(X) = s < K, it is possible to find a matrix U of order
(K −s)×K and rank K −s such that R(U ′)∩R(X ′) = {0}, where 0 is the
null vector. In such a case, X ′X + U ′U is of full rank K, (X ′X + U ′U)−1

is a g-inverse of X ′X, and a solution of the normal equation X ′Xβ = X ′y
can be written as

β̂ = (X ′X + U ′U)−1(X ′y + U ′u) , (3.16)
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where u is arbitrary. Also the projection operator P defined in (3.15) can
be written as P = X(X ′X +U ′U)−1X ′. In some situations it is easy to find
a matrix U satisfying the above conditions so that the g-inverse of X ′X
can be computed as a regular inverse of a nonsingular matrix.

Note 2: The solution (3.16) can also be obtained as a conditional least-
squares estimator when β is subject to the restriction Uβ = u for a given
arbitrary u. To prove this, we need only verify that β̂ as in (3.16) satisfies
the equation. Now

Uβ̂ = U(X ′X + U ′U)−1(X ′y + U ′u)
= U(X ′X + U ′U)−1U ′u = u ,

which is true in view of result (iv) of Theorem A.81.

Note 3: It may be of some interest to establish the solution (3.16) using
the calculus approach by differentiating

(y − Xβ)′(y − Xβ) + λ′(Uβ − u)

with respect to λ and β, where λ is a Lagrangian multiplier, which gives
the equations

X ′Xβ = X ′y + U ′λ ,

Uβ = u ,

yielding the solution for β as in (3.16).

3.4 Best Linear Unbiased Estimation

3.4.1 Basic Theorems
In Sections 3.1 through 3.3, we viewed the problem of the linear model
y = Xβ + e as one of fitting the function Xβ to y without making any
assumptions on e. Now we consider e as a random variable denoted by ε,
make some assumptions on its distribution, and discuss the estimation of
β considered as an unknown vector parameter.

The usual assumptions made are

E(ε) = 0 , E(εε′) = σ2I , (3.17)

and X is a fixed or nonstochastic matrix of order T ×K, with full rank K.
We prove two lemmas that are of independent interest in estimation theory
and use them in the special case of estimating β by linear functions of Y .

Lemma 3.3 (Rao, 1973a, p. 317) Let T be a statistic such that E(T ) = θ,
V(T ) < ∞, V(.) denotes the variance, and where θ is a scalar parame-
ter. Then a necessary and sufficient condition that T is MVUE (minimum



28 3. The Linear Regression Model

variance unbiased estimator) of the parameter θ is

cov(T, t) = 0 ∀t such that E(t) = 0 and V(t) < ∞ . (3.18)

Proof of necessity: Let T be MVUE and t be such that E(t) = 0 and
V(t) < ∞. Then T + λt is unbiased for θ for every λ ∈ R, and

V(T + λt) = V(T ) + λ2 V(t) + 2λ cov(T, t) ≥ V(T )
⇒ λ2 V(t) + 2λ cov(T, t) ≥ 0 ∀λ

⇒ cov(T, t) = 0 .

Proof of sufficiency: Let T̃ be any unbiased estimator with finite variance.
Then T̃ − T is such that E(T̃ − T ) = 0, V(T̃ − T ) < ∞, and

V(T̃ ) = V(T + T̃ − T ) = V(T ) + V(T̃ − T ) + 2 cov(T, T̃ − T )
= V(T ) + V(T̃ − T ) ≥ V(T )

if (3.18) holds.
Let T ′ = (T1, . . . , Tk) be an unbiased estimate of the vector parameter

θ′ = (θ1, . . . , θk). Then the k × k-matrix

D(T ) = E(T−θ)(T−θ)′ =

 V(T1) cov(T1, T2) · · · cov(T1, Tk)
...

...
...

...
cov(Tk, T1) cov(Tk, T2) · · · V(Tk)


(3.19)

is called the dispersion matrix of T . We say T0 is MDUE (minimum dis-
persion unbiased estimator) of θ if D(T ) − D(T0) is nonnegative definite,
or in our notation

D(T ) − D(T0) ≥ 0 (3.20)

for any T such that E(T ) = θ.

Lemma 3.4 If Ti0 is MVUE of θi, i = 1, . . . , k, then T ′
0 = (T10, . . . , Tk0) is

MDUE of θ and vice versa.

Proof: Consider a′T0, which is unbiased for a′θ. Since cov(Ti0, t) = 0 for
any t such that E(t) = 0, it follows that cov(a′T0, t) = 0, which shows that

V(a′T0) = a′D(T0)a ≤ a′D(T )a , (3.21)

where T is an alternative estimator to T0. Then (3.21) implies

D(T0) ≤ D(T ) . (3.22)

The converse is true, since (3.22) implies that the ith diagonal element of
D(T0), which is V(Ti0), is not greater than the ith diagonal element of
D(T ), which is V(Ti).

The lemmas remain true if the estimators are restricted to a partic-
ular class that is closed under addition, such as all linear functions of
observations.
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Combining Lemmas 3.3 and 3.4, we obtain the fundamental equation
characterizing an MDUE t of θ at a particular value θ0:

cov(t, z|θ0) = 0 ∀z such that E(z|θ) = 0 ∀θ , (3.23)

which we exploit in estimating the parameters in the linear model. If there
is a t for which (3.23) holds for all θ0, then we have a globally optimum
estimator. The basic theory of equation (3.23) and its applications is first
given in Rao (1989).

We revert back to the linear model

y = Xβ + ε (3.24)

with E(ε) = 0, D(ε) = E(εε′) = σ2I, and discuss the estimation of β. Let
a + b′y be a linear function with zero expectation, then

E(a + b′y) = a + b′Xβ = 0 ∀β

⇒ a = 0 , b′X = 0 or b ∈ R(Z) ,

where Z is the matrix whose columns span the space orthogonal to R(X)
with rank(Z) = T − rank(X). Thus, the class of all linear functions of y
with zero expectation is

(Zc)′y = c′Z ′y , (3.25)

where c is an arbitrary vector.

Case 1: Rank(X) = K. Rank(Z) = T − K and (X ′X) is nonsingular, ad-
mitting the inverse (X ′X)−1. The following theorem provides the estimate
of β.

Theorem 3.5 The MDLUE (minimum dispersion linear unbiased estimator)
of β is

β̂ = (X ′X)−1X ′y , (3.26)

which is the same as the least squares estimator of β, and the minimum
dispersion matrix is

σ2(X ′X)−1 . (3.27)

Proof: Let a + By be an unbiased estimater of β. Then

E(a + By) = a + BXβ = β ∀β ⇒ a = 0 , BX = I . (3.28)

If By is MDLUE, using equation (3.23), it is sufficient that

0 = cov(By, c′Z ′y) ∀c

= σ2BZc ∀c

⇒ BZ = 0 ⇒ B = AX ′ for some A . (3.29)

Thus we have two equations for B from (3.28) and (3.29):

BX = I , B = AX ′ .
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Substituting AX ′ for B in BX = I:

A(X ′X) = I ⇔ A = (X ′X)−1 , B = (X ′X)−1X ′ , (3.30)

giving the MDLUE

β̂ = By = (X ′X)−1X ′y

with the dispersion matrix

D(β̂) = D((X ′X)−1X ′y)
= (X ′X)−1X ′D(y)X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1 = σ2(X ′X)−1 ,

which proves Theorem 3.5.

Case 2: Rank(X) = r < K (deficiency in rank) and rank(Z) = T − r, in
which case X ′X is singular. We denote any g-inverse of X ′X by (X ′X)−.
The consequences of deficiency in the rank of X, which arises in many
practical applications, are as follows.

(i) The linear model, y = Xβ + ε, is not identifiable in the sense that
there may be several values of β for which Xβ has the same value, so
that no particular value can be associated with the model.

(ii) The condition of unbiasedness for estimating β is BX = I, as derived
in (3.28). If X is deficient in rank, we cannot find a B such that
BX = I, and thus β cannot be unbiasedly estimated.

(iii) Let l′β be a given linear parametric function and let a + b′y be an
estimator. Then

E(a + b′y) = a + b′Xβ = l′β ⇒ a = 0 , X ′b = l . (3.31)

The equation X ′b = l has a solution for b if l ∈ R(X ′). Thus, al-
though the whole parameter is not unbiasedly estimable, it is possible
to estimate all linear functions of the type l′β, l ∈ R(X ′). The fol-
lowing theorem provides the MDLUE of a given number s such linear
functions

(l′1β, . . . , l′sβ) = (L′β)′ with L = (l1, . . . , ls) . (3.32)

A linear function m′β is said to be nonestimable if m /∈ R(X ′).

Theorem 3.6 Let L′β be s linear functions of β such that R(L) ⊂ R(X ′),
implying L = X ′A for some A. Then the MDLUE of L′β is L′β̂, where
β̂ = (X ′X)−X ′y, and the dispersion matrix of L′β̂ is σ2L′(X ′X)−L, where
(X ′X)− is any g-inverse of X ′X.

Proof: Let Cy be an unbiased estimator of L′β. Then

E(Cy) = CXβ = L′β ⇒ CX = L′ .
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Now

cov(Cy, Z ′y) = σ2CZ = 0 ⇒ C = BX ′ for some B .

Then CX = L′ = BX ′X = L′, giving B = L′(X ′X)− as one solution, and
C = BX ′ = L′(X ′X)−X ′. The MDLUE of L′β is

Cy = L′(X ′X)−X ′y = L′β̂ .

An easy computation gives D(L′β̂) = σ2L′(X ′X)−L.
Note that β̂ is not an estimate of β. However, it can be used to compute

the best estimates of estimable parametric functions of β.

Case 3: Rank(X) = r < K, in which case not all linear parametric func-
tions are estimable. However there may be additional information in the
form of linear relationships

u = Uβ + δ (3.33)

where U is an s × K-matrix, with E(δ) = 0 and D(δ) = σ2
0I. Note that

(3.33) reduces to a nonstochastic relationship when σ0 = 0, so that the
following treatment covers both the stochastic and nonstochastic cases. Let
us consider the estimation of the linear function p′β by a linear function of
the form a′y + b′u. The unbiasedness condition yields

E(a′y + b′u) = a′Xβ + b′Uβ = p′β ⇒ X ′a + U ′b = p . (3.34)

Then

V(a′y + b′u) = a′aσ2 + b′bσ2
0 = σ2(a′a + ρb′b) , (3.35)

where ρ = σ2
0/σ2, and the problem is one of minimizing (a′a+ρb′b) subject

to the condition (3.34) on a and b. Unfortunately, the expression to be
minimized involves an unknown quantity, except when σ0 = 0. However, we
shall present a formal solution depending on ρ. Considering the expression
with a Lagrangian multiplier

a′a + ρb′b + 2λ′(X ′a + U ′b − p) ,

the minimizing equations are

a = Xλ , ρb = Uλ , X ′a + U ′b = p .

If ρ �= 0, substituting for a and b in the last equation gives another set of
equations:

(X ′X + ρ−1U ′U)λ = p , a = Xλ , b = Uλ (3.36)

which is easy to solve. If ρ = 0, we have the equations

a = Xλ , b = Uλ , X ′a + U ′b = p .

Eliminating a, we have

X ′Xλ + U ′b = p , Uλ = 0 . (3.37)
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We solve equations (3.37) for b and λ and obtain the solution for a by
using the equation a = Xλ. For practical applications, it is necessary to
have some estimate of ρ when σ0 �= 0. This may be obtained partly from
the available data and partly from previous information.

3.4.2 Linear Estimators
The statistician’s task is now to estimate the true but unknown vector β
of regression parameters in the model (3.24) on the basis of observations
(y, X) and assumptions already stated. This will be done by choosing a
suitable estimator β̂, which then will be used to calculate the conditional
expectation E(y|X) = Xβ and an estimate for the error variance σ2. It is
common to choose an estimator β̂ that is linear in y, that is,

β̂ = Cy + d , (3.38)

where C : K ×T and d : K ×1 are nonstochastic matrices to be determined
by minimizing a suitably chosen risk function.

First we have to introduce some definitions.

Definition 3.7 β̂ is called a homogeneous estimator of β if d = 0; otherwise
β̂ is called inhomogeneous.

In Section 3.2, we have measured the model’s goodness of fit by the sum
of squared errors S(β). Analogously we define, for the random variable β̂,
the quadratic loss function

L(β̂, β, A) = (β̂ − β)′A(β̂ − β) , (3.39)

where A is a symmetric and ≥ 0 (i.e., at least nonnegative definite) K ×
K-matrix. (See Theorems A.36–A.38 where the definitions of A > 0 for
positive definiteness and A ≥ 0 for nonnegative definiteness are given.)

Obviously the loss (3.39) depends on the sample. Thus we have to con-
sider the average or expected loss over all possible samples, which we call
the risk.

Definition 3.8 The quadratic risk of an estimator β̂ of β is defined as

R(β̂, β, A) = E(β̂ − β)′A(β̂ − β). (3.40)

The next step now consists of finding an estimator β̂ that minimizes the
quadratic risk function over a class of appropriate functions. Therefore we
have to define a criterion to compare estimators:

Definition 3.9 (R(A) superiority) An estimator β̂2 of β is called R(A)
superior or an R(A)-improvement over another estimator β̂1 of β if

R(β̂1, β, A) − R(β̂2, β, A) ≥ 0 . (3.41)
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3.4.3 Mean Dispersion Error
The quadratic risk is closely related to the matrix-valued criterion of the
mean dispersion error (MDE) of an estimator. The MDE is defined as the
matrix

M(β̂, β) = E(β̂ − β)(β̂ − β)′. (3.42)

We again denote the covariance matrix of an estimator β̂ by V(β̂):

V(β̂) = E(β̂ − E(β̂))(β̂ − E(β̂))′. (3.43)

If E(β̂) = β, then β̂ will be called unbiased (for β). If E(β̂) �= β, then β̂ is
called biased. The difference between E(β̂) and β is

Bias(β̂, β) = E(β̂) − β. (3.44)

If β̂ is unbiased, then obviously Bias(β̂, β) = 0.
The following decomposition of the mean dispersion error often proves

to be useful:

M(β̂, β) = E[(β̂ − E(β̂)) + (E(β̂) − β)][(β̂ − E(β̂)) + (E(β̂) − β)]′

= V(β̂) + (Bias(β̂, β))(Bias(β̂, β))′ , (3.45)

that is, the MDE of an estimator is the sum of the covariance matrix and
the squared bias (in its matrix version, i.e., (Bias(β̂, β))(Bias(β̂, β))′).

MDE Superiority

As the MDE contains all relevant information about the quality of an esti-
mator, comparisons between different estimators may be made on the basis
of their MDE matrices.

Definition 3.10 (MDE I criterion) Let β̂1 and β̂2 be two estimators of β.
Then β̂2 is called MDE-superior to β̂1 (or β̂2 is called an MDE-improvement
to β̂1) if the difference of their MDE matrices is nonnegative definite, that
is, if

∆(β̂1, β̂2) = M(β̂1, β) − M(β̂2, β) ≥ 0 . (3.46)

MDE superiority is a local property in the sense that (besides its
dependency on σ2) it depends on the particular value of β.

The quadratic risk function (3.40) is just a scalar-valued version of the
MDE:

R(β̂, β, A) = tr{A M(β̂, β)} . (3.47)

One important connection between R(A) superiority and MDE superi-
ority has been given by Theobald (1974) and Trenkler (1981):

Theorem 3.11 Consider two estimators β̂1 and β̂2 of β. The following two
statements are equivalent:
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∆(β̂1, β̂2) ≥ 0, (3.48)

R(β̂1, β, A) − R(β̂2, β, A) = tr{A∆(β̂1, β̂2)} ≥ 0 (3.49)

for all matrices of the type A = aa′.

Proof: Using (3.46) and (3.47) we get

R(β̂1, β, A) − R(β̂2, β, A) = tr{A∆(β̂1, β̂2)}. (3.50)

From Theorem A.43 it follows that tr{A∆(β̂1, β̂2)} ≥ 0 for all matrices
A = aa′ ≥ 0 if and only if ∆(β̂1, β̂2) ≥ 0.

3.5 Estimation (Prediction) of the Error Term ε
and σ2

The linear model (3.24) may be viewed as the decomposition of the observa-
tion y into a nonstochastic part Xβ, also called the signal, and a stochastic
part ε, also called the noise (or error), as discussed in Rao (1989). Since we
have estimated Xβ by Xβ̂, we may consider the residual

ε̂ = y − Xβ̂ = (I − PX)y , (3.51)

where PX = X(X ′X)−X ′ is the projection operator on R(X), as an
estimator (or predictor) of ε, with the mean prediction error

D(ε̂) = D(y − Xβ̂) = D(I − PX)y
= σ2(I − PX)(I − PX) = σ2(I − PX) . (3.52)

However, the following theorem provides a systematic approach to the
problem.

Theorem 3.12 The MDLU predictor of ε is ε̂ as defined in (3.51).

Proof: Let C ′y be an unbiased predictor of ε. Then

E(C ′y) = C ′Xβ = 0 ∀β ⇒ C ′X = 0 . (3.53)

The dispersion of error is

D(ε − C ′y) = D(ε − C ′ε) = σ2(I − C ′)(I − C) .

Putting I − C ′ = M , the problem is that of finding

min MM ′ subject to MX = X . (3.54)

Since PX and Z span the whole RT , we can write

M ′ = PXA + ZB for some A and B ,
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giving

X ′ = X ′M ′ = X ′A ,

MM ′ = A′PXA + B′Z ′ZB

= A′X(X ′X)−X ′A + B′Z ′ZB

= X(X ′X)−X ′ + B′Z ′ZB ≥ PX

with equality when B = 0. Then

M ′ = PXA = X(X ′X)−X ′A = X(X ′X)−X ′ ,

and the best predictor of ε is

ε̂ = C ′Y = (I − M)y = (I − PX)y .

Using the estimate ε̂ of ε we can obtain an unbiased estimator of σ2 as

1
T − r

ε̂′(I − PX)ε̂ =
1

T − r
y′(I − PX)y (3.55)

since (with rank (X) = r)

s2 =
1

T − r
E y′(I − PX)y =

1
T − r

tr(I − PX) D(y)

=
σ2

T − r
tr(I − PX) = σ2 T − r

T − r
= σ2 .

3.6 Classical Regression under Normal Errors

All results obtained so far are valid irrespective of the actual distribution of
the random disturbances ε, provided that E(ε) = 0 and E(εε′) = σ2I. Now,
we assume that the vector ε of random disturbances εt is distributed accord-
ing to a T -dimensional normal distribution N(0, σ2I), with the probability
density

f(ε; 0, σ2I) =
T∏

t=1

(2πσ2)− 1
2 exp

(
− 1

2σ2 ε2t

)

= (2πσ2)− T
2 exp

{
− 1

2σ2

T∑
t=1

ε2t

}
. (3.56)

Note that the components εt (t = 1, . . . , T ) are independent and
identically distributed as N(0, σ2). This is a special case of a general
T -dimensional normal distribution N(µ,Σ) with density

f(ξ; µ,Σ) = {(2π)T |Σ|}− 1
2 exp

{
−1

2
(ξ − µ)′Σ−1(ξ − µ)

}
. (3.57)
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The classical linear regression model under normal errors is given by

y = Xβ + ε,
ε ∼ N(0, σ2I),
X nonstochastic, rank(X) = K.

 (3.58)

3.6.1 The Maximum-Likelihood (ML) Principle
Definition 3.13 Let ξ = (ξ1, . . . , ξn)′ be a random variable with density func-
tion f(ξ; Θ), where the parameter vector Θ = (Θ1, . . . ,Θm)′ is an element
of the parameter space Ω comprising all values that are a priori admissible.

The basic idea of the maximum-likelihood principle is to consider the
density f(ξ; Θ) for a specific realization of the sample ξ0 of ξ as a function
of Θ:

L(Θ) = L(Θ1, . . . ,Θm) = f(ξ0; Θ).

L(Θ) will be referred to as the likelihood function of Θ given ξ0.
The ML principle postulates the choice of a value Θ̂ ∈ Ω that maximizes

the likelihood function, that is,

L(Θ̂) ≥ L(Θ) for all Θ ∈ Ω.

Note that Θ̂ may not be unique. If we consider all possible samples, then
Θ̂ is a function of ξ and thus a random variable itself. We will call it the
maximum-likelihood estimator of Θ.

3.6.2 ML Estimation in Classical Normal Regression
Following Theorem A.82, we have for y from (3.58)

y = Xβ + ε ∼ N(Xβ, σ2I) , (3.59)

so that the likelihood function of y is given by

L(β, σ2) = (2πσ2)− T
2 exp

{
− 1

2σ2 (y − Xβ)′(y − Xβ)
}

. (3.60)

Since the logarithmic transformation is monotonic, it is appropriate to
maximize ln L(β, σ2) instead of L(β, σ2), as the maximizing argument re-
mains unchanged:

lnL(β, σ2) = −T

2
ln(2πσ2) − 1

2σ2 (y − Xβ)′(y − Xβ). (3.61)

If there are no a priori restrictions on the parameters, then the parameter
space is given by Ω = {β; σ2 : β ∈ RK ; σ2 > 0}. We derive the ML
estimators of β and σ2 by equating the first derivatives to zero (Theorems
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A.91–A.95):

(I)
∂ lnL

∂β
=

1
2σ2 2X ′(y − Xβ) = 0 , (3.62)

(II)
∂ lnL

∂σ2 = − T

2σ2 +
1

2(σ2)2
(y − Xβ)′(y − Xβ) = 0 . (3.63)

The likelihood equations are given by

(I) X ′Xβ̂ = X ′y ,

(II) σ̂2 = 1
T (y − Xβ̂)′(y − Xβ̂) .

}
(3.64)

Equation (I) of (3.64) is identical to the well-known normal equation (3.11).
Its solution is unique, as rank(X) = K and we get the unique ML estimator

β̂ = b = (X ′X)−1X ′y . (3.65)

If we compare (II) with the unbiased estimator s2 (3.55) for σ2, we see
immediately that

σ̂2 =
T − K

T
s2, (3.66)

so that σ̂2 is a biased estimator. The asymptotic expectation is given by
(cf. Theorem A.102 (i))

lim
T→∞

E(σ̂2) = Ē(σ̂2) = E(s2) = σ2. (3.67)

Thus we can state the following result.

Theorem 3.14 The maximum-likelihood estimator and OLS estimator of β
are identical in the model (3.59) of classical normal regression. The ML
estimator σ̂2 of σ2 is asymptotically unbiased.

Note: The Cramér-Rao bound defines a lower bound (in the sense of defi-
niteness of matrices) for the covariance matrix of unbiased estimators. In
the model of normal regression, the Cramér-Rao bound is given by

V(β̃) ≥ σ2(X ′X)−1,

where β̃ is an arbitrary estimator. The covariance matrix of the ML es-
timator is just identical to this lower bound, so that b is the minimum
dispersion unbiased estimator in the linear regression model under normal
errors.

3.7 Testing Linear Hypotheses

In this section we consider the problem of testing a general linear hypothesis

H0: Rβ = r (3.68)
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with R a K × s-matrix and rank(R) = K − s, against the alternative

H1: Rβ �= r (3.69)

where it will be assumed that R and r are nonstochastic and known.
The hypothesis H0 expresses the fact that the parameter vector β obeys

(K − s) exact linear restrictions, which are linearly independent, as it
is required that rank(R) = K − s. The general linear hypothesis (3.68)
contains two main special cases:

Case 1: s = 0. The K × K-matrix R is regular by the assumption
rank(X) = K, and we may express H0 and H1 in the following form:

H0: β = R−1r = β∗, (3.70)
H1: β �= β∗. (3.71)

Case 2: s > 0. We choose an s × K-matrix G complementary to R such

that the K × K-matrix
(

G
R

)
is regular of rank K. Let

X

(
G
R

)−1

= X̃
T×K

=

(
X̃1
T×s

, X̃2
T×(K−s)

)
,

β̃1
s×1

= Gβ , β̃2
(K−s)×1

= Rβ .

Then we may write

y = Xβ + ε = X

(
G
R

)−1(
G
R

)
β + ε

= X̃

(
β̃1

β̃2

)
+ ε

= X̃1β̃1 + X̃2β̃2 + ε .

The latter model obeys all assumptions (3.59). The hypotheses H0 and H1
are thus equivalent to

H0: β̃2 = r ; β̃1 and σ2 > 0 arbitrary, (3.72)
H1: β̃2 �= r ; β̃1 and σ2 > 0 arbitrary. (3.73)

Ω stands for the whole parameter space (either H0 or H1 is valid) and
ω ⊂ Ω stands for the subspace in which only H0 is true; thus

Ω = {β; σ2 : β ∈ RK , σ2 > 0} ,
ω = {β; σ2 : β ∈ RK and Rβ = r; σ2 > 0} .

}
(3.74)

As a test statistic we will use the likelihood ratio

λ(y) =
maxω L(Θ)
maxΩ L(Θ)

, (3.75)
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which may be derived in the following way.
Let Θ = (β, σ2), then

max
β,σ2

L(β, σ2) = L(β̂, σ̂2)

= (2πσ̂2)− T
2 exp

{
− 1

2σ̂2 (y − Xβ̂)′(y − Xβ̂)
}

= (2πσ̂2)− T
2 exp

{
−T

2

}
(3.76)

and therefore

λ(y) =
(

σ̂2
ω

σ̂2
Ω

)− T
2

, (3.77)

where σ̂2
ω and σ̂2

Ω are ML estimators of σ2 under H0 and in Ω.
The random variable λ(y) can take values between 0 and 1, which is

obvious from (3.75). If H0 is true, the numerator of λ(y) should be greater
than the denominator, so that λ(y) should be close to 1 in repeated samples.
On the other hand, λ(y) should be close to 0 if H1 is true.

Consider the linear transform of λ(y):

F =
{

(λ(y))− 2
T − 1

}
(T − K)(K − s)−1

=
σ̂2

ω − σ̂2
Ω

σ̂2
Ω

· T − K

K − s
. (3.78)

If λ → 0, then F → ∞, and if λ → 1, we have F → 0, so that F is close
to 0 if H0 is true and F is sufficiently large if H1 is true.

Now we will determine F and its distribution for the two special cases
of the general linear hypothesis.

Case 1: s = 0

The ML estimators under H0 (3.70) are given by

β̂ = β∗ and σ̂2
ω =

1
T

(y − Xβ∗)′(y − Xβ∗) . (3.79)

The ML estimators over Ω are available from Theorem 3.14:

β̂ = b and σ̂2
Ω =

1
T

(y − Xb)′(y − Xb) . (3.80)
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Some rearrangements then yield

b − β∗ = (X ′X)−1X ′(y − Xβ∗) ,
(b − β∗)′X ′X = (y − Xβ∗)′X ,

y − Xb = (y − Xβ∗) − X(b − β∗) ,
(y − Xb)′(y − Xb) = (y − Xβ∗)′(y − Xβ∗)

+ (b − β∗)′X ′X(b − β∗)
− 2(y − Xβ∗)′X(b − β∗)

= (y − Xβ∗)′(y − Xβ∗)
− (b − β∗)′X ′X(b − β∗) .


(3.81)

It follows that

T (σ̂2
ω − σ̂2

Ω) = (b − β∗)′X ′X(b − β∗) , (3.82)

leading to the test statistic

F =
(b − β∗)′X ′X(b − β∗)

(y − Xb)′(y − Xb)
· T − K

K
. (3.83)

Distribution of F

Numerator: The following statements are in order:

b − β∗ = (X ′X)−1X ′[ε + X(β − β∗)] [by (3.81)],
ε̃ = ε + X(β − β∗) ∼ N(X(β − β∗), σ2I) [Theorem A.82],
X(X ′X)−1X ′ idempotent and of rank K,
(b − β∗)′X ′X(b − β∗) = ε̃′X(X ′X)−1X ′ε̃

∼ σ2χ2
K(σ−2(β − β∗)′X ′X(β − β∗)) [Theorem A.84]

and ∼ σ2χ2
K under H0.

Denominator:

(y − Xb)′(y − Xb) = (T − K)s2 = ε′(I − PX)ε [cf. (3.55)],
ε′(I − PX)ε ∼ σ2χ2

T−K [Theorem A.87].

}
(3.84)

as I − PX = I − X(X ′X)−1X ′ is idempotent of rank T − K (cf. Theorem
A.61 (vi)).

We have

(I − PX)X(X ′X)−1X ′ = 0 [Theorem A.61 (vi)], (3.85)

such that numerator and denominator are independently distributed
(Theorem A.89).

Thus, the ratio F has the following properties (Theorem A.86):

• F is distributed as FK,T−K(σ−2(β−β∗)′X ′X(β−β∗)) under H1, and

• F is distributed as central FK,T−K under H0: β = β∗.

If we denote by Fm,n,1−q the (1 − q)-quantile of Fm,n (i.e., P (F ≤
Fm,n,1−q) = 1 − q), then we may derive a uniformly most powerful test,
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given a fixed level of significance α (cf. Lehmann, 1986, p. 372):

Region of acceptance of H0: 0 ≤ F ≤ FK,T−K,1−α ,
Critical region: F > FK,T−K,1−α .

}
(3.86)

A selection of F -quantiles is provided in Appendix B.

Case 2: s > 0

Next we consider a decomposition of the model in order to determine the
ML estimators under H0 (3.72) and compare them with the corresponding
ML estimator over Ω. Let

β′ =
(

β′
1

1×s
, β′

2
1×(K−s)

)
(3.87)

and, respectively,

y = Xβ + ε = X1β1 + X2β2 + ε . (3.88)

We set

ỹ = y − X2r . (3.89)

Because rank(X) = K, we have

rank (X1)
T×s

= s , rank (X2)
T×(K−s)

= K − s , (3.90)

such that the inverse matrices (X ′
1X1)−1 and (X ′

2X2)−1 do exist.
The ML estimators under H0 are then given by

β̂2 = r, β̂1 = (X ′
1X1)−1X ′

1ỹ (3.91)

and

σ̂2
ω =

1
T

(ỹ − X1β̂1)′(ỹ − X1β̂1). (3.92)

Separation of b

At first, it is easily seen that

b = (X ′X)−1X ′y

=
(

X ′
1X1 X ′

1X2
X ′

2X1 X ′
2X2

)−1(
X ′

1y
X ′

2y

)
.

(3.93)

Making use of the formulas for the inverse of a partitioned matrix yields
(Theorem A.19)(

(X ′
1X1)−1[I + X ′

1X2D
−1X ′

2X1(X ′
1X1)−1] −(X ′

1X1)−1X ′
1X2D

−1

−D−1X ′
2X1(X ′

1X1)−1 D−1

)
,

(3.94)
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where

D = X ′
2M1X2 (3.95)

and

M1 = I − X1(X ′
1X1)−1X ′

1 = I − PX1 . (3.96)

M1 is (analogously to (I − PX)) idempotent and of rank T − s; further we
have M1X1 = 0. The (K − s) × (K − s)-matrix

D = X ′
2X2 − X ′

2X1(X ′
1X1)−1X ′

1X2 (3.97)

is symmetric and regular, as the normal equations are uniquely solvable.
The estimators b1 and b2 of b are then given by

b =
(

b1
b2

)
=
(

(X ′
1X1)−1X ′

1y − (X ′
1X1)−1X ′

1X2D
−1X ′

2M1y
D−1X ′

2M1y

)
.

(3.98)
Various relations immediately become apparent from (3.98):

b2 = D−1X ′
2M1y,

b1 = (X ′
1X1)−1X ′

1(y − X2b2),
b2 − r = D−1X ′

2M1(y − X2r)
= D−1X ′

2M1ỹ
= D−1X ′

2M1(ε + X2(β2 − r)) ,

 (3.99)

b1 − β̂1 = (X ′
1X1)−1X ′

1(y − X2b2 − ỹ)
= −(X ′

1X1)−1X ′
1X2(b2 − r)

= −(X ′
1X1)−1X ′

1X2D
−1X ′

2M1ỹ .

 (3.100)

Decomposition of σ̂2
Ω

We write (using symbols u and v)

(y − Xb) = (y − X2r − X1β̂1) −
(
X1(b1 − β̂1) + X2(b2 − r)

)
= u − v .

(3.101)
Thus we may decompose the ML estimator T σ̂2

Ω = (y − Xb)′(y − Xb) as

(y − Xb)′(y − Xb) = u′u + v′v − 2u′v . (3.102)

We have

u = y − X2r − X1β̂1 = ỹ − X1(X ′
1X1)−1X ′

1ỹ = M1ỹ , (3.103)
u′u = ỹ′M1ỹ , (3.104)

v = X1(b1 − β̂1) + X2(b2 − r)
= −X1(X ′

1X1)−1X ′
1X2D

−1X ′
2M1ỹ [by (3.99)]

+X2D
−1X ′

2M1ỹ [by (3.100)]
= M1X2D

−1X ′
2M1ỹ , (3.105)
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v′v = ỹ′M1X2D
−1X ′

2M1ỹ

= (b2 − r)′D(b2 − r) , (3.106)
u′v = v′v . (3.107)

Summarizing, we may state

(y − Xb)′(y − Xb) = u′u − v′v (3.108)

= (ỹ − X1β̂1)′(ỹ − X1β̂1) − (b2 − r)′D(b2 − r)

or,

T (σ̂2
ω − σ̂2

Ω) = (b2 − r)′D(b2 − r) . (3.109)

We therefore get in case 2: s > 0:

F =
(b2 − r)′D(b2 − r)
(y − Xb)′(y − Xb)

T − K

K − s
. (3.110)

Distribution of F

Numerator: We use the following relations:

A = M1X2D
−1X ′

2M1 is idempotent,
rank(A) = tr(A) = tr{(M1X2D

−1)(X ′
2M1)}

= tr{(X ′
2M1)(M1X2D

−1)} [Theorem A.13 (iv)]
= tr(IK−s) = K − s ,

b2 − r = D−1X ′
2M1ε̃ [by (3.99)],

ε̃ = ε + X2(β2 − r)
∼ N(X2(β2 − r), σ2I) [Theorem A.82],

(b2 − r)′D(b2 − r) = ε̃′Aε̃

∼ σ2χ2
K−s(σ

−2(β2 − r)′D(β2 − r)) (3.111)
∼ σ2χ2

K−s under H0. (3.112)

Denominator: The denominator is equal in both cases; that is

(y − Xb)′(y − Xb) = ε′(I − PX)ε ∼ σ2χ2
T−K . (3.113)

Because

(I − PX)X = (I − PX)(X1, X2) = ((I − PX)X1, (I − PX)X2) = (0, 0) ,
(3.114)

we find

(I − PX)M1 = (I − PX) (3.115)

and

(I − PX)A = (I − PX)M1X2D
−1X ′

2M1 = 0 , (3.116)
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so that the numerator and denominator of F (3.110) are independently
distributed [Theorem A.89]. Thus [see also Theorem A.86] the test statistic
F is distributed under H1 as FK−s,T−K(σ−2(β2 − r)′D(β2 − r)) and as
central FK−s,T−K under H0.

The region of acceptance of H0 at a level of significance α is then given
by

0 ≤ F ≤ FK−s,T−K,1−α . (3.117)

Accordingly, the critical area of H0 is given by

F > FK−s,T−K,1−α . (3.118)

3.8 Analysis of Variance and Goodness of Fit

3.8.1 Bivariate Regression
To illustrate the basic ideas, we shall consider the model with a dummy
variable 1 and a regressor x:

yt = β0 + β1xt + εt (t = 1, . . . , T ). (3.119)

Ordinary least-squares estimators of β0 and β1 are given by

b1 =
∑

(xt − x̄)(yt − ȳ)∑
(xt − x̄)2

, (3.120)

b0 = ȳ − b1x̄ . (3.121)

The best predictor of y on the basis of a given x is

ŷ = b0 + b1x . (3.122)

Especially, we have for x = xt

ŷt = b0 + b1xt

= ȳ + b1(xt − x̄) (3.123)

(cf. (3.121)). On the basis of the identity

yt − ŷt = (yt − ȳ) − (ŷt − ȳ), (3.124)

we may express the sum of squared residuals (cf. (3.14)) as

S(b) =
∑

(yt − ŷt)2 =
∑

(yt − ȳ)2 +
∑

(ŷt − ȳ)2

− 2
∑

(yt − ȳ)(ŷt − ȳ).
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Further manipulation yields∑
(yt − ȳ)(ŷt − ȳ) =

∑
(yt − ȳ)b1(xt − x̄) [cf. (3.123)]

= b2
1

∑
(xt − x̄)2 [cf. (3.120)]

=
∑

(ŷt − ȳ)2 [cf. (3.124)]

Thus we have∑
(yt − ȳ)2 =

∑
(yt − ŷt)2 +

∑
(ŷt − ȳ)2. (3.125)

This relation has already been established in (3.14). The left-hand side of
(3.125) is called the sum of squares about the mean or corrected sum of
squares of Y (i.e., SS corrected) or SY Y .

The first term on the right-hand side describes the deviation: observation
minus predicted value, namely, the residual sum of squares:

SS Residual: RSS =
∑

(yt − ŷt)2, (3.126)

whereas the second term describes the proportion of variability explained
by regression.

SS Regression: SSReg =
∑

(ŷt − ȳ)2 . (3.127)

If all observations yt are located on a straight line, we have obviously
∑

(yt−
ŷt)2 = 0 and thus SS corrected = SSReg.

Accordingly, the goodness of fit of a regression is measured by the ratio

R2 =
SSReg

SS corrected
. (3.128)

We will discuss R2 in some detail. The degrees of freedom (df) of the
sum of squares are

T∑
t=1

(yt − ȳ)2 : df = T − 1

and
T∑

t=1

(ŷt − ȳ)2 = b2
1

∑
(xt − x̄)2 : df = 1 ,

as one function in yt—namely b1—is sufficient to calculate SSReg. In view
of (3.125), the degree of freedom for the sum of squares

∑
(yt − ŷt)2 is just

the difference of the other two df ’s, that is, df = T − 2.
All sums of squares are mutually independently distributed as χ2

df if the
errors εt are normally distributed. This enables us to establish the following
analysis of variance (ANOVA) table:
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Source of variation Sum of squares df Mean square
Regression SS regression 1 MSReg

Residual RSS T − 2 RSS/(T − 2) = s2

Total SS corrected = SY Y T − 1

We will use the following abbreviations:

SXX =
∑

(xt − x̄)2, (3.129)

SY Y =
∑

(yt − ȳ)2, (3.130)

SXY =
∑

(xt − x̄)(yt − ȳ) . (3.131)

The sample correlation coefficient then may be written as

rXY =
SXY√

SXX
√

SY Y
. (3.132)

Moreover, we have (cf. (3.120))

b1 =
SXY

SXX
= rXY

√
SY Y

SXX
. (3.133)

The estimator of σ2 may be expressed by using (3.126) as:

s2 =
1

T − 2

∑
ε̂2t =

1
T − 2

RSS . (3.134)

Various alternative formulations for RSS are in use as well:

RSS =
∑

(yt − (b0 + b1xt))2

=
∑

[(yt − ȳ) − b1(xt − x̄)]2

= SY Y + b2
1SXX − 2b1SXY

= SY Y − b2
1SXX (3.135)

= SY Y − (SXY )2

SXX
. (3.136)

Further relations become immediately apparent:

SS corrected = SY Y (3.137)

and

SSReg = SY Y − RSS

=
(SXY )2

SXX
= b2

1 SXX . (3.138)

Checking the Adequacy of Regression Analysis

If model (3.119)

yt = β0 + β1xt + εt
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is appropriate, the coefficient b1 should be significantly different from zero.
This is equivalent to the fact that X and Y are significantly correlated.

Formally, we compare the models (cf. Weisberg, 1980, p. 17)

H0: ytβ0 + εt ,

H1: ytβ0 + β1xt + εt ,

by comparing testing H0: β1 = 0 against H1: β1 �= 0.
We assume normality of the errors ε ∼ N(0, σ2I). If we recall (3.97), that

is

D = x′x − x′1(1′1)−11′x , 1′ = (1, . . . , 1)

=
∑

x2
t − (

∑
xt)2

T
=
∑

(xt − x̄)2 = SXX , (3.139)

then the likelihood ratio test statistic (3.110) is given by

F1,T−2 =
b2
1SXX

s2

=
SSReg

RSS
· (T − 2)

=
MSReg

s2 . (3.140)

The Coefficient of Determination

In (3.128) R2 has been introduced as a measure of goodness of fit. Using
(3.138) we get

R2 =
SSReg

SY Y
= 1 − RSS

SY Y
. (3.141)

The ratio SSReg/SY Y describes the proportion of variability that is ex-
plained by regression in relation to the total variability of y. The right-hand
side of the equation is 1 minus the proportion of variability that is not
covered by regression.

Definition 3.15 R2 (3.141) is called the coefficient of determination.

By using (3.123) and (3.138), we get the basic relation between R2 and
the sample correlation coefficient

R2 = r2
XY . (3.142)

Confidence Intervals for b0 and b1

The covariance matrix of OLS is generally of the form Vb = σ2(X ′X)−1 =
σ2S−1. In model (3.119) we get

S =
(

1′1 1′x
1′x x′x

)
=
(

T T x̄
T x̄

∑
x2

t

)
, (3.143)
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S−1 =
1

SXX

( 1
T

∑
x2

t −x̄
−x̄ 1

)
, (3.144)

and therefore

Var(b1) = σ2 1
SXX

(3.145)

Var(b0) =
σ2

T
·
∑

x2
t

SXX
=

σ2

T

∑
x2

t − T x̄2 + T x̄2

SXX

= σ2
(

1
T

+
x̄2

SXX

)
. (3.146)

The estimated standard deviations are

SE(b1) = s

√
1

SXX
(3.147)

and

SE(b0) = s

√
1
T

+
x̄2

SXX
(3.148)

with s from (3.134).
Under normal errors ε ∼ N(0, σ2I) in model (3.119), we have

b1 ∼ N

(
β1, σ

2 · 1
SXX

)
. (3.149)

Thus it holds that
b1 − β1

s

√
SXX ∼ tT−2 . (3.150)

Analogously we get

b0 ∼ N

(
β0, σ

2
(

1
T

+
x̄2

SXX

))
, (3.151)

b0 − β0

s

√
1
T

+
x̄2

SXX
∼ tT−2 . (3.152)

This enables us to calculate confidence intervals at level 1 − α

b0 − tT−2,1−α/2 · SE(b0) ≤ β0 ≤ b0 + tT−2,1−α/2 · SE(b0) (3.153)

and

b1 − tT−2,1−α/2 · SE(b1) ≤ β1 ≤ b1 + tT−2,1−α/2 · SE(b1) . (3.154)

These confidence intervals correspond to the region of acceptance of a two-
sided test at the same level.

(i) Testing H0: β0 = β∗
0 : The test statistic is

tT−2 =
b0 − β∗

0

SE(b0)
. (3.155)
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H0 is not rejected if

|tT−2| ≤ tT−2,1−α/2

or, equivalently, if (3.153) with β0 = β∗
0 holds.

(ii) Testing H0: β1 = β∗
1 : The test statistic is

tT−2 =
b1 − β∗

1

SE(b1)
(3.156)

or, equivalently,

t2T−2 = F1,T−2 =
(b1 − β∗

1)2

(SE(b1))2
. (3.157)

This is identical to (3.140) if H0: β1 = 0 is being tested.
H0 will not be rejected if

|tT−2| ≤ tT−2,1−α/2

or, equivalently, if (3.154) with β1 = β∗
1 holds.

3.8.2 Multiple Regression
If we consider more than two regressors, still under the assumption of nor-
mality of the errors, we find the methods of analysis of variance to be most
convenient in distinguishing between the two models y = 1β0 + Xβ∗ + ε =
X̃β+ε and y = 1β0+ε. In the latter model we have β̂0 = ȳ, and the related
residual sum of squares is∑

(yt − ŷt)2 =
∑

(yt − ȳ)2 = SY Y . (3.158)

In the former model, β = (β0, β∗)′ will be estimated by b = (X̃ ′X̃)−1X̃ ′y.
The two components of the parameter vector β in the full model may be

estimated by

b =
(

β̂0

β̂∗

)
, β̂∗ = (X ′X)−1X ′y, β̂0 = ȳ − β̂′

∗x̄ . (3.159)

Thus we have

RSS = (y − X̃b)′(y − X̃b)
= y′y − b′X̃ ′X̃b

= (y − 1ȳ)′(y − 1ȳ) − β̂′
∗(X

′X)β̂∗ + T ȳ2. (3.160)

The proportion of variability explained by regression is (cf. (3.138))

SSReg = SY Y − RSS (3.161)

with RSS from (3.160) and SY Y from (3.158). Then the ANOVA table is
of the form
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Source of variation Sum of squares df Mean square
Regression on
X1, . . . , XK SSReg K SSReg/K

Residual RSS T − K − 1 RSS/(T − K − 1)

Total SY Y T − 1

The multiple coefficient of determination

R2 =
SSReg

SY Y
(3.162)

again is a measure of the proportion of variability explained by regression
of y on X1, . . . , XK in relation to the total variability SY Y .

The F -test for

H0: β∗ = 0

versus

H1: β∗ �= 0

(i.e., H0: y = 1β0 + ε versus H1: y = 1β0 + Xβ∗ + ε) is based on the test
statistic

FK,T−K−1 =
SSReg/K

s2 . (3.163)

Often, it is of interest to test for significance of single components of β.
This type of a problem arises, for example, in stepwise model selection,
with respect to the coefficient of determination.

Criteria for Model Choice

Draper and Smith (1966) and Weisberg (1980) have established a variety
of criteria to find the right model. We will follow the strategy, proposed by
Weisberg.

Ad hoc criteria

Denote by X1, . . . , XK all available regressors, and let {Xi1, . . . , Xip} be
a subset of p ≤ K regressors. We denote the respective residual sum of
squares by RSSK and RSSp. The parameter vectors are

β for X1, · · · , XK ,

β1 for Xi1, · · · , Xip ,

β2 for (X1, · · · , XK)\(Xi1, · · · , Xip) .

A choice between the two models can be examined by testing H0: β2 = 0.
We apply the F -test since the hypotheses are nested:

F(K−p),T−K =
(RSSp − RSSK)/(K − p)

RSSK/(T − K)
. (3.164)
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We prefer the full model against the partial model if H0: β2 = 0 is rejected,
that is, if F > F1−α (with degrees of freedom K − p and T − K).

Model choice based on an adjusted coefficient of determination

The coefficient of determination (see (3.161) and (3.162))

R2
p = 1 − RSSp

SY Y
(3.165)

is inappropriate to compare a model with K and one with p < K, be-
cause R2

p always increases if an additional regressor is incorporated into
the model, irrespective of its values. The full model always has the greatest
value of R2

p.

Theorem 3.16 Let y = X1β1 + X2β2 + ε = Xβ + ε be the full model and
y = X1β1 + ε be a submodel. Then we have

R2
X − R2

X1
≥ 0. (3.166)

Proof: Let

R2
X − RX1 =

RSSX1 − RSSX

SY Y
,

so that the assertion (3.166) is equivalent to

RSSX1 − RSSX ≥ 0.

Since

RSSX = (y − Xb)′(y − Xb)
= y′y + b′X ′Xb − 2b′X ′y
= y′y − b′X ′y (3.167)

and, analogously,

RSSX1 = y′y − β̂′
1X

′
1y ,

where

b = (X ′X)−1X ′y

and

β̂1 = (X ′
1X1)−1X ′

1y

are OLS estimators in the full and in the submodel, we have

RSSX1 − RSSX = b′X ′y − β̂′
1X

′
1y . (3.168)

Now with (3.93)–(3.99),

b′X ′y = (b′
1, b

′
2)
(

X ′
1y

X ′
2y

)
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= (y′ − b′
2X

′
2)X1(X ′

1X1)−1X ′
1y + b′

2X
′
2y

= β̂′
1X

′
1y + b′

2X
′
2M1y .

Thus (3.168) becomes

RSSX1 − RSSX = b′
2X

′
2M1y

= y′M1X2D
−1X ′

2M1y ≥ 0 , (3.169)

which proves (3.166).
On the basis of Theorem 3.16 we define the statistic

F -change =
(RSSX1 − RSSX)/(K − p)

RSSX/(T − K)
, (3.170)

which is distributed as FK−p,T−K under H0: “submodel is valid.” In model
choice procedures, F -change tests for significance of the change of R2

p by
adding additional K − p variables to the submodel.

In multiple regression, the appropriate adjustment of the ordinary co-
efficient of determination is provided by the coefficient of determination
adjusted by the degrees of freedom of the multiple model:

R̄2
p = 1 −

(
T − 1
T − p

)
(1 − R2

p) . (3.171)

Note: If there is no constant β0 present in the model, then the numerator
is T instead of T − 1, so that R̄2

p may possibly take negative values. This
cannot occur when using the ordinary R2

p.
If we consider two models, the smaller of which is supposed to be fully

contained in the bigger, and we find the relation

R̄2
p+q < R̄2

p ,

then the smaller model obviously shows a better goodness of fit.
Further criteria are, for example, Mallows’s Cp (cf. Weisberg, 1980,

p. 188) or criteria based on the residual mean dispersion error σ̂2
p =

RSSp/(T − p). There are close relations between these measures.

Confidence Intervals

As in bivariate regression, there is a close relation between the region of
acceptance of the F -test and confidence intervals for β in the multiple
regression model.

Confidence Ellipsoids for the Whole Parameter Vector β

Considering (3.83) and (3.86), we get for β∗ = β a confidence ellipsoid at
level 1 − α:

(b − β)′X ′X(b − β)
(y − Xb)′(y − Xb)

· T − K

K
≤ FK,T−K,1−α . (3.172)
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Confidence Ellipsoids for Subvectors of β

From (3.110) we have

(b2 − β2)′D(b2 − β2)
(y − Xb)′(y − Xb)

· T − K

K − s
≤ FK−s,T−K,1−α (3.173)

as a (1 − α)-confidence ellipsoid for β2.
Further results may be found in Judge, Griffiths, Hill, and Lee (1980);

Goldberger (1964); Pollock (1979); Weisberg (1980); and Kmenta (1971).

3.8.3 A Complex Example
We now want to demonstrate model choice in detail by means of the in-
troduced criteria on the basis of a data set. Consider the following model
with K = 4 real regressors and T = 10 observations:

y = 1β0 + X1β1 + X2β2 + X3β3 + X4β4 + ε .

The data set (y, X) is



Y X1 X2 X3 X4

18 3 7 20 −10
47 7 13 5 19
125 10 19 −10 100
40 8 17 4 17
37 5 11 3 13
20 4 7 3 10
24 3 6 10 5
35 3 7 0 22
59 9 21 −2 35
50 10 24 0 20


The sample moments are displayed in the following table.

Mean Std. deviation Variance
X1 6.200 2.936 8.622
X2 13.200 6.647 44.178
X3 3.300 7.846 61.567
X4 23.100 29.471 868.544
Y 45.500 30.924 956.278

The following matrix contains the correlations, the covariances, the
one-tailed p-values of the t-tests tT−2 = r

√
(T − 2)/(1 − r2) for H0: “cor-

relation equals zero,” and the cross-products
∑T

t=1 X1tYt. For example, the
upper right element has:

Correlation(X1, Y ) = .740
Covariance(X1, Y ) = 67.222
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p-value = .007
Cross-product = 605.000

X1 X2 X3 X4 Y
X1 1.000 .971 –.668 .652 .740

8.622 18.956 –15.400 56.422 67.222
.000 .017 .021 .007

77.600 170.600 –138.600 507.800 605.000

X2 .971 1.000 –.598 .527 .628
8.956 44.178 –31.178 103.000 129.000
.000 .034 .059 .026

170.600 397.600 –280.600 928.800 1161.000

X3 –.668 -.598 1.000 –.841 –.780
–15.400 –31.178 61.567 –194.478 –189.278

.017 .034 .001 .004
–138.600 –280.600 554.100 –1750.300 –1703.500

X4 .652 .527 –.841 1.000 .978
56.422 103.200 –194.478 868.544 890.944

.021 .059 .001 .000
507.800 928.800 –1750.300 7816.900 8018.500

Y .740 .628 –.780 .978 1.000
67.222 129.000 –189.278 890.944 956.278

.007 .026 .004 .000
605.000 1161.000 –1703.500 8018.500 8606.500

We especially recognize that

• X1 and X2 have a significant positive correlation (r = .971),

• X3 and X4 have a significant negative correlation (r = −.841),

• all X-variables have a significant correlation with Y .

The significance of the correlation between X1 and X3 or X4, and between
X2 and X3 or X4 lies between .017 and .059, which is quite large as well.

We now apply a stepwise procedure for finding the best model.

Step 1 of the Procedure

The stepwise procedure first chooses the variable X4, since X4 shows the
highest correlation with Y (the p-values are X4: .000, X1: .007, X2: .026,
X3: .004). The results of this step are listed below.

Multiple R .97760
R2 .95571 R2-change .95571
Adjusted R2 .95017 F -change 172.61878
Standard error 6.90290 Signif. F -change .00000
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The ANOVA table is:

df Sum of squares Mean square
Regression 1 8225.29932 8225.2993
Residual 8 381.20068 47.6500

with F = 172.61878 (Signif. F : .0000). The determination coefficient for
the model y = 1β̂0 + X4β̂4 + ε is

R2
2 =

SSReg

SY Y
=

8225.29932
8225.29932 + 381.20068

= .95571 ,

and the adjusted determination coefficient is

R̄2
2 = 1 −

(
10 − 1
10 − 2

)
(1 − .95571) = .95017 .

The table of the estimates is as follows

95% confidence interval
β̂ SE(β̂) lower upper

X4 1.025790 .078075 .845748 1.205832
Constant 21.804245 2.831568 15.274644 28.333845

Step 2 of the Procedure

Now the variable X1 is included. The adjusted determination coefficient
increases to R̄2

3 = .96674.

Multiple R .98698
R2 .97413 R2-change .01842
Adjusted R2 .96674 F -change 4.98488
Standard error 5.63975 Signif. F -change .06070

The ANOVA table is:

df Sum of squares Mean square
Regression 2 8383.85240 4191.9262
Residual 7 222.64760 31.8068

with F = 131.79340 (Signif. F : .0000).

Step 3 of the Procedure

Now that X3 is included, the adjusted determination coefficient increases
to R̄2

4 = .98386.

Multiple R .99461
R2 .98924 R2-change .01511
Adjusted R2 .98386 F -change 8.42848
Standard error 3.92825 Signif. F -change .02720

The ANOVA table is:
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df Sum of squares Mean square
Regression 3 8513.91330 2837.9711
Residual 6 92.58670 15.4311

with F = 183.91223 (Signif. F : .00000).
The test statistic F -change was calculated as follows:

F1,6 =
RSS(X4,X1,1) − RSS(X4,X1,X3,1)

RSS(X4,X1,X3,1)/6

=
222.64760 − 92.58670

15.4311
= 8.42848.

The 95% and 99% quantiles of the F1,6-distribution are 5.99 and 13.71,
respectively. The p-value of F -change is .0272 and lies between 1% and 5%.
Hence, the increase in determination is significant on the 5% level, but not
on the 1% level.

The model choice procedure stops at this point, and the variable X2 is
not taken into consideration. The model chosen is y = 1β0+β1X1+β3X3+
β4X4 + ε with the statistical quantities shown below.

95% confidence interval
β̂ SE(β̂) lower upper

X4 1.079 .084 .873 1.285
X1 2.408 .615 .903 3.913
X3 .937 .323 .147 1.726
Constant 2.554 4.801 –9.192 14.301

The Durbin-Watson test statistic is d = 3.14, which exceeds d∗
u. (Table

4.1 displays values for T=15, 20, 30, . . . ), hence H0: ρ = 0 cannot be
rejected.

3.8.4 Graphical Presentation
We now want to display the structure of the (y, X)-matrix by means of the
bivariate scatterplots. The plots shown in Figures 3.2 to 3.5 confirm the
relation between X1, X2 and X3, X4, and the Xi and Y , but they also show
the strong influence of single observations for specific data constellations.
This influence is examined more closely with methods of the sensitivity
analysis (Chapter 7).

The F -tests assume a normal distribution of the errors or y. This as-
sumption is checked with the Kolmogorov-Smirnov test. The test statistic
has a value of 0.77 (p-value .60). Hence, normality is not rejected at the
5% level.
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Figure 3.2. Scatterplots and regression for X1 on X2, X3 and X4, respectively
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Figure 3.3. Scatterplots and regression for X2 on X3 and X4, respectively
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Figure 3.4. Scatterplot and regression for X3 on X4
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Figure 3.5. Scatterplot and regression for Y on X1, X2, X3 and X4, respectively

3.9 The Canonical Form

To simplify considerations about the linear model—especially when X is
deficient in rank, leading to singularity of X ′X—the so-called canonical
form is frequently used (Rao, 1973a, p. 43).

The spectral decomposition (Theorem A.30) of the symmetric matrix
X ′X is

X ′X = PΛP ′ (3.174)
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with P = (p1, . . . , pK) and PP ′ = I. Model (3.58) can then be written as

y = XPP ′β + ε

= X̃β̃ + ε (3.175)

with X̃ = XP , β̃ = P ′β, and X̃ ′X̃ = P ′X ′XP = Λ = diag(λ1, . . . , λK), so
that the column vectors of X̃ are orthogonal. The elements of β̃ are called
regression parameters of the principal components.

Let β̂ = Cy be a linear estimator of β with the MDE matrix M(β̂, β).
In the transformed model we obtain for the linear estimator P ′β̂ = P ′Cy
of the parameter β̃ = P ′β

M(P ′β̂, β̃) = E(P ′β̂ − P ′β)(P ′β̂ − P ′β)′

= P ′M(β̂, β)P. (3.176)

Hence, relations between two estimates remain unchanged. For the scalar
MDE (cf. Chapter 5) we have

tr{M(P ′β̂, β̃)} = tr{M(β̂, β)}, (3.177)

so that the scalar MDE is independent of the parameterization (3.175).
For the covariance matrix of the OLS estimate b of β in the original

model, we have

V(b) = σ2(X ′X)−1 = σ2
∑

λ−1
i pip

′
i. (3.178)

The OLS estimate b∗ of β̃ in the model (3.175) is

b∗ = (X̃ ′X̃)−1X̃ ′y
= Λ−1X̃ ′y (3.179)

with the covariance matrix

V(b∗) = σ2Λ−1 . (3.180)

Hence the components of b∗ are uncorrelated and have the variances var(b∗
i )

= σ2λ−1
i . If λi > λj , then β̃i is estimated more precisely than β̃j :

var(b∗
i )

var(b∗
j )

=
λj

λi
< 1 . (3.181)

The geometry of the reparameterized model (3.175) is examined extensively
in Fomby, Hill, and Johnson (1984, pp. 289–293). Further remarks can be
found in Vinod and Ullah (1981, pp. 5–8). In the case of problems concern-
ing multicollinearity, reparameterization leads to a clear representation of
dependence on the eigenvalues λi of X ′X. Exact or strict multicollinear-
ity means |X ′X| = 0 in the original model and |X̃ ′X̃| = |Λ| = 0 in the
reparameterized model, so that at least one eigenvalue is equal to zero. For
weak multicollinearity in the sense of |X̃ ′X̃| ≈ 0, the smallest eigenvalue
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or the so-called

condition number k =
(

λmax

λmin

) 1
2

(3.182)

is used for diagnostics (cf. Weisberg, 1985, p. 200; Chatterjee and Hadi,
1988, pp. 157–178).

Belsley, Kuh, and Welsch (1980, Chapter 3) give a detailed discus-
sion about the usefulness of these and other measures for assessing weak
multicollinearity.

3.10 Methods for Dealing with Multicollinearity

In this section we want to introduce more algebraically oriented methods:
principal components regression, ridge estimation, and shrinkage estima-
tors. Other methods using exact linear restrictions and procedures with
auxiliary information are considered in Chapter 5.

3.10.1 Principal Components Regression
The starting point of this procedure is the reparameterized model (3.175)

y = XPP ′β + ε = X̃β̃ + ε .

Let the columns of the orthogonal matrix P = (p1, . . . , pK) of the eigen-
vectors of X ′X be numbered according to the magnitude of the eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λK . Then x̃i = Xpi is the ith principal component and
we get

x̃′
ix̃i = p′

iX
′Xpi = λi . (3.183)

We now assume exact multicollinearity. Hence rank(X) = K − J with
J ≥ 1. We get (A.31 (vii))

λK−J+1 = . . . = λK = 0 . (3.184)

According to the subdivision of the eigenvalues into the groups λ1 ≥ . . . ≥
λK−J > 0 and the group (3.184), we define the subdivision

P = (P1, P2) , Λ =
(

Λ1 0
0 0

)
, X̃ = (X̃1, X̃2) = (XP1, XP2) ,

β̃ =
(

β̃1

β̃2

)
=
(

P ′
1β

P ′
2β

)
with X̃2 = 0 according to (3.183). We now obtain

y = X̃1β̃1 + X̃2β̃2 + ε (3.185)
= X̃1β̃1 + ε. (3.186)
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The OLS estimate of the (K − J)-vector β̃1 is b1 = (X̃ ′
1X̃1)−1X̃ ′

1y. The
OLS estimate of the full vector β̃ is(

b1
0

)
= (X ′X)−X ′y

= (PΛ−P ′)X ′y, (3.187)

with Theorem A.63

Λ− =
(

Λ−1
1 0
0 0

)
(3.188)

being a g-inverse of Λ.

Remark: The handling of exact multicollinearity by means of principal
components regression corresponds to the transition from the model (3.185)
to the reduced model (3.186) by putting X̃2 = 0. This transition can be
equivalently achieved by putting β̃2 = 0 and hence by a linear restriction

0 = (0, I)
(

β̃1

β̃2

)
.

The estimate b1 can hence be represented as a restricted OLS estimate
(cf. Section 5.2).

A cautionary note on PCR. In practice, zero eigenvalues can be destin-
guished only by the small magnitudes of the observed eigenvalues. Then,
one may be tempted to omit all the principal components with the cor-
responding eigenvalues below a certain threshold value. But then, there
is a possibility that a principal component with a small eigenvalue is a
good predictor of the response variable and its omission may decrease the
efficiency of prediction drastically.

3.10.2 Ridge Estimation
In case of rank(X) = K, the OLS estimate has the minimum-variance
property in the class of all unbiased, linear, homogeneous estimators. Let
λ1 ≥ λ2 ≥ . . . ≥ λK denote the eigenvalues of S. Then we have for the
scalar MDE of b

tr{M(b, β)} = tr{V(b)} = σ2
K∑

i=1

λ−1
i . (3.189)

In the case of weak multicollinearity, at least one eigenvalue λi is relatively
small, so that tr{V(b)} and the variances of all components bj of b =
(b1, . . . , bK)′ are large:

bj = e′
jb ,

var(bj) = e′
j V(b)ej , and, hence,
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var(bj) = σ2
K∑

i=1

λ−1
i e′

jpip
′
iej

= σ2
K∑

i=1

λ−1
i p2

ij (3.190)

with the jth unit vector ej and the ith eigenvector p′
i =(pi1, . . . , pij , . . . , piK).

The scalar MDE

tr{M(b, β)} = E(b − β)′(b − β)

can be interpreted as the mean Euclidean distance between the vectors b
and β, hence multicollinearity means a global unfavorable distance to the
real parameter vector. Hoerl and Kennard (1970) used this interpretation
as a basis for the definition of the ridge estimate

b(k) = (X ′X + kI)−1X ′y, (3.191)

with k ≥ 0, the nonstochastic quantity, being the control parameter. Of
course, b(0) = b is the ordinary LS estimate.

Using the abbreviation

Gk = (X ′X + kI)−1, (3.192)

Bias(b(k), β) and V(b(k)) can be expressed as follows:

E(b(k)) = GkX ′Xβ = β − kGkβ , (3.193)
Bias(b(k), β) = −kGkβ , (3.194)

V(b(k)) = σ2GkX ′XGk . (3.195)

Hence the MDE matrix is

M(b(k), β) = Gk(σ2X ′X + k2ββ′)Gk (3.196)

and using X ′X = PΛP ′, we get

tr{M(b(k), β)} =
K∑

i=1

σ2λi + k2β2
i

(λi + k)2
(3.197)

(cf. Goldstein and Smith, 1974).

Proof: Let X ′X = PΛP ′ be the spectral decomposition of X ′X. We then
have (Theorems A.30, A.31)

X ′X + kI = G−1
k = P (Λ + kI)P ′ ,
Gk = P (Λ + kI)−1P ′ ,

and in general

tr{diag(l1, · · · , lk)ββ′ diag(l1, · · · , lk)} =
∑

β2
i l2i .

With li = (λi + k)−1, we obtain relation (3.197).
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k

Bias(b(k))

Var(b(k))

MDE
(
b(k), β)

MDE(b, β)

Figure 3.6. Scalar MDE function for b = (X ′X)−1X ′y and b(k) = GkX ′y in
dependence on k for K = 1

The scalar MDE of b(k) for fixed σ2 and a fixed vector β is a function of
the ridge parameter k, which starts at

∑
σ2/λi = tr{V(b)} for k = 0, takes

its minimum for k = kopt and then it increases monotonically, provided
that kopt < ∞ (cf. Figure 3.6).

We now transform M(b, β) = M(b) = σ2(X ′X)−1 as follows:

M(b) = σ2Gk(G−1
k (X ′X)−1G−1

k )Gk

= σ2Gk(X ′X + k2(X ′X)−1 + 2kI)Gk . (3.198)

From Definition 3.10 we obtain the interval 0 < k < k∗ in which the ridge
estimator is MDE-I-superior to the OLS b, according to

∆(b, b(k)) = M(b) − M(b(k), β)
= kGk[σ2(2I + k(X ′X)−1) − kββ′]Gk. (3.199)

Since Gk > 0, we have ∆(b, b(k)) ≥ 0 if and only if

σ2(2I + k(X ′X)−1) − kββ′ ≥ 0 , (3.200)

or if the following holds (Theorem A.57):

σ−2kβ′(2I + k(X ′X)−1)−1β ≤ 1 . (3.201)

As a sufficient condition for (3.200), independent of the model matrix X,
we obtain

2σ2I − kββ′ ≥ 0 (3.202)

or—according to Theorem A.57—equivalently,

k ≤ 2σ2

β′β
. (3.203)

The range of k, which ensures the MDE-I superiority of b(k) compared to
b, is dependent on σ−1β and hence unknown.
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If auxiliary information about the length (norm) of β is available in the
form

β′β ≤ r2 , (3.204)

then

k ≤ 2σ2

r2 (3.205)

is sufficient for (3.203) to be valid. Hence possible values for k, in which
b(k) is better than b, can be found by estimation of σ2 or by specification
of a lower limit or by a combined a priori estimation σ−2β′β ≤ r̃2.

Swamy, Mehta, and Rappoport (1978) and Swamy and Mehta (1977)
investigated the following problem:

min
β

{σ−2(y − Xβ)′(y − Xβ)|β′β ≤ r2} .

The solution of this problem

β̂(µ) = (X ′X + σ2µI)−1X ′y , (3.206)

is once again a ridge estimate and β̂′(µ)β̂(µ) = r2 is fulfilled. Replacing σ2

by the estimate s2 provides a practical solution for the estimator (3.206)
but its properties can be calculated only approximately.

Hoerl and Kennard (1970) derived the ridge estimator by the following
reasoning. Let β̂ be any estimator and b = (X ′X)−1X ′y the OLS. Then
the error sum of squares estimated with β̂ can be expressed, according to
the property of optimality of b, as

S(β̂) = (y − Xβ̂)′(y − Xβ̂)

= (y − Xb)′(y − Xb) + (b − β̂)′X ′X(b − β̂)

= S(b) + Φ(β̂) , (3.207)

since the term

2(y − Xb)′X(b − β̂) = 2y′(I − X(X ′X)−1X ′)X(b − β̂)

= 2MX(b − β̂) = 0

since MX = 0.
Let Φ0 > 0 be a fixed given value for the error sum of squares. Then a

set {β̂} of estimates exists that fulfill the condition S(β̂) = S(b) + Φ0. In
this set {β̂} we look for the estimate β̂ with minimal length:

min
β̂

{
β̂′β̂ +

1
k

[(b − β̂)′X ′X(b − β̂) − Φ0]
}
, (3.208)

where 1/k is a Lagrangian multiplier. Differentiation of this function with
respect to β̂ and 1/k leads to the normal equations

β̂ +
1
k

(X ′X)(β̂ − b) = 0 ,
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and hence

β̂ = (X ′X + kI)−1(X ′X)b
= GkX ′y , (3.209)

as well as

Φ0 = (b − β̂)′X ′X(b − β̂) . (3.210)

Hence, the solution of the problem (3.208) is the ridge estimator β̂ = b(k)
(3.209). The ridge parameter k is to be determined iteratively so that
(3.210) is fulfilled.

For further representations about ridge regression see Vinod and Ullah
(1981) and Trenkler and Trenkler (1983).

3.10.3 Shrinkage Estimates
Another class of biased estimators, which was very popular in research
during the 1970s, is defined by the so-called shrinkage estimator (Mayer
and Wilke, 1973):

β̂(ρ) = (1 + ρ)−1b , ρ ≥ 0 (ρ known) , (3.211)

which “shrinks” the OLS estimate:

E
(
β̂(ρ)
)

= (1 + ρ)−1β,

Bias
(
β̂(ρ), β

)
= −ρ(1 + ρ)−1β ,

V
(
β̂(ρ)
)

= σ2(1 + ρ)−2(X ′X)−1 ,

and

M
(
β̂(ρ), β

)
= (1 + ρ)−2(V(b) + ρ2ββ′) . (3.212)

The MDE-I comparison with the OLS leads to

∆(b, β̂(ρ)) = (1 + ρ)−2ρσ−2[(ρ + 2)(X ′X)−1 − σ−2ρββ′] ≥ 0

if and only if (Theorem A.57)

σ−2ρ

(ρ + 2)
β′X ′Xβ ≤ 1 .

Then

σ−2β′X ′Xβ ≤ 1 (3.213)

is a sufficient condition for the MDE-I superiority of β̂(ρ) compared to b.
This form of restriction will be used as auxiliary information for the

derivation of minimax-linear estimates in Section 3.13.

Note: Results about the shrinkage estimator in the canonical model can
be found in Farebrother (1978).
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3.10.4 Partial Least Squares
Univariate partial least squares is a particular method of analysis in models
with possibly more explanatory variables than samples. In spectroscopy
one aim may be to predict a chemical composition from spectra of some
material. If all wavelengths are considered as explanatory variables, then
traditional stepwise OLS procedure soon runs into collinearity problems
caused by the number of explanatory variables and their interrelationships
(cf. Helland, 1988).

The aim of partial least squares is to predict the response by a model
that is based on linear transformations of the explanatory variables. Partial
least squares (PLS) is a method of constructing regression models of type

Ŷ = β0 + β1T1 + β2T2 + · · · + βpTp , (3.214)

where the Ti are linear combinations of the explanatory variables X1, X2,
. . . , XK such that the sample correlation for any pair Ti, Tj (i �= j) is 0.
We follow the procedure given by Garthwaite (1994). First, all the data are
centered. Let ȳ, x̄1, . . . , x̄k denote the sample means of the columns of the
T × (K + 1)-data matrix

(y, X) = (y1, x1, . . . , xk) ,

and define the variables

U1 = Y − x̄i , (3.215)
V1i = Xi − x̄i (i = 1, . . . , K) . (3.216)

Then the data values are the T -vectors

u1 = y − ȳ1 , (ū1 = 0) , (3.217)
vi1 = xi − x̄i1 , (v̄1i = 0) . (3.218)

The linear combinations Tj , called factors, latent variables, or components,
are then determined sequentially. The procedure is as follows:

(i) U1 is first regressed against V11, then regressed against V12, . . ., then
regressed against V1K . The K univariate regression equations are

Û1i = b1iV1i (i = 1, . . . , K) , (3.219)

where b1i =
v′
1iu1

v′
1iv1i

. (3.220)

Then each of the K equations in (3.220) provides an estimate of
U1. To have one resulting estimate, one may use a simple average∑K

i=1 b1iV1i/K or a weighted average such as

T1 =
K∑

i=1

w1ib1iV1i (3.221)
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with the data value

t1 =
K∑

i=1

w1ib1iv1i . (3.222)

(ii) The variable T1 should be a useful predictor of U1 and hence of Y .
The information in the variable Xi that is not in T1 may be estimated
by the residuals from a regression of Xi on T1, which are identical to
the residuals, say Y2i, if V1i is regressed on T1, that is,

V2i = V1i − t′1v1i

t′1t1
T1 . (3.223)

To estimate the amount of variability in Y that is not explained by
the predictor T1, one may regress U1 on T1 and take the residuals,
say U2.

(iii) Define now the individual predictors

Û2i = b2iV2i (i = 1, . . . , K) , (3.224)

where

b2i =
v′
2iu2

v′
2iv2i

(3.225)

and the weighted average

T2 =
K∑

i=1

w2ib2iV2i . (3.226)

(iv) General iteration step. Having performed this algorithm k times,
the remaining residual variability in Y is Uk+1 and the residual
information in Xi is V(k+1)i, where

Uk+1 = Uk − t′kuk

t′ktk
Tk (3.227)

and

V(k+1)i = Vki − t′kvki

t′ktk
Tk . (3.228)

Regressing Uk+1 against V(k+1)i for I = 1, . . . , K gives the individual
predictors

Û(k+1)i = b(k+1)iV(k+1)i (3.229)

with

b(k+1)i =
v′
(k+1)iuk+1

v′
(k+1)iv(k+1)i
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and the (k + 1)th component

Tk+1 =
K∑

i=1

w(k+1)ib(k+1)iV(k+1)i . (3.230)

(v) Suppose that this process has stopped in the pth step, resulting in the
PLS regression model given in (3.214). The parameters β0, β1, . . . , βp

are estimated by univariate OLS. This can be proved as follows. In
matrix notation we may define

V(k) = (Vk1, . . . , VkK) (k = 1, . . . , p) , (3.231)

Û(k) = (bk1Vk1, . . . , bkKVkK) (k = 1, . . . , p) , (3.232)
w(k) = (wk1, . . . , wkK)′ (k = 1, . . . , p) , (3.233)

T(k) = Û(k)w(k) (k = 1, . . . , p) , (3.234)

V(k) = V(k−1) −
v′
(k−1)tk−1

t′k−1tk−1
Tk−1 . (3.235)

By construction (cf. (3.228)) the sample residuals v(k+1)i are orthogo-
nal to vki, v(k−1)i, . . . , v1i, implying that v′

(k)v(j) = 0 for k �= j, hence,
û′

(k)û(j) = 0 for k �= j, and finally,

t′ktj = 0 (k �= j) . (3.236)

This is the well-known feature of the PLS (cf. Wold, Wold, Dunn, and
Ruhe, 1984; Helland, 1988) that the sample components ti are pairwise
uncorrelated. The simple consequence is that parameters βk in equation
(3.214) may be estimated by simple univariate regressions of Y against
Tk. Furthermore, the preceding estimates β̂k stay unchanged if a new
component is added.

Specification of the Weights

In the literature, two weighting policies are discussed. First, one may set
wij = 1/K to give each predictor Ûki (i = 1, . . . , K) the same weight in
any kth step. The second policy in practice is the choice

wki = v′
kivki (for all k, i) . (3.237)

As v̄ki = 0, the sample variance of Vki is v̂ar(Vki) = v′
kivki/(T − 1). Using

wki defined in (3.237) gives wkibki = v′
kiuk and

Tk =
K∑

i=1

(v′
kiuk)V(k)i . (3.238)

The T -vector vki is estimating the amount of information in Xi that was
not included in the preceding component Tk−1. Therefore, its vector norm
v′

kivki is a measure for the contribution of Xi to Tk.
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Size of the Model

Deciding the number of components (p) usually is done via some cross-
validation (Stone, 1974; Geisser, 1974). The data set is divided into groups.
At each step k, the model is fitted to the data set reduced by one of the
groups. Predictions are calculated for the deleted data, and the sum of
squares of predicted minus observed values for the deleted data is calcu-
lated. Next, the second data group is left out, and so on, until each data
point has been left out once and only once. The total sum of squares (called
PRESS) of predictions minus observations is a measure of the predictive
power of the kth step of the model. If for a chosen constant

PRESS(k+1) − PRESS(k) < constant ,

then the procedure stops. In simulation studies, Wold et al. (1984) and
Garthwaite (1994) have compared the predictive power of PLS, stepwise
OLS, principal components estimator (PCR), and other methods. They
found PLS to be better than OLS and PCR and comparable to, for example,
ridge regression.

Multivariate extension of PLS is discussed by Garthwaite (1994). Hel-
land (1988) has discussed the equivalence of alternative univariate PLS
algorithms.

3.11 Projection Pursuit Regression

The term projection pursuit (Friedman and Tukey, 1974) describes a
technique for the exploratory analysis of multivariate data. This method
searches for interesting linear projections of a multivariate data set onto
a linear subspace, such as, for example, a plane or a line. These low-
dimensional orthogonal projections are used to reveal the structure of the
high-dimensional data set.

Projection pursuit regression (PPR) constructs a model for the regression
surface y = f(X) using projections of the data onto planes that are spanned
by the variable y and a linear projection a′X of the independent variables
in the direction of the vector a. Then one may define a function of merit
(Friedman and Stuetzle, 1981) or a projection index (Friedman and Tukey,
1974; Jones and Sibson, 1987) I(a) depending on a. Projection pursuit
attempts to find directions a that give (local) optima of I(a). The case
a = 0 is excluded, and a is constrained to be of unit length (i.e., any a is
scaled by dividing by its length).

In linear regression the response surface is assumed to have a known
functional form whose parameters have to be estimated based on a sample
(yt, x

′
t). The PPR procedure models the regression surface iteratively as a

sum of smooth functions of linear combinations a′X of the predictors, that
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is, the regression surface is approximated by a sum of smooth functions

φ(x) =
M∑

m=1

Sam
(a′

mX) (3.239)

(M is the counter of the runs of iteration). The algorithm is as follows
(Friedman and Stuetzle, 1981):

(i) Collect a sample (yt, x
′
t), t = 1, . . . , T , and assume the yt to be cen-

tered.

(ii) Initialize residuals rt = yt, t = 1, . . . , T and set counter M = 0.

(iii) Choose a vector a and project the predictor variables onto one dimen-
sion zt = a′xt, t = 1, . . . , T , and calculate a univariate nonparametric
regression Sa(a′xt) of current residuals rt on zt as ordered in ascend-
ing values of zt. These nonparametric functions are based on local
averaging such as

S(zt) = AVE(yi) , j − k ≤ i ≤ j + k , (3.240)

where k defines the bandwidth of the smoother.

(iv) Define as a function of merit I(a), for example, the fraction of
unexplained variance

I(a) = 1 −
T∑

t=1

(rt − Sa(a′xt))2∑T
t=1 r2

t

. (3.241)

(v) Optimize I(a) over the direction a.

(vi) Stop if I(a) ≤ ε (a given lower bound of smoothness). Otherwise
update as follows:

rt ← rt − SM
a (a′

Mxt) , t = 1, . . . , T ,

M ← M + 1 . (3.242)

Interpretation: The PPR algorithm may be seen to be a successive refine-
ment of smoothing the response surface by adding the optimal smoother
SM

a (a′X) to the current model.

Remark: Huber (1985) and Jones and Sibson (1987) have included projec-
tion pursuit regression in a general survey of attempts at getting interesting
projections of high-dimensional data and nonparametric fittings such as
principal components, multidimensional scaling, nonparametric regression,
and density estimation.
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3.12 Total Least Squares

In contrast to our treatment in the other chapters, we now change assump-
tions on the independent variables, that is, we allow the Xi to be measured
with errors also. The method of fitting such models is known as orthogonal
regression or errors-in-variables regression, also called total least squares.
The idea is as follows (cf. van Huffel and Zha, 1993).

Consider an overdetermined set of m > n linear equations in n unknowns
x (A : m × n, x : n × 1, a : m × 1)

Ax = a . (3.243)

Then the ordinary least-squares problem may be written as

min
â∈Rm

‖a − â‖2 subject to â ∈ R(A) , (3.244)

where ‖x‖2 is the L2-norm or Euclidean norm of a vector x. Let â be a
solution of (3.244), then any vector x satisfying Ax = â is called a LS
solution (LS = least squares). The difference

∆a = a − â (3.245)

is called the LS correction. The assumptions are that errors occur only in
the vector a and that A is exactly known.

If we also allow for perturbations in A, we are led to the following
definition.

The total least-squares (TLS) problem for solving an overdetermined
linear equation Ax = a is defined by

min
(Â,â)∈Rm×(n+1)

‖(A, a) − (Â, â)‖F (3.246)

subject to

â ∈ R(Â) , (3.247)

where

‖M‖F = [tr(MM ′)]
1
2 (3.248)

is the Frobenius norm of a matrix M .
If a minimizer (Â, â) is found, then any x satisfying Âx = â is called a

TLS solution, and

[∆Â, ∆â] = (A, a) − (Â, â) (3.249)

is called the TLS correction.
Indeed, the TLS problem is more general than the LS problem, for the

TLS solution is obtained by approximating the columns of the matrix A
by Â and a by â until â is in the space R(Â) and Âx = â.
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Basic Solution to TLS

We rewrite Ax = a as

(A, a)
(

x
−1

)
= 0 . (3.250)

Let the singular value decomposition (SVD; cf. Theorem A.32) of the
(m, n + 1)-matrix (A, a) be

(A, a) = ULV ′

=
n+1∑
i=1

liuiv
′
i , (3.251)

where l1 ≥ . . . ≥ ln+1 ≥ 0. If ln+1 �= 0, then (A, a) is of rank n + 1,
R((A, a)′) = Rn+1, and (3.250) has no solution.

Lemma 3.17 (Eckart-Young-Mirsky matrix approximation theorem) Let A :
n × n be a matrix of rank(A) = r, and let A =

∑r
i=1 liuiv

′
i, li > 0, be

the singular value decomposition of A. If k < r and Ak =
∑k

i=1 liuiv
′
i, then

min
rank(Â)=k

‖A − Â‖2 = ‖A − Âk‖2 = lk+1

and

min
rank(Â)=k

‖A − Â‖F = ‖A − Âk‖F =

√√√√ p∑
i=k+1

l2i ,

where p = min(m, n).

Proof: See Eckart and Young (1936), Mirsky (1960), Rao (1979; 1980).
Based on this theorem, the best rank n approximation (Â, â) of (A, a) in

the sense of minimal deviation in variance is given by

(Â, â) = UL̂V ′ , where L̂ = (l1, . . . , ln, 0) . (3.252)

The minimal TLS correction is then given by

ln+1 = min
rank(Â,â)=n

‖(A, a) − (Â, â)‖F . (3.253)

So we have

(A, a) − (Â, â) = (∆Â, ∆â) = ln+1un+1v
′
n+1 . (3.254)

Then the approximate equation (cf. (3.250))

(Â, â)
(

x
−1

)
= 0 (3.255)

is compatible and has solution(
x̂

−1

)
=

−1
vn+1,n+1

vn+1 , (3.256)
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where vn+1,n+1 is the (n + 1)th component of the vector vn+1. Finally, x̂

is solution of the TLS equation Âx = â.
On the other hand, if ln+1 is zero, then rank(A, a) = n, vn+1 ∈

N{(A, a)
}
, and the vector x̂ defined in (3.256) is the exact solution of

Ax = a.

3.13 Minimax Estimation

3.13.1 Inequality Restrictions
Minimax estimation is based on the idea that the quadratic risk function
for the estimate β̂ is not minimized over the entire parameter space RK ,
but only over an area B(β) that is restricted by a priori knowledge. For
this, the supremum of the risk is minimized over B(β) in relation to the
estimate (minimax principle).

In many of the models used in practice, the knowledge of a priori re-
strictions for the parameter vector β may be available in a natural way.
Stahlecker (1987) shows a variety of examples from the field of economics
(such as input-output models), where the restrictions for the parameters
are so-called workability conditions of the form βi ≥ 0 or βi ∈ (ai, bi) or
E(yt|X) ≤ at and more generally

Aβ ≤ a . (3.257)

Minimization of S(β) = (y − Xβ)′(y − Xβ) under inequality restric-
tions can be done with the simplex algorithm. Under general conditions
we obtain a numerical solution. The literature deals with this problem
under the generic term inequality restricted least squares (cf. Judge and
Takayama, 1966; Dufour, 1989; Geweke, 1986; Moors and van Houwelin-
gen, 1987). The advantage of this procedure is that a solution β̂ is found
that fulfills the restrictions. The disadvantage is that the statistical prop-
erties of the estimates are not easily determined and no general conclusions
about superiority can be made. If all restrictions define a convex area, this
area can often be enclosed in an ellipsoid of the following form:

B(β) = {β : β′Tβ ≤ k} (3.258)

with the origin as center point or in

B(β, β0) = {β : (β − β0)′T (β − β0) ≤ k} (3.259)

with the center point vector β0.
For example, (3.257) leads to β′A′Aβ ≤ a2, and hence to the structure

B(β).
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Inclusion of Inequality Restrictions in an Ellipsoid

We assume that for all components βi of the parameter vector β, the
following restrictions in the form of intervals are given a priori:

ai ≤ βi ≤ bi (i = 1, . . . , K) . (3.260)

The empty restrictions (ai = −∞ and bi = ∞) may be included. The
limits of the intervals are known. The restrictions (3.260) can alternatively
be written as

|βi − (ai + bi)/2|
1/2(bi − ai)

≤ 1 (i = 1, . . . , K) . (3.261)

We now construct an ellipsoid (β − β0)′T (β − β0) = 1, which encloses the
cuboid (3.261) and fulfills the following conditions:

(i) The ellipsoid and the cuboid have the same center point, β0 = 1
2 (a1 +

b1, . . . , aK + bK).

(ii) The axes of the ellipsoid are parallel to the coordinate axes, that is,
T = diag(t1, . . . , tK).

(iii) The corner points of the cuboid are on the surface of the ellipsoid,
which means we have

K∑
i=1

(
ai − bi

2

)2

ti = 1 . (3.262)

(iv) The ellipsoid has minimal volume:

V = cK

K∏
i=1

t
− 1

2
i , (3.263)

with cK being a constant dependent on the dimension K.

We now include the linear restriction (3.262) for the ti by means of
Lagrangian multipliers λ and solve (with c−2

K V 2
K =

∏
t−1
i )

min
{ti}

Ṽ = min
{ti}

{
K∏

i=1

t−1
i − λ

[
K∑

i=1

(
ai − bi

2

)2

ti − 1

]}
. (3.264)

The normal equations are then

∂Ṽ

∂tj
= −t−2

j

∏
i�=j

t−1
i − λ

(
aj − bj

2

)2

= 0 (3.265)

and

∂Ṽ

∂λ
=
∑(

ai − bi

2

)2

ti − 1 = 0 . (3.266)
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From (3.265) we get

λ = −t−2
j

∏
i�=j

t−1
i

(
2

aj − bj

)2

(for all j = 1, . . . , K)

= −t−1
j

K∏
i=1

t−1
i

(
2

aj − bj

)2

, (3.267)

and for any two i, j we obtain

ti

(
ai − bi

2

)2

= tj

(
aj − bj

2

)2

, (3.268)

and hence—after summation—according to (3.266),

K∑
i=1

(
ai − bi

2

)2

ti = Ktj

(
aj − bj

2

)2

= 1 . (3.269)

This leads to the required diagonal elements of T :

tj =
4
K

(aj − bj)−2 (j = 1, . . . , K) .

Hence, the optimal ellipsoid (β − β0)′T (β − β0) = 1, which contains the
cuboid, has the center point vector

β′
0 =

1
2
(a1 + b1, . . . , aK + bK) (3.270)

and the following matrix, which is positive definite for finite limits ai, bi

(ai �= bi),

T = diag
4
K

(
(b1 − a1)−2, . . . , (bK − aK)−2) . (3.271)

Interpretation: The ellipsoid has a larger volume than the cuboid. Hence,
the transition to an ellipsoid as a priori information represents a weakening,
but comes with an easier mathematical handling.

Example 3.1: (Two real regressors) The center-point equation of the
ellipsoid is (cf. Figure 3.7)

x2

a2 +
y2

b2 = 1,

or

(x, y)
( 1

a2 0
0 1

b2

)(
x
y

)
= 1

with

T = diag
(

1
a2 ,

1
b2

)
= diag(t1, t2)
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β0

β1

β2

a1 b1

a2

b2

Figure 3.7. A priori rectangle and enclosing ellipsoid

and the area F = πab = πt
− 1

2
1 t

− 1
2

2 .

3.13.2 The Minimax Principle
Consider the quadratic risk R1(β̂, β, A) = tr{AM(β̂, β)} and a class {β̂} of
estimators. Let B(β) ⊂ RK be a convex region of a priori restrictions for
β. The criterion of the minimax estimator leads to the following.

Definition 3.18 An estimator b∗ ∈ {β̂} is called a minimax estimator of β
if

min
{β̂}

sup
β∈B

R1(β̂, β, A) = sup
β∈B

R1(b∗, β, A) . (3.272)

Linear Minimax Estimators

We now confine ourselves to the class of linear homogeneous estimators
{β̂ = Cy}. For these estimates the risk can be expressed as (cf. (4.15))

R1(Cy, β, A) = σ2tr(ACC ′) + β′T
1
2 ÃT

1
2 β (3.273)

with

Ã = T− 1
2 (CX − I)′A(CX − I)T− 1

2 , (3.274)

and T > 0 is the matrix of the a priori restriction

B(β) = {β : β′Tβ ≤ k} . (3.275)

Using Theorem A.44 we get

sup
β

β′T
1
2 ÃT

1
2 β

β′Tβ
= λmax(Ã)
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and hence

sup
β′Tβ≤k

R1(Cy, β, A) = σ2tr(ACC ′) + kλmax(Ã) . (3.276)

Since the matrix Ã (3.274) is dependent on the matrix C, the maximum
eigenvalue λmax(Ã) is dependent on C as well, but not in an explicit
form that could be used for differentiation. This problem has received
considerable attention in the literature. In addition to iterative solutions
(Kuks, 1972; Kuks and Olman, 1971, 1972) the suggestion of Trenkler and
Stahlecker (1987) is of great interest. They propose to use the inequality
λmax(Ã) ≤ tr(Ã) to find an upper limit of R1(Cy, β, A) that is differen-
tiable with respect to C, and hence find a substitute problem with an
explicit solution. A detailed discussion can be found in Schipp (1990).

An explicit solution can be achieved right away if the weight matrices are
confined to matrices of the form A = aa′ of rank 1, so that the R1(β̂, β, A)
risk equals the weaker R2(β̂, β, a) risk (cf. (4.4)).

Linear Minimax Estimates for Matrices A = aa′ of Rank 1

In the case where A = aa′, we have

Ã = [T− 1
2 (CX − I)′a][a′(CX − I)T− 1

2 ] = ãã′ , (3.277)

and according to the first Corollary to Theorem A.28 we obtain λmax(Ã) =
ã′ã. Therefore, (3.276) becomes

sup
β′Tβ≤k

R2(Cy, β, a) = σ2a′CC ′a + ka′(CX − I)T−1(CX − I)′a . (3.278)

Differentiation with respect to C leads to (Theorems A.91, A.92)

1
2

∂

∂C

{
sup

β′Tβ≤k
R2(Cy, β, a)

}
= (σ2I + kXT−1X ′)C ′aa′ − kXT−1aa′ .

(3.279)
Since a is any fixed vector, (3.279) equals zero for all matrices aa′ if and
only if

C ′
∗ = k(σ2I + kXT−1X ′)−1XT−1. (3.280)

After transposing (3.280) and multiplying from the left with (σ2T + kS),
we obtain

(σ2T + kS)C∗ = kX ′[σ2I + kXT−1X ′][σ2I + kXT−1X ′]−1

= kX ′ ,

which leads to the solution (S = X ′X)

C∗ = (S + k−1σ2T )−1X ′ . (3.281)

Using the abbreviation

D∗ = (S + k−1σ2T ) , (3.282)
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we have the following theorem.

Theorem 3.19 (Kuks, 1972) In the model y = Xβ + ε, ε ∼ (0, σ2I), with
the restriction β′Tβ ≤ k with T > 0, and the risk function R2(β̂, β, a), the
linear minimax estimator is of the following form:

b∗ = (X ′X + k−1σ2T )−1X ′y
= D−1

∗ X ′y (3.283)

with

Bias(b∗, β) = −k−1σ2D−1
∗ Tβ , (3.284)

V (b∗) = σ2D−1
∗ SD−1

∗ (3.285)

and the minimax risk

sup
β′Tβ≤k

R2(b∗, β, a) = σ2a′D−1
∗ a . (3.286)

Theorem 3.20 Given the assumptions of Theorem 3.19 and the restriction
(β − β0)′T (β − β0) ≤ k with center point β0 �= 0, the linear minimax
estimator is of the following form:

b∗(β0) = β0 + D−1
∗ X ′(y − Xβ0) (3.287)

with

Bias(b∗(β0), β) = −k−1σ2D−1
∗ T (β − β0), (3.288)

V (b∗(β0)) = V (b∗) , (3.289)

and

sup
(β−β0)′T (β−β0)≤k

R2(b∗(β0), β, a) = σ2a′D−1
∗ a . (3.290)

Proof: The proof is similar to that used in Theorem 3.19, with β −β0 = β̃.

Interpretation: A change of the center point of the a priori ellipsoid has an
influence only on the estimator itself and its bias. The minimax estimator
is not operational, because of the unknown σ2. The smaller the value of k,
the stricter is the a priori restriction for fixed T . Analogously, the larger
the value of k, the smaller is the influence of β′Tβ ≤ k on the minimax
estimator. For the borderline case we have

B(β) = {β : β′Tβ ≤ k} → RK as k → ∞
and

lim
k→∞

b∗ → b = (X ′X)−1X ′y . (3.291)
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Comparison of β̂∗ and b

(i) Minimax Risk Since the OLS estimator is unbiased, its minimax risk is

sup
β′Tβ≤k

R2(b, ·, a) = R2(b, ·, a) = σ2a′S−1a . (3.292)

The linear minimax estimator b∗ has a smaller minimax risk than the OLS
estimator, because of its optimality, according to Theorem 3.19. Explicitly,
this means (Toutenburg, 1976)

R2(b, ·, a) − sup
β′Tβ≤k

R2(b∗, β, a)

= σ2a′(S−1 − (k−1σ2T + S)−1)a ≥ 0 , (3.293)

since S−1 − (k−1σ2T + S)−1 ≥ 0 (cf. Theorem A.40 or Theorem A.52).

(ii) MDE-I Superiority With (3.288) and (3.289) we get

M(b∗, β) = V (b∗) + Bias(b∗, β) Bias(b∗, β)′

= σ2D−1
∗ (S + k−2σ2Tββ′T ′)D−1

∗ . (3.294)

Hence, b∗ is MDE-I-superior to b if

∆(b, b∗) = σ2D−1
∗ [D∗S−1D∗ − S − k−2σ2Tββ′T ′]D−1

∗ ≥ 0 , (3.295)

hence if and only if

B = D∗S−1D∗ − S − k−2σ2Tββ′T ′

= k−2σ4T [{S−1 + 2kσ−2T−1} − σ−2ββ′]T ≥ 0

= k−2σ4TC
1
2 [I − σ−2C− 1

2 ββ′C− 1
2 ]C

1
2 T ≥ 0 (3.296)

with C = S−1 + 2kσ−2T−1. This is equivalent (Theorem A.57) to

σ−2β′(S−1 + 2kσ−2T−1)−1β ≤ 1 . (3.297)

Since (2kσ−2T−1)−1 − (S−1 + 2kσ−2T−1) ≥ 0,

k−1 ≤ 2
β′β

(3.298)

is sufficient for the MDE-I superiority of the minimax estimator b∗ com-
pared to b. This condition corresponds to the condition (3.203) for the
MDE-I superiority of the ridge estimator b(k) compared to b.

We now have the following important interpretation: The linear min-
imax estimator b∗ is a ridge estimate b(k−1σ2). Hence, the restriction
β′Tβ ≤ k has a stabilizing effect on the variance. The minimax estimator
is operational if σ2 can be included in the restriction β′Tβ ≤ σ2k = k̃:

b∗ = (X ′X + k̃−1T )−1X ′y .

Alternative considerations, as in Chapter 6, when σ2 is not known in the
case of mixed estimators, have to be made (cf. Toutenburg, 1975a; 1982,
pp. 95–98).



3.13 Minimax Estimation 79

β′Bβ = d (misspecified)

β′Tβ = k (correct)

β1

β2

Figure 3.8. Misspecification by rotation and distorted length of the axes

β0

β1

β2

(β − β0)′T (β − β0) = k (misspecified)

β′Tβ = k (correct)

Figure 3.9. Misspecification by translation of the center point

From (3.297) we can derive a different sufficient condition: kT−1 −ββ′ ≥
0, equivalent to β′Tβ ≤ k. Hence, the minimax estimator b∗ is always
MDE-I-superior to b, in accordance with Theorem 3.19, if the restriction is
satisfied, that is, if it is chosen correctly.

The problem of robustness of the linear minimax estimator relative to
misspecification of the a priori ellipsoid is dealt with in Toutenburg (1984;
1990)

Figures 3.8 and 3.9 show typical situations for misspecifications.
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3.14 Censored Regression

3.14.1 Overview
Consider the regression model (cf. (3.24))

yt = x′
tβ + εt , t = 1, . . . , T . (3.299)

There are numerous examples in economics where the dependent variable
yt is censored, and what is observable is, for example,

y∗
t = 1 if yt ≥ 0 ,

y∗
t = 0 if yt < 0 , (3.300)

or

y∗
t = y if y > 0 ,

y∗
t = 0 if y ≤ 0 . (3.301)

Model (3.300) is called the binary choice model, and model (3.301), the
Tobit model. The problem is to estimate β from such models, generally
referred to as limited dependent variable models. For specific examples
of such models in economics, the reader is referred Maddala (1983). A
variety of methods have been proposed for the estimation of β under models
(3.299, 3.300) and (3.299, 3.301) when the et’s have normal and unknown
distributions.

Some of the well-known methods in the case of the Tobit model (3.299,
3.301) are the maximum likelihood method under a normality assumption
(as described in Maddala, 1983, pp. 151–156; Amemiya, 1985, Chapter 10;
Heckman, 1976), distribution-free least-squares type estimators by Buckley
and James (1979) and Horowitz (1986); quantile including the LAD (least
absolute deviations) estimators by Powell (1984); and Bayesian computing
methods by Polasek and Krause (1994). A survey of these methods and
Monte Carlo comparisons of their efficiencies can be found in the papers by
Horowitz (1988) and Moon (1989). None of these methods provides closed-
form solutions. They are computationally complex and their efficiencies
depend on the distribution of the error component in the model and the
intensity of censoring. No clear-cut conclusions emerge from these studies
on the relative merits of various methods, especially when the sample size
is small. Much work remains to be done in this area.

In the present section, we consider some recent contributions to the
asymptotic theory of estimation of the regression parameters and tests of
linear hypotheses based on the LAD method, with minimal assumptions.
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3.14.2 LAD Estimators and Asymptotic Normality
We consider the Tobit model (3.299, 3.301), which can be written in the
form

y+
t = (x′

tβ + εt)+ , t = 1, . . . , T , (3.302)

where y+
t = ytI, (yt > 0), and I(·) denotes the indicator function of a set,

and assume that

(A.1) ε1, ε2, . . . are i.i.d. random variables such that the distribution func-
tion F of ε1 has median zero and positive derivative f(0) at
zero.

(A.2) The parameter space B to which β0, the true value of β, belongs is a
bounded open set of RK (with a closure B̄).

Based on the fact med(Y +
t ) = (x′

tβ0)+, Powell (1984) introduced and
studied the asymptotic properties of the LAD estimate β̂T of β0, which is
a Borel-measurable solution of the minimization problem

T∑
t=1

|Y +
t − (x′

tβ̂T )+| = min

{
T∑

t=1

|Y +
t − (x′

tβ)+| : β ∈ B̄

}
. (3.303)

Since
∑T

t=1 |Yt − (x′
tβ)+| is not convex in β, the analysis of β̂T is quite

difficult. However, by using uniform laws of large numbers, Powell estab-
lished the strong consistency of β̂T when xt’s are independent variables
with E ‖xt‖3 being bounded, where ‖ · ‖ denotes the Euclidean norm of a
vector. He also established its asymptotic normal distribution under some
conditions.

With the help of the maximal inequalities he developed, Pollard (1990)
improved the relevant result of Powell on asymptotic normality by relax-
ing Powell‘s assumptions and simplified the proof to some extent. Pollard
permitted vectors {xt} to be deterministic. We investigate the asymp-
totic behavior of β̂T under weaker conditions. We establish the following
theorem, where we write

µt = x′
tβ0 and ST =

T∑
t=1

I(µt > 0)xtx
′
t . (3.304)

Theorem 3.21 Assume that (A.1), (A.2) hold, and the following assump-
tions are satisfied:

(A.3) For any σ > 0, there exists a finite α > 0 such that

T∑
t=1

‖xt‖2I(‖xt‖ > α) < σλmin(ST ) for T large ,

where λmin(ST ) is the smallest eigenvalue of ST .
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(A.4) For any σ > 0, there is a δ > 0 such that

T∑
t=1

‖xt‖2I(|µt| ≤ δ) ≤ σλmin(ST ) for T large .

(A.5)

λmin
(ST )

(log T )2
→ ∞ , as T → ∞ .

Then

2f(0)S
1
2
T (β̂T − β0)

L→ N(0, IK)

where IK denotes the identity matrix of order K.

Note: If (A.1)–(A.4) and (A.5∗): λmin(ST )/ log T → ∞ hold, then

lim
T→∞

β̂T = β0 in probability .

For a proof of Theorem 3.21, the reader is referred to Rao and Zhao (1993).

3.14.3 Tests of Linear Hypotheses
We consider tests of linear hypotheses such as

H0: H ′(β − β0) = 0 against H1: H ′(β − β0) �= 0 , (3.305)

where H is a known K × q-matrix of rank q, and β0 is a known K-vector
(0 < q < K). Let

β∗
T = arg inf

H′(β−β0)=0

T∑
t=1

|(x′
tb)

+ − y+
t | , (3.306)

β̂T = arg inf
b

T∑
t=1

|(x′
tb)

+ − y+
t | , (3.307)

where all the infima are taken over b ∈ B̄. Define the likelihood ratio, Wald
and Rao’s score statistics:

MT =
T∑

t=1

|(x′
tβ

∗
T )+ − y+

t | −
T∑

t=1

|(x′
tβ̂T )+ − y+

t | , (3.308)

WT (β̂T − β0)′H(H ′S−1
T H)−1H ′(β̂T − β0) , (3.309)

RT = ξ(β∗
T )′S−1

T ξ(β∗
T ) , (3.310)

where ST is as defined in (3.304) and

ξ(b) =
T∑

t=1

I(x′
ib > 0) sgn(x′

tb − y+
t )xt
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=
T∑

t=1

I(x′
tb > 0) sgn(xtb − yt)xt .

The main theorem concerning tests of significance is as follows, where we
write

xtT = S
− 1

2
T xt , HT = S

− 1
2

T H(H ′S−1
T H)− 1

2 ,

T∑
t=1

I(µt > 0)xtT x′
tT = IK , H ′

T HT = Iq .

Theorem 3.22 Suppose that the assumptions (A.1)–(A.5) are satisfied. If β
is the true parameter and H0 holds, then each of 4f(0)MT , 4[f(0)]2WT ,
and RT can be expressed as∥∥∥∥∥

T∑
t=1

I(µt > 0) sgn(et)H ′
T xtT

∥∥∥∥∥
2

+ oK(1) . (3.311)

Consequently, 4f(0)MT , 4f(0)2WT , and RT have the same limiting chi-
square distribution with the degrees of freedom q.

In order for the results of Theorem 3.22 to be useful in testing the hy-
pothesis H0 against H1, some “consistent” estimates of ST and f(0) should
be obtained. We say that ŜT is a “consistent” estimate of the matrix ST if

S
− 1

2
T ŜT S

− 1
2

T → IK as T → ∞ . (3.312)

It is easily seen that

ŜT =
T∑

t=1

I(x′
tβ̂T > 0)xtx

′
t

can be taken as an estimate of ST . To estimate f(0), we take h = hT > 0
such that hT → 0 and use

f̂T (0) = h

T∑
t=1

I(x′
tβ̂T > 0)−1

×
T∑

t=1

I(x′
tβ̂T > 0) I(x′

tβT < y+
t ≤ x′

tβ̂T + h) (3.313)

as an estimate of f(0), which is similar to that suggested by Powell (1984).
Substituting ŜT for ST and f̂T for f(0) in (3.308), (3.309), and (3.310), we
denote the resulting statistics by M̂T , ŴT , and R̂T , respectively. Due to
consistency of ŜT and f̂T (0), all the statistics

4f̂T (0)M̂T , 4[f̂T (0)]2ŴT , and R̂T (3.314)

have the same asymptotic chi-square distribution on q degrees of freedom.



84 3. The Linear Regression Model

Note: It is interesting to observe that the nuisance parameter f(0) does
not appear in the definition of R̂T . We further note that

4f̂T (0)M̂T = 4[f̂T (0)]2ŴT + oK(1) , (3.315)

and under the null hypothesis, the statistic

UT = 4

(
M̂T

ŴT

)2

ŴT = 4
M̂2

T

ŴT

L⇒ χ2
q . (3.316)

We can use UT , which does not involve f(0), to test H0. It would be of
interest to examine the relative efficiencies of these tests by Monte Carlo
simulation studies.

3.15 Simultaneous Confidence Intervals

In the regression model

y
T×1

= X
T×K

β
K×T

+ ε
T×1

with E(ε) = 0, E(εε′) = σ2I, the least squares estimator of β is β̂ =
(X ′X)−1X ′y and V(β̂) = σ2(X ′X)−1 = σ2H (say). To test the hypothesis
β = β0, we have seen that the test criterion is

F =
(β̂ − β0)H−1(β̂ − β0)

Ks2 ∼ FK,T−K (3.317)

where (T −K)s2 = y′y − β̂′X ′y, and FK,T−K is the F -statistic with K and
T − K degrees of freedom.

We give a characterization of the above F -test, which leads to the con-
struction of Scheffé’s simultaneous confidence intervals on linear functions
of β. Consider a single linear function l′β of β. The least squares estimator
of l′β is l′β̂ with covariance σ2l′Hl. Then the t-statistic to test a hypothesis
on l′β is

t =
l′β̂ − l′β√

s2l′Hl
. (3.318)

Now we choose l to maximize

t2 =
l′(β̂ − β)(β̂ − β)′l

s2l′Hl
. (3.319)

Using the Cauchy-Schwarz inequality (see Theorem A.54), we see the
maximum value of t2 is

(β̂ − β)′H−1(β̂ − β)
s2 ,
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which is KF , where F is as defined in (3.317). Thus, we have

(β̂ − β)′H−1(β̂ − β)
Ks2 =

1
Ks2 max

l

l′(β̂ − β)(β̂ − β)′l
l′Hl

∼ FK,T−K .

If F1−α is the (1 − α) quantile of FK,T−K , we have

P

{
max

l

|l′(β̂ − β)(β̂ − β)′l|√
l′Hl

≤ s
√

KF1−α

}
= 1 − α

that is,

P
{∣∣l′(β̂ − β)(β̂ − β)′l

∣∣ ≤ s
√

KF1−αl′Hl for all l
}

= 1 − α

or

P
{

l′β ∈ l′β̂ ± s
√

KF1−αl′Hl for all l
}

= 1 − α. (3.320)

Equation (3.320) provides confidence intervals for all linear functions l′β.
Then, as pointed out by Scheffé (1959),

P
{

l′β ∈ l′β̂ ± s
√

KF1−αl′Hl for any given subset of l
}

≥ 1−α , (3.321)

which ensures that the simultaneous confidence intervals for linear functions
l′β where l belongs to any set (finite or infinite) has a probability not less
than 1 − α.

3.16 Confidence Interval for the Ratio of Two
Linear Parametric Functions

Let θ1 = P ′
1β and θ2 = P ′

2β be two linear parametric functions and we wish
to find a confidence interval of λ = θ1

θ2
.

The least squares estimators of θ1 and θ2 are

θ̂1 = P ′
1β̂ and θ̂2 = P ′

2β̂

with the variance-covariance matrix

σ2
(

P ′
1HP1 P ′

1HP2
P ′

2HP1 P ′
2HP2

)
= σ2

(
a b
b′ c

)
, say.

Then

E(θ̂1 − λθ̂2) = 0 , var(θ̂1 − λθ̂2) = σ2(a − 2λb + λ2c) .

Hence

F =
(θ̂1 − λθ̂2)2

s2(a − 2λb + λ2c)
∼ F1,T−K
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w0

x1

x2

...

xk

y

w1

w2

wk

Figure 3.10. A single-unit perceptron

and

P
{

(θ̂1 − λθ̂2)2 − F1−αs2(a − 2λb + λ2c) ≤ 0
}

= 1 − α . (3.322)

The inequality within the brackets in (3.322) provides a (1− α) confidence
region for λ. Because the expression in (3.322) is quadratic in λ, the con-
fidence region is the interval between the roots of the quadratic equation
or outside the interval, depending on the nature of the coefficients of the
quadratic equation.

3.17 Neural Networks and Nonparametric
Regression

The simplest feed-forward neural network is the so-called single-unit per-
ceptron displayed in Figure 3.10. This perceptron consists of K input units
x1, . . . , xK and one output unit y. The input values xi are weighted with
weights wi (i = 1, . . . , K) so that the expected response y is related to the
vector x = (x1, . . . , xK) of covariates according to

y = w0 +
K∑

i=1

wixi . (3.323)

In general, neural networks are mathematical models representing a sys-
tem of interlinked computational units. Perceptrons have strong association
with regression and discriminant analysis. Unsupervised networks are used
for pattern classification and pattern recognition. An excellent overview
on neural networks in statistics may be found in Cheng and Tittering-
ton (1994). In general, the input-output relationship at a neuron may be
written as

y = f(x, w) (3.324)

where f(·) is a known function. f(·) is called the activation function. As-
sume that we have observations (x(1), y(1)), . . . , (x(n), y(n)) of n individuals
in a so-called training sample. Then the vector of weights w has to be
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determined such that the so-called energy or learning function

E(w) =
n∑

j=1

(
y(j) − f(x(j), w)

)2 (3.325)

is minimized with respect to w. This is just a least squares problem. To
find the weight ŵ minimizing E(w) we have to solve the following system
of estimation equations (k = 0, . . . , K)

∂ E(w)
∂wk

=
n∑

j=1

(y(j) − f(x(j), w))
∂f(xj , w)

∂wk
= 0. (3.326)

In practice, numerical methods are used to minimize E(w) . Well-known
techniques that have been implemented are the generalized delta rule or
error back-propagation (Rumelhart, Hinton, and Williams, 1986), gradient
methods such as the method of steepest descent (Thisted, 1988), genetic
algorithms, Newton-Raphson algorithms, and variants of them.

If a multilayer perceptron is considered, then it may be interpreted as
a system of nonlinear regression functions that is estimated by optimizing
some measure of fit. Recent developments in this field are the projection-
pursuit regression (see Section 3.11) and its modifications by (Tibshirani,
1992) using so-called slide functions, and the generalized additive models
(see Hastie and Tibshirani (1990)).

During the last five years a lot of publications have demonstrated the
successful application of neural networks to problems of practical rele-
vance. Among them, in the field of medicine the analysis based on a logistic
regression model (see Section 10.3.1) is of special interest.

3.18 Logistic Regression and Neural Networks

Let y be a binary outcome variable and x = (x1, . . . , xK) a vector
of covariates. As activation function f(.) we choose the logistic func-
tion l(v) = exp(v)/(1 + exp(v)). Then the so-called logistic perceptron
y = l(w0 +

∑K
i=1 wixi) is modeling the relationship between y and

x. The estimation equations (3.326) become (Schumacher, Roßner, and
Vach, 1996)

∂ E(w)
∂wk

=
n∑

j=1

2f(x(j), w)(1−f(x(j), w))x(j)
k (y(j)−f(x(j), w)) = 0. (3.327)

For solving (3.327), the least-squares back-propagation method (Rumelhart
et al., 1986) is used. It is defined by

ŵ(v+1) = ŵ(v) − η∂ E(ŵ(v))
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for v = 0, 1, . . . and ŵ(0) a chosen starting value. The positive constant η is
called the learning rate. The nonlinear model of the logistic perceptron is
identical to the logistic regression model (10.61) so that the weights w can
be interpreted like the regression coefficients β. (For further discussion, see
Vach, Schumacher, and Roßner (1996).)

3.19 Restricted Regression

3.19.1 Problem of Selection
In plant and animal breeding we have the problem of selecting individuals
for propagation on the basis of observed measurements x1, . . . , xp in such
a way that there is improvement in a desired characteristic y0 in the fu-
ture generations. At the suggestion of R. A. Fisher that the best selection
index is the regression of y0 on x1, . . . , xp with individuals having a larger
value preferred in selection, Fairfield Smith (1936) worked out the compu-
tational details, and Rao (1953) provided the theoretical background for
the solution.

In practice, it may so happen that improvement in the main character-
istic is accompanied by deterioration (side effects) in certain other desired
characteristics, y1, . . . , yq. This problem was addressed by Kempthorne and
Nordskog (1959) and Tallis (1962), who modified the selection index to en-
sure that no change in y1, . . . , yq occurs, and subject to this condition
maximum possible improvement in y0 is achieved. Using the techniques of
quadratic programming, Rao (1962; 1964) showed that a selection index
can be constructed to provide maximum improvement in y0 while ensuring
that there are possible improvements in y1, . . . , yq, but no deterioration.
The theory and computations described in this section are taken from the
above cited papers of Rao.

3.19.2 Theory of Restricted Regression
Let x′ = (x1, . . . , xp) be the vector of predictors, Λ be the dispersion matrix
of x, and ci be the column vectors of the covariances ci1, . . . , cip, of yi

with x1, . . . , xp, for i = 0, 1, 2, . . . , q. Denote by C the partitioned matrix
(c0, c1, . . . , cq), and denote the dispersion matrix of y′ = (y0, . . . , yq) by
Σ = (σij), i, j = 0, 1, . . . , q. Let us assume that the rank of C is q + 1, Λ is
nonsingular, and p ≥ q + 1. If b is a p-vector, correlation of yi and b′x is

(b′ci)√
σiib′Λb

.

The problem is to choose b such that

(b′c0)√
σ00b′Λb

(3.328)
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is a maximum subject to the conditions

b′c0 > 0, b′ci ≥ 0, i = 1, . . . , q . (3.329)

Note that maximizing (3.328) without any restriction leads to b′x, which
is the linear regression of y0 on (x1, . . . , xp) apart from the constant term.
In such a case the selection index is b′x and individuals with large values
of b′x are selected for future propagation.

If the constraints (3.329) are imposed to avoid side effects, then the
problem is one of nonlinear programming for which the following theorems
are useful.

Lemma 3.23 Given a p-vector b satisfying the conditions (3.329), there
exists a (q + 1)-vector g such that

(i) m = Λ−1Cg satisfies conditions (3.329), and

(ii) m′c0√
m′Λm

≥ b′c1√
b′Λb

.

Proof: Choose a matrix D such that (Λ−1C : Λ−1D) is of full rank and
C ′Λ−1D = 0, so that the spaces generated by Λ−1C and Λ−1D are ortho-
gonal under the inner product α′Λβ for any two vectors α and β. Then
there exist vectors g and h such that any vector b can be decomposed as

b = Λ−1Cg + Λ−1Dh = m + Λ−1Dh .

To prove (i) observe that

0 ≤ b′ci = m′ci + c′
iΛ

−1Dh = m′ci , i = 0, . . . , q .

To prove (ii) we have b′Λb = m′Λm + h′D′Λ−1Dh ≥ m′Λm, and since
b′c0 = m′c0, we have

m′c0√
m′Λm

≥ b′c0√
b′Λb

.

Lemma 3.23 reduces the problem to that of determining m of the form
Λ−1Cg where g is of a smaller order than m.

Lemma 3.24 The problem of determining g such that with m = Λ−1Cg,
the conditions (3.329) are satisfied and m′c0/

√
m′Λm is a maximum is

equivalent to the problem of minimizing a nonnegative quadratic form (u−
ξ)′B(u − ξ) with u restricted to nonnegative vectors, where B and ξ are
computed from the known quantities C and Λ.

Proof: Let v′ = (v0, v1, . . . , vq) be a (q + 1)-vector with all nonnegative
elements and let g be a solution of

C ′m = C ′Λ−1Cg = v
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giving

g = Av , m = Λ−1CAv (3.330)
m′c0√
m′Λm

=
v0√
v′Av

(3.331)

where A = (C ′Λ−1C)−1. Writing vi/vo = ui, i = 1, . . . , q, and denoting the
elements of the (q + 1) × (q + 1)-matrix A by (aij),we can write the square
of the reciprocal of (3.331) as

δ + (u − ξ)′B(u − ξ) = δ + Q(u)

where

B = (aij) , i, j = 1, . . . , q

and ξ′ = (ξ1, . . . , ξq) is a solution of

−Bξ = α0 , α′
1 = (a01, . . . , a0q) (3.332)

and

δ = a00 −
∑∑

i,j≥1
aijξiξj .

The solution of (3.332) is

ξi =
c′
iΛ

−1c0

c′
oΛ−1c0

, i = 1, . . . , q

and

δ = (c′
0Λ

−1c0)−1 ,

which are the simple functions of ci and Λ−1. Now

sup
g

m′c0√
m′Λm

= sup
u≥0

{δ + Q(u)}− 1
2

= {δ + inf
u≥0

Q(u)}− 1
2 .

The problem is thus reduced to that of minimizing the nonnegative quadra-
tic form Q(u) with the restriction that the elements of u are nonnegative.

If u′
0 = (u10, . . . , uq0) is the minimizing vector, then the optimum m is

found from (3.331) as

m = Λ−1CAv0

and the selection index is

v′
0AC ′Λ−1x , v′

0 = (1, u10, . . . , uq0) . (3.333)
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3.19.3 Efficiency of Selection
The correlation between y0 and the best selection index (multiple
regression) when there are no restrictions is

R1 =
1√
δσ00

.

With the restriction that the changes in mean values of other variables are
to be in specified directions if possible, or otherwise zero, the correlation
between y0 and the best selection index is

R2 =
1√

σ00{δ + minu≥0 Q(u)} .

If the restriction is such that no change in mean values of y1, . . . , yq is
derived, then the selection index is obtained by putting u = 0, giving the
correlation coefficient

R3 =
1√

σ00{δ + ξ′Bξ} .

It may be seen that

R1 ≥ R2 ≥ R3 ,

which implies that selection efficiency possibly increases by generalizing the
restriction of no changes to possible changes in desired directions.

The correlation coefficient between the selection index and the variables
yi(i �= 0) is

ui
√

σ00√
σii

R2 , i = 1, . . . , q

which enables the estimation of changes in the mean value of yi, i = 1, . . . , q.
When ui = 0, the expected change is zero, as expected.

3.19.4 Explicit Solution in Special Cases
When q = 1, the solution is simple. The quadratic form Q(u) reduces to

a11

(
u1 − c′

0Λ
−1c1

c′
0Λ−1c0

)2
. (3.334)

If c′
0Λ

−1c1 ≥ 0, then the minimum of (3.334) for nonnegative u1 is zero,
and the multiple regression of y0 on x1, . . . , xp is c′

0Λ
−1x, apart from the

constant term.
If c′

0Λ
−1c1 < 0, then the minimum is attained when u1 = 0, and using

(3.334) the selection index is found to be

c′
0Λ

−1x − c′
0Λ

−1c1

c′
1Λ−1c1

c′
1Λ

−1x (3.335)
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which is a linear combination of the multiple regressions of y0 and y1 on
x1, . . . , xp. The square of the correlation between y0 and (3.335) is

σ−1
00

[
c′
0Λ

−1c0 − (c′
0Λ

−1c1)2

c′
1Λ−1c1

]
(3.336)

and that between y1 and its regression on x1, . . . , xp is

σ−1
00 c′

0Λc0 ,

and the reduction in correlation due to restriction on y1, when c′
0Λ

−1c1 < 0
is given by the second term in (3.336).

The next practically important case is that of q = 3. The quadratic form
to be minimized is

Q(u1, u2) = a11(u1 − ξ1)2 + 2a12(u1 − ξ1)(u2 − ξ2) + a22(u2 − ξ2)2 .

A number of cases arise depending on the signs of ξ1, ξ2, . . .

Case (i) Suppose that ξ1 ≥ 0, ξ2 ≥ 0. The minimum of Q is zero and the
multiple regression of y1 on x1, . . . , xp is the selection function.

Case (ii) Suppose that ξ1 < 0, ξ2 ≥ 0. The minimum of Q is attained on
the boundary u1 = 0. To determine the value of u2, we solve the equation

1
2

dQ(0, u2)
du2

= a22(u2 − ξ2) − a12ξ1 = 0 ,

obtaining

u2 =
a12

a22
ξ1 + ξ2 . (3.337)

If a12ξ1+a22ξ2 ≥ 0, then the minimum value of Q is attained when u10 = 0
and u20 has the right-hand side value in (3.337). If a12ξ1 + a22ξ2 < 0, then
the minimum is attained at u10 = 0, u20 = 0. The selection function is
determined as indicated in (3.333). The case of ξ1 ≥ 0, ξ2 < 0 is treated in
a similar way.

Case (iii) Suppose that ξ1 < 0, ξ2 < 0. There are three possible pairs of
values at which the minimum might be attained:

u10 = 0 , u20 =
a12

a22
ξ1 + ξ2 ,

u10 =
a12

a11
ξ2 + ξ1 , u20 = 0 ,

u10 = 0 , u20 = 0 .

Out of these we need consider only the pairs where both coordinates are
nonnegative and then choose that pair for which Q is a minimum.

When q > 3, the number of different cases to be considered is large.
When each ξi ≥ 0, the minimum of Q is zero. But in the other cases
the algorithms developed for general quadratic programming (Charnes and
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Cooper, 1961, pp. 682–687) may have to be adopted. It may, however, be
observed that by replacing u′ = (u1, . . . , uq) by w′ = (w2

1, . . . , w
2
q) in Q,

the problem reduces to that of minimizing a quartic in w1, . . . wq without
any restrictions. No great simplification seems to result by transforming
the problem in this way. As mentioned earlier, the practically important
cases correspond to q = 2 and 3 for which the solution is simple, as already
indicated. The selective efficiency may go down rapidly with increase in the
value of q.

For additional literature on selection problems with restrictions, the
reader is referred to Rao (1964).

3.20 Complements

3.20.1 Linear Models without Moments: Exercise
In the discussion of linear models in the preceding sections of this chapter,
it is assumed that the error variables have second-order moments. What
properties does the OLSE, β̂ = (X ′X)−1X ′y, have if the first- and second-
order moments do not exist? The question is answered by Jensen (1979)
when ε has a spherical distribution with the density

L(y) = σ−T ΨT {(y − Xβ)′(y − Xβ)/σ2}. (3.338)

We represent this class by Sk(Xβ, σ2I), where k represents the integral
order of moments that ε admits. If k = 0, no moments exist. Jensen (1979)
proved among other results the following.

Theorem 3.25 (Jensen, 1979) Consider β̂ = (X ′X)−1X ′y as an estimator
β in the model y = Xβ + ε. Then

(i) If L(y) ∈ S0(Xβ, σ2I), then β̂ is median unbiased for β and β̂ is at
least as concentrated about β as any other median unbiased estimator
of β.
[Note that an s-vector t ∈ Rs is said to be modal unbiased for θ ∈ Rs

if a′t is modal unbiased for a′θ for all a.]

(ii) If L(y) ∈ S1(Xβ, σ2I), then β̂ is unbiased for β and is at least as
concentrated around β as any other unbiased linear estimator.

(iii) If L(y) ∈ S0(Xβ, σ2I) and in addition unimodal, then β̂ is modal
unbiased for β.

3.20.2 Nonlinear Improvement of OLSE for Nonnormal
Disturbances

Consider the linear regression model (3.24). The Gauss-Markov Theorem
states that b = (X ′X)−1X ′y is the best linear unbiased estimator for β,
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that is, Var(b̃) − Var(b) is nonnegative definite for any other linear unbi-
ased estimator b̃. If ε is multinormally distributed, then b is even the best
unbiased estimator.

Hence, if ε is not multinormally distributed, there is a potential of
nonlinear unbiased estimators for β that improve upon b.

• What is the most general description of such estimators?

• What is the best estimator within this class?

Remark. This problem was proposed by G. Trenkler. Related work may
be found in Kariya (1985) and Koopmann (1982).

3.20.3 A Characterization of the Least Squares Estimator
Consider the model y = Xβ + ε with Cov(ε) = σ2I, rank(X) = K, the size
of vector β, and a submodel y(i) = X(i)β + ε(i) obtained by choosing k ≤ T
rows of the original model. Further, let

β̂ = (X ′X)−1X ′y , β̂(i) = (X ′
(i)X(i))−X ′

(i)y(i) (3.339)

be the LSEs from the original and the submodel respectively. Subramanyam
(1972) and Rao and Precht (1985) proved the following result.

Theorem 3.26 Denoting d(i) = |X ′
(i)X(i)|, we have

β̂ =
∑c

i=1 d(i)β̂(i)∑c
i=1 d(i)

(3.340)

where c is the number of all possible subsets of size k from {1, . . . , T}.
The result (3.340), which expresses β̂ as a weighted average of β̂(i), is

useful in regression diagnostics. We may calculate all possible β̂(i) and
look for consistency among them. If some appear to be much different
from others, then we may examine the data for outliers or existence of
clusters and consider the possibility of combining them with a different set
of weights (some may be zero) than those in (3.340). Further results of
interest in this direction are contained in Wu (1986).

3.20.4 A Characterization of the Least Squares Estimator:
A Lemma

Consider the model εi = yi −x′
iβ, i = 1, 2, . . ., in which ε1, ε2, . . . , are inde-

pendently and identically distributed with mean 0 and variance σ2, and the
x′

i’s are K-vectors of constants. Let the K × n-matrix X ′ = (x1, . . . , xn) of
constants be of rank K. Define hii(n) = x′

i(X
′X)−1xi and b = (X ′X)−1X ′y

where y = (y1, . . . , yn)′. Then for any r × K-matrix C of constants and of
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rank r ≤ K,

σ−2(Cb − Cβ)′[C(X ′X)−1C ′]−1(Cb − Cβ) → χ2
r

if (and only if) max1≤i≤n hii(n) → ∞.
This result and the condition on hii(n) were obtained by Srivastava

(1971; 1972) using a lemma of Chow (1966).

3.21 Exercises

Exercise 1. Define the principle of least squares. What is the main reason
to use e′e from (3.7) instead of other objective functions such as maxt |et|
or
∑T

t=1 |et|?

Exercise 2. Discuss the statement: In well-designed experiments with quan-
titative x-variables it is not necessary to use procedures for reducing the
number of included x-variables after the data have been obtained.

Exercise 3. Find the least squares estimators of β in y = Xβ + ε and
y = α1+Xβ +ε∗, where 1 denotes a column vector with all elements unity.
Compare the dispersion matrices as well as the residual sums of squares.

Exercise 4. Consider the two models y1 = α11 + Xβ + ε1 and y2 = α21 +
Xβ + ε2 (with 1 as above). Assuming ε1 and ε2 to be independent with
same distributional properties, find the least squares estimators of α1, α2,
and β.

Exercise 5. In a bivariate linear model, the OLSE’s are given by b0 (3.120)
and b1 (3.121). Calculate the covariance matrix V

(
b0
b1

)
. When are b0 and b1

uncorrelated?

Exercise 6. Show that the estimator minimizing the generalized variance
(determinant of variance-covariance matrix) in the class of linear and un-
biased estimators of β in the model y = Xβ + ε is nothing but the least
squares estimator.

Exercise 7. Let β̂1 and β̂2 be the least squares estimators of β from y1 =
Xβ+ε1 and y2 = Xβ+ε2. If β is estimated by β̂ = wβ̂1+(1−w)β̂2 with 0 <
w < 1, determine the value of w that minimizes the trace of the dispersion
matrix of β̂. Does this value change if we minimize E(β̂ − β)′X ′X(β̂ − β)?

Exercise 8. Demonstrate that the best quadratic estimator of σ2 is (T −
K + 2)−1y′(I − P )y, where P is the projection matrix on R(X).
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Exercise 9. Let the following model be given:

y = β0 + β1x1 + β2x2 + β3x3 + ε.

(i) Formulate the hypothesis H0: β2 = 0 as a linear restriction r = Rβ
on β.

(ii) Write down the test statistic for testing H0: β2 = 0.

Excercise 10. Describe a procedure for testing the equality of first p ele-
ments of β1 and β2 in the model y1 = X1β1+ε1 and y2 = X2β2+ε2. Assume
that ε1 ∼ N(0, σ2In1) and ε2 ∼ N(0, σ2In2) are stochastically independent.

Exercise 11. If θ̂i is a MVUE (minimum variance unbiased estimator) of
θi, i = 1, . . . , k, then a1θ̂1 + . . . + akθ̂k is a MVUE of a1θ1 + . . . + akθk for
any a1, . . . , ak.

Administrator
ferret



4
The Generalized Linear Regression
Model

4.1 Optimal Linear Estimation of β

In Chapter 2 the generalized linear regression model is introduced as a
special case (M = 1) of the multivariate (M -dimensional) model. If as-
sumption (H) of Section 2.6 holds, we may write the generalized linear
model as

y = Xβ + ε ,
E(ε) = 0, E(εε′) = σ2W ,
W positive definite,
X nonstochastic, rank(X) = K .

 (4.1)

A noticeable feature of this model is that the T × T symmetric matrix
W introduces T (T +1)/2 additional unknown parameters in the estimation
problem. As the sample size T is fixed, we cannot hope to estimate all the
parameters β1, . . . , βK , σ2, and wij (i ≤ j) simultaneously. If possible, we
may assume that W is known. If not, we have to restrict ourselves to error
distributions having a specific structure so that the number of parameters
is reduced, such as, for instance, in heteroscedasticity or autoregression (see
the following sections). We first consider the estimation of β when W is
assumed to be fixed (and known).

We again confine ourselves to estimators that are linear in the response
vector y, that is, we choose the set-up (cf. (3.38))

β̂ = Cy + d . (4.2)
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The matrix C and the vector d are nonstochastic and are determined
through optimization of one of the following scalar risk functions:

R1(β̂, β, A) = E(β̂ − β)′A(β̂ − β) (4.3)
(A a positive definite K × K-matrix) ,

R2(β̂, β, a) = E[(β̂ − β)′a]2 (4.4)
(a �= 0 a fixed K-vector) ,

R3(β̂, β) = E(y − Xβ̂)′W−1(y − Xβ̂). (4.5)

Remarks:

(i) The function R1(β̂, β, A) is the quadratic risk given in (3.40) (see
Definition 3.8). The matrix A may be interpreted as an additional
parameter, or it may be specified by the user. In order to have unique
solutions (Ĉ, d̂) and possibly independent of A, we restrict the set of
matrices to be positive definite. Minimizing the risk R1(β̂, β, A) with
respect to β̂ is then equivalent to optimal estimation of the parameter
β itself.

(ii) Minimizing the risk R2(β̂, β, a) = R1(β̂, β, aa′) means essentially the
optimal estimation of the linear function a′β instead of β.

(iii) Minimizing the risk R3(β̂, β) boils down to the optimal estimation
of the conditional expectation E(y|X) = Xβ, that is, to the opti-
mal classical prediction of mean values of y. The weight matrix W−1

standardizes the structure of the disturbances.

Using these risk functions enables us to define the following criteria for
the optimal estimation of β:

Criterion Ci (i = 1, 2 or 3): β̂ is said to be the linear estimator with
minimum risk Ri(β̂)—or β̂ is said to be Ri-optimal—if

Ri(β̂, β, ·) ≤ Ri(β̃, β, ·) (4.6)

for X, W fixed and for all β, σ2 where β̃ is any other linear estimator for
β.

4.1.1 R1-Optimal Estimators
Heterogeneous R1-Optimal Estimator

From (4.2) the estimation error in β̂ is clearly expressible as

β̂ − β = (CX − I)β + d + Cε , (4.7)

from which we derive

R1(β̂, β, A) = E[(CX − I)β + d + Cε]′A[(CX − I)β + d + Cε]
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= [(CX − I)β + d]′A[(CX − I)β + d] + E(ε′C ′ACε) .

(4.8)

The second term in (4.8) is free from d. Therefore the optimal value of d is
that which minimizes the first term. As the first term cannot be negative,
it attains its minimum when

d̂ = −(ĈX − I)β . (4.9)

Now we observe that

min
C

E(ε′C ′ACε) = min
C

tr{AC(E εε′)C ′}
= min

C
σ2tr{ACWC ′} , (4.10)

so that an application of Theorems A.93 to A.95 yields

∂

∂C
σ2tr{ACWC ′} = 2σ2ACW . (4.11)

Equating this to the null matrix, the optimal C is seen to be Ĉ = 0 as
A and W are positive definite and regular. Inserting Ĉ = 0 in (4.9) gives
d̂ = β, which after substitution in (4.2) yields the trivial conclusion that
the R1-optimal heterogeneous estimator of β is β itself (cf. Theil, 1971,
p. 125). We call this trivial estimator β̂1:

β̂1 = β (4.12)

with

R1(β̂1, β, A) = 0 and V (β̂1) = 0 . (4.13)

β̂1 clearly has zero bias and zero risk, but zero usefulness too (Bibby and
Toutenburg, 1977, p. 76). The only information given by β̂1 is that the
heterogeneous structure of a linear estimator will not lead us to a feasible
solution of the estimation problem. Let us next see what happens when we
confine ourselves to the class of homogeneous linear estimators.

Homogeneous R1-Optimal Estimator

Putting d = 0 in (4.2) gives

β̂ − β = (CX − I)β + Cε , (4.14)

R1(β̂, β, A) = β′(X ′C ′ − I)A(CX − I)β + σ2tr{ACWC ′} (4.15)

∂R1(β̂, β, A)
∂C

= 2A[C(Xββ′X ′ + σ2W ) − ββ′X ′] (4.16)

(cf. Theorems A.92, A.93). The matrix Xββ′X ′ + σ2W is positive definite
(Theorem A.40) and, hence, nonsingular. Equating (4.16) to a null matrix
gives the optimal C as

Ĉ2 = ββ′X ′(Xββ′X ′ + σ2W )−1. (4.17)
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Applying Theorem A.18 (iv), we may simplify the expression for Ĉ2 by
noting that

(Xββ′X ′ + σ2W )−1 = σ−2W−1 − σ−4W−1Xββ′X ′W−1

1 + σ−2β′X ′W−1Xβ
. (4.18)

Letting

S = X ′W−1X , (4.19)

we see this matrix is positive definite since rank(X) = K.
Therefore, the homogeneous R1-optimal estimator is

β̂2 = β

[
σ−2β′X ′W−1y − σ−4β′Sββ′X ′W−1y

1 + σ−2β′Sβ

]

= β

[
σ−2 − σ−4β′Sβ

1 + σ−2β′Sβ

]
β′X ′W−1y

= β

[
β′X ′W−1y

σ2 + β′Sβ

]
(4.20)

(cf. Theil, 1971; Toutenburg, 1968; Rao, 1973a, p. 305; and Schaffrin 1985;
1986; 1987).

If we use the abbreviation

α(β) =
β′Sβ

σ2 + β′Sβ
(4.21)

and note that α(β) < 1, then

E(β̂2) = βα(β) , (4.22)

from which it follows that, on the average, β̂2 results in underestimation of
β. The estimator β̂2 is biased, that is,

Bias(β̂2, β) = E(β̂2) − β

= (α(β) − 1)β

=
−σ2

σ2 + β′Sβ
β (4.23)

and has the covariance matrix

V (β̂2) = σ2ββ′ · β′Sβ

(σ2 + β′Sβ)2
. (4.24)

Therefore its mean dispersion error matrix is

M(β̂2, β) =
σ2ββ′

σ2 + β′Sβ
. (4.25)
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Univariate Case K = 1

If β is a scalar and X = x is a T -vector, then β̂2 (4.20) simplifies to

β̂2 =
x′y

x′x + σ2β−2 (4.26)

= b(1 + σ2β−2(x′x)−1)−1 , (4.27)

where b is the ordinary least-squares estimator (OLSE) b = (x′y)/(x′x)
for β in the model yt = βxt + εt. Hence, β̂2 (4.27) is of shrinkage type
(cf. Section 3.10.3).

In general, the estimator β̂2 (4.20) is a function of the unknown vector
σ−1β (vector of signal-to-noise ratios), and therefore it is not operational.
Nevertheless, this estimator provides us with

(i) information about the structure of homogeneous linear estimators
that may be used to construct two-stage estimators in practice, and

(ii) the minimum of the R1 risk within the class of homogeneous linear
estimators as

R1(β̂, β, A) = tr{AM(β̂2, β)} , (4.28)

where M(β̂2, β) is given in (4.25).

To have operational estimators for β, one may replace σ−1β in (4.27)
by estimates or a prior guess or, alternatively, one may demand for
unbiasedness of the linear estimator β̂ = Cy.

Homogeneous, Unbiased, R1-Optimal Estimator

A homogeneous linear estimator is unbiased (see (3.28)) if

CX − I = 0 (4.29)

or, equivalently, if

c′
iX − e′

i = 0 (i = 1, . . . , K), (4.30)

where e′
i and c′

i are the ith row vectors of I and C, respectively. Using (4.29)
in (4.15), we find that R1(β̂, β, A) becomes σ2tr(ACWC ′). Therefore, the
optimal C in this case is the solution obtained from

min
C

R̃1 = min
C

{
σ2tr{ACWC ′} − 2

K∑
i=1

λ′
i(c

′
iX − e′

i)
′
}

, (4.31)

where λ1, λ2, . . . , λK are K-vectors of Lagrangian multipliers. Writing
Λ′

K×K
= (λ1, . . . , λK), differentiating with respect to C and Λ, and equating

to null matrices, we get

∂R̃1

∂C
= 2σ2ACW − 2ΛX ′ = 0, (4.32)
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∂R̃1

∂Λ
= 2(CX − I) = 0 , (4.33)

which yield the optimal C as

Ĉ3 = (X ′W−1X)−1X ′W−1 = S−1X ′W−1. (4.34)

The matrix Ĉ3 is consistent with the condition (4.29):

Ĉ3X = S−1X ′W−1X = S−1S = I. (4.35)

Therefore the homogeneous, unbiased, R1-optimal estimator is specified by

β̂3 = b = S−1X ′W−1y , (4.36)

and it has risk and covariance matrix as follows

R1(b, β, A) = σ2tr(AS−1) = tr(AV (b)) , (4.37)
V (b) = σ2S−1. (4.38)

The following theorem summarizes our findings.

Theorem 4.1 Assume the generalized linear regression model (4.1) and the
quadratic risk function

R1(β̂, β, A) = E(β̂ − β)′A(β̂ − β), A > 0. (4.39)

Then the optimal linear estimators for β are

(a) heterogeneous: β̂1 = β ,

(b) homogeneous: β̂2 = β
[

β′X′W −1y
σ2+β′Sβ

]
,

(c) homogeneous unbiased: β̂3 = b = S−1X ′W−1y.

The R1-optimal estimators are independent of A. Further, the optimal
estimators are ordered by their risks as

R1(β̂1, β, A) ≤ R1(β̂2, A) ≤ R1(β̂3, β, A).

4.1.2 R2-Optimal Estimators
If we allow the symmetric weight matrix A of the quadratic risk R1(β̂, β, A)
to be nonnegative definite, we are led to the following weaker criterion.

Criterion C̃1: The linear estimator β̂ is said to be R̃1-optimal for β if

E(β̂ − β)′A(β̂ − β) ≤ E(β̃ − β)′A(β̃ − β) (4.40)

holds for (X, W ) fixed and for any (β, σ2) and for any nonnegative definite
matrix A where β̃ is any other linear estimator. Therefore, any R1-optimal
estimator is R̃1-optimal, too. Moreover, the following theorem proves that
the criteria C̃1 and C2 are equivalent.

Theorem 4.2 The criteria C̃1 and C2 are equivalent.
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Proof:
1. Every R2-optimal estimator β̂ is R̃1-optimal: Assume A to be any non-
negative definite matrix with eigenvalues λi ≥ 0 and the corresponding
orthonormal eigenvectors pi. Now we can express

A =
K∑

i=1

λipip
′
i . (4.41)

If β̂ is R2-optimal, then for any estimator β̃ and for the choice a = pi (i =
1, . . . , K), we have

E(β̂ − β)′pip
′
i(β̂ − β) ≤ E(β̃ − β)′pip

′
i(β̃ − β) , (4.42)

and therefore

λi E(β̂ − β)′pip
′
i(β̂ − β) ≤ λi E(β̃ − β)′pip

′
i(β̃ − β) , (4.43)

from which it follows that

E(β̂ − β)′(
∑

λipip
′
i)(β̂ − β) ≤ E(β̃ − β)′(

∑
λipip

′
i)(β̃ − β) . (4.44)

Therefore β̂ is also R̃1-optimal.

2. Every R̃1-optimal estimator β̂ is R2-optimal: Choose the nonnegative def-
inite matrix A = aa′, where a �= 0 is any K-vector. Then the R̃1 optimality
of β̂ implies

E(β̂ − β)′aa′(β̂ − β) ≤ E(β̃ − β)′aa′(β̃ − β) , (4.45)

and hence β̂ is also R2-optimal.
This completes the proof of the equivalence of the criteria C̃1 and C2.

4.1.3 R3-Optimal Estimators
Using the risk R3(β̂, β) from (4.5) and the heterogeneous linear estimator
β̂ = Cy + d, we obtain

R3(β̂, β) = E(y − Xβ̂)′W−1(y − Xβ̂)
= [(I − CX)β − d]′S[(I − CX)β − d]

+ σ2tr[W−1(I − XC)W (I − C ′X ′)]
= u2 + v2 , (4.46)

for instance. As the second term v2 is free from d, the optimal value of d
is that value that minimizes the first expression u2. As u2 is nonnegative,
the minimum value that it can take is zero. Therefore, setting u2 = 0, we
get the solution as

d̂ = (I − ĈX)β , (4.47)
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where Ĉ is the yet-to-be-determined optimal value of C. This optimal value
of C is obtained by minimizing v2. Now, using Theorem A.13 (iv), we
observe that

v2 = σ2tr[I + C ′SCW − 2C ′X ′] , (4.48)

and hence (Theorems A.91 to A.95)

1
2σ2

∂v2

∂C
= SCW − X ′ = 0 , (4.49)

and therefore the solution is

Ĉ = S−1X ′W−1. (4.50)

Inserting Ĉ in (4.47), we obtain

d̂ = (I − S−1X ′W−1X)β = 0 . (4.51)

Therefore, the R3-optimal estimator is homogeneous in y. Its expression
and properties are stated below.

Theorem 4.3 The R3-optimal estimator for β is

b = S−1X ′W−1y (4.52)

with

V (b) = σ2S−1 (4.53)

and

R3(b, β) = σ2 tr(I − W−1XS−1X ′) = σ2(T − K) , (4.54)

where S = X ′W−1X.

4.2 The Aitken Estimator

In the classical model the best linear unbiased estimator (BLUE) is given
by the OLSE b0 = (X ′X)−1X ′y. In the generalized linear model (4.1) we
may find the BLUE for β by using a simple algebraic connection between
these two models.

Because W and W−1 are symmetric and positive definite, there exist
matrices M and N (cf. Theorem A.31 (iii)) such that

W = MM and W−1 = NN , (4.55)

where M = W 1/2 and N = W−1/2 are regular and symmetric.
Transforming the model (4.1) by premultiplication with N :

Ny = NXβ + Nε (4.56)
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and letting

Ny = ỹ, NX = X̃, Nε = ε̃ , (4.57)

we see that

E(ε̃) = E(Nε) = 0 , E(ε̃ε̃′) = E(Nεε′N) = σ2I . (4.58)

Therefore, the linearly transformed model ỹ = X̃β + ε̃ satisfies the as-
sumptions of the classical model. The OLSE b in this model may be written
as

b = (X̃ ′X̃)−1X̃ ′ỹ
= (X ′NN ′X)−1X ′NN ′y
= (X ′W−1X)−1X ′W−1y . (4.59)

Based on Theorem 3.5 we may conclude that the estimator is unbiased:

E(b) = (X ′W−1X)−1X ′W−1 E(y)
= (X ′W−1X)−1X ′W−1Xβ = β (4.60)

and has minimal variance. This may be proved as follows.
Let β̃ = C̃y be another linear unbiased estimator for β and let

C̃ = Ĉ + D (4.61)

with the optimal matrix

Ĉ = S−1X ′W−1 ; (4.62)

then the unbiasedness of β̃ is ensured by DX = 0 including ĈWD = 0.
Then we obtain the covariance matrix of β̃ as

V (β̃) = E(C̃εε′C̃ ′)
= σ2(Ĉ + D)W (Ĉ ′ + D′)
= σ2ĈWĈ ′ + σ2DWD′

= V (b) + σ2DWD′ , (4.63)

implying V (β̃)−V (b) = σ2D′WD to be nonnegative definite (cf. Theorem
A.41 (v)).

Theorem 4.4 (Gauss-Markov-Aitken) If y = Xβ + ε where ε ∼ (0, σ2W ), the
generalized least-squares estimator (GLSE)

b = (X ′W−1X)−1X ′W−1y (4.64)

is unbiased and is the best linear unbiased estimator for β. Its covariance
matrix is given by

V (b) = σ2(X ′W−1X)−1 = σ2S−1. (4.65)

The estimator b is R3-optimal as well as the homogeneous, unbiased R1-
and R2-optimal solution.
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For the other unknown parameter σ2 and the covariance matrix, the
following estimators are available:

s2 =
(y − Xb)′W−1(y − Xb)

T − K
(4.66)

and

V̂ (b) = s2S−1. (4.67)

These estimators are unbiased for σ2 and σ2S−1, respectively:

E(s2) = R3(b, β)(T − K)−1 = σ2 and E(V̂ (b)) = σ2S−1. (4.68)

Analogous to Theorem 3.6, we obtain

Theorem 4.5 Assume the generalized linear model (4.1). Then the best
linear unbiased estimator of d = a′β and its variance are given by

d̂ = a′b , (4.69)

var(d̂) = σ2a′S−1a = a′V (b)a . (4.70)

For a general least squares approach, see Section 4.9.

4.3 Misspecification of the Dispersion Matrix

One of the features of the ordinary least-squares estimator b0 =(X ′X)−1X ′y
is that in the classical model with uncorrelated errors, no knowledge of σ2

is required for point estimation of β. When the residuals are correlated, it is
necessary for point estimation of β to have prior knowledge or assumptions
about the covariance matrix W , or at least an estimate of it.

Assuming the general linear model y = Xβ + ε, ε ∼ (0, σ2W ) so that
W is the true covariance matrix, then misspecification relates to using a
covariance matrix A �= W .

Reasons for this misspecification of the covariance matrix could be one
of the following:

(i) The correlation structure of disturbances may have been ignored in
order to use OLS estimation and hence simplify calculations. (This
is done, for instance, as the first step in model building in order to
obtain a rough idea of the underlying relationships.)

(ii) The true matrix W may be unknown and may have to be estimated
by Ŵ (which is stochastic).

(iii) The correlation structure may be better represented by a matrix that
is different from W .
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In any case, the resulting estimator will have the form

β̂ = (X ′A−1X)−1X ′A−1y, (4.71)

where the existence of A−1 and (X ′A−1X)−1 have to be ensured. (For
instance, if A > 0, then the above inverse exists.) Now, the estimator β̂ is
unbiased for β, that is,

E(β̂) = β (4.72)

for any misspecified matrix A as rank(X ′A−1X) = K.
Further, β̂ has the dispersion matrix

V (β̂) = σ2(X ′A−1X)−1X ′A−1WA−1X(X ′A−1X)−1 (4.73)

so that using the false matrix A results in a loss in efficiency in estimating
β by β̂ instead of the GLSE b = S−1X ′W−1y, as is evident from

V (β̂) − V (b) = σ2[(X ′A−1X)−1X ′A−1 − S−1X ′W−1]
×W [(X ′A−1X)−1X ′A−1 − S−1X ′W−1]′ , (4.74)

which is nonnegative definite (Theorems 4.4 and A.41 (iv)).
There is no loss in efficiency if and only if

(X ′A−1X)−1X ′A−1 = S−1X ′W−1 ,

and then β̂ = b.
Let us now investigate the most important case, in which the OLSE

b = (X ′X)−1X ′y = b0, say, is mistakenly used instead of the true GLSE.
That is, let us assume A = I. Letting U = (X ′X)−1, we get the increase in
dispersion due to the usage of the OLSE b0 = UX ′y instead of the GLSE
as (see (4.74))

V (b0) − V (b) = σ2(UX ′ − S−1X ′W−1) × W (XU − W−1XS−1).

Therefore, it is clear that V (b0) = V (b) holds if and only if

UX ′ = S−1X ′W−1.

This fact would imply that

UX ′ = S−1X ′W−1 ⇔ X ′WZ = 0 ⇔ X ′W−1Z = 0 , (4.75)

where Z is a matrix of maximum rank such that Z ′X = 0. Since W > 0, we
can find a symmetric square root W

1
2 such that W

1
2 W

1
2 = W . Furthermore,

X and Z span the whole space so that W 1/2 can be expressed as

W
1
2 = XA1 + ZB1

⇒ W = XA1A
′
1X

′ + XA1B
′
1Z

′ + ZB1A
′
1X

′ + ZB1B
′
1Z

′ .

Expressing the condition X ′WZ = 0:

X ′XA1B
′
1Z

′Z = 0 ⇔ A1B
′
1 = 0 .
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Similarly, B1A
′
1 = 0, so that

W = XAX ′ + ZBZ ′ ,

where A and B are nonnegative definite matrices. So we have the following
theorem, which is proved under more general conditions in Rao (1967) and
Rao (1968).

Theorem 4.6 The OLSE and the GLSE are identical if and only if the
following form holds:

W = XAX ′ + ZBZ ′ , (4.76)

which is equivalent to the condition X ′WZ = 0.

It is easy to see that if the regressor matrix X has one column as the
unit vector, then for the choice

W = (1 − ρ)I + ρ11′ (0 ≤ ρ < 1) , (4.77)

the condition X ′WZ = 0 holds. Thus (4.77) is one choice of W for which
OLSE = GLSE (McElroy, 1967).

Note: The condition 0 ≤ ρ < 1 ensures that (1 − ρ)I + ρ11′ is positive
definite for all values of the sample size T . For given T , it would be replaced
by −1/(T − 1) < ρ < 1. A matrix of type (4.77) is said to be compound
symmetric.

Clearly, an incorrect specification of W will also lead to errors in esti-
mating σ2 by σ̂2, which is based on ε̂. Assume that A is chosen instead of
W . Then the vector of residuals is

ε̂ = y − Xβ̂ = (I − X(X ′A−1X)−1X ′A−1)ε ,

and we obtain

(T − K)σ̂2 = ε̂′ε̂
= tr{(I − X(X ′A−1X)−1X ′A−1)

× εε′(I − A−1X(X ′A−1X)−1X ′)} ,

E(σ̂2)(T − K) = σ2tr(W − X(X ′A−1X)−1X ′A−1)

+ tr{σ2X(X ′A−1X)−1X ′A−1(I − 2W ) + XV (β̂)X ′}.

(4.78)

Standardizing the elements of W by tr(W ) = T , and using Theorem
A.13 (i), the first expression in (4.78) equals T −K. For the important case
A = I, expression (4.78) becomes

E(σ̂2) = σ2 +
σ2

T − K
tr[X(X ′X)−1X ′(I − W )]

= σ2 +
σ2

T − K
(K − tr[(X ′X)−1X ′WX]) . (4.79)
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The final term represents the bias of s2 when the OLSE is mistakenly
used. This term tends to be negative if the disturbances are positively
correlated, that is, there is a tendency to underestimate the true vari-
ance. Goldberger (1964, p. 239) has investigated the bias of the estimate
s2(X ′X)−1 of V (b0) in case W is the dispersion matrix of heteroscedastic
or autoregressive processes. More general investigations of this problem are
given in Dufour (1989).

Remark: Theorem 4.6 presents the general condition for the equality of the
OLSE and the GLSE. Puntanen (1986) has presented an overview of alter-
native conditions. Baksalary (1988) characterizes a variety of necessary and
sufficient conditions by saying that all these covariance structures may be
ignored without any consequence for best linear unbiased estimation. Fur-
ther interesting results concerning this problem and the relative efficiency
of the OLSE are discussed in Krämer (1980) and Krämer and Donninger
(1987).

4.4 Heteroscedasticity and Autoregression

Heteroscedasticity of ε means that the disturbances are uncorrelated but
not identically distributed, that is {εt} is said to be heteroscedastic if

E(εtεt′) =
{

σ2
t for t = t′ ,

0 for t �= t′ , (4.80)

or, in matrix notation ,

E(εε′) = σ2W = σ2


k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · kT

 = σ2 diag(k1, . . . , kT ) , (4.81)

where kt = σ2
t /σ2 can vary in the interval [0, ∞).

Standardizing W by tr{W} = T , we obtain∑
kt =

∑ σ2
t

σ2 = T , (4.82)

and hence σ2 =
∑

σ2
t /T is the arithmetic mean of the variances. If kt = k

for t = 1, . . . , T , we have the classical model, also called a model with
homoscedastic disturbances. Now

W−1 = diag(k−1
1 , . . . , k−1

T ) , (4.83)

and therefore the GLSE b = S−1X ′W−1y, with X ′ = (x1, . . . , xT ), is of
the special form

b =
(∑

xtx
′
t

1
kt

)−1(∑
xtyt

1
kt

)
. (4.84)
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It follows that b is a weighted estimator minimizing the weighted sum of
squared errors:

R3(β̂, β) = ε̂′W−1ε̂ =
∑

ε̂2t
1
kt

. (4.85)

A typical situation of heteroscedasticity is described in Goldberger (1964,
p. 235). Let us assume that in the univariate model

yt = α + βxt + εt (t = 1, . . . , T ) ,

the variance of εt is directly proportional to the square of xt, that is,

var(εt) = σ2x2
t .

Then we have W = diag(x2
1, . . . , x

2
T ), namely, kt = x2

t . Applying b as in
(4.84) is then equivalent to transforming the data according to

yt

xt
= α

(
1
xt

)
+ β +

εt

xt
, var

(
εt

xt

)
= σ2

and calculating the OLSE of (α, β). An interesting feature of this special
case is that the roles of intercept term and regression coefficient in the
original model are interchanged in the transformed model.

Another model of practical importance is that of aggregate data: We do
not have the original samples y and X, but we do have the sample means

ȳt =
1
nt

nt∑
j=1

yj , x̄ti =
1
nt

nt∑
j=1

xji

so that the relationship is

ȳt =
K∑

i=1

βix̄ti + ε̄t (t = 1, . . . , T ) ,

where var(ε̄t) = σ2/nt. Thus we have W = diag(1/n1, . . . , 1/nT ).
Another model of practical relevance with heteroscedastic disturbances is

given by the block diagonal design. In many applications we are confronted
with the specification of grouped data (see, for example, the models of
analysis of variance). It may be assumed that the regression variables are
observed over m periods (example: the repeated measurement model) or
for m groups (example: m therapies) and in n situations. Thus the sample
size of each individual is m, and the global sample size is therefore T = mn.
Assuming that in any group the within-group variances are identical (i.e.,
E εiε

′
i = σ2

i I (i = 1, . . . , n)) and that the between-group disturbances are
uncorrelated, then we obtain the block diagonal dispersion matrix

E(εε′) =


σ2

1I 0 · · · 0
0 σ2

2I · · · 0
...

...
. . .

...
0 0 · · · σ2

mI

 = diag(σ2
1I, . . . , σ2

mI). (4.86)
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The model may be written as
y1
y2
...

ym

 =


X1
X2
...

Xm

β +


ε1
ε2
...

εm

 . (4.87)

Note: This structure of a linear model occurs more generally in the m-
dimensional (multivariate) regression model and in the analysis of panel
data.

More generally, we may assume that the disturbances follow the so-called
process of intraclass correlation. The assumptions on ε are specified as
follows:

εtj = vj + utj , t = 1, . . . , m, j = 1, . . . , n , (4.88)

where the disturbances vj are identical for the m realizations of each of the
n individuals:

E vj = 0, var(vj) = σ2
v , j = 1, . . . , n ,

cov(vjv
′
j) = 0 , j �= j′ . (4.89)

The disturbances utj vary over all T = mn realizations and have

Eutj = 0 , var(utj) = σ2
u , (4.90)

cov(utj , ut′j′) = 0 , (t, j) �= (t′, j′) ,

and, moreover,

cov(utj , vj′) = 0 for all t, j, j′ , (4.91)

that is, both processes {u} and {v} are uncorrelated.
The T × T -dispersion matrix of ε is therefore of the form

E εε′ = diag(Φ, . . . ,Φ) , (4.92)

where Φ is the m × m-matrix of intraclass correlation:

Φ = E(uju
′
j) = σ2Ψ = σ2


1 γ · · · γ
γ 1 · · · γ
...

...
...

γ γ · · · γ

 (4.93)

with

σ2 = σ2
v + σ2

u and γ =
σ2

v

σ2 .

As pointed out in Schönfeld (1969), we may write

Ψ = (1 − γ)
(

I +
γ

1 − γ
11′
)

(4.94)
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so that its inverse is

Ψ−1 =
1

1 − γ

(
I − γ

1 + γ(m − 1)
11′
)

. (4.95)

Based on this, we get the GLSE as

b =

 n∑
j=1

D(xj , xj)

−1  n∑
j=1

d(xj , xj)

 (4.96)

with the modified central sample moments

D(xj , xj) =
1
m

X ′
jXj − γm

1 + γ(m − 1)
x̄j x̄j

′

and

d(xj , x
′
j) =

1
m

X ′
jyj − γm

1 + γ(m − 1)
x̄j ȳj .

Remark: Testing for heteroscedasticity is possible if special rank test statis-
tics for any of the specified models of the above are developed Huang (1970).
As a general test, the F -test is available when normality of the disturbances
can be assumed. On the other hand, the well-known tests for homogeneity
of variances may be chosen. A common difficulty is that there is no proce-
dure for determining the optimal grouping of the estimated disturbances
ε̂t, whereas their grouping greatly influences the test procedures.

Autoregressive Disturbances

It is a typical situation in time-series analysis that the data are interdepen-
dent, with many reasons for interdependence of the successive disturbances.
Autocorrelation of first and higher orders in the disturbances can arise, for
example, from observational errors in the included variables or from the
estimation of missing data by either averaging or extrapolating.

Assume {ut} (t = . . . ,−2,−1, 0, 1, 2, . . .) to be a random process having

E(ut) = 0, E(u2
t ) = σ2

u, E(utut′) = 0 for t �= t′. (4.97)

Using {ut}, we generate the following random process:

vt − µ = ρ(vt−1 − µ) + ut , (4.98)

where |ρ| < 1 is the autocorrelation coefficient that has to be estimated.
By repeated substitution of the model (4.98), we obtain

vt − µ =
∞∑

s=0

ρsut−s , (4.99)

and therefore with (4.97)

E(vt) = µ +
∞∑

s=0

ρs E(ut−s) = µ , (4.100)
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E(vt − µ)2 =
∞∑

s=0

∞∑
r=0

ρs+r E(ut−sut−r)

= σ2
u

∞∑
s=0

ρ2s = σ2
u(1 − ρ2)−1 = σ2 . (4.101)

Then the vector v′ = (v1, . . . , vT ) has the mean

E(v′) = (µ, . . . , µ)

and dispersion matrix Σ = σ2W , where

W =


1 ρ ρ2 · · · ρT−1

ρ 1 ρ · · · ρT−2

...
...

...
...

ρT−1 ρT−2 ρT−3 · · · 1

 (4.102)

is regular and has the inverse

W−1 =
1

1 − ρ2



1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0
0 −ρ 1 + ρ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1


. (4.103)

Letting εt = vt and µ = 0, we obtain the generalized linear regression model
with autocorrelated disturbances. This model is said to be a first-order
autoregression. The GLSE for β is

b = (X ′W−1X)−1X ′W−1y , (4.104)

where W−1 is given by (4.103). From (4.102) it follows that the correla-
tion between εt and εt−τ is σ2ρτ , that is, the correlation depends on the
difference of time |τ | and decreases for increasing values of |τ | as |τ | < 1.

Testing for Autoregression

The performance of the GLSE b = (X ′W−1X)−1X ′W−1y when W is mis-
specified was investigated in Section 4.3. Before b can be applied, however,
the assumptions on W , such as (4.78), have to be checked. Since no general
test is available for the hypothesis “ε is spherically distributed,” we have
to test specific hypotheses on W . If the first-order autoregressive scheme
is a plausible proposition, the well-known Durbin-Watson test can be ap-
plied (see Durbin and Watson (1950, 1951)). If ρ > 0 is suspected, then the
Durbin-Watson test for

H0: ρ = 0 against H1: ρ > 0



114 4. The Generalized Linear Regression Model

is based on the test statistic

d =
∑T

t=2(ε̂t − ε̂t−1)2∑T
t=1 ε̂2t

, (4.105)

where ε̂t are the estimated residuals from the classical regression model (i.e.,
W = I). The statistic d is seen to be a function of the empirical coefficient
of autocorrelation ρ̂ of the vector of residuals ε̂ = y − X(X ′X)−1X ′y:

ρ̂ =
∑T

t=2 ε̂tε̂t−1√∑T
t=2 ε̂2t

√∑T
t=2 ε2t−1

. (4.106)

Using the approximation

T∑
t=1

ε̂2t ≈
T∑

t=2

ε̂2t ≈
T∑

t=2

ε̂2t−1 , (4.107)

we obtain

d ≈ 2
∑

ε̂2t − 2
∑

ε̂tε̂t−1∑
ε̂2t

≈ 2(1 − ρ̂) (4.108)

and therefore 0 < d < 4. For ρ̂ = 0 (i.e., no autocorrelation) we get
d = 2. The distribution of d obviously depends on X. Consequently, the
exact critical values obtained from such a distribution will be functions of
X and as such it would be difficult to prepare tables. To overcome this
difficulty, we find two statistics dl and du such that dl ≤ d ≤ du and their
distributions do not depend on X. Let d∗

l be the critical value obtained
from the distribution of dl, and let d∗

u be the critical value found from the
distribution of du. Some of these critical values are given in Table 4.1; see
Durbin and Watson (1950, 1951) for details.

The one-sided Durbin-Watson test for H0: ρ = 0 against H1: ρ > 0 is as
follows:

do not reject H0 if d ≥ d∗
u,

reject H0 if d ≤ d∗
l ,

no decision if d∗
l < d < d∗

u .

If the alternative hypothesis is H1: ρ < 0, the test procedure remains the
same except that d̃ = (4 − d) is used as the test statistic in place of d.

For the two-sided alternative H1: ρ �= 0, the procedure is as follows:

do not reject H0 if d (or d̃) ≥ d∗
u,

reject H0 if d (or d̃) ≤ d∗
l ,

no decision if d∗
u < d < (4 − d∗

l ) .

Note: Some of the statistical packages include the exact critical values of
the Durbin-Watson test statistic.
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Estimation in Case of Autocorrelation

Two-Stage Estimation. If H0: ρ = 0 is rejected, then the estimator ρ̂ from
(4.106) is inserted in W−1 from (4.103), resulting in the estimator Ŵ−1

and

b̂ = (X ′Ŵ−1X)−1X ′Ŵ−1y . (4.109)

If some moderate general conditions hold, this estimator is consistent, that
is, we may expect that

plimb̂ = β . (4.110)

It may happen that this procedure has to be repeated as an iterative process
until a relative stability of the estimators ρ̂ and β̂ is achieved. The iteration
starts with the OLSE b0 = (X ′X)−1X ′y. Then ε̂ = y −Xb0, ρ̂ (4.106), and
b̂ (4.109) are calculated. Then again ε̂ = y − Xb̂, ρ̂ (using this last ε̂), and
b̂ are calculated. This process stops if changes in ρ̂ and b̂ are smaller than
a given value.

Transformation of Variables. As an alternative procedure for overcoming
autoregression, the following data transformation is available. The model
with transformed variables has homoscedastic disturbances and may be
estimated by the OLSE.

We define the following differences:

∆ρyt = yt − ρyt−1 , (4.111)
∆ρxit = xit − ρxit−1 , (4.112)

ut = εt − ρεt−1 , (4.113)

where E(uu′) = σ2I (see (4.97) and (4.98) with εt = vt).
Then the model

y = Xβ + ε , ε ∼ (0, σ2W )

with W from (4.102) is transformed to the classical model

∆ρyt = β0(1 − ρ) + β1∆ρx1t + . . . + βK∆ρxKt + ut . (4.114)

Note: With the exception of β0, all the parameters βi are unchanged.
When ρ is known, the parameters in model (4.114) can be estimated

by OLSE. If ρ is unknown, it has to be estimated by ρ̂ (4.106). Then the
parameters βi in model (4.114) are estimated by OLSE (two-stage OLSE)
when ρ is replaced by ρ̂ (Cochrane and Orcutt, 1949). In practice, one can
expect that both of the above two-stage procedures will almost coincide.

If ρ is near 1, the so-called first differences

∆yt = yt − yt−1 , (4.115)
∆xit = xit − xit−1 , (4.116)

ut = εt − εt−1 (4.117)
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Table 4.1. Five percent significance points for the Durbin-Watson test (Durbin
and Watson, 1951).

K∗ = 1 K∗ = 2 K∗ = 3 K∗ = 4 K∗ = 5
T d∗

l d∗
u d∗

l d∗
u d∗

l d∗
u d∗

l d∗
u d∗

l d∗
u

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
30 1.35 1.49 1.28 1.57 1.21 1.67 1.14 1.74 1.07 1.83
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
50 1.50 1.59 1.46 1.63 1.42 1.65 1.38 1.72 1.34 1.77

Note: K∗ is the number of exogeneous variables when the dummy variable
is excluded.

are taken.

Remark: The transformed endogenous variables in (4.115) are almost un-
correlated. The method of first differences is therefore applied as an attempt
to overcome the problem of autocorrelation.

Note: An overview of more general problems and alternative tests for spe-
cial designs including power analyses may be found in Judge et al. (1980,
Chapter 5).

Example 4.1: We demonstrate an application of the test procedure for
autocorrelation in the following model with a dummy variable 1 and one
exogeneous variable X:

yt = β0 + β1xt + εt, εt ∼ N(0, σ2
t ), (4.118)

or, in matrix formulation,

y = (1, X)
(

β0
β1

)
+ ε, ε ∼ N(0, σ2W ). (4.119)

Let the following sample of size T = 6 be given:

y =


1
3
2
3
0
2

 , X =


1 −4
1 3
1 4
1 5
1 3
1 3

 .

We get

X ′X =
(

6 14
14 84

)
, X ′y =

(
11
34

)
,

|X ′X| = 308 ,

(X ′X)−1 =
1

308

(
84 −14

−14 6

)
,
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b0 = (X ′X)−1X ′y =
1

308

(
448
50

)
=
(

1.45
0.16

)
,

ŷ = Xb0 =


0.81
1.93
2.09
2.25
1.93
1.93

 , ε̂ = y − Xb0 =


0.19
1.07

−0.09
0.75

−1.93
0.07

 ,

ρ̂ =
∑6

t=2 ε̂t−1ε̂t∑6
t=2 ε̂2t−1

=
−1.54
5.45

= −0.28 ,

d = 2(1 − ρ̂) = 2.56 ,

d̃ = 4 − d = 1.44 .

From Table 4.1 we find, for K∗ = 1, the critical value corresponding
to T = 6 is d∗

u < 1.36, and therefore H0: ρ = 0 is not rejected. The

autocorrelation coefficient ρ̂ = −0.28 is not significant. Therefore,
(

β0
β1

)
of model (4.119) is estimated by the OLSE b0 =

(
1.45
0.16

)
.

4.5 Mixed Effects Model: A Unified Theory of
Linear Estimation

4.5.1 Mixed Effects Model
Most, if not all, linear statistical models used in practice are included in
the formulation

y = Xβ + Uξ + ε (4.120)

where y is a T -vector of observations, X is a given T ×K-design matrix, β
is an unknown K-vector of fixed parameters, ξ is an unknown s-vector of
unknown random effects, U is a given T × s-matrix, and ε is an unknown
T -vector of random errors with the following characteristics:

E(ε) = 0 , E(εε′) = V , E(ξ) = 0 , E(ξξ′) = Γ , Cov(ε, ξ) = 0 .
(4.121)

The components of ξ are unobserved covariates on individuals, and the
problem of interest is the estimation of linear combinations of β and ξ, as
in animal breeding programs, where ξ represents intrinsic values of individ-
uals on the basis of which some individuals are chosen for future breeding
(see Henderson (1984) for applications in animal breeding programs). We
assume that the matrices V and Γ are known and derive optimum estimates
of fixed and random effects. In practice, V and Γ are usually unknown, and



118 4. The Generalized Linear Regression Model

they may be estimated provided they have a special structure depending
on a few unknown parameters.

4.5.2 A Basic Lemma
First we prove a basic lemma due to Rao (1989), which provides a solution
to all estimation problems in linear models. We say that G∗ is a minimum
in a given set of n.n.d. matrices {G} of order T , if G∗ belongs to the set,
and for any element G ∈ {G}, G − G∗ is a nonnegative-definite (n.n.d.)
matrix, in which case we write G∗ ≤ G.

Lemma 4.7 (Rao, 1989) Let V : T × T be n.n.d., X : T × K, F : T × K,
and P : K ×K be given matrices such that R(F ) ⊂ R(V : X) and R(P ) ⊂
R(X ′), and consider the K × K-matrix function of A : T × K

f(A) = A′V A − A′F − F ′A. (4.122)

Then

min
X′A=P

f(A) = f(A∗) (4.123)

where (A∗, B∗) is a solution of the equation

V A + XB = F
X ′A = P .

}
(4.124)

Furthermore,

f(A∗) = min
X′A=P

f(A) = −A′
∗F − B′

∗P = −F ′A∗ − P ′B∗ (4.125)

and is unique for any solution of (4.124).

Proof: Let (A∗, B∗) be a solution of (4.124). Any A such that X ′A = P
can be written as A∗ + ZC where Z = X⊥ and C is arbitrary. Then

f(A) = A′V A − A′F − F ′A
= (A∗ + ZC)′V (A∗ + ZC) − (A∗ + ZC)′F − F ′(A∗ + ZC)
= (A′

∗V A∗ − A′
∗F − F ′A∗) + C ′Z ′V ZC

+ (A′
∗V − F ′)ZC + C ′Z ′(V A∗ − F ) (4.126)

= (A′
∗V A∗ − A′

∗F − F ′A∗) + C ′Z ′V ZC

= f(A∗) + C ′Z ′V ZC (4.127)

since, using equation (4.124)

V A∗ + XB∗ = F ⇒
{

C ′Z ′(V A∗ − F ) = 0
(A′

∗V − F ′)ZC = 0 (4.128)

so that the last two terms in (4.126) are zero. The difference f(A)−f(A∗) =
C ′Z ′V ZC, which is n.n.d; this proves the optimization part. Now

f(A∗) = A′
∗V A∗ − A′

∗F − F ′A∗
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= A′
∗(V A∗ − F ) − F ′A∗ = −A′

∗XB∗ − F ′A∗
= −P ′B∗ − F ′A∗ = −A′

∗F − B′
∗P , (4.129)

which proves (4.125). Let(
V X
X ′ 0

)−
=
(

C1 C2
C ′

2 −C4

)
for any g-inverse. Then

A∗ = C1F + C2P , B∗ = C ′
2F − C4P,

f(A∗) = −P ′(C ′
2F − C4P ) − F ′(C1F + C2P )

= P ′C4P − P ′C ′
2F − F ′C2P − F ′C1F

=
{

P ′C4P if F = 0 ,
−F ′C1F if P = 0 .

4.5.3 Estimation of Xβ (the Fixed Effect)
Let A′y be an unbiased estimate of Xβ. Then E(A′y) = Xβ ∀β ⇒ A′X =
X ′, and

E[(A′y − Xβ)(A′y − Xβ)′] = E[A′(Uξ + ε)(Uξ + ε)′A]
= A′(UΓU ′ + V )A = A′V∗A

where V∗ = UΓU ′ + V . Then the problem is that of finding

min
X′A=X′

A′V∗A.

The optimum A is a solution of the equation

V∗A + XB = 0
X ′A = X ′ ,

which is of the same form as in the only fixed-effects case except that V∗
takes the place of V . If(

V∗ X
X ′ 0

)−
=
(

C1 C2
C ′

2 −C4

)
then

A∗ = C2X
′, B∗ = −C4X

′

giving the MDE of Xβ as

A′
∗y = XC ′

2y (4.130)

with the dispersion matrix

XC4X
′ .
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4.5.4 Prediction of Uξ (the Random Effect)
Let A′Y be a predictor of Y ξ such that

E(A′y − Uξ) = A′Xβ = O ⇒ A′X = 0 .

Then

E(A′Y − Uξ)(A′Y − Uξ)′ = E[(A′ − I)Uξξ′U ′(A − I)] + E[A′εε′A]
= (A′ − I)UΓU ′(A − I) + A′V A

= A′V∗A − A′UΓU ′ − UΓU ′A + UΓU ′.

The problem is to find

min
X′A=0

(A′V∗A − A′W − WA + W ) ,

where W = UΓU ′. Applying the basic lemma of Section 4.5.1, the minimum
is attained at a solution A∗ of the equation

V∗A + XB = W

X ′A = 0.

In terms of the elements of the g-inverse of Theorem A.108, a solution is

A∗ = C1W, B∗ = C ′
2W

giving the mean-dispersion error of prediction (MDEP) of Uξ as

A′
∗y = WC1y (4.131)

with the dispersion of prediction error

−A′
∗W + W = W − WC1W .

4.5.5 Estimation of ε

Let A′y be an estimate of ε such that

E(A′y − ε) = A′Xβ = 0 ⇒ A′X = 0.

Then

E[(A′y − ε)(A′y − ε)′] = E[A′Uξξ′U ′A] + E[(A′ − I)εε′(A − I)]
= A′V∗A − A′V − V A + V. (4.132)

Proceeding as in Section 4.5.2, the optimum A is

A∗ = C1V

giving the MDEP of ε as

A′
∗y = V C1y (4.133)

with the dispersion of prediction error

−A′
∗V + V = V − V C1V.
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The expressions (4.130),(4.131), and (4.133) for the estimators (predic-
tors) of Xβ, Uξ, and ε suggest an alternative procedure of computing them
through a conditioned equation. Consider the equation

V∗α + Xβ = y

X ′α = 0

and solve for (α, β). If (α̂, β̂) is a solution, then the estimate of Xβ is Xβ̂,
of Uξ is Wα̂, and that of ε is V α̂.

The estimators obtained in this section involve the matrices V and Γ,
which may not be known in practice. They cannot in general be estimated
unless they have a simple structure involving a smaller number of param-
eters as in the case of variance components. In such a case, we may first
estimate V and Γ by some method such as those described in the case of
variance components by Rao and Kleffe (1988) and use them in the second
stage for the estimation of Xβ, Uξ, and ε.

We discussed separately the estimation of Xβ, Uξ, and ε. If we need an
estimate of a joint function of the fixed and random effects and the random
error such as

P ′Xβ + Q′Uξ + R′ε (4.134)

we need only substitute the separate estimates for the unknowns and obtain
the estimate

P ′Xβ̂ + Q′Uξ̂ + R′ε̂ ,

which is the MDE for (4.134).

4.6 Regression-Like Equations in Econometrics

4.6.1 Stochastic Regression
In the following we consider some results concerning regression-like
equations in econometric models. We assume the linear relationship

y = Xβ + ε (4.135)

where y : T ×1, X : T ×K, β : K ×1, and ε : T ×1. Unlike in the models of
Chapters 3 and 4, we now assume that X is stochastic. In econometrics, the
exogenous variables are usually assumed to be correlated with the random
error ε, that is, X is supposed to be correlated with ε such that

p lim(T−1X ′ε) �= 0 . (4.136)

As in Section 2.2, we assume that

p lim(T−1X ′X) = ΣXX (4.137)
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exists and is nonsingular. If we apply ordinary least squares to estimate β
in (4.135), we get with b = (X ′X)−1X ′y

p lim(b) = β + Σ−1
XX p lim(T−1X ′ε) , (4.138)

and hence the OLS estimator b of β is not consistent.

4.6.2 Instrumental Variable Estimator
The method of instrumental variables (IV) is one of the techniques to get
a consistent estimator of β. The idea is as follows. We suppose that in
addition to the observations in y and X we have available T observations
on K “instrumental variables” collected in the T × K-matrix Z that are
contemporaneously uncorrelated (see (2.11)) with the random error ε, that
is,

plim(T−1Z ′ε) = 0 , (4.139)

but are correlated with the regressors such that plim(T−1Z ′X) = ΣZX

exists and is nonsingular. Then the instrumental variable estimator of β is
defined by

b∗ = (Z ′X)−1Z ′y . (4.140)

This estimator is consistent:

b∗ = (Z ′X)−1Z ′(Xβ + ε)
= β + (Z ′X)−1Z ′ε
= β + (T−1Z ′X)−1(T−1Z ′ε),

and hence, with (4.139) and (4.140), plim(b∗) = β + Σ−1
ZX ∗ 0 = β.

Using the relationship (b∗ − β)(b∗ − β)′ = (Z ′X)−1Z ′εε′Z(X ′Z)−1, we
see that the asymptotic covariance matrix of b∗ is

Σ̄b∗b∗ = Ē(b∗ − β)(b∗ − β)′ = T−1σ2Σ−1
ZXΣZZΣ−1′

ZX (4.141)

provided that plimT (T−1Z ′ε)(T−1εZ) = σ2ΣZZ . It is clear that condi-
tionally on Z and X for every T , we have E(b∗) = β and cov(b∗) =
σ2(Z ′X)−1(Z ′Z)(X ′Z)−1.

To interpret this estimator, consider the following. The least squares
estimator b is the solution to the normal equations X ′Xb = X ′y, which
can be obtained by premultiplying the relation y = Xβ + ε of observa-
tions through by X ′, replacing β by b, and dropping X ′ε. Quite analogous,
the instrumental variable estimator b∗ is the solution to the normal equa-
tions Z ′Xb∗ = Z ′y, which are obtained by premultiplying the observational
model y = Xβ + ε through by Z ′, replacing β by b∗, and dropping Z ′ε.

Remark. Note that an instrument is a variable that is at least uncorrelated
with the random error ε and is correlated with the regressor variables in X.
Using the generalized variance G.var|b∗| = | cov(b∗)| as efficiency measure,
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it is proved (Dhrymes, 1974, p. 298) that the generalized variance of b∗ is
minimized with respect to Z if the coefficient of vector correlation between
the instruments and the regressors is maximized. Of course, Z = X would
yield the optimal instrumental variable estimator b∗ = b = (X ′X)−1X ′y.
This is just the OLSE, which by (4.136) fails to be consistent. Hence one has
to find instruments that are highly correlated with X but are not identical
to X. For a more detailed discussion of this problem, see Goldberger (1964)
and Siotani, Hayakawa, and Fujikoshi (1985).

4.6.3 Seemingly Unrelated Regressions
We now consider a set of equations

yi = Xiβi + εi , i = 1, . . . , M (4.142)

where yi : T × 1, Xi : T × Ki, βi : Ki × 1 and εi : T × 1. The model
is already in the reduced form (see Section 2.3). However if εi and εj are
correlated for some pairs of indices i, j, (i �= j), then the equations in
(4.142) are correlated to each other through the random errors, although
by construction they are seemingly unrelated.

Let us write the equations given in (4.142) according to
y1
y2
...

yM

 =


X1 0 . . . 0
0 X2 . . . 0
...

. . .
0 0 . . . XM




β1
β2
...

βM

+


ε1
ε2
...

εM

 (4.143)

as a multivariate linear regression model (see (2.29)) or more compactly as

y = Xβ + ε

where y : MT ×1, X : MT ×K, β : MK×1, ε : MT ×1, and K =
∑M

i=1 Ki.
The covariance matrix of ε is

E(εε′) = Σ ⊗ IT (4.144)

where Σ = (σij) and E(εε′) = σijIT . ⊗ denotes the Kronecker product
(see Theorem A.99). If Σ is known, then β is estimated by the GLSE (see
(4.64)) as

β̂ = (X ′(Σ ⊗ I)−1X)−1(X ′(Σ ⊗ I)−1y) , (4.145)

which is the BLUE of β in case of nonstochastic regressors X. This GLSE
and the least squares estimator (X ′X)−1X ′y are identical when either Σ
is diagonal or X1 = X2 = . . . = XM , or more generally when all Xi’s span
the same column space; see Dwivedi and Srivastava (1978) and Bartels and
Fiebig (1991) for some interesting conditions when they are equivalent.

When Σ is unknown it is replaced by an estimator Σ̂ = (σ̂ij). Among
others, Zellner (1962, 1963) has proposed the following two methods for
estimating the unknown matrix Σ.
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Restricted Zellner’s Estimator (RZE)

This estimator is based on the OLSE residuals

ε̂i = yi − Xibi , bi = (X ′
iXi)−1X ′

iyi (i = 1, . . . , M)

of the equations in the system (4.143). The covariance σij is estimated by

σ̂ij = ε̂′
iε̂j

/√
(T − Ki)(T − Kj)

resulting in Σ̂ = (σ̂ij), which is substituted for Σ in (4.145), leading to

β̂RZE = (X ′(Σ̂ ⊗ I)−1X)−1(X ′(Σ̂ ⊗ I)−1y). (4.146)

Unrestricted Zellner’s Estimator (UZE)

Define the T × K-matrix X̃ = (X1, . . . , XM ) and let ε̃i = yi −
X̃(X̃ ′X̃)−1X̃ ′yi be the residual in the regression of yi on X̃, (i = 1, . . . , M).
Then σij is estimated by

σ̃ij = ε̃′
iε̃j/(T − K)

resulting in Σ̃ = (σ̃ij) and leading to the estimator

β̂UZE = (X ′(Σ̃ ⊗ I)−1X)−1(X ′(Σ̃ ⊗ I)−1y) . (4.147)

When the random vectores εi are symmetrically distributed around the
mean vector, Kakwani (1967) has pointed out that the estimators β̂RZE

and β̂UZE are unbiased for β provided that E(β̂RZE) and E(β̂UZE) exist.
Srivastava and Raj (1979) have derived some conditions for the existence
of these mean vectors; see also Srivastava and Giles (1987). Further, if the
underlying distribution is normal, Srivastava (1970) and Srivastava and
Upadhyaha (1978) have observed that both the estimators have identical
variance-covariance matrices to order T−2. When the distribution is nei-
ther symmetric nor normal, both the estimators are generally biased; see
Srivastava and Maekawa (1995) for the effect of departure from normality
on the asymptotic properties.

4.7 Simultaneous Parameter Estimation by
Empirical Bayes Solutions

4.7.1 Overview
In this section, the empirical Bayes procedure is employed in simultaneous
estimation of vector parameters from a number of linear models. It is shown
that with respect to quadratic loss function, empirical Bayes estimators are
better than least squares estimators. While estimating the parameter for
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a particular linear model, a suggestion shall be made for distinguishing
between the loss due to decision makers and the loss due to individuals.

We consider k linear models

yi = Xβi + ε , i = 1, . . . , k , (4.148)

where yi is a T -vector of observations, X is a known (T × K)-matrix with
full rank, and βi is a K-vector and εi is a T -vector of unobservable random
variables. We assume

E(εi|βi) = 0 , D(εi|βi) = σ2V , (4.149)

and assume the following prior distribution of βi

E(βi) = β , D(βi) = F , cov(βi, βj) = 0 , i �= j , (4.150)

where V is of full rank and known. The following problem of simultaneous
estimation of p′βi, i = 1, . . . , k, where p is any given vector, will be con-
sidered. We note that the problem of estimating βi is the same as that of
estimating a general linear function p′βi. If we use the MDE-I criterion in
estimating p′βi, we automatically obtain estimates of βi with a minimum
mean dispersion error matrix (MDE).

Such a problem of simultaneous estimation arises in the construction
of a selection index for choosing individuals with a high intrinsic genetic
value. For instance, βi may represent unknown genetic parameters and xi

be observable characteristics on the ith individual, while p′βi for a given p
is the genetic value to be estimated in terms of observed yi.

We use the following notations and results throughout this section.
Consider a linear model

y = Xβ + ε , (4.151)

where β is a K-vector of unknown parameters, E(ε) = 0, and D(ε) = σ2V .
To avoid some complications, let us assume that V is nonsingular and the
rank of X is K.

The least squares estimator of β is

β(l) = (X ′V −1X)−1X ′V −1y (4.152)

and a ridge regression estimator of β is

β(r) = (G + X ′V −1X)−1X ′V −1y (4.153)

for some chosen nonnegative definite matrix G. (Ridge regression estima-
tor was introduced in Section 3.10.2 in the special case V = I with the
particular choice G = k2I.) It may be noted that

β(r) = Tβ(l) (4.154)

where T = (G + X ′V −1X)−1X ′V −1X has all its eigenvalues less than
unity if G is not the null matrix. The following matrix identities, which are
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variants of Theorem A.18. (iii), will prove useful:

(V + XFX ′)−1 = V −1 − V −1X(X ′V −1X + F−1)−1X ′V −1(4.155)
(V + XF )−1 = V −1 − V −1X(I + FV −1X)−1FV −1 (4.156)

(V + F )−1 = V −1 − V −1(V −1 + F−1)−1V −1 . (4.157)

4.7.2 Estimation of Parameters from Different Linear Models
Let us consider k linear models yi = Xβi + εi, i = 1, . . . , k as mentioned
in (4.148) with assumptions (4.149) and (4.150). We shall find a0, a1 such
that

E(p′βi − a0 − a′
1yi)2 (4.158)

is a minimum for each i for given p. The problem as stated is easily solvable
when σ2, β, and F are known. We shall review known results and also
consider the problem of estimation when σ2, β, and F are unknown but
can be estimated.

Case 1 (σ2, β, and F are known)

Theorem 4.8 The optimum estimator of p′βi in the sense of (4.158) is p′β(b)
i

where β
(b)
i can be written in the following alternative forms (where U =

(X ′V −1X)−1)

β
(b)
i = β + FX ′(XFX ′ + σ2V )−1(yi − Xβ) (4.159)

= β + (σ2F−1 + U−1)−1X ′V −1(yi − Xβ) (4.160)

= (σ2F−1 + U−1)−1σ2F−1β + β
(r)
i (4.161)

= β + F (F + σ2U)−1(β(l)
i − β) (4.162)

= σ2U(F + σ2U)−1β + F (F + σ2U)−1β
(l)
i (4.163)

= β
(l)
i − σ2U(F + σ2U)−1(β(l)

i − β) , (4.164)

where β
(r)
i is the ridge regression estimator as defined in (4.153) with G =

σ2F−1. The prediction error is p′Qp where

Q = σ2(σ2F−1 + U−1)−1 (4.165)
= σ2F (F + σ2U)−1U (4.166)
= σ2(U − σ2U(F + σ2U)−1U) . (4.167)

Some of the results are proved in Rao (1974) and others can be easily
deduced using the identities (4.155)–(4.157). We shall refer to β

(b)
i as the

Bayes estimator of βi with parameters of its prior distribution as defined
in (4.150). We make the following observations.
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Note 1: It may be noted that the ridge regression estimator (4.153) origi-
nally defined with V = I and G = k2I is the Bayes estimator when the prior
distribution of the regression parameter has 0 (null vector) as the mean and
σ2k2I as the dispersion matrix. More generally, we find from (4.161) that
the ridge regression estimator as defined in (4.153) is the Bayes estimator
when the mean and dispersion matrix of prior distribution are the null
vector and σ2G−1, respectively.

Note 2: The Bayes estimator of βi is a weighted linear combination of its
least squares estimator and the mean of its prior distribution.

Note 3: The estimator β
(b)
i as defined in Theorem 4.8 is optimum in the

class of linear estimators. However, it is optimum in the entire class of
estimators if the regression of βi on yi is linear. A characterization of the
prior distribution of βi is obtained in Rao (1974) using the property that
the regression of βi on yi is linear.

Note 4: The matrix

E(β(l)
i − βi)(β

(l)
i − βi)′ − E(β(b)

i − βi)(β
(b)
i − βi)′ (4.168)

is nonnegative definite, where βl
i is the least squares estimator βi in the ith

model. Of course, the Bayes estimator has the minimum MDE compared
to any other linear estimator.

Thus when σ2, β, and F are known, p′βi is estimated by p′β(b)
i for i =

1, . . . , k, and the compound loss

E
k∑
i

(p′βi − p′β(b)
i )2 (4.169)

is minimum compared to any other set of linear estimators. We shall
consider the modifications to be made when σ2, β, and F are unknown.

Note 5: It may be noted that for fixed βi, the expected value of (4.168) may
not be nonnegative definite. Indeed, the optimality of the Bayes estimator
over the least squares estimator is not uniform for all values of βi. It is true
only for a region of βi such that ‖ βi − β ‖, the norm of βi − β where β is
the chosen prior mean of βi, is less than a preassigned quantity depending
on σ2, F , and U .

Case 2 (σ2, β, and F are unknown)

When σ2, β, and F are unknown, we shall substitute for them suitable
estimates in the formulae (4.159)–(4.164) for estimating βi. The following
unbiased estimates σ2

∗, β∗, and F∗ of σ2, β, and F , respectively are well
known.

kβ∗ =
k∑
1

β
(l)
i (4.170)
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k(T − K)σ2
∗ =

k∑
1

(y′
iV

−1yi − y′
iV

−1Xβ
(l)
i ) = W (4.171)

(k − 1)(F∗ + σ2
∗U) =

k∑
1

(β(l)
i − β∗)(β

(l)
i − β∗)′ = B. (4.172)

By substituting constant multiplies of these estimators for σ2, β, and F in
(4.164), we obtain the empirical Bayes estimator of p′βi as p′β(c)

i , where
β

(c)
i is

β
(c)
i = β

(l)
i − cWUB−1(β(l)

i − β∗), i = 1, . . . , k, (4.173)

with c = (k − K − 2)/(kT − kK + 2) as determined in (4.185).

Theorem 4.9 Let βi and εi have multivariate normal distributions, in which
case W and B are independently distributed with

W ∼ σ2χ2(kT − kK) (4.174)
B ∼ WK(k − 1, F + σ2U) (4.175)

that is, as chi-square on k(T −K) degrees of freedom and Wishart on (k−1)
degrees of freedom, respectively. Then

E
k∑

i=1

(β(c)
i − βi)(β

(c)
i − βi)′

= kσ2U − σ4k(T − K)(k − K − 2)
k(T − K) + 2

U(F + σ2U)−1U (4.176)

for the optimum choice c = (k −K − 2)/(kT − kK +2) in (4.173) provided
k ≥ K + 2.

Proof: Consider
k∑

i=1

(β(c)
i − βi)(β

(c)
i − βi)′

=
k∑

i=1

(β(l)
i − βi)(β

(l)
i − βi)′ + c2W 2UB−1U − 2cWU

+ cW

k∑
i=1

βi(β
(l)
i − β∗)′B−1U

+ cWUB−1
k∑

i=1

(β(l)
i − β∗)β′

i . (4.177)

Let us observe that

E(W ) = k(T − K)σ2 (4.178)
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E(W 2) = k(T − K)(kT − kK + 2)σ4 (4.179)
E(B−1) = (k − K − 2)−1(F + σ2U)−1 (4.180)

E
k∑
1

βi(β
(l)
i − β∗)′B−1 = F (F + σ2U)−1 (4.181)

E B−1
k∑
1

(β(l)
i − β∗)β′

i = (F + σ2U)−1F. (4.182)

Then (4.177) reduces to

kσ2U + σ4gU(F + σ2U)−1U (4.183)

where

g =
c2k(T − K)(kT − kK + 2)

k − K − 2
− 2ck(T − K). (4.184)

The optimum choice of c in (4.184) is

c = (k − K − 2)(kT − kK + 2) , (4.185)

which leads to the value (4.176) given in Theorem 4.9.

Note 1: The results of Theorem 4.9 are generalizations of the results in the
estimation of scalar parameters considered by Rao (1974).

Note 2: Expression (4.176) for the compound loss of empirical Bayes es-
timators is somewhat larger than the corresponding expression for Bayes
estimators, which is k times (4.149), and the difference is the additional
loss due to using estimates of σ2, β, and F when they are unknown.

Note 3: If βi is estimated by β
(l)
i , then the compound MDE is

E
k∑
1

(β(l)
i − βi)(β

(l)
i − βi)′ = kσ2U (4.186)

and the difference between (4.186) and (4.176), the MDE for the empirical
Bayes estimator, is

σ4k(T − K)(k − K − 2)
k(T − K) + 2

U(F + σ2U)−1U , (4.187)

which is nonnegative definite.
Thus the expected compound loss for the estimation of p′βi, i = 1, . . . , k,

is smaller for the empirical Bayes estimator than for the least squares
estimator.

Note 4: It may be easily shown that the expectation of (4.177) for fixed
values of β1, . . . , βk is smaller than kσ2U , as in the univariate case (Rao,
1974). Thus the empirical Bayes estimators (4.173) are uniformly better
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than the least squares estimators without any assumption on the a priori
distribution of βi. The actual expression for the expectation of (4.177) for
fixed β1, . . . , βk may be written in the form

kσ2U − σ4(k − K − 2)2k(T − K)
k(T − K) + 2

E(UB−1U) , (4.188)

which gives an indication of the actual decrease in loss by using empirical
Bayes estimators.

Note 5: In the specification of the linear models we have assumed that the
dispersion matrix σ2V of the error vector is known apart from a constant
multiplier. If V is unknown, it cannot be completely estimated from the
observations y1, . . . , yk alone. However, if V has a suitable structure, it may
be possible to estimate it.

4.8 Supplements

The class of linear unbiased estimators between OLSE and GLSE.
Consider the general linear regression model

y = Xβ + ε , ε ∼ (0, σ2W ) . (4.189)

The covariance matrix σ2W of ε is assumed to be a known and positive
definite matrix.

Consider the ordinary least squares estimator (OLSE) b = (X ′X)−1X ′y
and the generalized least squares estimator (GLSE)

b(W ) = (X ′W−1X)−1X ′W−1y .

There exists a number of conditions under which OLSE and GLSE coincide.
However, an open question is the following: What is the explicit form of
all linear unbiased estimators b̃ for β in model (4.189) whose efficiency lies
between that of OLSE and GLSE, that is, b̃ = Cy + c, CX = I, and
cov(b) ≤ cov(b̃) ≤ cov

(
b(W )

)
, where “≤” denotes the Loewner ordering of

nonnegative definite matrices?

Remark. Some work in this direction was done by Amemiya (1983),
Balestra (1983), and Groß and Trenkler (1997).

4.9 Gauss-Markov, Aitken and Rao Least Squares
Estimators

Consider the linear model

y = Xβ + ε



4.9 Gauss-Markov, Aitken and Rao Least Squares Estimators 131

E(ε) = 0 , E(εε′) = σ2W

where y : T × 1, X : T × K, β : K × 1 and ε : T × 1 matrices. We review
the estimation of β and σ2 through minimization of a quadratic function
of y − Xβ, under various assumptions on the ranks of X and W .

4.9.1 Gauss-Markov Least Squares
W = I and rank(X) = K (i.e., X has full rank K)

Under these conditions, it is shown in Chapter 3 that the minimum
dispersion linear estimator of β is

β̂ = arg min
β

(y − Xβ)′(y − Xβ)

an explicit form of which is

β̂ = (X ′X)−1X ′y

with

V(β̂) = σ2(X ′X)−1 .

An unbiased estimator of σ2 is

σ̂2 = (y − Xβ̂)′(y − Xβ̂)/(T − K) .

The method is referred to as Gauss-Markov least squares.

W = I, rank(X) = s < K (i.e., X is deficient in rank)

Under these conditions the MDLE of L′β where L : K × r and R(L) ⊂
R(X ′), i. e., the linear space spanned by the columns of L is contained in
the linear space spanned by the columns X ′, is

L′β̂ = L′(X ′X)−X ′y

where

β̂ = arg min
β

(y − Xβ)′(y − Xβ)

with

V(L′β̂) = σ2L′(X ′X)−L

where in all the equations above (X ′X)− is any g-inverse of X ′X. An
unbiased estimator of σ2 is

σ̂2 = (y − Xβ̂)′(y − Xβ̂)/(T − s) .

Thus with no modification, Gauss-Markov least squares theory can be
extended to the case where X is deficient in rank, noting that only linear
functions p′β with p ⊂ R(X ′) are unbiasedly estimable.
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4.9.2 Aitken Least Squares
W is p.d. and rank(X) = K

Under these conditions, it is shown in Chapter 4 that the MDLE of β is

β̂ = arg min
β

(y − Xβ)′W−1(y − Xβ)

an explicit solution of which is

β̂ = (X ′W−1X)−1X ′W−1y

with the dispersion matrix

V(β̂) = σ2(X ′W−1X)−1 .

An unbiased estimator of σ2 is

σ̂2 = (y − Xβ̂)′W−1(y − Xβ̂)/(T − K) .

The method is referred to as Aitken least squares.

W is p.d. and rank(X) = s < K

Under these conditions, the MDLE of L′β where L satisfies the same
condition as above is

L′β̂ = L′(X ′W−1X)−X ′W−1y

where

β̂ = arg min
β

(y − Xβ)′W−1(y − Xβ)

and (X ′W−1X)− is any g-inverse of X ′W−1X. The dispersion matrix of
L′β̂ is

V(L′β̂) = σ2L′(X ′W−1X)−L .

An unbiased estimator of σ2 is

σ̂2 = (y − Xβ̂)′W−1(y − Xβ̂)/(T − s) .

Thus, Aitken least squares method can be extended to the case where X
is deficient in rank.

Now we raise the question whether the least squares theory can be ex-
tended to the case where both W and X may be deficient in rank through
minimization of a suitable quadratic function of y − Xβ. This problem is
investigated in Rao (1973b) and the solution is as follows.

4.9.3 Rao Least Squares
rank(W ) = t ≤ T , rank(X) = s ≤ K

First we prove a theorem.
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Theorem 4.10 Let R = W + XUX ′ where U is an n.n.d. matrix such that
R(W ) ⊂ R(R) and R(X) ⊂ R(R). Then

(i) X(X ′R−X)−X ′RX = X

(ii) X(X ′R−X)−X ′R−RM = 0 if X ′M = 0

(iii) tr(R−R − X(X ′R−X)−X ′) = rank(W : X) − rank(X)

where ()− is any choice of g-inverse of the matrices involved.

The results are easy to prove using the properties of g-inverses discussed
in A.12. Note that all the expressions in (i), (ii) and (iii) are invariant for
any choice of g-inverse. For proving the results, it is convenient to use the
Moore-Penrose g-inverse.

Theorem 4.11 Let β̂ be

β̂ = arg min
β

(y − Xβ)′R−(y − Xβ)

a solution of which is

β̂ = (X ′R−X)−X ′R−y

for any choice of g-inverses involved. Then:

(i) The MDLE of L′β, where L : K × r and R(L) ⊂ R(X ′), is L′β̂ with
the variance-covariance matrix

V(L′β̂) = σ2L′{(X ′R−X)− − U}L .

(ii) An unbiased estimator of σ2 is

σ̂2 = (y − Xβ̂)′R−(y − Xβ̂)/f

where f = rank(W : X) − rank(X) .

Proof: Let L = X ′C since R(L) ⊂ R(X ′). Then

E(L′β̂) = C ′X(X ′R−X)−X ′R− E(y)
= C ′X(X ′R−X)−X ′R−Xβ

= C ′Xβ = L′β ,

using (i) of Theorem 4.10, so that L′β̂ is unbiased for L′β.
Let M ′y be such that E(M ′y) = 0, i.e., M ′X = 0. Consider

Cov(L′β̂, M ′y) = σ2C ′X(X ′R−X)−X ′R−WM

= σ2C ′X(X ′R−X)−X ′R−RM

= σ2C ′X(X ′R−X)−X ′M = 0 ,

using (ii) of Theorem 4.10. This is true for all M such that E(M ′y) = 0, so
that L′β̂ has minimum variance-covariance matrix as an unbiased estimator
of L′β.
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The expression for the variance-covariance matrix of L′β̂ is

V(L′β̂) = σ2C ′X(X ′R−X)−X ′R−W (C ′X(X ′R−X)−X ′R−)′

= σ2C ′X[(X ′R−X) − U ]X ′C
= σ2L′[(X ′R−X) − U ]L

Finally

E(y − Xβ̂)′R−(y − Xβ̂) = E(y − Xβ)′R−(y − Xβ) − E(y − Xβ)′R−(Xβ − Xβ̂

= σ2tr[R−W − R−X(X ′R−X)−X ′R−W ]
= σ2trR−[I − X(X ′R−X)−X ′R−]R
= σ2[trR−R − trX(X ′R−X)−X ′R−]
= σ2[rank(W : X) − rank(X)] ,

using (iii) of Theorem 4.10 which yields to the unbiased estimate of σ2

given in Theorem 4.11.

Note 1. One choice is U = b2I where b is any constant. However, any choice
of U such that R(W + XUX ′) contains both R(W ) and R(X) will do.

Note 2. Theorem 4.11 holds in the general situation where W is n.n.d. or
p.d. and X is deficient in rank or not. Even if W is p.d., it helps in compu-
tations to choose R = (W +XX ′) in setting up the quadratic form defined
in Theorem 4.11 for minimization, and use the results of Theorem 4.11 for
estimation purposes.

Thus we have a very general theory of least squares which holds good in
all situations and which in particular, includes Gauss-Markov and Aitken
theories. Further details on unified least squares theory can be found in
Rao (1973b).

4.10 Exercises

Exercise 1. In the model y = α1+Xβ+ε, with 1 denoting a column vector
having all elements unity, show that the GLSE of α is given by

1
1′Σ1

1′[Σ − ΣX(X ′Σ−1
∗ X)−1X ′Σ−1

∗ ]y

where E(εε′) = Σ−1 and Σ−1
∗ = Σ − 1

1′Σ1Σ11′Σ.

Exercise 2. If disturbances are equicorrelated in the model of Exercise 1,
is GLSE of β equal to the LSE?

Exercise 3. In the model y = Xβ + ε with E(ε) = 0 and E(εε′) = σ2W ,
show that d = β′X ′(σ2W + Xββ′X ′)−1y is an unbiased estimator of (1 +
σ2/β′X ′W−1Xβ)−1. Find its variance.



4.10 Exercises 135

Exercise 4. If β̂ is the GLSE of β in the model y = Xβ + ε, can we express
the dispersion matrix of the difference vector (y − Xβ̂) as the difference of
the dispersion matrices of y and Xβ̂?

Exercise 5. When σ2 in the model y = Xβ + ε with E(ε) = 0 and E(εε′) =
σ2W is estimated by

σ̂2 =
(

1
T − K

)
y′[I − X(X ′X)−1X ′]y,

show that σ̂2 is not an unbiased estimator of σ2 and(
1

T − K

T−K∑
i=1

µi

)
≤ E
(

σ̂2

σ2

)
≤
(

1
T − K

T∑
i=T−K+1

µi

)
where µ1 ≤ µ2 ≤ . . . ≤ µT are the eigenvalues of W .

Exercise 6. If the disturbances in a linear regression model are au-
tocorrelated, are the residuals also autocorrelated? Is the converse
true?

Exercise 7. Suppose that the λi’s are the eigenvalues of the matrix PAP
in which

A =



1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 1


and P = I − X(X ′X)−1X ′.

Show that the Durbin-Watson statistic can be expressed as( T−K∑
i=1

λiu
2
i

/ T−K∑
i=1

u2
i

)
where the ui’s are independently and identically distributed normal random
variables with zero mean and unit variance.

Exercise 8. In the model yt = βxt + εt with E(εt) = 0 and E(ε2t ) propor-
tional to x2

t , show that the GLSE of β is the mean of ratios (yt/xt). What
happens to this result when a constant term is included in the model?

Exercise 9. In the case of stochastic regression of Section 4.6.1, consider
the least squares estimator b and instrumental variable estimator b∗. Show
that the asymptotic covariance matrix of b cannot exceed the asymptotic
covariance matrix of b∗.
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Exercise 10. Consider a seemingly unrelated regression equation model
containing only two equations, y1 = X1β1 + ε1 and y2 = X2β2 + ε2. If X2 is
a submatrix of X1, show that the GLSE of β2 is equal to the least squares
estimator. How are they related in the case of β1?



5
Exact and Stochastic Linear
Restrictions

5.1 Use of Prior Information

As a starting point, which was also the basis of the standard regression pro-
cedures described in the previous chapters, we take a T -dimensional sample
of the variables y and X1, . . . , XK . If the classical linear regression model
y = Xβ + ε with its assumptions is assumed to be a realistic picture of the
underlying relationship, then the least-squares estimator b = (X ′X)−1X ′y
is optimal in the sense that it has smallest variability in the class of linear
unbiased estimators for β.

In statistical research there have been many attempts to provide better
estimators; for example,

(i) by experimental design that provides minimal values to the variances
of certain components βi of β or the full covariance matrix σ2(X ′X)−1

through a suitable choice of X,

(ii) by the introduction of biased estimators;

(iii) by the incorporation of prior information available in the form of exact
or stochastic restrictions (cf. Chipman and Rao, 1964; Toutenburg,
1973; Yancey, Judge, and Bock, 1973; 1974);

(iv) by the methods of simultaneous (multivariate) estimation, if the
model of interest may be connected with a system of other linear equa-
tions (cf. Nagar and Kakwani, 1969; Goldberger, Nagar, and Odeh,
1961; Toutenburg and Wargowske, 1978).
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In this chapter we confine ourselves to methods related to example (iii).
Moreover, we concentrate on the classical regression model and assume that
rank(X) = K. Only in Sections 5.8 and 5.9 do we consider the dispersion
matrix of the generalized linear model, namely, E(εε′) = σ2W .

Examples of Prior Information in the Form of Restrictions

In addition to observations on the endogenous and exogenous variables
(such observations are called the sample), we now assume that we have
auxiliary information on the vector of regression coefficients. When this
takes the form of inequalities, the minimax principle (see Section 3.13) or
simplex algorithms can be used to find estimators, or at least numerical
solutions, that incorporate the specified restrictions on β. Let us assume
that the auxiliary information is such that it can be written in the form of
linear equalities

r = Rβ , (5.1)

with r a J-vector and R a J × K-matrix. We assume that r and R are
known and in addition that rank(R) = J, so that the J linear restrictions
in (5.1) are independent.

Examples of linear restrictions:

• Exact knowledge of a single component β1 of β, such as,

β1 = β∗
1 , r = (β∗

1) , R = (1, 0, . . . , 0). (5.2)

• Formulating a hypothesis on a subvector of β = (β1, β2)′ as, for
example, H0: β2 = 0 with r = Rβ and

r = 0, R = (0, I) . (5.3)

• Condition of reparameterization
∑

αi =
∑

βj = 0 in the analysis of
variance model yij = µ + αi + βj + εij :

0 = (1, . . . , 1)α = (1, . . . , 1)β . (5.4)

• Knowledge of the ratios between certain coefficients, such as, β1 : β2 :
β3 = ab : b : 1, which may be reformulated as

r =
(

0
0

)
, R =

(
1 −a 0
0 1 −b

) β1
β2
β3

 .

5.2 The Restricted Least-Squares Estimator

To use sample and auxiliary information simultaneously, we have to mini-
mize the sum of squared errors S(β) under the linear restriction r = Rβ;
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that is, we have to minimize

S(β, λ) = (y − Xβ)′(y − Xβ) − 2λ′(Rβ − r) (5.5)

with respect to β and λ. Here λ is a K-vector of Lagrangian multipliers.
Using Theorems A.91–A.93 gives

1
2

∂S(β, λ)
∂β

= −X ′y + X ′Xβ − R′λ = 0 , (5.6)

1
2

∂S(β, λ)
∂λ

= Rβ − r = 0 . (5.7)

Denoting the solution to this problem by β̂ = b(R), we get from (5.6)

b(R) = (X ′X)−1X ′y + (X ′X)−1R′λ. (5.8)

Including the restriction (5.7) yields

Rb(R) = r = Rb + R(X ′X)−1R′λ, (5.9)

and, using R(X ′X)−1R′ > 0 (cf. Theorem A.39 (vi)), the optimal λ is
derived as

λ̂ = (R(X ′X)−1R′)−1(r − Rb) . (5.10)

Inserting λ̂ in (5.8) and using the abbreviation S = X ′X, we get

b(R) = b + S−1R′[RS−1R′]−1(r − Rb) . (5.11)

The restricted least-squares estimator (RLSE) b(R) is the sum of the unre-
stricted LSE b and a correction term that makes sure the exact restriction
r = Rβ holds for the estimator of β

Rb(R) = Rb + [RS−1R′][RS−1R′]−1(r − Rb)
= r . (5.12)

Moments of b(R):

If r = Rβ holds, then b(R) is unbiased:

E
(
b(R)
)

= β + S−1R′[RS−1R′]−1(r − Rβ)
= β .

Moreover, we have

V
(
b(R)
)

= σ2S−1 − σ2S−1R′[RS−1R′]−1RS−1, (5.13)

which shows that the covariance matrix of b(R) depends only on R. It is
seen that the estimator b(R) always has a smaller variance compared with
the estimator b in the following sense:

V(b) − V
(
b(R)
)

= σ2S−1R′[RS−1R′]−1RS−1 ≥ 0 . (5.14)

Therefore, the use of exact linear restrictions leads to a gain in efficiency.
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Remark: It can be shown that b(R) is the best linear unbiased estimator
of β in the class

{β̂ = Cy + Dr} =
{

β̂ = (C, D)
(

y
r

)}
of linear estimators (cf. Theil, 1971, p. 536; Toutenburg, 1975b, p. 99). This
class of estimators is heterogeneous in y (i.e., β̂ = Cy + d with d = Dr)

but homogeneous in
(

y
r

)
.

Special Case: Exact Knowledge of a Subvector

The comparison of a submodel y = X1β1 + ε with a full model y = X1β1 +
X2β2 + ε was fully discussed in Section 3.7.

In the submodel we have β2 = 0, which may be written as r = Rβ with

r = 0, R = (0, I). (5.15)

Let

S =
(

X ′
1X1 X ′

1X2
X ′

2X1 X ′
2X2

)
, S−1 =

(
S11 S12

S21 S22

)
,

where the Sij may be taken from (3.94). Let b1 and b2 denote the compo-
nents of b corresponding to β1 and β2 (see (3.98)). Then the restricted LSE
b(R) from (5.11) for the restriction (5.15) may be given in a partitioned
form:

b(0, I) =
(

b1
b2

)
−
(

S11 S12

S21 S22

)(
0
I

)
×
[
(0, I)

(
S11 S12

S21 S22

)(
0
I

)]−1

(0, I)
(

b1
b2

)
=
(

b1 − S12(S22)−1b2
b2 − S22(S22)−1b2

)
=
(

(X ′
1X1)−1X ′

1y
0

)
.

We have used (S22)−1 = (D−1)−1 = D and formula (3.99).

As a component of the restricted LSE under the restriction (0, I)
(

β1
β2

)
= 0, the subvector β1 is estimated by the OLSE of β1 in the submodel

β̂1 = (X ′
1X1)−1X ′

1y , (5.16)

as can be expected.
If β2 = β∗

2 �= 0 is given as exact prior information, then the restricted
estimator has the form

b(0, I) =
(

β̂1
β∗

2

)
. (5.17)
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5.3 Stepwise Inclusion of Exact Linear Restrictions

The set r = Rβ of linear restrictions has J < K linearly independent
restrictions

rj = R′
jβ , j = 1, . . . , J. (5.18)

Here we shall investigate the relationships between the restricted least-
squares estimators for either two nested (i.e., linearly dependent) or two
disjoint (i.e., independent) sets of restrictions.

Assume r1 = R1β and r2 = R2β to be disjoint sets of J1 and J2 exact
linear restrictions, respectively, where J1 + J2 = J . We denote by

r =
(

r1
r2

)
=
(

R1
R2

)
β = Rβ (5.19)

the full set of restrictions. Let us assume full column ranks, that is, rank(R1)
= J1, rank(R2) = J2, and rank(R) = J . If b(R1), b(R2), and b(R) are the
restricted LSEs corresponding to the restriction matrices R1, R2, and R,
respectively, we obtain

V
(
b(R)
) ≤ V

(
b(Ri)

) ≤ V(b) , i = 1, 2 (5.20)

(in the sense that the difference of two dispersion matrices is nonnegative
definite).

The relationships V(b) − V
(
b(Ri)

) ≥ 0 and V(b) − V
(
b(R)
) ≥ 0 are a

consequence of (5.14). Hence, we have to check that

V
(
b(R1)

)− V
(
b(R)
) ≥ 0 (5.21)

holds true, which implies that adding further restrictions to a set of
restrictions generally leads to a gain in efficiency.

Using the structure of (5.19), we may rewrite the restricted LSE for the
complete set r = Rβ as follows:

b(R) = b + S−1(R′
1, R

′
2)
(

R1S
−1R′

1 R1S
−1R′

2
R2S

−1R′
1 R2S

−1R′
2

)−1(
r1 − R1b
r2 − R2b

)
.

(5.22)
With the abbreviations

A = RS−1R′ =
(

E F
F ′ G

)
(5.23)

R1S
−1R′

1 = E, R1S
−1R′

2 = F,

R2S
−1R′

2 = G, H = G − F ′E−1F (5.24)

(E is nonsingular since rank(R1) = J1), and using Theorem A.19, we get
the following partitioned form of the dispersion matrix (5.13) of b(R):

σ−2 V
(
b(R)
)

= S−1 − S−1(R′
1, R

′
2)

×
(

E−1 + E−1FH−1F ′E−1 −E−1FH−1

−H−1F ′E−1 H−1

)
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×
(

R1
R2

)
S−1. (5.25)

Now, the covariance of b(R1) and b(R) is

E(b(R1) − β)(b(R) − β)′ = cov
(
b(R1), b(R)

)
. (5.26)

Using

b(R1) − β = S−1(I − R′
1E

−1R1S
−1)X ′ε , (5.27)

b(R) − β = S−1(I − (R′
1, R

′
2)A

−1
(

R1
R2

)
S−1)X ′ε (5.28)

along with

(I, E−1F )A−1 = (E−1, 0) (5.29)

R′
1(I, E−1F )A−1

(
R1
R2

)
= R′

1E
−1R1 , (5.30)

we arrive at the following result:

cov
(
b(R1), b(R)

)
= V
(
b(R)
)
. (5.31)

By Theorem A.41 (v), we know that(
b(R1) − b(R)

)(
b(R1) − b(R)

)′ ≥ 0

holds for any sample and, hence, for the expectation also.
Now, using (5.31), we get the relationship (5.21):

E[b(R1) − β − (b(R) − β)][b(R1) − β − (b(R) − β)]′

= V
(
b(R1)

)
+ V
(
b(R)
)− 2 cov

(
b(R1), b(R)

)
= V

(
b(R1)

)− V
(
b(R)
) ≥ 0 . (5.32)

Thus we find the following result:

Theorem 5.1 Let us assume that a set of exact linear restrictions r1 = R1β
with rank(R1) = J1 is available. Now if we add another independent set
r2 = R2β with rank(R2) = J2, and rank(R) = J = J1 + J2, then the
restricted LSEs b(R1) and b(R) are unbiased with

V
(
b(R1)

)− V
(
b(R)
) ≥ 0 . (5.33)

Hence, a stepwise increase of a set of exact restrictions by adding inde-
pendent restrictions results in a stepwise decrease of variance in the sense
of relation (5.33).

Remark: The proof may be given, alternatively, as follows.
The matrices R1 and R are connected by the following linear transform:

R1 = PR with P = (I, 0). (5.34)
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Using the partitioned matrix A from (5.25), the difference of the covariance
matrices may be written as

σ−2
[
V
(
b(R1)

)− V
(
b(R)
)]

= S−1R′(RS−1R′)−1RS−1 − S−1R′
1(R1S

−1R′
1)

−1R1S
−1

= S−1R′(A−1 − P ′(PAP ′)−1P )RS−1. (5.35)

By assumption we have rank(R) = J . Then (see Theorem A.46) this differ-
ence becomes nonnegative definite if and only if A−1 − P ′(PAP ′)−1P ≥ 0
or, equivalently (Theorem A.67), if

R(P ′PA−1) ⊂ R(A−1) , (5.36)

which holds trivially.

Comparison of b(R1) and b(R2)

Let us now investigate the relationship between the restricted least squares
estimators for the two sets of restrictions

rj = Rjβ , rank(Rj) = Jj (j = 1, 2). (5.37)

The corresponding estimators are (j = 1, 2)

b(Rj) = b + S−1R′
j(RjS

−1R′
j)

−1(rj − Rjb). (5.38)

With the abbreviations

Aj = RjS
−1R′

j , (5.39)

Gj = S−1R′
jA

−1
j RjS

−1 , (5.40)

we get (cf. (5.13))

V
(
b(Rj)

)
= σ2(S−1 − Gj). (5.41)

The restricted LSE b(R2) is better than b(R1) if

C = V
(
b(R1)

)− V
(
b(R2)

)
= σ2(G2 − G1)
= σ2S−1(R′

2A
−1
2 R2 − R′

1A
−1
1 R1)S−1 ≥ 0 (5.42)

or, equivalently, if R′
2A

−1
2 R2 − R′

1A
−1
1 R1 ≥ 0.

Theorem 5.2 (Trenkler, 1987) Under the assumptions (5.37) we have

R′
2A

−1
2 R2 − R′

1A
−1
1 R1 ≥ 0 (5.43)

if and only if there exists a J1 × J2-matrix P such that

R1 = PR2. (5.44)



144 5. Exact and Stochastic Linear Restrictions

Proof: Use Theorem A.58 and define M = R′
2A

− 1
2

2 and N = R′
1A

− 1
2

1 .
(i) Assume (5.43) and use Theorem A.58. Hence, there exists a matrix H
such that

N = MH .

Therefore, we have

R′
1A

− 1
2

1 = R′
2A

− 1
2

2 H ,

or, equivalently,

R1 = A
1
2
1 H ′A− 1

2
2 R2 = PR2

with the J1 × J2-matrix

P = A
1
2
1 H ′A− 1

2
2 .

(ii) Assume R1 = PR2. Then we may write the difference (5.43) as

R′
2A

− 1
2

2 (I − F )A− 1
2

2 R2 , (5.45)

where the matrix F is defined by

F = A
1
2
2 P ′(PA2P

′)−1PA
1
2
2 , (5.46)

which is symmetric and idempotent. Hence, I−F is idempotent, too. Using
the abbreviation B = R′

2A
− 1

2
2 (I−F ), the difference (5.45) becomes BB′ ≥ 0

(see Theorem A.41).

Corollary 1 to Theorem 5.2: If R1 = PR2 with rank(R1) = J1 holds, it is
necessary that J1 ≤ J2 and rank(P ) = J1. Moreover, we have r1 = Pr2.

Proof: From Theorem A.23 (iv), we know that in general rank(AB) ≤
min(rank(A), rank(B)). By applying this to our problem, we obtain

rank(PR2) ≤ min(rank(P ), rank(R2))
= min(rank(P ), J2) .

J1 = rank(P )

as rank(R1) = rank(PR2) = J1 ⇒ J1 ≤ J2. From r1 = R1β and R1 =
PR2, we may conclude that

r1 = PR2β = Pr2 .

Note: We may confine ourselves to the case J1 < J2 since J1 = J2 entails
the identity of the restrictions r1 = R1β and r2 = R2β as well as the
identity of the corresponding estimators. This fact is seen as follows:

The relation R1 = PR2 with rank(P ) = J1 = J2 implies the existence
of P−1, so that R2 = P−1R1 and r2 = P−1r1 hold. Therefore r2 = R2β
is equivalent to P−1(r1 − R1β) = 0 (i.e., r1 = R1β). For R1 = PR2 with
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P : J1 × J1 and rank(P ) = J1 = J2, we may check the equivalence of the
estimators immediately:

b(R2) = b + S−1R′
1P

−1(P−1R1S
−1R′

1P
−1)−1

× (P−1r1 − P−1R1b)
= b(R1) .

The case J1 < J2: As we have remarked before, any linear restriction is
invariant with respect to multiplication by a nonsingular matrix C: J2×J2,
that is, the conditions

r2 = R2β and Cr2 = CR2β

are equivalent. We make use of this equivalence and make a special choice of
C. Let us assume that R1 = PR2 with P a J1 ×J2-matrix of rank(P ) = J1.
We choose a matrix Q of order (J2 − J1) × J2 and rank(Q) = J2 − J1
such that C ′ = (Q′, P ′) has rank(C ′) = J2. (The matrix Q is said to be
complementary to the matrix P .) Letting Qr2 = r3 and QR2 = R3, we
have

Cr2 =
(

Qr2
Pr2

)
=
(

r3
r1

)
,

CR2 =
(

QR2
PR2

)
=
(

R3
R1

)
.

It is interesting to note that if two linear restrictions r1 = R1β and r2 =
R2β are connected by a linear transform R1 = PR2, then we may assume
that r1 = R1β is completely contained in r2 = R2β. Hence, without loss of
generality, we may choose P = (I, 0).

Corollary 2 to Theorem 5.2: The set of restrictions

r1 = R1β, r2 = R2β, R1 = PR2, r1 = Pr2 ,
rank(P ) = J1 < J2

}
(5.47)

and

r1 = R1β, r2 =
(

r1
r3

)
=
(

R1
R3

)
β = R2β, (5.48)

with r3 = Qr2, R3 = QR2, and Q complementary to P are equivalent.
We may therefore conclude from Theorem 5.2 that two exact linear re-

strictions are comparable by their corresponding restricted LSEs if and only
if R1 = PR2 and rank(P ) = J1 < J2. The special case P = (I, 0) describes
the nested situation

R2 =
(

R1
R3

)
, r2 =

(
r1
r3

)
. (5.49)



146 5. Exact and Stochastic Linear Restrictions

5.4 Biased Linear Restrictions and MDE
Comparison with
the OLSE

If, in addition to the sample information, a linear restriction r = Rβ is
included in the analysis, it is often imperative to check this restriction by
the F -test for the hypothesis H0: Rβ = r (see Section 3.7). A rejection of
this hypothesis may be caused either by a nonstochastic bias δ,

r = Rβ + δ with δ �= 0 , (5.50)

or by a nonstochastic bias and a stochastic effect,

r = Rβ + δ + Φ, Φ ∼ (0, σ2V ). (5.51)

If there is a bias vector δ �= 0 in the restriction, then the restricted LSE
b(R) becomes biased, too. On the other hand, the covariance matrix of
b(R) is not affected by δ, and in any case b(R) continues to have smaller
variance than the OLSE b (see (5.14)). Therefore, we need to investigate
the influence of δ on the restricted LSE b(R) by using its mean dispersion
error.

Under assumption (5.50), we have

E
(
b(R)
)

= β + S−1R′(RS−1R′)−1δ . (5.52)

Using the abbreviations

A = RS−1R′ = A
1
2 A

1
2 (5.53)

and

H = S−1R′A−1 , (5.54)

we may write

Bias(b(R), β) = Hδ , (5.55)
V
(
b(R)
)

= V(b) − σ2HAH ′ , (5.56)

M(b(R), β) = V(b) − σ2HAH ′ + Hδδ′H ′ . (5.57)

We study the MDE comparison according to the following criteria.

MDE-I Criterion

From Definition 3.10, we know that the biased estimator b(R) is MDE-I-
better than the unbiased estimator b if

∆
(
b, b(R)

)
= V(b) − V

(
b(R)
)− (Bias(b(R), β)

)(
Bias(b(R), β)

)′
= σ2H(A − σ2δδ′)H ′ ≥ 0 (5.58)

or, as rank(R) = J according to Theorem A.46, if and only if

A − σ−2δδ′ ≥ 0. (5.59)



5.4 Biased Linear Restrictions and MDE Comparison withthe OLSE 147

This is seen to be equivalent (Theorem A.57, Theorem 5.7) to the following
condition:

λ = σ−2δ′A−1δ = σ−2δ′(RS−1R′)−1δ ≤ 1 . (5.60)

(Toro-Vizcarrondo and Wallace (1968,1969) give an alternative proof.)

Definition 5.3 (MDE-II criterion; first weak MDE criterion)
Let β̂1 and β̂2 be two competing estimators. The estimator β̂2 is said to
be MDE-II-better than the estimator β̂1 if

E(β̂1 − β)′(β̂1 − β) − E(β̂2 − β)′(β̂2 − β) = tr
{
∆(β̂1, β̂2)

} ≥ 0 . (5.61)

If β̂2 is MDE-I-better than β̂1, then β̂2 is also MDE-II-better than β̂1,
since ∆ ≥ 0 entails tr{∆} ≥ 0. The reverse conclusion does not necessar-
ily hold true. Therefore, the MDE-II criterion is weaker than the MDE-I
criterion.

Direct application of the MDE-II criterion to the comparison of b(R) and
b gives (cf. (5.58))

tr
{

∆
(
b, b(R)

)}
= σ2 tr{HAH ′} − δ′H ′Hδ ≥ 0

if and only if

δ′H ′Hδ ≤ σ2 tr{HAH ′}
= tr{V(b) − V

(
b(R)
)} . (5.62)

Hence, the biased estimator b(R) is MDE-II-better than the unbiased OLSE
b if and only if the squared length of the bias vector of b(R) is less than
the total decrease of variance of b(R).

With the abbreviation X ′X = S, we have H ′SH = A−1, and therefore
δ′H ′SHδ = δ′A−1δ = σ2λ with λ from (5.60). Using Theorem A.56 and
assuming δ �= 0, we may conclude that

dK ≤ δ′H ′SHδ

δ′H ′Hδ
≤ d1 (5.63)

where d1 ≥ . . . ≥ dK > 0 are the eigenvalues of S > 0.
Then we have the following upper bound for the left-hand side of (5.62):

δ′H ′Hδ ≤ d−1
K δ′A−1δ = d−1

K σ2λ . (5.64)

Therefore, a sufficient condition for (5.62) to hold is (cf. Wallace, 1972)

λ ≤ dK tr{HAH ′}
= dK tr{S−1R′(RS−1R′)−1RS−1}
= λ0 (say) . (5.65)

Definition 5.4 (MDE-III criterion; second weak MDE criterion) β̂2 is said to
be MDE-III-better than β̂1 if

E(Xβ̂1 − Xβ)′(Xβ̂1 − Xβ) − E(Xβ̂2 − Xβ)′(Xβ̂2 − Xβ)
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= E(β̂1 − β)′S(β̂1 − β) − E(β̂2 − β)′S(β̂2 − β)

= tr{S∆(β̂1, β̂2)} ≥ 0 . (5.66)

Note: According to Definition 3.9 we see that MDE-III superiority is
equivalent to R(S) superiority.

Applying criterion (5.66) to b(R) and b, we see that b(R) is MDE-III-
better than b if

tr{S∆
(
b, b(R)

)} = σ2 tr{SS−1R′(RS−1R′)−1RS−1} − δ′A−1δ

= σ2(tr{IJ} − λ)
= σ2(J − λ) ≥ 0 ;

that is, b(R) is preferred if

λ ≤ J . (5.67)

It may be observed that for J ≥ 2 the MDE-III criterion is weaker than
the MDE-I criterion. If J = 1, both criteria become equivalent.

Theorem 5.5 Let us suppose that we are given a biased linear restriction
(r − Rβ = δ). Then the biased RLSE b(R) is better than the unbiased
OLSE b by

(i) MDE-I criterion if
λ ≤ 1 (necessary and sufficient),

(ii) MDE-II criterion if
λ ≤ λ0 (λ0 from (5.65)) (sufficient), and

(iii) MDE-III criterion if
λ ≤ J (necessary and sufficient),
where λ = σ−2(r − Rβ)′(RS−1R′)−1(r − Rβ) .

To test the conditions λ ≤ 1 (or λ0 or J), we assume ε ∼ N(0, σ2I) and
use the test statistic

F =
1

Js2 (r − Rb)′(RS−1R′)−1(r − Rb) , (5.68)

which has a noncentral FJ,T−K(λ)-distribution. The test statistic F pro-
vides a uniformly most powerful test for the MDE criteria (Lehmann, 1986).
We test the null hypothesis

H0: λ ≤ 1 (or ≤ λ0 or ≤ J)

against the alternative

H1: λ > 1 (or > λ0 or > J)

based on the decision rule
do not reject H0 if F ≤ FJ,T−K,1−α(1) ,

or F ≤ FJ,T−K,1−α(λ0) ,
or F ≤ FJ,T−K,1−α(J) ,
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respectively, and reject otherwise.

5.5 MDE Matrix Comparisons of Two Biased
Estimators

Up to now we have investigated the relationship between two unbiased
RSLEs (Section 5.3) and the relationship between a biased and an unbiased
estimator (Section 5.4).

The problem of the MDE comparison of any two estimators is of central
interest in statistics. Therefore, we now present a systematic overview of the
situations that are to be expected, especially if any two biased estimators
have to be compared. This overview comprises the development during the
past decade. One of the main results is a matrix theorem of Baksalary and
Kala (1983). In this context the investigations of Teräsvirta (1982, 1986)
and Trenkler (1985) should also be mentioned. In the following we use the
general framework developed in Trenkler and Toutenburg (1990).

Suppose we have available an estimator t for a parameter vector θ ∈ Rp.
We do not assume that t is necessarily unbiased for θ, that is, E(t) may be
different from θ for some θ.

We denote by

D(t) = E
(
t − E(t)

)(
t − E(t)

)′ = V(t) (5.69)

the dispersion matrix of t and by

d = Bias(t, θ) = E(t) − θ (5.70)

the bias vector of t.
Then the mean dispersion error matrix of t is (cf. (3.45)) given by

M(t, θ) = D(t) + dd′. (5.71)

Let us consider two competing estimators, t1 and t2, of θ. We say that t2
is superior to t1 (i.e., t2 is MDE-I-better than t1; cf. Definition 3.4) if

∆(t1, t2) = M(t1, θ) − M(t2, θ) (5.72)

is a nonnegative-definite (n.n.d.) matrix, that is, ∆(t1, t2) ≥ 0.
In case the matrix ∆(t1, t2) is positive definite (p.d.), we may give the

following definition.

Definition 5.6 t2 is said to be strongly MDE-better (or strongly MDE-I-
better) than t1 if ∆(t1, t2) > 0 (positive definite).

For notational convenience, let us define

di = Bias(ti, θ) (i = 1, 2) , (5.73)
D(ti) = V(ti) (i = 1, 2) , (5.74)

D = D(t1) − D(t2) . (5.75)
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Then (5.72) becomes

∆(t1, t2) = D + d1d
′
1 − d2d

′
2 . (5.76)

In order to inspect whether ∆(t1, t2) is n.n.d. or p.d., we may confine
ourselves to two cases:

Condition 1: D > 0 ,

Condition 2: D ≥ 0 .

Note that it is possible that ∆(t1, t2) ≥ 0 although condition 1 or condition
2 has not been satisfied; however, this is very rarely the case. Hence, we
shall concentrate on these two realistic situations.

As d1d
′
1 ≥ 0, it is easy to see that

D > 0 ⇒ D + d1d
′
1 > 0 ,

D ≥ 0 ⇒ D + d1d
′
1 ≥ 0 .

Hence the problem of deciding whether ∆(t1, t2) > 0 or ∆(t1, t2) ≥ 0
reduces to that of deciding whether a matrix of type

A − aa′ (5.77)

is positive or nonnegative definite when A is positive or nonnegative
definite.

Condition 1: D > 0

Let A > 0. Then we have (cf. A.57) the following result.

Theorem 5.7 (Farebrother, 1976) Suppose that A is p.d. and a is a compat-
ible column vector. Then A − aa′ > (≥) 0 if and only if a′A−1a < (≤
) 1.

Direct application of Theorem 5.7 to the matrix ∆(t1, t2) specified by
(5.76) gives the following result:

Theorem 5.8 Suppose that the difference D = D(t1)−D(t2) of the dispersion
matrices of the estimators t1 and t2 is positive definite. Then t2 is strongly
MDE-I-superior to t1 if and only if

d′
2(D + d1d

′
1)

−1d2 < 1 , (5.78)

and t2 is MDE-I-better than t1 if and only if

d′
2(D + d1d

′
1)

−1d2 ≤ 1 . (5.79)

By Theorem A.18 (iv) (Rao, 1973a, p. 33) we may write

(D + d1d
′
1)

−1 = D−1 − D−1d1d
′
1D

−1

1 + d′
1D

−1d1
.

Setting

dij = d′
iD

−1dj (i, j = 1, 2), (5.80)
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we get from (5.78) and (5.79)

d′
2(D + d1d

′
1)

−1d2 = d22 − d2
12(1 + d11)−1.

Corollary 1 to Theorem 5.8 (see also Trenkler and Trenkler, 1983): Under
the assumption D > 0 we have ∆(t1, t2) > (≥) 0 if and only if

(1 + d11)(d22 − 1) < (≤) d2
12 . (5.81)

Furthermore, each of the two conditions is sufficient for ∆(t1, t2) > (≥) 0:

(i) (1 + d11)d22 < (≤) 1,

(ii) d22 < (≤) 1.

Corollary 2 to Theorem 5.8: Let D > 0 and suppose that d1 and d2 are
linearly dependent, that is, d2

12 = d11d22. Then we have ∆(t1, t2) > (≥)0 if
and only if

d22 − d11 < (≤)1. (5.82)

Corollary 3 to Theorem 5.8: Let D > 0 and suppose that t1 is unbiased for
θ, that is, d1 = 0 and d11 = d12 = 0. Then we have ∆(t1, t2) > (≥) 0 if and
only if

d22 < (≤) 1. (5.83)

Example 5.1 ((Perlman, 1972)): Let t be an estimator of θ. As a competitor
to t1 = t, consider t2 = αt1 with 0 ≤ α ≤ 1 so that t2 is of the shrinkage
type. Then D = (1 − α2) D(t1), and we have

D > 0 if and only if D(t1) > 0 ,
D ≥ 0 if and only if D(t1) ≥ 0 .

Let us suppose that t is unbiased for θ and D(t) > 0. Consider t1 = α1t and
t2 = α2t, where 0 ≤ α2 < α1 < 1. Then D(ti) = α2

i D(t) and D = D(t1) −
D(t2) = (α2

1 − α2
2) D(t) > 0. Furthermore, di = Bias(ti, θ) = −(1 − αi)θ,

(i = 1, 2), showing the linear dependence of d1 and d2. Using definition
(5.80), we get

dii =
(1 − αi)2

α2
1 − α2

2
θ′(D(t)

)−1
θ ,

which yields (cf. (5.82))

d22 − d11 =
2 − α1 − α2

α1 + α2
θ′(D(t)

)−1
θ .

Hence, from Corollary 2 to Theorem 5.8 we may conclude that

∆(α1t, α2t) > (≥) 0
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if and only if

θ′(D(t)
)−1

θ < (≤)
α1 + α2

2 − α1 − α2
.

If α1 = 1, then t1 = t is unbiased and ∆(t, α2t) > (≥) 0 holds according to
(5.83) if and only if

d22 =
1 − α2

1 + α2
θ′(D(t)

)−1
θ < (≤) 1.

Note: The case D = D(t1) − D(t2) > 0 rarely occurs in practice (except
in very special situations, as described in the above example). It is more
realistic to assume D ≥ 0.

Condition 2: D ≥ 0

MDE matrix comparisons of two biased estimators under this condition
may be based on the definiteness of a difference of matrices of type A−aa′

where A ≥ 0. Here we state a basic result.

Theorem 5.9 (Baksalary and Kala, 1983) Let A be an n.n.d. matrix and let
a be a column vector. Then A − aa′ ≥ 0 if and only if

a ∈ R(A) and a′A−a ≤ 1 , (5.84)

where A− is any g-inverse of A, that is, AA−A = A.

Note: Observe that the requirement a ∈ R(A) is equivalent to a = Ac for
some vector c. Hence, a′A−a = c′AA−Ac = c′Ac, and a′A−a is therefore
seen to be invariant to the choice of the g-inverse A−.

An application of this theorem gives the following result.

Theorem 5.10 Suppose that the difference D = D(t1) − D(t2) of the dis-
persion matrices of two competing estimators t1 and t2 is n.n.d. Then t2 is
MDE-better than t1 if and only if

(i) d2 ∈ R(D + d1d
′
1) , (5.85)

(ii) d′
2(D + d1d

′
1)

−d2 ≤ 1 , (5.86)

where di is the bias in ti, i = 1, 2, (D+d1d
′
1)

− is any g-inverse of D+d1d
′
1.

To determine a g-inverse of D+d1d
′
1, let us now consider two possibilities:

(i) d1 ∈ R(D),

(ii) d1 �∈ R(D).

If d1 ∈ R(D), a g-inverse of D + d1d
′
1 is given by (cf. Theorem A.68)

(D + d1d
′
1)

− = D− − D−d1d
′
1D

−

1 + d′
1D

−d1
. (5.87)



5.5 MDE Matrix Comparisons of Two Biased Estimators 153

Because d1 ∈ R(D), we have d1 = Df1 with a suitable vector f1. Since
we have assumed D ≥ 0, it follows that d′

1D
−d1 = f ′

1Df1 ≥ 0 and 1 +
d′
1D

−d1 > 0.
Since D ≥ 0 and d1d

′
1 ≥ 0, we get

R(D + d1d
′
1) = R(D) + R(d1d

′
1)

= R(D) + R(d1) .

Now d1 ∈ R(D) implies

R(D + d1d
′
1) = R(D) (5.88)

(cf. Theorem A.76 (ii)). Based on (5.87) and (5.88), we may state the next
result.

Corollary 1 to Theorem 5.10: Assume that d1 ∈ R(D) and d2 ∈ R(D +
d1d

′
1) = R(D), and let dij = d′

iD
−dj(i, j = 1, 2), where D− is any g-inverse

of D. Then we have

∆(t1, t2) ≥ 0 if and only if (1 + d11)(d22 − 1) ≤ d2
12 . (5.89)

Furthermore, each of the following conditions is sufficient for ∆(t1, t2) ≥ 0:

(1 + d11)d22 ≤ 1 , (5.90)
d22 ≤ 1 . (5.91)

Since both d1 and d2 belong to the range of D, there exist vectors fi

with di = Dfi (i = 1, 2) such that dij = d′
iD

−dj = f ′
iDfj ; that is, dij is

invariant to the choice of D− (cf. Theorem A.69).
It is easily seen that d2

12 = d11d22 if d1 and d2 are linearly dependent.

Corollary 2 to Theorem 5.10: Let the assumptions of Corollary 1 be valid,
and assume that d1 and d2 are linearly dependent. Then we have ∆(t1, t2) ≥
0 if and only if

d22 − d11 ≤ 1 . (5.92)

Corollary 3 to Theorem 5.10: Suppose t1 is unbiased (i.e., d1 = 0) and
d2 ∈ R(D). Then we have ∆(t1, t2) ≥ 0 if and only if

d22 ≤ 1 . (5.93)

Case d1 �∈ R(D)

In order to obtain the explicit formulation of condition (5.86), we need a
g-inverse of D + d1d

′
1. Applying Theorem A.70 gives the following result.
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Corollary 4 to Theorem 5.10: Suppose that d1 �∈ R(D) and d2 ∈ R(D +
d1d

′
1). Then ∆(t1, t2) ≥ 0 if and only if

d′
2D

+d2 − 2φ(d′
2v)(d′

2u) + γφ2(d′
2u)2 ≤ 1 , (5.94)

with the notation

u = (I − DD+)d1, v = D+d1 ,

γ = 1 + d′
1D

+d1 ,

φ = (u′u)−1.

Moreover, if d2 ∈ R(D), we immediately get

d′
2u = f ′

2D(I − DD+)d1 = f ′
2(D − DDD+)d1

= f ′
2(D − DD+D)d1 = 0

using (DD+)′ = D+D since D is symmetric.

Corollary 5 to Theorem 5.10: Assume that d1 �∈ R(D) and d2 ∈ R(D).
Then we have ∆(t1, t2) ≥ 0 if and only if

d′
2D

+d2 ≤ 1 . (5.95)

We have thus investigated conditions under which the matrix D+d1d
′
1 −

d2d
′
2 is n.n.d. in various situations concerning the relationship between d1

and d2 and the range R(D+d1d
′
1). These conditions may also be presented

in equivalent alternative forms. In Bekker and Neudecker (1989), one may
find an overview of such characterizations (cf. also Theorems A.74–A.78).

5.6 MDE Matrix Comparison of Two Linear
Biased Estimators

In Section 5.5, we investigated the MDE matrix superiority of an estimator
t2 with respect to any other estimator t1. In this section we wish to apply
these results for the case of two linear estimators b1 and b2, which is of
central interest in linear models.

Consider the standard regression model y = Xβ + ε, ε ∼ (0, σ2I)
and rank(X) = K. Let us consider two competing heterogeneous linear
estimators

bi = Ciy + ci (i = 1, 2), (5.96)

where Ci : K × T and ci : K × 1 are nonstochastic. Then it is easy to see
that

V(bi) = σ2CiC
′
i (5.97)
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di = Bias(bi, β) = (CiX − I)β + ci , (5.98)
M(bi, β) = σ2CiC

′
i + did

′
i (i = 1, 2) , (5.99)

from which the difference of the dispersion matrices of b1 and b2 becomes

D = σ2(C1C
′
1 − C2C

′
2) , (5.100)

which is symmetric.
As we have seen in Section 5.5, the definiteness of the matrix D has main

impact on the MDE superiority of b2 over b1 according to the condition

∆(b1, b2) = D + d1d
′
1 − d2d

′
2 ≥ 0 . (5.101)

Since we are interested in the case for which the matrix D is n.n.d. or p.d.,
the following characterization may be very useful.

Theorem 5.11 (Baksalary, Liski, and Trenkler, 1989) The matrix D (5.100)
is n.n.d. if and only if

(i) R(C2) ⊂ R(C1) (5.102)

and

(ii) λmax(C ′
2(C1C

′
1)

−C2) ≤ 1, (5.103)

where λmax(·) denotes the maximal eigenvalue of the matrix inside the
parantheses. This eigenvalue is invariant to the choice of the g-inverse
(C1C

′
1)

−.

Theorem 5.12 We have D > 0 if and only if

C1C
′
1 > 0 (5.104)

and

λmax(C ′
2(C1C

′
1)

−1C2) < 1. (5.105)

Proof: Assume that D > 0. Because C2C
′
2 ≥ 0 always holds, we get

C1C
′
1 = D + C2C

′
2 > 0 ,

which is regular, and we may write its inverse in the form

(C1C
′
1)

−1 = (C1C
′
1)

− 1
2 (C1C

′
1)

− 1
2 .

Applying Theorem A.39, we get

(C1C
′
1)

− 1
2 D(C1C

′
1)

− 1
2 = I − (C1C

′
1)

− 1
2 C2C

′
2(C1C

′
1)

− 1
2 > 0 . (5.106)

The eigenvalues of the p.d. matrix (C1C
′
1)

− 1
2 D(C1C

′
1)

− 1
2 are positive. Using

the properties of eigenvalues, λ(I − A) = 1 − λ(A) and λ(PP ′) = λ(P ′P ),
we find

λ
(
(C1C

′
1)

− 1
2 C2C

′
2(C1C

′
1)

− 1
2
)

= λ(C ′
2(C1C

′
1)

−1C2).
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This holds for all eigenvalues and in particular for the maximal eigen-
value. Therefore, we have proved the necessity of (5.104) and (5.105). The
proof of the sufficiency is trivial, as (5.104) and (5.105) immediately imply
relationship (5.106) and hence D > 0.

5.7 MDE Comparison of Two (Biased) Restricted
Estimators

Suppose that we have two competing restrictions on β (i = 1, 2),

ri = Riβ + δi , (5.107)

where Ri is a Ji × K-matrix of full row rank Ji.
The corresponding linearly restricted least-squares estimators are given

by

b(Ri) = b + S−1R′
i(RiS

−1R′
i)

−1(ri − Rib). (5.108)

Let S− 1
2 denote the unique p.d. square root of the matrix S−1 =

(X ′X)−1. As we have assumed that rank(Ri) = Ji, we see that the
Ji × K-matrix RiS

− 1
2 is of rank Ji. Therefore (cf. Theorem A.66), its

Moore-Penrose inverse is

(RiS
− 1

2 )+ = S− 1
2 R′

i(RiS
−1R′

i)
−1. (5.109)

Noticing that the matrix (i = 1, 2)

Pi = (RiS
− 1

2 )+RiS
− 1

2 (5.110)

is idempotent of rank Ji < K and an orthogonal projector on the column
space R(S− 1

2 R′
i), we observe that (cf. (5.55) and (5.56))

di = Bias(b(Ri), β) = S−1R′
i(RiS

−1R′
i)

−1δi

= S− 1
2 (RiS

− 1
2 )+δi , (5.111)

V
(
b(Ri)

)
= σ2S− 1

2 (I − Pi)S− 1
2 , (5.112)

where δi = Riβ − ri, i = 1, 2. Denoting P21 = P2 −P1, the difference of the
dispersion matrices can be written as

D = V
(
b(R1)

)− V
(
b(R2)

)
= σ2S− 1

2 P21S
− 1

2 (5.113)

and hence we have the following equivalence:

D ≥ 0 if and only if P21 ≥ 0 . (5.114)

Note: If we use the notation

ci = S
1
2 di = (RiS

− 1
2 )+δi , (5.115)
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we may conclude that b(R2) is MDE-I-better than b(R1) if

∆
(
b(R1), b(R2)

)
= S− 1

2 (σ2P21 + c1c
′
1 − c2c

′
2)S

− 1
2 ≥ 0

or, equivalently, if

P21 + c1c
′
1 − c2c

′
2 ≥ 0 . (5.116)

According to Theorem 5.12, we see that the symmetric K × K-matrix
P2 cannot be p.d., because P2 = S− 1

2 R′
2(R2S

−1R′
2)

−1R2S
− 1

2 is of rank
J2 < K and hence P2 is singular. Therefore, condition (5.104) does not
hold.

We have to confine ourselves to the case P21 ≥ 0. According to a result
by Ben-Israel and Greville (1974, p. 71) we have the following equivalence.

Theorem 5.13 Let P21 = P2 − P1 with P1, P2 from (5.110). Then the
following statements are equivalent:

(i) P21 ≥ 0,

(ii) R(S− 1
2 R′

1) ⊂ R(S− 1
2 R′

2),

(iii) There exists a matrix F such that R1 = FR2,

(iv) P2P1 = P1,

(v) P1P2 = P1,

(vi) P21 is an orthogonal projector.

Note: The equivalence of P21 ≥ 0 and condition (iii) has been proved in
Theorem 5.2.

Let us assume that D ≥ 0 (which is equivalent to conditions (i)–(vi)).
As in the discussion following Theorem 5.10, let us consider two cases:

(i) c1 ∈ R(P21),

(ii) c1 �∈ R(P21).

Case (i): c1 ∈ R(P21).

Since P21 is an orthogonal projector, the condition c1 ∈ R(P21) is equivalent
to

P21c1 = c1 . (5.117)

We have the following relationships for ci and Pi, i = 1, 2:

P1c1 = c1, P2c2 = c2 ,
P1c2 = c1, P2c1 = c1 .

}
(5.118)
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Proof:

P1c1 = S− 1
2 R′

1(R1S
−1R′

1)
−1R1S

− 1
2 S− 1

2 R′
1(R1S

−1R′
1)

−1δ1

= c1

P2c2 = c2 (using the above procedure)
P2c1 = P2P1c1 = P1c1 = c1 (cf. (iv))

P1c2 = S− 1
2 R′

1(R1S
−1R′

1)
−1Fδ2 = c1 (cf. (iii))

as R1 = FR2 implies r1 = Fr2 and

δ1 = r1 − R1β = F (r2 − R2β) = Fδ2 .

Thus we obtain the following result: Suppose that D ≥ 0 and c1 ∈ R(P21)
or, equivalently (cf. (5.118)),

c1 = P21c1 = P2c1 − P1c1

= c1 − c1 = 0 ,

which implies that δ1 = 0 and b(R1) unbiased. Relation (5.118) implies
P21c2 = P2c2 = c2 and, hence, c2 ∈ R(P21) and

c′
2P

−
21c2 = c′

2c2

= δ′
2(R2S

−1R′
2)

−1δ2 .

Applying Theorem 5.9 leads to the following theorem.

Theorem 5.14 Suppose that the linear restrictions r1 = R1β and r2 = R2β+
δ2 are given, and assume that

D = V
(
b(R1)

)− V
(
b(R2)

) ≥ 0 .

Then the biased estimator b(R2) is MDE-superior to the unbiased estimator
b(R1) if and only if

σ−2δ′
2(R2S

−1R′
2)

−1δ2 ≤ 1 . (5.119)

Case (ii): c1 �∈ R(P21).

The case c1 �∈ R(P21) is equivalent to c1 �= 0. Assuming D ≥ 0, we have
∆
(
b(R1), b(R2)

) ≥ 0 if and only if (5.84) is fulfilled (cf. Theorem 5.9), that
is, if and only if

c′
2(σ

2P21 + c1c
′
1)

+c2 = σ−2c′
2P21c2 + 1 ≤ 1

or, equivalently, if

P21c2 = 0 , (5.120)

that is (cf.(5.117)), if

c1 = c2 . (5.121)

This way we have prooved the following
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Theorem 5.15 Assume that δi = ri − Riβ �= 0. Then we have the following
equivalence:

∆
(
b(R1), b(R2)

) ≥ 0 if and only if Bias(b(R1), β) = Bias(b(R2), β).
(5.122)

Note: An alternative proof is given in Toutenburg (1989b).

Summary: The results given in Theorems 5.14 and 5.15 may be summed up
as follows. Suppose that we are given two linear restrictions ri = Riβ + δi,
i = 1, 2. Let b(Ri), i = 1, 2, denote the corresponding RLSEs. Assume
that the difference of their dispersion matrices is n.n.d. (i.e., V

(
b(R1)

) −
V
(
b(R2)

) ≥ 0). Then both linear restrictions are comparable under the
MDE-I criterion if

(i) δ1 = 0 (i.e., b(R1) is unbiased) or

(ii) Bias(b(R1), β) = Bias(b(R2), β).

If (ii) holds, then the difference of the MDE matrices of both estimators
reduces to the difference of their dispersion matrices:

∆
(
b(R1), b(R2)

)
= V
(
b(R1)

)− V
(
b(R2)

)
.

We consider now the special case of stepwise biased restrictions. The pre-
ceding comparisons of two RLSEs have shown the necessity of V

(
b(R1)

)−
V
(
b(R2)

)
being nonnegative definite. This condition is equivalent to R1 =

PR2 (cf. Theorems 5.2 and 5.13 (iii)). According to Corollary 2 of Theorem
5.2, we may assume without loss of generality that P = (I, 0).

Therefore, assuming V
(
b(R1)

) − V
(
b(R2)

) ≥ 0, we may specify the
competing linear restrictions as follows:

r1 = R1β , rank(R1)
J1×K

= J1 ,

r3 = R3β + δ3, rank(R3)
J3×K

= J3 ,

r2 = R2β + δ2, rank(R2)
J2×K

= J2 ,

where

r2 =

(
r1

r3

)
, R2 =

(
R1

R3

)
,

δ2 =

(
0

δ3

)
, J1 + J3 = J2 .



(5.123)

Furthermore, from Theorems 5.14 and 5.15, we know that we may confine
our attention to the case r1 − R1β = δ1 = 0.

In the following we investigate the structure of the parameter condition
(5.119) for the MDE superiority of b(R2) in comparison to b(R1). We are
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especially interested in the relationships among the competing estimators

b = S−1X ′y (unbiased)
b(R1) = b + S−1R′

1(R1S
−1R′

1)
−1(r1 − R1b)

(unbiased) (5.124)
b(R3) = b + S−1R′

3(R3S
−1R′

3)
−1(r3 − R3b)

(biased in case δ3 �= 0) (5.125)

b

(
R1
R3

)
= b + S−1(R′

1R
′
3)
((

R1
R3

)
S−1(R′

1 R′
3)
)−1

×
((

r1
r3

)
−
(

R1
R3

)
b

)
(biased in case δ3 �= 0). (5.126)

We again use the notation (cf. (5.53) and (5.54))

Ai = RiS
−1R′

i , Ai > 0 (i = 1, 2, 3)
Hi = S−1R′

iA
−1
i (i = 1, 2, 3).

Additionally, we may write (cf. (5.55))

Bias b(Ri, β) = Hiδi (i = 1, 2, 3). (5.127)

Comparison of b(R1) and b

Each of these estimators is unbiased and so b(R1) is always MDE-better
than b according to relationship (5.14):

∆
(
b, b(R1)

)
= V(b) − V

(
b(R1)

)
= σ2H1A1H

′
1

= σ2S−1R′
1A

−1
1 R1S

−1 ≥ 0 . (5.128)

Comparison of b(R3) and b

We have

∆
(
b, b(R3)

)
= S− 1

2 [σ2S− 1
2 R′

3A
−1
3 R3S

− 1
2

− S− 1
2 R′

3A
−1
3 δ3δ

′
3A

−1
3 R3S

− 1
2 ]S− 1

2

S− 1
2 R′

3A
−1
3 δ3 = σ2S− 1

2 R′
3A

−1
3 R3S

− 1
2 [σ−2(R3S

− 1
2 )+]δ3

σ2S− 1
2 R′

3A
−1
3 R3S

− 1
2 ≥ 0 .

Therefore, we may apply Theorem 5.9 and arrive at the equivalence

∆
(
b, b(R3)

) ≥ 0 if and only if λ3 = σ−2δ′
3A

−1
3 δ3 ≤ 1 . (5.129)

This condition was already deduced in (5.60) using an alternative set of
arguments.
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Comparison of b

(
R1
R3

)
and b(R1)

Using R1 = PR2, P = (I, 0), R2 =
(

R1
R3

)
, δ2 =

(
0
δ3

)
, and Theorem

A.19 allows condition (5.119) to be expressed in the form

σ−2δ′
2(R2S

−1R′
2)

−1δ2 = σ−2(0, δ′
3)
(

R1S
−1R′

1 R1S
−1R′

3
R3S

−1R′
1 R3S

−1R′
3

)−1( 0
δ3

)
= σ−2δ′

3(A3 − R3S
−1R′

1A
−1
1 R1S

−1R′
3)

−1δ3

≤ 1. (5.130)

Comparing conditions (5.129) and (5.130) gives (cf. Theorem 5.7)

σ−2δ′
3A

−1
3 δ3 ≤ σ−2δ′

3(A3 − R3S
−1R′

1A
−1
1 R1S

−1R′
3)

−1δ3. (5.131)

Summarizing our results leads us to the following.

Theorem 5.16 (Toutenburg, 1989b) Suppose that the restrictions (5.123)
hold true. Then we have these results:

(a) The biased linearly restricted estimator b

(
R1
R3

)
is MDE-better than

the unbiased RLSE b(R1) if and only if b

(
R1
R3

)
is MDE-better than

b, that is, if condition (5.130) holds.

(b) Suppose that ∆
(

b

(
R1
R3

)
, b(R1)

)
≥ 0; then necessarily

∆(b(R3), b) ≥ 0 .

Interpretation: Adding an exact restriction r1 = R1β to the model y =
Xβ+ε in any case leads to an increase in efficiency compared with the OLSE
b. Stepwise adding of another restriction r3−R3β = δ3 will further improve
the efficiency in the sense of the MDE criterion if and only if the condition
(5.130) holds. If the condition (5.130) is fulfilled, then necessarily the biased
estimator b(R3) has to be MDE-superior to b. This fact is necessary but
not sufficient.

Remark: The difference of the dispersion matrices of b(R1) and b

(
R1
R3

)
is nonnegative definite (cf. Theorem 5.2).

Using P = (I, 0), we may write the matrix F from (5.46) as

F = A
1
2
2

(
I
0

)(
(I 0)A2

(
I
0

))−1

(I, 0)A
1
2
2

= A
1
2
2

(
A−1

1 0
0 0

)
A

1
2
2 . (5.132)
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Thus we arrive at the following interesting relationship:

V
(
b(R1)

)− V
(

b

(
R1
R3

))
= σ2S−1R′

2A
− 1

2
2 (I − F )A− 1

2
2 R2S

−1

= σ2S−1R′
2A

−1
2 R2S

−1 − σ2S−1R′
1A

−1
1 R1S

−1

=
[
V(b) − V

(
b

(
R1
R3

))]
− [V(b) − V

(
b(R1)

)
] , (5.133)

which may be interpreted as follows: A decrease in variance by using the
restrictions r1 = R1β and r3 = R3β in comparison to V(b) equals a decrease
in variance by using r1 = R1β in comparison to V(b) plus a decrease in
variance by using r3 = R3β in comparison to V

(
b(R1)

)
.

Let us now apply Theorem A.19 to the partitioned matrix A2 using the
notation

U = R3 − R3S
−1R′

1A
−1
1 R1

= R3S
− 1

2 (IK − S− 1
2 R′

1A
−1
1 R1S

− 1
2 )S

1
2 . (5.134)

We see that the matrix S− 1
2 R′

1A
−1
1 R1S

− 1
2 is idempotent of rank J1. Then

(cf. Theorem A.61 (vi)) the matrix IK − S− 1
2 R′

1A
−1
1 R1S

− 1
2 is idempotent

of rank K − J1. To show rank(U) = J3, we note that J3 ≤ K − J1, that is,
J1 + J3 ≤ K is a necessary condition.

Let us use the abbreviation

Z
J3×J3

= A3 − R3S
−1R′

1A
−1
1 R1S

−1R′
3 (5.135)

so that Z is regular. Now we exchange the submatrices in the matrix A2,
call this matrix Ã2, and apply Albert’s theorem (A.74) to Ã2:

Ã2 =
(

R′
3S

−1R3 R′
3S

−1R1
R′

1S
−1R3 R′

1S
−1R1

)
=
(

A3 R′
3S

−1R1
R′

1S
−1R3 A1

)
,

which shows that Ã2 > 0 is equivalent to Z > 0 (see Theorem A.74 (ii)(b)).
By straightforward calculation, we get

V
(
b(R1)

)
) − V

(
b

(
R1
R3

))
= σ2S−1U ′Z−1US−1 ,

Bias b

((
R1
R3

)
, β

)
= −S−1U ′Z−1δ3 ,

from which the following difference of the MDE matrices becomes n.n.d.,
that is,

∆
(

b(R1), b
(

R1
R3

))
= S−1U ′Z− 1

2 [σ2I − Z− 1
2 δ3δ

′
3Z

′− 1
2 ]Z ′− 1

2 US−1 ≥ 0

(5.136)
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when rank(U) = J3 if and only if (cf. (5.130))

λ = σ−2δ′
3Z

−1δ3 ≤ 1 (5.137)

(see also Theorem 5.7).
Thus we have found an explicit presentation of the necessary and suf-

ficient condition (5.119). This result is based on the special structure of
the restrictions (5.123). A test of hypothesis for condition (5.130) can be
conducted employing the test statistic

F =
(r3 − R3b)′Z−1(r3 − R3b)

J3s2 ∼ FJ3,T−K(λ) , (5.138)

where λ is the parameter defined by (5.137). The decision rule is as follows:

do not reject H0: λ ≤ 1 if F ≤ FJ3,T−K(1) ,
reject H0: λ ≤ 1 if F > FJ3,T−K(1)

Note: Based on this decision rule, we may define a so-called pretest
estimator

b∗ =

 b

(
R1
R3

)
if F ≤ FJ3,T−K(λ) ,

b(R1) if F > FJ3,T−K(λ) .

The MDE matrix of this estimator is not of a simple structure. The the-
ory of pretest estimators is discussed in full detail in Judge and Bock
(1978). Applications of pretest procedures to problems of model choice are
given in Trenkler and Pordzik (1988) and Trenkler and Toutenburg (1992).
Dube, Srivastava, Toutenburg, and Wijekoon (1991) discuss model choice
problems under linear restrictions by using Stein-type estimators.

5.8 Stochastic Linear Restrictions

5.8.1 Mixed Estimator
In many models of practical interest, in addition to the sample information
of the matrix (y, X), supplementary information is available that often may
be expressed (or, at least, approximated) by a linear stochastic restriction
of the type

r = Rβ + φ , φ ∼ (0, σ2V ) , (5.139)

where r : J × 1, R : J × K, rank(R) = J , and R and V may be assumed to
be known. Let us at first suppose V > 0 and, hence, is regular. The vector
r may be interpreted as a random variable with expectation E(r) = Rβ.
Therefore the restriction (5.139) does not hold exactly except in the mean.
We assume r to be known (i.e., to be a realized value of the random vector)
so that all the expectations are conditional on r as, for example, E(β̂|r).
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In the following we do not mention this separately. Examples for linear
stochastic restrictions of type (5.139) are unbiased preestimates of β from
models with smaller sample size or from comparable designs. As an example
of practical interest, we may mention the imputation of missing values by
unbiased estimates (such as sample means). This problem will be discussed
in more detail in Chapter 8.

Durbin (1953) was one of the first who used sample and auxiliary
information simultaneously, by developing a stepwise estimator for the
parameters. Theil and Goldberger (1961) and Theil (1963) introduced
the mixed estimation technique by unifying the sample and the prior
information (5.139) in a common model(

y
r

)
=
(

X
R

)
β +
(

ε
φ

)
. (5.140)

An essential assumption is to suppose that both random errors are
uncorrelated:

E(εφ′) = 0 . (5.141)

This assumption underlines the external character of the auxiliary infor-
mation. In contrast to the preceding parts of Chapter 5, we now assume
the generalized regression model, that is, E(εε′) = σ2W . With (5.141) the
matrix of variance-covariance becomes

E
(

ε
φ

)
(ε, φ)′ = σ2

(
W 0
0 V

)
. (5.142)

Calling the augmented matrices and vectors in the mixed model (5.140) ỹ,
X̃, and ε̃, that is,

ỹ =
(

y
r

)
, X̃ =

(
X
R

)
, ε̃ =

(
ε
φ

)
, (5.143)

we may write

ỹ = X̃β + ε̃, ε ∼ (0, σ2W̃ ), (5.144)

where

W̃ =
(

W 0
0 V

)
> 0 . (5.145)

As rank(X̃) = rank(X) = K holds, model (5.144) is seen to be a generalized
linear model. Therefore, we may apply Theorem 4.4 (using the notation
S = X ′W−1X).

Theorem 5.17 In the mixed model (5.140) the best linear unbiased estimator
of β is

β̂(R) = (S + R′V −1R)−1(X ′W−1y + R′V −1r) (5.146)
= b + S−1R′(V + RS−1R′)−1(r − Rb) , (5.147)
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and β̂(R) has the dispersion matrix

V
(
β̂(R)

)
= σ2(S + R′V −1R)−1. (5.148)

The estimator β̂(R) is called the mixed estimator for β.

Proof: Straightforward application of Theorem 4.4 to model (5.144) gives
the GLSE of β:

β̂ = (X̃ ′W̃−1X̃)−1X̃ ′W̃−1ỹ

= (X ′W−1X + R′V −1R)−1(X ′W−1y + R′V −1r). (5.149)

Again using the notation S = X ′W−1X and applying Theorem A.18 (iii),
we get

(S + R′V −1R)−1 = S−1 − S−1R′(V + RS−1R′)−1RS−1. (5.150)

If we insert this formula in relationship (5.146), then identity (5.147)
follows.

Note: The relationship (5.147) yields a representation of the mixed estima-
tor as the GLSE b plus a linear term adjusting b such that E

(
b(R)
)

= Rβ
holds. The form (5.147) was first derived in the paper of Toutenburg (1975a)
in connection with optimal prediction under stochastic restrictions with
rank(V ) < J (see also Schaffrin, 1987). In contrast to (5.146), presentation
(5.147) no longer requires regularity of the dispersion matrix V . There-
fore, formula (5.147) allows the simultaneous use of exact and stochastic
restrictions. In particular, we have the following convergence result:

lim
V →0

β̂(R) = b(R) , (5.151)

where b(R) is the RLSE (5.11) under the exact restriction r = Rβ.

Comparison of β̂(R) and the GLSE

The mixed estimator is unbiased and has a smaller dispersion matrix than
GLSE b in the sense that

V(b) − V
(
β̂(R)

)
= σ2S−1R′(V + RS−1R′)−1RS−1 ≥ 0 (5.152)

(cf. (5.148) and (5.150)). This gain in efficiency is apparently independent
of whether E(r) = Rβ holds.

5.8.2 Assumptions about the Dispersion Matrix
In model (5.141), we have assumed the structure of the dispersion matrix
of φ as E(φφ′) = σ2V , that is, with the same factor of proportionality σ2

as that occurring in the sample model. But in practice it may happen that
this is not the adequate parameterization. Therefore, it may sometimes be
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more realistic to suppose that E(φφ′) = V , with the consequence that the
mixed estimator involves the unknown σ2:

β̂(R, σ2) = (σ−2S + R′V −1R)−1(σ−2X ′W−1y + R′V −1r) . (5.153)

There are some proposals to overcome this problem:

Using the Sample Variance s2 to Estimate σ2 in β̂(R, σ2)

One possibility is to estimate σ2 by s2, as proposed by Theil (1963). The
resulting estimator β̂(R, s2) is no longer unbiased in general. If certain
conditions hold (s−2 − σ−2 = O(T− 1

2 ) in probability), then β̂(R, s2) is
asymptotically unbiased and has asymptotically the same dispersion matrix
as β̂(R, σ2). Properties of this estimator have been analyzed by Giles and
Srivastava (1991); Kakwani (1968, 1974); Mehta and Swamy (1970); Nagar
and Kakwani (1964); Srivastava, Chandra, and Chandra (1985); Srivastava
and Upadhyaha (1975); and Swamy and Mehta (1969) to cite a few.

Using a Constant

Theil (1963), Hartung (1978), Teräsvirta and Toutenburg (1980), and
Toutenburg (1982, pp. 53–60) have investigated an estimator β̂(R, c), where
c is a nonstochastic constant that has to be chosen such that the unbiased
estimator β̂(R, c) has a smaller covariance matrix than the GLSE b.

With the notation Mc = (cS + R′V −1R), we get

β̂(R, c) = M−1
c (cX ′W−1y + R′V −1r) , (5.154)

V
(
β̂(R, c)

)
= M−1

c (c2σ2S + R′V −1R)M−1
c . (5.155)

If we define the matrix

B(c, σ2) = σ2S−1 + (2cσ2 − 1)(R′V −1R)−1, (5.156)

then the difference of the dispersion matrices becomes n.n.d., that is,

∆(c) = V(b) − V
(
β̂(R, c)

)
= M−1

c (R′V −1R)B(c, σ2)(R′V −1R)M−1
c ≥ 0 (5.157)

if and only if B(c, σ2) ≥ 0 as M−1
c > 0 and (R′V −1R) > 0.

We now discuss two possibilities.

Case (a): With B(0, σ2) = σ2S−1 − (R′V −1R)−1 < 0 (negative definite),
B(σ−2/2, σ2) = σ2S−1 (positive definite), and a′B(c, σ2)a (a �= 0 a fixed
K-vector) being a continuous function of c, there exists a critical value
c0(a) such that

a′B(c0(a), σ2)a = 0 , 0 < c0(a) < 1
2σ−2,

a′B(c, σ2)a > 0 , for c > c0(a) .

}
(5.158)



5.8 Stochastic Linear Restrictions 167

Solving a′B(c0(a), σ2)a = 0 for c0(a) gives the critical value as

c0(a) = (2σ2)−1 − a′S−1a

2a′(R′V −1R)−1a
, (5.159)

which clearly is unknown as a function of σ2.
Using prior information on σ2 helps to remove this difficulty.

Theorem 5.18 Suppose that we are given a lower and an upper bound for
σ2 such that

(i) 0 < σ2
1 < σ2 < σ2

2 < ∞, and

(ii) B(0, σ2
2) < 0 is negative definite.

Then the family of estimators β̂(R, c) having a smaller dispersion matrix
than the GLSE b is specified by Fc = {β̂(R, c) : c ≥ σ−2

1 }.
Proof: From B(0, σ2

2) < 0 it follows that B(0, σ2) < 0 too. Now, σ−2
1 >

1
2σ−2 and thus σ−2

1 > c0(a) is fulfilled (cf. (5.159)), that is, ∆(c) ≥ 0 for
c ≥ σ−2

1 .

Case (b): B(0, σ2) is nonnegative definite. Then B(c, σ2) ≥ 0, and there-
fore ∆(c) ≥ 0 for all c > 0. To examine the condition B(0, σ2) ≥ 0, we
assume a lower bound 0 < σ2

1 < σ2 with B(0, σ2
1) ≥ 0. Therefore, the

corresponding family of estimators is Fc = {β̂(R, c) : c ≥ 0}.
Summarizing, we may state that prior information about σ2 in the form

of σ2
1 < σ2 < σ2

2 in any case will make it possible to find a constant c such
that the estimator β̂(R, c) has a smaller variance compared to b in the sense
that ∆(c) ≥ 0 (cf. (5.157)).

Measuring the Gain in Efficiency

The fact that ∆(c) is nonnegative definite is qualitative. In order to quantify
the gain in efficiency by using the estimator β̂(R, c) instead of the GLSE b,
we define a scalar measure. We choose the risk R1(β̂, β, A) from (4.3) and
specify A = S = X ′W−1X. Then the measure for the gain in efficiency is
defined by

δ(c) =
R1(b, ·, S) − R1(β̂(R, c), ·, S)

R1(b, ·, S)
(5.160)

=
tr{S∆(c)}

σ2K
, (5.161)

since

R1(b, ·, S) = σ2 tr{SS−1} = σ2K .

In any case, we have 0 ≤ δ(c) ≤ 1. Suppose c to be a suitable choice for σ−2

in the sense that approximately cσ2 = 1 and, therefore, V
(
β̂(R, c)

) ≈ M−1
c .
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Then we get

δ(c) ≈ 1 − tr{SM−1
c }

σ2K

= 1 − tr(S(S + c−1R′V −1R)−1)
cσ2K

≈ 1 − tr{S(S + c−1R′V −1R)−1}
K

. (5.162)

The closer δ(c) is to 1, the more important the auxiliary information
becomes. The closer δ(c) is to 0, the less important is its influence on the
estimator compared with the sample information. This balance has led
Theil (1963) to the definition of the so-called posterior precision of both
types of information:

λ(c, sample) =
1
K

tr{S(S + c−1R′V −1R)−1} ,

λ(c, prior information) =
1
K

tr{c−1R′V −1R(S + c−1R′V −1R)−1} ,

with

λ(c, sample) + λ(c, prior information) = 1 . (5.163)

In the following, we shall confine ourselves to stochastic variables φ such
that E(φφ′) = σ2V .

5.8.3 Biased Stochastic Restrictions
Analogous to Section 5.4, we assume that E(r) − Rβ = δ with δ �= 0. Then
the stochastic restriction (5.141) becomes

r = Rβ + δ + φ, φ ∼ (0, σ2V ). (5.164)

Examples for this type of prior information are given in Teräsvirta (1979a)
for the so-called one-input distributed lag model, and in Hill and Ziemer
(1983) and in Toutenburg (1989b) for models with incomplete design ma-
trices that are filled up by imputation. If assumption (5.164) holds, the
mixed estimator (5.147) becomes biased:

E
(
β̂(R)

)
= β + S−1R′(V + RS−1R′)−1δ . (5.165)

MDE-I Superiority of β̂(R) over b

Denoting the difference of the covariance matrices by D, we get:

V(b) − V
(
β̂(R)

)
= D

= σ2S−1R′(V + RS−1R′)−1RS−1 ≥ 0 , (5.166)

Bias(β̂(R), β) = S−1R′(V + RS−1R′)−1δ

= Dd , (5.167)
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with

d = SR+δσ−2 and R+ = R′(RR′)−1 . (5.168)

Therefore, Bias(β̂(R), β) ∈ R(D) and we may apply Theorem 5.6.

Theorem 5.19 The biased estimator β̂(R) is MDE-I-superior over the GLSE
b if and only if

λ = σ−2δ′(V + RS−1R′)−1δ ≤ 1 . (5.169)

If ε and φ are independently normally distributed, then λ is the noncentra-
lity parameter of the statistic

F =
1

Js2 (r − Rb)′(V + RS−1R′)−1(r − Rb) , (5.170)

which follows a noncentral FJ,T−K(λ)-distribution under H0: λ ≤ 1.

Remark: Comparing conditions (5.169) and (5.60) for the MDE-I superi-
ority of the mixed estimator β̂(R) and the RLSE b(R), respectively, over
the LSE b, we see from the fact

(RS−1R′)−1 − (V + RS−1R′)−1 ≥ 0

that condition (5.169) is weaker than condition (5.60). Therefore, introduc-
ing a stochastic term φ in the restriction r = Rβ leads to an increase of the
region of parameters, ensuring the estimator based on auxiliary information
to be better than b.

Let us now discuss the converse problem; that is, we want to derive the
parameter conditions under which the GLSE b becomes MDE-I-superior
over β̂(R).

MDE-I Superiority of b over β̂(R)

The following difference of the MDE matrices is nonnegative definite:

∆(β̂(R), b) = M(β̂(R), β) − V(b)
= −σ2S−1R′(V + RS−1R′)−1RS−1

+ Bias(β̂(R), β) Bias(β̂(R), β)′ ≥ 0 (5.171)

if and only if (see Theorem A.46)

−IJ + (V + RS−1R′)− 1
2 δδ′(V + RS−1R′)− 1

2 ≥ 0 . (5.172)

According to Theorem A.59, this matrix is never nonnegative definite if
J ≥ 2. For J = 1, the restriction becomes

r
1,1

=R′
1,K

β+ δ
1,1

+ φ
1,1

, φ ∼ (0, σ2 v
1,1

) . (5.173)

Then for the matrix (5.172), we have

−1 + δ2(v + R′S−1R)−1 ≥ 0
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if and only if

λ =
δ2

(v + R′S−1R)
≥ 1 . (5.174)

The following theorem summarizes our findings.

Theorem 5.20 The biased estimator β̂(R) is MDE-I-superior over the GLSE
b if and only if (cf. (5.169))

λ = σ−2δ′(V + RS−1R′)−1δ ≤ 1 .

Conversely, b is MDE-I-better than β̂(R)

(i) for J = 1 if and only if λ ≥ 1, and
(ii) for J ≥ 2 in no case.

Interpretation: Suppose that J = 1; then the region of parameters λ is
divided in two disjoint subregions {λ < 1} and {λ > 1}, respectively, such
that in each subregion one of the estimators β̂(R) and b is superior to the
other. For λ = 1, both estimators become equivalent. For J ≥ 2, there
exists a region (λ ≤ 1) where β̂(R) is better than b, but there exists no
region where b is better than β̂(R).

This theorem holds analogously for the restricted LSE b(R) (use V = 0
in the proof).

MDE-II Superiority of β̂(R) over b

We want to extend the conditions of acceptance of the biased mixed
estimator by employing the weaker MDE criteria of Section 5.4.

According to Definition 5.3, the mixed estimator β̂(R) is MDE-II-better
than the GLSE b if

tr{∆(b, β̂(R)} = tr{V(b) − V(β̂(R)} − Bias(β̂(R), β)′ Bias(β̂(R), β) ≥ 0 .
(5.175)

Applying (5.166) and (5.167) and using the notation

A = V + RS−1R′, (5.176)

(5.175) is found to be equivalent to

Q(δ) = σ−2δ′A−1RS−1S−1R′A−1δ ≤ tr(S−1R′A−1RS−1) . (5.177)

This condition is not testable in the sense that there does not exist a statis-
tic having Q(δ) as noncentrality parameter. Based on an idea of Wallace
(1972) we search for a condition that is sufficient for (5.177) to hold. Let
us assume that there is a symmetric K × K-matrix G such that

σ−2δ′A−1RS−1GS−1R′A−1δ = σ−2δ′A−1δ = λ . (5.178)

Such a matrix is given by

G = S + SR+V R+′
S , (5.179)
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where R+ = R′(RR′)−1 (Theorem A.66 (vi)). Then we get the identity

RS−1GS−1R′ = A .

By Theorem A.44, we have

λmin(G) ≤ σ−2δ′A−1RS−1GS−1R′A−1δ

Q(δ)
=

λ

Q(δ)
(5.180)

or, equivalently,

Q(δ) ≤ λ

λmin(G)
. (5.181)

Therefore, we may state that

λ ≤ λmin(G) tr(S−1R′(V + RS−1R′)−1RS−1) = λ2 , (5.182)

for instance, is sufficient for condition (5.177) to hold. Moreover, condi-
tion (5.182) is testable. Under H0: λ ≤ λ2, the statistic F (5.170) has an
FJ,T−K(λ2)-distribution.

Remark: In the case of exact linear restrictions, we have V = 0 and hence
G = S. For W = I, condition (5.182) will coincide with condition (5.65)
for the MDE-II superiority of the RLSE b(R) to b.

MDE-III Comparison of β̂(R) and b

According to Definition 5.4 (cf. (5.66)), the estimator β̂(R) is MDE-III-
better than b if (with A from (5.176))

tr
{

S∆
(
b, β̂(R)

)}
σ2 tr{A−1RS−1R′} − δ′A−1RS−1R′A−1δ ≥ 0 (5.183)

or, equivalently, if

σ−2δ′A−1RS−1R′A−1δ ≤ J − tr(A−1V )

= J −
J∑

j=1

(1 + λj)−1

=
∑

λj(1 + λj)−1, (5.184)

where λ1 ≥ . . . ≥ λJ > 0 are the eigenvalues of V − 1
2 RS−1R′V − 1

2 .
This may be shown as follows:

tr(A−1V ) = tr(V
1
2 A−1V

1
2 ) [Theorem A.13]

= tr
(
(V − 1

2 AV − 1
2 )−1) [Theorem A.18]

= tr
(
(I + V − 1

2 RS−1R′V − 1
2 )−1)

= tr
(
(I + Λ)−1) [Theorem A.27 (v)]

=
J∑

j=1

(1 + λj)−1 [Theorem A.27 (iii)].
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The left-hand side of (5.184) may be bounded by λ from (5.169):

σ−2δ′A−1(RS−1R′ + V − V )A−1δ

= σ−2δ′A−1δ − σ−2δ′A−1V A−1δ

≤ σ−2δ′A−1δ = λ . (5.185)

Then the condition

λ ≤
∑

λj(1 + λj)−1 = λ3 , (5.186)

for instance, is sufficient for (5.183) to hold. Condition (5.186) may be
tested using F from (5.170), since the statistic F has an FJ,T−K(λ3)-
distribution under H0: λ ≤ λ3.

Remark: From λ1 ≥ . . . ≥ λJ > 0, it follows that

J
λJ

1 + λJ
≤

J∑
j=1

λj

1 + λj
≤ J

λ1

1 + λ1
. (5.187)

Suppose that λJ > (J − 1)−1 and J ≥ 2, then λ3 > 1 and the MDE-III
criterion indeed leads to a weaker condition than the MDE-I criterion. For
J = 1, we get λ3 = λ1/(1 + λ1) < 1.

Further problems such as

• MDE-I comparison of two biased mixed estimators

• stepwise procedures for adapting biased stochastic restrictions

are discussed in papers by Freund and Trenkler (1986), Teräsvirta (1979b,
1981, 1982, 1986), and Toutenburg (1989a, 1989b).

5.9 Weakened Linear Restrictions

5.9.1 Weakly (R, r)-Unbiasedness
In the context of modeling and testing a linear relationship, it may happen
that some auxiliary information is available, such as prior estimates, natural
restrictions on the parameters (βi < 0, etc.), analysis of submodels, or
estimates by experts. A very popular and flexible approach is to incorporate
auxiliary information in the form of a linear stochastic restriction (r : J ×1,
R : J × K)

r = Rβ + φ, φ ∼ (0, V ). (5.188)

However, this information heavily depends on the knowledge of the dis-
persion matrix V of φ. In statistical practice, unfortunately, the matrix V
is rarely known, and consequently β̂(R) cannot be computed. Nevertheless,
we should still be interested in extracting the remaining applicable part of
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the information contained in (5.188). In the following, we may look for a
concept that leads to the use of the auxiliary information (5.188). Note
that (5.188) implies

E(r) = Rβ . (5.189)

In order to take the information (5.188) into account while constructing
estimators β̂ for β, we require that

E(Rβ̂|r) = r . (5.190)

Definition 5.21 An estimator β̂ for β is said to be weakly (R, r)-unbiased
with respect to the stochastic linear restriction r = Rβ + φ if E(Rβ̂|r) = r.

This definition was first introduced by Toutenburg, Trenkler, and Liski
(1992).

5.9.2 Optimal Weakly (R, r)-Unbiased Estimators
Heterogeneous Estimator

First we choose a linear heterogeneous function for the estimator, that
is, β̂ = Cy + d. Then the requirement of weakly (R, r)-unbiasedness is
equivalent to

E(Rβ̂) = RCXβ + Rd = r . (5.191)

If we use the risk function R1(β̂, β, A) from (4.39) where A > 0, we have
to consider the following optimization problem:

min
C,d,λ

{R1(β̂, β, A) − 2λ′(RCXβ + Rd − r)} = min
C,d,λ

g(C, d, λ) (5.192)

where λ is a J-vector of Lagrangian multipliers.
Differentiating the function g(C, d, λ) with respect to C, d, and λ gives

the first-order equations for an optimum (Theorems A.91, A.92)

1
2

∂g

∂d
= Ad + A(CX − I)β − R′λ = 0 , (5.193)

1
2

∂g

∂C
= ACXβ′βX ′ − Aββ′X ′ + Adβ′X ′

+ σ2ACW − R′λβ′X ′ = 0 . (5.194)
1
2

∂g

∂λ
= RCXβ + Rd − r = 0 . (5.195)

Solving (5.193) for Ad gives

Ad = −A(CX − I)β + R′λ (5.196)

and inserting in (5.194) yields

σ2ACW = 0 .
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As A and W are positive definite, we conclude C = 0. Now using (5.195)
again, we obtain

d̂ = β + A−1R′λ . (5.197)

Premultiplying (5.194) by R, we get

Rd̂ = r = Rβ + (RA−1R′)λ ,

from which we find

λ̂ = (RA−1R′)−1(r − Rβ)

and (cf. (5.197))

d̂ = β + A−1R′(RA−1R′)−1(r − Rβ) .

The following theorem summarizes our findings.

Theorem 5.22 In the regression model y = Xβ + ε, the heterogeneous R1-
optimal weakly (R, r)-unbiased estimator for β is given by

β̂1(β, A) = β + A−1R′(RA−1R′)−1(r − Rβ) , (5.198)

and its risk conditional on r is

R1[β̂1(β, A), β, A] = (r − Rβ)′(RA−1R′)−1(r − Rβ) . (5.199)

Interpretation:

(i) β̂1(β, A) is the sum of the R1-optimal heterogeneous estimator β̂1 = β
and a correction term adjusting for the weakly (R, r)-unbiasedness:

E[Rβ̂1(β, A)] = Rβ + (RA−1R′)(RA−1R′)−1(r − Rβ) = r . (5.200)

(ii) The estimator β̂1(β, A) depends on the unknown parameter vector β
and thus is not of direct use. However, if β is replaced by an unbiased
estimator β̃, the resulting feasible estimator β̂(β̃, A) becomes weakly
(R, r)-unbiased:

E[Rβ̂1(β̃, A)] = R E(β̃) + (RA−1R′)(RA−1R′)−1(r − R E
(
β̃)
)

= r .
(5.201)

Although β̂1(β, A) involves the unknown β, it characterizes the
structure of operational estimators being weakly (R, r)-unbiased and
indicates that this class of estimators may have better statistical
properties.

(iii) Since R1(β̂, β, A) is a convex function of C, our solution d̂ = β̂1(β, A)
from (5.198) yields a minimum.

(iv) Formula (5.199) for the minimal risk is an easy consequence of (4.39)
and (5.198).
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(v) As β̂1(β, A) explicitly depends on the weight matrix A, variation with
respect to A defines a new class of estimators. Hence, the matrix
A may be interpreted to be an additional parameter. For instance,
let β be replaced by the OLSE b0 = (X ′X)−1X ′y. Then the choice
A = X ′X = S results in the restricted LSE b(R) (cf. (5.11))

β̂1(b, S) = b + S−1R′(RS−1R′)−1(r − Rb).

Homogeneous Estimator

If β̂ = Cy, then the requirement of weakly (R, r)-unbiasedness is equivalent
to

RCXβ = r . (5.202)

If we set d = 0 in (5.192) and differentiate, we obtain the following first-
order equations for an optimum:

1
2

∂g

∂C
= ACB − Aββ′X ′ − Rλ′β′X ′ = 0 , (5.203)

1
2

∂g

∂λ
= RCXβ − r = 0, (5.204)

where the matrix B is defined as

B = Xββ′X ′ + σ2W . (5.205)

Obviously B is positive definite and its inverse is (cf. Theorem A.18, (iv))

B−1 = σ−2
(

W−1 − W−1Xββ′X ′W−1

σ2 + β′X ′W−1Xβ

)
. (5.206)

Solving (5.203) for C yields

C = ββ′X ′B−1 + A−1R′λ′β′X ′B−1. (5.207)

Combining this with equation (5.204)

RCXβ = r = [Rβ + (RA−1R′)λ′]α(β) (5.208)

leads to the optimal λ, which is

λ̂′ = (RA−1R′)−1
(

r

α(β)
− Rβ

)
, (5.209)

where α(β) is defined in (4.21). Inserting λ̂ in (5.207), we obtain the solution
for C as

Ĉ = ββ′X ′B−1 +A−1R′(RA−1R′)−1 ([α(β)]−1r − Rβ
)
β′X ′B−1. (5.210)

Summarizing our derivations, we may state that the R1-optimal,
homogeneous, weakly (R, r)-unbiased estimator is

β̂2(β, A) = βα(y) + A−1R′(RA−1R′)−1
(

r

α(β)
− Rβ

)
α(y) , (5.211)
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where

α(y) = β′X ′B−1y =
β′X ′W−1y

σ2 + β′Sβ
(5.212)

is used for abbreviation (cf. (4.18)–(4.21)).
It should be emphasized that β̂2 = βα(y) is the R1-optimal homogeneous

estimator for β (cf. (4.20)).
With E

(
α(y)
)

= α(β), we see that β̂2(β, A) is weakly (R, r)-unbiased:

E[Rβ̂2(β, A)] = Rβα(β) +
r

α(β)
α(β) − Rβα(β) = r . (5.213)

With respect to β, this estimator is biased:

Bias[β̂2(β, A), β] = β(α(β) − 1) + zα(β) , (5.214)

where

z = A−1R′(RA−1R′)−1

(
r(

α(β)
) − Rβ

)
. (5.215)

Obviously, the dispersion matrix is

V(β̂2
(
β, A)

)
= V(β̂2) + zz′ σ2α(β)

σ2 + β′Sβ
+ 2z′β

σ2α(β)
σ2 + β′Sβ

(5.216)

with V(β̂2) from (4.24). This implies that the MDE matrix of β̂2(β, A) is

M(β̂2(β, A), β) = M(β̂2, β) + zz′α(β) , (5.217)

where M(β̂2, β) is the mean dispersion error matrix from (4.25). Obviously,
we have

∆(β̂2(β, A), β̂2) = zz′α(β) ≥ 0 . (5.218)

Theorem 5.23 The R1-optimal, homogeneous, weakly (R, r)-unbiased es-
timator for β is given by β̂2(β, A) (5.211). This estimator has the
R1-risk

R1(β̂2(β, A), β, A) = R1(β̂2, β, A)

+ α(β)
( r

α(β)
− Rβ

)′(
RA−1R′

)−1( r

α(β)
− Rβ

)
, (5.219)

where R1(β̂2, β, A) = tr
(
A M(β̂2, β)

)
is the R1-risk of β̂2 (4.20).

5.9.3 Feasible Estimators—Optimal Substitution of β
in β̂1(β, A)

From the relationship (5.201), we know that any substitution of β by an
unbiased estimator β̃ leaves β̂1(β, A) weakly (R, r)-unbiased. To identify an
estimator β̃ such that the feasible version β̂1(β̃, A) is optimal with respect
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to the quadratic risk, we confine ourselves to well-defined classes of esti-
mators. Let us demonstrate this for the class {β̃ = C̃y|C̃X = I} of linear
homogeneous estimators.

With the notation

Ã = A−1R′(RA−1R′)−1 , (5.220)

we obtain

β̂1(C̃y, A) = C̃y + Ã(r − C̃y) , (5.221)

which is unbiased for β:

E(β̂1
(
C̃y, A)

)
= C̃Xβ + Ã(r − RC̃Xβ) = β (5.222)

and has the dispersion matrix

V
(
β̂1(C̃y, A)

)
= σ2(I − ÃR)C̃WC̃ ′(I − ÃR̃)′. (5.223)

Furthermore, the matrix

Q = I − A− 1
2 R′(RA−1R′)−1RA− 1

2 , (5.224)

is idempotent of rank K − J , and it is readily seen that

(I − R′Ã′)A(I − ÃR) = A
1
2 QA

1
2 . (5.225)

Let Λ = (λ1, . . . , λK) denote a K × K-matrix of K-vectors λi of Lagran-
gian multipliers. Then the R1-optimal, unbiased version β̃ = C̃y of the
estimator β̂(β̃, A) is the solution to the following optimization problem

min
C̃,Λ

{
tr[A V

(
β̂1(C̃y, A)

)
] − 2

K∑
i=1

λ′
i(C̃X − I)(i)

}
= min

C̃,Λ

{
σ2 tr[A

1
2 QA

1
2 C̃WC̃ ′] − 2

K∑
i=1

λ′
i(C̃X − I)(i)

}
= min

C̃,Λ
g(C̃,Λ). (5.226)

Differentiating with respect to C̃ and Λ, respectively, gives the necessary
conditions for a minimum:

1
2

∂g(C̃,Λ)
∂C̃

= A
1
2 QA

1
2 C̃W − ΛX ′ = 0 (5.227)

1
2

∂g(C̃,Λ)
∂Λ

= C̃X − I = 0 . (5.228)

Postmultiplying (5.227) by W−1X and using (5.228) give

Λ̂ = A
1
2 QA

1
2 S−1 (5.229)

and consequently from (5.227)

A
1
2 QA

1
2 [C̃ − S−1X ′W−1] = 0 . (5.230)
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The principal solution of (5.230) is then given by

C̃∗ = S−1X ′W−1 (5.231)

with the corresponding estimator β̃ = b being the GLSE, and

β̂1(C̃∗y, A) = b + A−1R′(RA−1R′)−1(r − Rb). (5.232)

An interesting special case is to choose A = S, transforming the risk
R1(β̂, β, S) to the R3-risk (cf. (4.5)). Hence we may state the following
theorem, by using the convexity argument again.

Theorem 5.24 Let β̂1(C̃y, S) be the class of weakly (R, r)-unbiased estima-
tors with β̂ = C̃y being an unbiased estimator for β. Then in this class the
estimator β̂1(b, A) minimizes the risk R1(β̂, β, A). Choosing A = S then
makes the optimal estimator β̂1(b, S) equal to the restricted least-squares
estimator

b(R) = b + S−1R′(RS−1R′)−1(r − Rb) , (5.233)

which is R3-optimal.

Remark: To get feasible weakly (R, r)-unbiased estimators, one may use
the idea of incorporating a prior guess for β (cf. Toutenburg et al., 1992).
Alternatively, in Chapter 8 we shall discuss the method of weighted mixed
regression, which values sample information more highly than auxiliary
information.

5.9.4 RLSE instead of the Mixed Estimator
The correct prior information (5.137) is operational if the dispersion matrix
V is known. If V is unknown, we may use the methods of Section 5.8.2 to
estimate V .

An alternative idea would be to use the restricted least-squares estimator
b(R), which may be interpreted as a misspecified mixed estimator mistak-
enly using dispersion matrix Vm = 0 instead of V . To highlight this fact,
we use the notation

b(R) = b(R, Vm) = b + S−1R′(RS−1R′ + Vm)−1(r − Rb). (5.234)

With respect to the correct specification of the stochastic restriction

r = Rβ + φ, φ ∼ (0, V ) ,

the estimator b(R, Vm) is unbiased for β:

E
(
b(R, Vm)

)
= β (5.235)

but has the covariance matrix

V
(
b(R, Vm)

)
= V
(
b(R)
)

+ σ2S−1R′(RS−1R′)−1V (RS−1R′)−1RS−1

(5.236)
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where V
(
b(R)
)

is the covariance matrix of the RLSE from (5.13).
Because of the unbiasedness of the competing estimators b(R, Vm) and

β̂(R), the MDE comparison is reduced to the comparison of their covariance
matrices. Letting

A = S−1R′(RS−1R′)−1V
1
2 , (5.237)

we get the following expression for the difference of the covariance matrices:

∆
(
b(R, Vm), β̂(R)

)
= σ2A[I − (I + V

1
2 (RS−1R′)−1V

1
2 )−1]A′. (5.238)

Based on the optimality of the mixed estimator β̂(R), it is seen that the
estimator b(R, Vm) has to be less efficient; that is, in any case it holds that

∆
(
b(R, Vm), β̂(R)

) ≥ 0 . (5.239)

Since V is unknown, we cannot estimate the extent of this loss.
Comparing the estimators b(R, Vm) and the GLSE b, the misspecified

estimator b(R, Vm) is MDE-superior to b if

∆
(
b, b(R, Vm)

)
= σ2A[V − 1

2 RS−1R′V − 1
2 − I]A′ ≥ 0 (5.240)

or, equivalently, if

λmin(V − 1
2 RS−1R′V − 1

2 ) ≥ 1 .

Again this condition is not operational because V is unknown in this set-up.

5.10 Exercises

Exercise 1. Assuming that k = R1β1 + R2β2 with R1 as a nonsingular
matrix, show that the restricted regression estimator of β2 in the model
y = X1β1 +X2β2 is equal to the least-squares estimator of β2 in the model
(y − X1R

−1
1 k) = (X2 − X1R

−1
1 R2)β2 + ε.

Exercise 2. Compare the least-squares and restricted least squares estima-
tors with respect to the risk under a general quadratic loss function defined
by E(β̂ − β)′Q(β̂ − β) for any estimator β̂ of β where Q is a nonsingular
matrix with nonstochastic elements.

Exercise 3. Consider the estimation of β by θ b(R) with θ as a scalar and
b(R) as the restricted least-squares estimator. Determine the value of θ that
minimizes the trace of mean dispersion error matrix of θ b(R). Comment
on the utility of the estimator thus obtained.

Exercise 4. Find an unbiased estimator of σ2 based on residuals obtained
from restricted least-squares estimation.
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Exercise 5. Obtain an estimator of β in the bivariate model yt = α+βxt+εt

with E(εt) = 0 and E(ε2t ) = σ2 (known) for all t when an unbiased estimate
b0 with standard error σc is available from some extraneous source. Find
the variance of this estimator and examine its efficiency with respect to the
conventional unbiased estimator.

Exercise 6. Consider the model y = α1 + Xβ + ε with E(ε) = 0, E(εε′) =
σ2I, and 1 denoting a column vector having all elements unity. Find the
mixed estimator of α when k = Rβ + v with E(v) = 0 and E(vv′) = V is
available and σ2 is known. What are its properties?

Exercise 7. Show that the least-squares estimator ignoring the stochastic
linear restrictions has the same asymptotic properties as the mixed esti-
mator. Does this kind of result carry over if we compare the asymptotic
properties of least-squares and restricted least-squares estimators?

Exercise 8. Formulate the inequality restrictions on the regression coeffi-
cients in the form of a set of stochastic linear restrictions and obtain the
mixed estimator assuming σ2 to be known. Derive expressions for the bias
vector and mean dispersion error matrix of the estimator.

Exercise 9. Discuss the estimation of β when both k1 = R1β and k2 =
R2β + v are to be utilized simultaneously.

Exercise 10. When unbiased estimates of a set of linear combinations of the
regression coefficients are available from some extraneous source, present
a procedure for testing the compatibility of the sample and extraneous
information.



6
Prediction Problems in the
Generalized Regression Model

6.1 Introduction

The problem of prediction in linear models has been discussed in the
monograph by Bibby and Toutenburg (1977) and also in the papers by
Toutenburg (1968, 1970a, 1970b, 1970c). One of the main aims of the above
publications is to examine the conditions under which biased estimators can
lead to an improvement over conventional unbiased procedures. In the fol-
lowing, we will concentrate on recent results connected with alternative
superiority criteria.

6.2 Some Simple Linear Models

To demonstrate the development of statistical prediction in regression we
will first present some illustrative examples of linear models.

6.2.1 The Constant Mean Model
The simplest “regression” may be described by

yt = µ + εt (t = 1, . . . , T ) ,

where ε = (ε1, . . . , εT )′ ∼ (0, σ2I) and µ is a scalar constant. T denotes the
index (time) of the last observation of the random process {yt}. We assume
that a prediction of a future observation yT+τ is required. Extrapolation
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gives

yT+τ = µ + εT+τ .

One would expect to estimate yT+τ by adding the estimators of µ and εT+τ .
The actual value of the random variable εT+τ cannot be predicted, as it is
uncorrelated with the past values ε1, . . . , εT ; thus we simply forecast εT+τ

by its expected value, that is, E(εT+τ ) = 0. The quantity µ is a constant
over time, so its estimate from the past will give a predictor for the future.

Thus we are led to the predictor

ŷT+τ = T−1
T∑

t=1

yt = ȳ ,

which is unbiased:

E ŷT+τ = E ȳ = µ ⇒ E(ŷT+τ − yT+τ ) = 0

and has variance

var(ŷT+τ ) =
σ2

T
⇒ E(ŷT+τ − yT+τ )2 = σ2

(
1 +

1
T

)
.

The precision of the predictor, as indicated by the mean square error σ2(1+
T−1), will improve with an increase in the sample size T .

6.2.2 The Linear Trend Model
If the mean µ has a linear trend with time, we have the model

yt = α + βt + εt (t = 1, . . . , T ) ,

where α is the expectation of y0, β is the slope, and εt is the added random
variation (see Figure 6.1).

If we transform t to t̃ = t− t̄, then the predictor of any future value yT̃+τ

with T̃ = T − t̄ is simply obtained by

ŷT+τ = α̂ + β̂(T̃ + τ) ,

where α̂ and β̂ are the unbiased, ordinary least-squares estimates of α and
β (see Chapter 3):

α̂ = ȳ, β̂ =
∑

t t̃(yt − ȳ)∑
t t̃2

,

var(α̂) =
σ2

T
, var(β̂) =

σ2∑T
t=1 t̃2

.

Due to the transformation of t to t̃, α̂ and β̂ are independent.
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α

t

yt

ε1 ε2

ε3

ε4 ε5

ε6
ε7

ε8
ε9

α + βt

Figure 6.1. A linear trend model

Denoting the forecast error by eT̃+τ we have

eT̃+τ = yT̃+τ − ŷT̃+τ

= [α + β(T̃ + τ) + εT̃+τ ] − [α̂ + β̂(T̃ + τ)]

= (α − α̂) + (β − β̂)(T̃ + τ) + εT̃+τ .

Hence, E(eT̃+τ ) = 0 and the predictor ŷT̃+τ is unbiased. This leads to
the following expression for the mean dispersion error:

MDE(ŷT̃+τ ) = E(eT̃+τ )2

= var(α̂) + var(β̂) + σ2

= σ2

(
1
T

+
(T̃ + τ)2∑

t̃2
+ 1

)
.

From this it is seen that increasing the predictor’s horizon (i.e., τ) will
decrease the expected precision of the forecast.

6.2.3 Polynomial Models
The polynomial trend model of order K is of the form

yt = α + β1t + β2t
2 + · · · + βKtK + εt ,

and its forecast again is based on the OLSE of α, β1, . . . , βK :

ŷT+τ = α̂ + β̂1(T + τ) + · · · + β̂K(T + τ)K .

Using a high-degree polynomial trend does not necessarily improve pre-
diction. In any given problem an appropriate degree of the polynomial has
to be determined (cf. Rao, 1967; Gilchrist, 1976). The examples discussed
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above are special cases of the general regression model described in the
next section.

6.3 The Prediction Model

The statistical investigations of the preceding chapters concentrated on the
problem of fitting the model

y = Xβ + ε, ε ∼ (0, σ2W ), rank(X) = K (6.1)

to a matrix of data (y, X) in an optimal manner, where optimality was
related to the choice of an estimator of β. Another important task is to
adopt the model to not-yet-realized values of the endogeneous variable Y .
Henceforth we assume X to be nonstochastic.

Let {Υ} denote a set of indices and yτ , τ ∈ {Υ} a set of y-values, partially
or completely unknown. A basic requirement for the prediction of yτ is the
assumption that the yτ follow the same model as the vector y, that is,

yτ∗ = x′
τ∗β + ετ∗ (6.2)

with the same β as in the sample model (6.1).
In matrix form, the n values y1∗, . . . , yn∗ to be predicted may be

summarized in the model

y∗
n,1

=X∗
n,K

β+ ε∗
n,1

, ε∗ ∼ (0, σ2 W∗
n,n

) . (6.3)

The index ∗ relates to future observations.
In a general situation, we assume that

E(εε′
∗) = σ2 W0

T,n
= σ2(w1

T,1
, . . . , wn

T,1
) �= 0 . (6.4)

This assumption is the main source for an improvement of the prediction
compared to the classical prediction based on the corollary to the Gauss-
Markov-Aitken Theorem (Theorem 4.4). In the following we assume the
matrix X∗ is known. Restrictions on the rank of X∗ are generally not
necessary. If we have rank(X∗) = K ≤ n, then the predictors can be
improved (cf. Section 6.5).

Classical Prediction

In a classical set-up for prediction of y∗, we consider the estimation of the
conditional expectation E(y∗|X∗) = X∗β. By Theorem 4.5 we obtain for
any component x′

τ∗β of X∗β that the best linear unbiased estimator is (p
stands for predictor)

p̂τ = x′
τ∗b , (6.5)
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where b = S−1X ′W−1y is the Gauss-Markov-Aitken estimator of β from
the model (6.1), with

var(p̂τ ) = x′
τ∗V (b)xτ∗ . (6.6)

Then the classical prediction p̂classical = p̂0 for the whole vector y∗ becomes

p̂0 = X∗b (6.7)

with

V (p̂0) = X∗V (b)X ′
∗ (6.8)

and

V (b) = σ2S−1 with S = X ′W−1X .

Remarks: (i) As we will see in the following sections, possible improvements
of the classical prediction in the generalized model (6.1) depend only on the
correlation of the disturbances ε and ε∗. This fundamental result is due to
Goldberger (1962). We shall use this information to derive optimal linear
predictors for y∗.

(ii) If X is stochastic and/or β becomes stochastic, then the results of this
chapter remain valid for conditional distributions (cf. Toutenburg, 1970d).

6.4 Optimal Heterogeneous Prediction

Here we shall derive some optimal predictors for the random variable y∗.
This may be seen as an alternative to the classical prediction.

The prediction p of y∗ will be based on the sample information given by
y; that is, we choose the predictor p as a function of y, namely, p = f(y).
In view of the linearity of the models (6.1) and (6.3), and because of the
simplicity of a linear statistic, we confine ourselves to predictions that are
linear in y.

The linear heterogeneous set-up is

p = Cy + d , (6.9)

where C : n × T and d : n × 1 are nonstochastic. For the risk function, we
choose the quadratic form (A > 0)

RA(p, y∗) = E(p − y∗)′A(p − y∗) . (6.10)

The matrix A gives different weights to errors of prediciton of different
components of yτ∗ and is at the choice of the customer.

Example 6.1: Suppose that t is an ordered time indicator (e.g., years) such
that t = 1, . . . , T corresponds to the sample and {Υ} = (T + 1, T + 2, . . . ,
T +n) denotes the periods of forecasting. For the prediction of an economic
variable it may be reasonable to have maximum goodness of fit in the period
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T + 1 and decreasing fit in the periods T + i, i = 2, . . . , n. The appropriate
choice of A would be:

A = diag(a1, . . . , an) with a1 > · · · > an > 0

and ∑
ai = 1 .

If no prior weights are available, it is reasonable to choose A = I.
Using set-up (6.9), we have

p − y∗ = [(CX − X∗)β + d] + (Cε − ε∗) , (6.11)

and the quadratic risk becomes

RA(p, y∗) = trA[(CX − X∗)β + d][(CX − X∗)β + d]′

+ σ2tr[A(CWC ′ + W∗ − 2CW0)]
= u2 + v2 . (6.12)

If β is known, the first expression u2 depends only on d, and the minimiza-
tion of RA(p, y∗) with respect to C and d may be carried out separately
for u2 and v2 (cf. Section 4.1). With

d̂ = −(CX − X∗)β , (6.13)

the minimum value of u2 as 0 is attained. The minimization of v2 with
respect to C results in the necessary condition for C (Theorems A.91–A.95)

1
2

∂v2

∂C
= ACW − AW ′

0 = 0 . (6.14)

From this relationship we obtain the solution to our problem:

Ĉ1 = W ′
0W

−1 (6.15)

and

d̂ = X∗β − W ′
0W

−1Xβ . (6.16)

Theorem 6.1 If β is known, the RA(p, y∗)-optimal, heterogeneous prediction
of y∗ is

p̂1 = X∗β + W ′
0W

−1(y − Xβ) (6.17)

with

E(p̂1) = X∗β (6.18)

and

RA(p̂1, y∗) = σ2 tr[A(W∗ − W ′
0W

−1W0)] . (6.19)
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Remark: p̂1 is the optimal linear prediction generally. Furthermore, p̂1 is
unbiased for the conditional expectation X∗β of y∗.

As p̂1 depends on the unknown parameter β itself, this prediction—as
well as the R1-optimal estimation β̂1 = β—is not operational.

Nevertheless, Theorem 6.1 yields two remarkable results: the structure
(6.17) of an optimal prediction and the lower bound (6.19) of the RA(p, y∗)-
risk in the class of linear predictors. Similar to the problems related to the
optimal linear estimator β̂1 = β (cf. Section 4.1), we have to restrict the
set of linear predictors {Cy + d}.

6.5 Optimal Homogeneous Prediction

Letting d = 0 in (6.9) and in RA(p, y∗) defined in (6.12), similar to (4.13)–
(4.16), we obtain by differentiating and equating to the null matrix

1
2

∂RA(p, y∗)
∂C

= AC(Xββ′X ′ + σ2W ) − A(σ2W ′
0 + X∗ββ′X ′) = 0 .

A solution to this is given by the matrix

Ĉ2 = (σ2W ′
0 + X∗ββ′X ′)(Xββ′X ′ + σ2W )−1.

Applying Theorem A.18 (iv), we derive the optimal homogeneous predictor

p̂2 = Ĉ2y = X∗β̂2 + W ′
0W

−1(y − Xβ̂2) , (6.20)

where β̂2 = β
[

β′X′W −1y
σ2+β′Sβ

]
is the optimal homogeneous estimator of β

(cf. (4.20)).
Define

Z = X∗ − W ′
0W

−1X . (6.21)

Then, with RA(p̂1, y∗) from (6.19) and M(β̂2, β) from (4.25), we may
conclude that

RA(p̂2, y∗) = tr{AZM(β̂2, β)Z ′} + RA(p̂1, y∗) . (6.22)

Hint: Because of its dependence on β̂2 and, hence, on σ−1β, the optimal
homogeneous prediction again is not operational. Using prior information
of the form

σ−2(β − β0)′diag(c2
1, · · · , c2

K)(β − β0) ≤ 1 (6.23)

may help in finding feasible operational solutions that might have a smaller
risk than p̂2. These investigations are given in full detail in Toutenburg
(1968, 1975b).
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Condition of Unbiasedness

To have operational solutions to our prediction problem when β is unknown,
we confine ourselves to the class of homogeneous unbiased predictors (cf.
arguments in Section 4.1). Letting d = 0 it follows immediately from (6.11)
that E(p) = E(y∗) = X∗β; that is,

E(p − y∗) = (CX − X∗)β = 0

is valid for all vectors β if and only if

CX = X∗ . (6.24)

Under this condition we obtain (cf. (6.12))

RA(p, y∗) = σ2tr{A(CWC ′ + W∗ − 2CW0)} = v2. (6.25)

Therefore, we are led to the following linearly restrained optimization
problem:

min
C,Λ

R̃A = min
C,Λ

{
σ−2RA(p, y∗) − 2

n∑
τ=1

λ′
τ (CX − X∗)′

τ

}
(6.26)

with (CX − X∗)′
τ as the τth column of (CX − X∗) and

Λ′
K,n

= (λ1
K,1

, . . . , λn
K,1

)

a matrix of Lagrangian multipliers, where each λi is a K-vector.
The optimal matrices Ĉ3 and Λ̂ are solutions to the normal equations

1
2

∂R̃A

∂C
= ACW − AW ′

0 − ΛX ′ = 0 (6.27)

and

1
2

∂R̃A

∂Λ
= CX − X∗ = 0 . (6.28)

Because of the regularity of A > 0, it follows from (6.27) that

C = W ′
0W

−1 + ΛX ′W−1.

Using (6.28) and setting S = X ′W−1X, we obtain

CX = W ′
0W

−1X + ΛS = X∗ ,

and hence we find

Λ̂ = (X∗ − W ′
0W

−1X)S−1.

Combining these expressions gives the optimal matrix Ĉ3:

Ĉ3 = W ′
0W

−1 + X∗S−1X ′W−1 − W ′
0W

−1XS−1X ′W−1

and, finally, the optimal predictor p̂3 = Ĉ3y:

p̂3 = X∗b + W ′
0W

−1(y − Xb). (6.29)
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Theorem 6.2 The RA(p, y∗)-optimal, homogeneous unbiased predictor of y∗
is of the form p̂3 (6.29) with b = S−1X ′W−1y, the GLSE. Using the
notation Z from (6.21), we get the risk

RA(p̂3, y∗) = tr{AZV (b)Z ′} + RA(p̂1, y∗) . (6.30)

Comparison of the Optimal Predictors

From (6.30) we may conclude that

RA(p̂3, y∗) − RA(p̂1, y∗) = tr{A
1
2 ZV (b)Z ′A

1
2 } ≥ 0 (6.31)

and, analogously (cf. (6.22))

RA(p̂2, y∗) − RA(p̂1, y∗) = tr{A
1
2 ZM(β̂2, β)Z ′A

1
2 } ≥ 0 , (6.32)

as the matrices in brackets are nonnegative definite.
For the comparison of p̂3 and p̂2, we see that the following difference is

nonnegative definite:

RA(p̂3, y∗) − RA(p̂2, y∗) = tr{A
1
2 Z[V (b) − M(β̂2, β)]Z ′A

1
2 } ≥ 0 , (6.33)

if, as a sufficient condition,

V (b) − M(β̂2, β) = σ2S−1 − σ2ββ′

σ2 + β′Sβ
≥ 0 . (6.34)

But this is seen to be equivalent to the following condition

β′Sβ ≤ σ2 + β′Sβ ,

which trivially holds.

Corollary to Theorems 6.1 and 6.2: Consider the three classes of hetero-
geneous, homogeneous, and homogeneous unbiased linear predictors. Then
the optimal predictors of each class are p̂1, p̂2, and p̂3, respectively, with
their risks ordered in the following manner:

RA(p̂1, y∗) ≤ RA(p̂2, y∗) ≤ RA(p̂3, y∗) . (6.35)

Convention: Analogous to the theory of estimation, we say that the best
linear unbiased predictor p̂3 is the Gauss-Markov (GM) predictor or the
BLUP (best linear unbiased predictor) of y∗.

Example 6.2 (One-step-ahead prediction): An important special case of
prediction arises when n = 1 and τ = T + 1, that is, with the scalar model

y∗ = yT+1 = x′
T+1β + εT+1 , (6.36)

where εT+1 ∼ (0, σ2w∗) = (0, σ2
∗). The covariance vector of ε and εT+1 is

the first column of σ2W0 (6.4):

E(ε εT+1) = σ2w . (6.37)
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Then the GM predictor of y∗ = yT+1 is (cf. (6.29)) of the form

p̂3 = x′
T+1b + w′W−1(y − Xb) . (6.38)

As a particular case, let us assume that W is the dispersion matrix of the
first-order autoregressive process. Then we have σ2

∗ = σ2 and the structure
of the vector w as

w = E(ε εT+1) = σ2


ρT

ρT−1

...
ρ

 . (6.39)

Postmultiplying by the matrix W−1 (4.103) gives

w′W−1 = ρ(0, · · · , 0, 1) (6.40)

so that

w′W−1w = ρ2.

Therefore, the one-step-ahead GM predictor of y∗ becomes

p̂3 = x′
T+1b + ρε̂T . (6.41)

Here ε̂T is the last component of the estimated residual vector y − Xb = ε̂.
For n = 1, the (n, n)-matrix A becomes a positive scalar, which may be

fixed as 1. Then the predictor p̂3 (6.41) has the risk

R(p̂3, yT+1) = (x′
T+1 − ρx′

T )V (b)(xT+1 − ρxt) + σ2(1 − ρ2) (6.42)

(cf. Goldberger, 1962) .

6.6 MDE Matrix Comparisons between Optimal
and Classical Predictors

Predicting future values of the dependent variable in the generalized lin-
ear regression model is essentially based on two alternative methods: the
classical one, which estimates the expected value of the regressand to be
predicted; and the optimal one, which minimizes some quadratic risk over
a chosen class of predictors. We now present some characterizations of the
interrelationships of these two types of predictors and the involved estima-
tors of β. These investigations are mainly based on the results derived in
Toutenburg and Trenkler (1990).

The classical predictor estimates the conditional expectation X∗β of y∗
by X∗β̂, where β̂ is an estimator of β. Since X∗ is known, classical predictors
X∗β̂ vary with respect to the chosen estimator β̂. Hence, optimality or
superiority of classical predictors may be expected to be strongly related
to the superiority of estimators.
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Let us first give the following definition concerning the superiority of
classical predictors.

Definition 6.3 (X∗β-superiority) Consider two estimators β̂1 and β̂2. Then
the classical predictor X∗β̂2 of y∗ is said to be X∗β-superior to the predictor
X∗β̂1 if

M(X∗β̂1, X∗β) − M(X∗β̂2, X∗β) ≥ 0 . (6.43)

Using M(X∗β̂i, X∗β) = E(X∗β̂i − X∗β)(X∗β̂i − X∗β)′ , we have

M(X∗β̂1, X∗β) − M(X∗β̂2, X∗β) = X∗[M(β̂1, β) − M(β̂2, β)]X ′
∗

= X∗∆(β̂1, β̂2)X ′
∗ , (6.44)

where ∆(β̂1, β̂2) is the difference between the MDE matrices of the
estimators β̂1 and β̂2 (cf. (3.46)).

It follows that superiority of the estimator β̂2 over β̂1 implies the X∗β-
superiority of the predictor X∗β̂2 over X∗β̂1. Therefore, the semi-ordering
(in the Loewner sense) of estimators implies the same semi-ordering of the
corresponding classical predictors. The superiority condition for estimators,
(i.e., ∆(β̂1, β̂2) ≥ 0) and that for classical predictors (i.e., condition (6.44))
become equivalent if the (n, K)-matrix X∗ has full column rank K (see
Theorem A.46), which, however, may rarely be the case.

Both criteria also become equivalent in any case if we admit all matri-
ces X∗ in Definition 6.3, so that X∗β superiority reduces to the MDE-I
superiority of estimators.

If we are mainly interested in predicting the random vector y∗ itself,
then we should introduce an alternative mean dispersion error criterion for
a predictor p by defining the following matrix:

M(p, y∗) = E(p − y∗)(p − y∗)′. (6.45)

Observe that

M(p, y∗) = V (p − y∗) + d∗d′
∗ , (6.46)

where

d∗ = E(p) − X∗β (6.47)

denotes the bias of p with respect to X∗β.
On the other hand,

M(p, X∗β) = V (p) + d∗d′
∗ (6.48)

and since

V (p − y∗) = V (p) − cov(p, y∗) − cov(y∗, p) + V (y∗) , (6.49)

we have in general

M(p, y∗) �= M(p, X∗β) . (6.50)
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Example 6.3: If p = Cy + d is a linear predictor, we have

M(p, y∗) = σ2[CWC ′ − CW0 − W ′
0C

′ + W∗] + d∗d′
∗ , (6.51)

M(p, X∗β) = σ2CWC ′ + d∗d′
∗ , (6.52)

where the bias of p with respect to X∗β is given by

d∗ = (CX − X∗)β + d . (6.53)

Definition 6.4 (y∗ superiority) Consider two predictors p1 and p2 of y∗. The
predictor p2 is said to be y∗-superior to p1 if

M(p1, y∗) − M(p2, y∗) ≥ 0 . (6.54)

Let us now pose the question as to when X∗β superiority implies y∗
superiority, and vice versa, that is, when

M(p1, y∗) − M(p2, y∗) = M(p1, X∗β) − M(p2, X∗β) (6.55)

holds.
From (6.46) and (6.49) it becomes clear that this will be the case if

cov(p, y∗) = 0. For linear predictors, this means that W0 should be zero.
We may state the following result (Toutenburg and Trenkler, 1990):

Theorem 6.5 Suppose that σ−2 E(ε ε′
∗) = W0 = 0, and let p1 and p2 be

two predictors. Then the following conditions are equivalent for competing
predictors:

(i) M(p1, y∗) − M(p2, y∗) ≥ 0,

(ii) M(p1, X∗β) − M(p2, X∗β) ≥ 0,

(iii) RA(p1, y∗) − RA(p2, y∗) ≥ 0 for all A ≥ 0,

(iv) RA(p1, X∗β) − M(p2, X∗β) ≥ 0 for all A ≥ 0,

where (cf. (6.10))

RA(pi, X∗β) = E[(pi − X∗β)′A(pi − X∗β)] ,
RA(pi, y∗) = E[(pi − y∗)′A(pi − y∗)] , i = 1, 2.

Now assume β̂ to be any estimator of β, and let

p(β̂) = X∗β̂ + W ′
0W

−1(y − Xβ̂) (6.56)

be the predictor. With the (n, K)-matrix Z from (6.21), we get

p(β̂) − y∗ = Z(β̂ − β) + W ′
0W

−1ε − ε∗ . (6.57)

If β̂ = Dy + d is a linear estimator of β, it immediately follows that

E[(β̂ − β)(W ′
0W

−1ε − ε∗)′] = D E[ε(ε′W−1W0 − ε′
∗)]

= σ2D(WW−1W0 − W0)
= 0 , (6.58)
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and from this (cf. (6.51)) we obtain the MDE matrix (6.45) of p(β̂) as

M(p(β̂), y∗) = ZM(β̂, β)Z ′ + σ2(W∗ − W ′
0W

−1W0). (6.59)

6.6.1 Comparison of Classical and Optimal Prediction
with Respect to the y∗ Superiority

Consider linear heterogeneous estimators for β given by β̂ = Dy + d,
which are not necessarily unbiased. It might be expected that the classical
predictor

p̂0 = X∗β̂ (6.60)

for y∗ is outperformed with respect to the MDE matrix criterion (6.54) by
the predictor p(β̂) given in (6.56), since the latter uses more information.
This, however, does not seem always to be the case.

Let

b∗o = X∗[(DX − I)β + d] (6.61)

denote the bias of p̂0 with respect to X∗β. Then we have (cf. (6.51))

M(p̂0, y∗) = σ2X∗DWD′X ′
∗ − σ2X∗DW0

− σ2W ′
0D

′X ′
∗ + σ2W∗ + b∗0b

′
∗0 , (6.62)

and with (6.58) and (6.59) we obtain

M(p(β̂), y∗) = σ2ZDWD′Z ′ − σ2W ′
0W

−1W0

+ σ2W∗ + b∗1b
′
∗1 , (6.63)

where

b∗1 = Z[(DX − I)β + d]
= b∗0 − W ′

0W
−1X[(DX − I)β + d] (6.64)

is the bias of p(β̂) with respect to X∗β.
Introducing the notation

P = W− 1
2 XDWD′X ′W− 1

2 , (6.65)

G = W ′
0W

− 1
2 (I − P )W− 1

2 W0 , (6.66)

E = DWD′X ′W− 1
2 − DW− 1

2 , (6.67)

we obtain the following representation for the difference of the MDE
matrices of p̂0 and p(β̂):

M(p̂0, y∗) − M(p(β̂), y∗) = σ2G + σ2X∗EW− 1
2 W0

+ σ2W ′
0W

− 1
2 E′X ′

∗
+ b∗0b

′
∗0 − b∗1b

′
∗1 . (6.68)
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Now the crucial problem is to find the conditions under which the difference
(6.68) is nonnegative definite. As indicated above, it turns out that there is
no general solution to this problem. Nevertheless, we are able to find some
simplifications in some special cases.

Assume that E = 0. This condition is equivalent to the equation

DW (D′X ′ − I) = 0 , (6.69)

which is satisfied, for example, for the so-called guess prediction using D =
0. An important case is given by β̂1 = β. Furthermore, we notice that (6.69)
is sufficient for P to be a projector, which implies that G ≥ 0:

P = W− 1
2 XDWD′X ′W− 1

2 = W− 1
2 XDW

1
2 (use (6.69))

P 2 = (W− 1
2 XDW

1
2 )(W− 1

2 XDWD′X ′W− 1
2 )

= W− 1
2 XD(WD′)X ′W− 1

2 (use (6.69))
= P ,

so that P is idempotent, and hence I − P is also idempotent, implying
G ≥ 0.

Theorem 6.6 Assume that (6.69) is satisfied. Then the predictor p(β̂) (from
(6.56)) is y∗-superior to the classical predictor p̂0 = X∗β̂ if and only if

(i) b∗1 ∈ R(σ2G + b∗0b
′
∗0) (6.70)

and

(ii) b′
∗1(σ

2G , +b∗0b
′
∗0)

−b∗1 ≤ 1 (6.71)

where the choice of the g-inverse is arbitrary.

Proof: Use Theorem A.71.

Examples:

(a) Let D = S−1X ′W−1 and d = 0, so that β̂ = Dy = b is the GLSE.
Then it is easily seen that (6.69) is satisfied:

S−1X ′W−1W (W−1XS−1X ′ − I) = 0.

Since b is unbiased, both p(b) (= p̂3 (6.29)) and p̂0 = X∗b are
unbiased, and by Theorem 6.6 we get

M(X∗b, y∗) − M(p(b), y∗) ≥ 0 . (6.72)

This result was first derived by Goldberger (1962).

(b) Consider the case where we have an additional linear restriction r =
Rβ + δ with rank(R) = J . Then the corresponding linearly restricted
least-squares estimator is given by

b(R) = b + S−1R′(RS−1R′)−1(r − Rb)
= D̄y + d̄ (6.73)
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with

D̄ = (I − S−1R′(RS−1R′)−1R)S−1X ′W−1 (6.74)

and

d̄ = S−1R′(RS−1R′)−1r . (6.75)

After some straightforward calculations, it is easily seen that the ma-
trix D̄ (6.74) belonging to the heterogeneous estimator (6.73) satisfies
condition (6.69), not depending on whether the restrictions r = Rβ
are valid. Now consider the predictors

p̂0 = X∗b(R)

and

p(b(R)) = X∗b(R) + W ′
0W

−1(y − Xb(R)) .

With the notation

Ḡ = W ′
0W

− 1
2 (I − P̄ )W− 1

2 W0 ≥ 0 ,

P̄ = W− 1
2 XD̄WD̄′X ′W− 1

2 (cf. (6.65), (6.66)),

and defining

b∗0 = X∗S−1R′(RS−1R′)−1δ , (6.76)
b∗1 = ZS−1R′(RS−1R′)−1δ , (6.77)

with

δ = r − Rβ, (6.78)

we finally obtain

M(p̂0, y∗) − M(p(b(R)), y∗) = σ2Ḡ + b∗0b
′
∗0 − b∗1b

′
∗1 . (6.79)

In order to decide if this difference is nonnegative definite, we have
to use Theorem 6.6. As a conclusion, we may state that the predictor
p̂(b(R)) is y∗-superior to the classical predictor p̂0 = X∗b(R) if and
only if conditions (6.70) and (6.71) are satisfied. If δ = 0 (i.e., if
the linear restrictions are satisfied exactly), then b∗0 = b∗1 = 0 and
M(p̂0, y∗) − M(p(b(R), y∗) = σ2Ḡ ≥ 0.

6.6.2 Comparison of Classical and Optimal Predictors
with Respect to the X∗β Superiority

We now compare the predictors p̂0 = X∗β̂ and p(β̂) (cf. (6.56)) for a lin-
ear heterogeneous estimator β̂ = Dy + d with respect to criterion (6.43).
Different from the y∗ optimality of p(β), it might be expected that p̂0 is
a more efficient predictor according to the X∗β criterion when compared
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with p(β̂). Hence, let us investigate the conditions for the classical predictor
p̂0 = X∗β̂ to be superior to the predictor p(β̂), according to Definition 6.3;
that is, let us find when (see (6.43))

M(p(β̂), X∗β) − M(p̂0, X∗β) ≥ 0 . (6.80)

Using (6.48) we get

M(p̂0, X∗β) = σ2X∗DWD′X ′
∗ + b∗0b

′
∗0 (6.81)

with b∗0 from (6.61) and

M(p(β̂), X∗β) = σ2X∗DWD′X ′
∗ + σ2W ′

0W
−1W0

+ σ2W ′
0W

−1XDWD′X ′W−1W0

+ σ2X∗DW0 + σ2W ′
0D

′X ′
∗ − σ2X∗DWD′X ′W−1W0

−σ2W ′
0W

−1XDWD′X ′
∗ − σ2W ′

0W
−1XDW0

−σ2W ′
0D

′X ′W−1W0 + b∗1b
′
∗1 (6.82)

with b∗1 from (6.64).
Hence the difference (6.80) between the MDE matrices becomes

M(p(β̂), X∗β) − M(p̂0, X∗β)

= −σ2G − b∗0b
′
∗0 + b∗1b

′
∗1 − σ2X∗EW− 1

2 W0

−σ2W ′
0W

− 1
2 E′X ′

∗ + σ2W ′
0W

−1[I − XD]W0

+ σ2W ′
0[I − D′X ′]W−1W0 (6.83)

with G from (6.66) and E from (6.67).
Similar to the problem discussed before, it is not an easy task to de-

cide whether this difference is nonnegative definite. Therefore we confine
ourselves again to situations for which this difference assumes a simple
structure. This occurs, for example, if condition (6.69) is satisfied such
that after some calculations condition (6.83) reduces to

M(p(β̂), X∗β) − M(p̂0, X∗β) = σ2G + b∗1b
′
∗1 − b∗0b

′
∗0 . (6.84)

Theorem 6.7 Let β̂ = Dy + d be a linear estimator such that the ma-
trix D satisfies condition (6.69) (which is equivalent to E = 0). Then
the classical predictor p̂0 = X∗β̂ is X∗β-superior to the predictor p(β̂) =
X∗β + W ′

0W
−1(y − Xβ̂) if and only if

(i) b∗0 ∈ R(σ2G + b∗1b
′
∗1) (6.85)

and

(ii) b′
∗0(σ

2G + b∗1b
′
∗1)

−b∗0 ≤ 1 . (6.86)

Example 6.4: Let β̂ = b. Then p̂0 = X∗b is X∗β-superior to p(b) in
accordance with the extended Gauss-Markov-Aitken theorem.
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This may be seen as follows:

M(X∗b, X∗β) = σ2X∗S−1X ′
∗, (6.87)

p(b) − X∗β = ZS−1X ′W−1ε + W ′
0W

−1ε,

M(p(b), X∗β) = σ2ZS−1Z ′ + σ2W ′
0W

−1W0

+ σ2ZS−1X ′W−1W0 + σ2W ′
0W

−1XS−1Z ′

= σ2X∗S−1X ′
∗ + σ2W ′

0W
−1W0

−σ2W ′
0W

−1XS−1X ′W−1W0

= σ2X∗S−1X ′
∗ + σ2G (6.88)

with

G = W ′
0(W

− 1
2 − W−1XS−1X ′W− 1

2 )(W− 1
2 − W− 1

2 XS−1X ′W−1)W0 ≥ 0 .

Therefore, we obtain

M(p(b), X∗β) − M(X∗b, X∗β) = σ2G ≥ 0 . (6.89)

Interpretation: The investigations of this section have shown very clearly
that optimality is strongly dependent on the chosen criterion and/or its
respective parameters. If we consider the two predictors X∗b (classical)
and p(b) = p̂3 (RA-optimal), we notice that p(b) is y∗-superior to X∗β
(cf. (6.72)):

M(X∗b, y∗) − M(p(b), y∗) ≥ 0

with respect to the RA optimality of p̂3 = p(b). If we change the criterion,
that is, if we compare both predictors with respect to the X∗β superiority,
we obtain

M(p(b), X∗β) − M(X∗b, X∗β) ≥ 0 ,

which is the reverse relationship.

6.7 Prediction Regions

In Sections 3.8.1 and 3.8.2, we derived confidence intervals and ellipsoids
for the parameter β and its components.

The related problem in this section consists of the derivation of prediction
regions for the random variable y∗.

In addition to (6.3), we assume a joint normal distribution, that is,

(ε∗, ε) ∼ Nn+T

(
(0, 0), σ2

(
W∗ W ′

0
W0 W

))
, (6.90)
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where the joint dispersion matrix is assumed to be regular. This is seen to
be equivalent (cf. Theorem A.74 (ii)(b)) to

W∗ − W ′
0W

−1W0 > 0 . (6.91)

We choose the RA-optimal homogeneous predictor as

p̂3 = X∗b + W ′
0W

−1(y − Xb) .

Using (6.90) and (6.30), this predictor is normally distributed:

p̂3 − y∗ ∼ Nn(0, σ2Σb) , (6.92)

with Z = X∗ − W ′
0W

−1X from (6.21) and

Σb = ZS−1Z ′ + W∗ − W ′
0W

−1W0 . (6.93)

Since p̂3 is unbiased, we have σ2Σb = M(p̂3, y∗) (cf. (6.45)). Thus it follows
from Theorem A.85 (ii) that

(p̂3 − y∗)′Σ−1
b (p̂3 − y∗) ∼ σ2χ2

n . (6.94)

This quadratic form describes a random ellipsoid with center p̂3. Its
distribution depends on the unknown parameter σ2, which has to be
estimated.

Theorem 6.8 Let s2 = (y − Xb)′W−1(y − Xb)(T − K)−1 be the estimator
of σ2. Then

n−1s−2(p̂3 − y∗)′Σ−1
b (p̂3 − y∗) ∼ Fn,T−K . (6.95)

Proof: Consider the standardized vector of disturbances

Φ =

(
W− 1

2 ε

W
− 1

2∗ ε∗

)
. (6.96)

Then, by using (6.90), we obtain

Φ ∼ Nn+T (0, σ2V ) , (6.97)

with

V =

(
IT W− 1

2 W0W
− 1

2∗
W

− 1
2∗ W ′

0W
− 1

2 In

)
. (6.98)

From this we get the representation

p̂3 − y∗ = [ZS−1X ′W− 1
2 + W ′

0W
− 1

2 ,−W
1
2∗ ]Φ (6.99)

= (A1, A2)Φ , (6.100)

and with (6.92) we have

Σb = (A1, A2)V
(

A′
1

A′
2

)
. (6.101)
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The following matrix is seen to be symmetric and idempotent:

V
1
2

(
A′

1
A′

2

)
Σ−1

b (A1 A2)V
1
2 . (6.102)

By using

V − 1
2 Φ ∼ N(0, σ2I) . (6.103)

and (6.99), (6.101), and (6.103), we may apply Theorem A.87 to show that

(p̂3 − y∗)′Σ−1
b (p̂3 − y∗)

= (Φ′V −1/2)[V 1/2
(

A′
1

A′
2

)
]Σ−1

b [(A1, A2)V 1/2](V −1/2Φ)

∼ σ2χ2
n . (6.104)

The estimator s2 = (y − Xb)′W−1(y − Xb)(T − K)−1 (cf. (4.66)) may be
rewritten in the following manner:

W− 1
2 (y − Xb) = (I − W− 1

2 XS−1X ′W− 1
2 )W− 1

2 ε

= (I − M)W− 1
2 ε . (6.105)

The matrix

M = W
1
2 XS−1X ′W− 1

2 (6.106)

is idempotent of rank(M) = tr(M) = K and I − M is idempotent of rank
T − K. Therefore, we obtain

(T − K)s2 = ε′W− 1
2 (I − M)W− 1

2 ε

= Φ′
(

I − M 0
0 0

)
Φ = Φ′M1Φ

= (Φ′V − 1
2 )V

1
2 M1V

1
2 (V − 1

2 Φ) , (6.107)

where M1 =
(

I − M 0
0 0

)
is idempotent of rank T − K, and, hence,

Φ′M1Φ ∼ σ2χ2
T−K .

As a consequence of these calculations, we have found a representation of
(p̂3−y∗)′Σ−1

b (p̂3−y∗) and of s2 as quadratic forms involving the same vector
V −1/2Φ. Therefore, we may use Theorem A.89 to check the independence
of these quadratic forms. The necessary condition for this to hold is

V
1
2 M1V

1
2 V

1
2

(
A′

1
A′

2

)
Σ−1

b (A1, A2)V
1
2 = 0 . (6.108)

Therefore, the condition

M1V

(
A′

1
A′

2

)
= 0
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would be sufficient for (6.108) to hold. But this condition is fulfilled as

M1V

(
A′

1
A′

2

)
=
(

I − M 0
0 0

)(
I W− 1

2 W0W
− 1

2∗
W

− 1
2∗ W ′

0W
− 1

2 I

)(
A′

1
A′

2

)
= (I − M)(A′

1 + W− 1
2 W0W

− 1
2∗ A′

2)

= (I − M)(W− 1
2 XS−1Z ′ + +W− 1

2 W0 − W− 1
2 W0) [cf. 6.99)]

= (I − W− 1
2 XS−1X ′W− 1

2 )W− 1
2 XS−1Z ′ [cf. (6.106)]

= W− 1
2 XS−1Z ′ − W− 1

2 XS−1Z ′ = 0 . (6.109)

The F -distribution (6.95) is a consequence of Theorem A.86, and this
completes the proof.

The result of Theorem 6.8 provides the basis to construct prediction
regions in the sense of the following definition.

Definition 6.9 A compact set B(p(β̂)) is called a region with expected cover-
age q (0 ≤ q ≤ 1) for the unknown random vector y∗ centered around p(β̂)
if

EyPy∗{y∗ ∈ B(p(β̂))} = q . (6.110)

From this definition and Theorem 6.8, we immediately obtain the
following result.

Theorem 6.10 The ellipsoid

B(p̂3) = {y∗ : n−1s−2(y∗ − p̂3)′Σ−1
b (y∗ − p̂3) ≤ Fn,T−K,1−α} (6.111)

is a region with expected coverage (1 − α) for the vector y∗.

Comparing the Efficiency of Prediction Ellipsoids

Similar to point estimators and point predictors, we may pose the question
of which prediction region should be regarded as optimal. If the predictor
p(β̂) is unbiased, then as a measure of optimality we choose a quantity
related to the volume of a prediction ellipsoid.

Let Vn denote the volume of the n-dimensional unit sphere, and let
a′Aa = 1 with A : n × n positive definite be any ellipsoid. Then its volume
is given by

VA = Vn|A|− 1
2 , (6.112)

and its squared volume by

V 2
A = V 2

n |A−1| . (6.113)
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Applying this rule, we may calculate the squared volume of the ellipsoid
B(p̂3) (6.111) as follows:

A−1 = nsFn,T−K,1−αΣb,

|A−1| = (ns2Fn,T−K,1−α)n|Σb|
(cf. Theorem A.16 (ii)). Taking expectation with respect to the random
variable (s2)n, we obtain the mean of the squared volume:

V̄ (B(p̂3)) = V 2
n E(s2n)(nFn,T−K,1−α)n|ZS−1Z ′ + W∗ − W ′

0W
−1W0| .

(6.114)

Theorem 6.11 Suppose that there are two unbiased estimators β̂1 and β̂2
for β having dispersion matrices V (β̂1) and V (β̂2), respectively, and the
corresponding predictors

p(β̂i) = X∗β̂i + W ′
0W

−1(y − Xβ̂i) , i = 1, 2 .

Assume further that p(β̂1) and p(β̂2) satisfy the necessary conditions for
F -distribution in the sense of (6.95). Then we have the result

V (β̂1) − V (β̂2) ≥ 0

⇒ V̄ (B(p̂(β̂1))) − V̄ (B(p(β̂2))) ≥ 0 . (6.115)

Proof: Let

V 2
n E(s2n)(nFn,T−K,1−α)n = cn

denote the constant term of (6.114). Then the means of the squared volume
of the prediction ellipsoids B(p(β̂i)), i = 1, 2, is

V̄ (B(p(β̂i))) = cn|σ−2ZV (β̂i)Z ′ + W∗ − W ′
0W

−1W0| .
Assume V (β̂1) − V (β̂2) ≥ 0. Then we obtain

Σ1 = σ2ZV (β̂1)Z ′ + W∗ − W0W
−1W0

≥ σ−2ZV (β̂2)Z ′ + W∗ − W ′
0W

−1W0 = Σ2 ,

that is, Σ1 = Σ2 + B, where B is nonnegative definite. Therefore, by
Theorem A.40 we have |Σ2| ≤ |Σ1|.

Hint: For more detailed discussions of prediction regions, the reader is
referred to Aitchison (1966), Aitchison and Dunsmore (1968), Toutenburg
(1970d, 1971, 1975b), and Guttmann (1970).

For literature on some other aspects of prediction with special reference
to growth curve models, the reader is referred to papers by Rao (1962,1964,
1977, 1984, 1987), and Rao and Boudreau (1985).
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6.8 Simultaneous Prediction of Actual and
Average Values of Y

Generally, predictions from a linear regression model are made either for
the actual values of the study variable or for the average values at a time.
However, situations may occur in which one may be required to consider
the predictions of both the actual and average values simultaneously. For
example, consider the installation of an artificial tooth in patients through
a specific device. Here a dentist would like to know the life of a restoration,
on the average. On the other hand, a patient would be more interested
in knowing the actual life of restoration in his/her case. Thus a dentist is
interested in the prediction of average value but he may not completely
ignore the interest of patients in the prediction of actual value. The dentist
may assign higher weight to prediction of average values in comparison to
the prediction of actual values. Similarly, a patient may give more weight
to prediction of actual values in comparison to that of average values.

This section considers the problem of simultaneous prediction of actual
and average values of the study variable in a linear regression model when a
set of linear restrictions binding the regression coefficients is available, and
analyzes the performance properties of predictors arising from the methods
of restricted regression and mixed regression in addition to least squares.

6.8.1 Specification of Target Function
Let us postulate the classical linear regression model (2.45). If β̂ denotes an
estimator of β, then the predictor for the values of study variables within
the sample is generally formulated as T̂ = Xβ̂, which is used for predicting
either the actual values y or the average values E(y) = Xβ at a time.

For situations demanding prediction of both the actual and average
values together, Toutenburg and Shalabh (1996) defined the following
stochastic target function

T (y) = λy + (1 − λ) E(y) = T (6.116)

and used T̂ = Xβ̂ for predicting it where 0 ≤ λ ≤ 1 is a nonstochastic
scalar specifying the weight to be assigned to the prediction of actual and
average values of the study variable (see, e. g. , Shalabh, 1995).

Remark (i). In cases for which λ = 0, we have T = E(y) = Xβ and then
optimal prediction coincides with optimal estimation of β, whereas opti-
mality may be defined, for example, by minimal variance in the class of
linear unbiased estimators or by some mean dispersion error criterion if
biased estimators are considered. The other extreme case, λ = 1, leads to
T = y. Optimal prediction of y is then equivalent to optimal estimation
of Xβ + ε. If the disturbances are uncorrelated, this coincides again with
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optimal estimation of Xβ, that is, of β itself. If the disturbances are corre-
lated according to E(εε′) = σ2W , then this information leads to solutions
ŷ = Xβ̂ + ε̂ (cf. (6.56) and Goldberger, 1962).

Remark (ii). The two alternative prediction problems—Xβ superiority
and the y superiority, respectively—are discussed in full detail in Sec-
tion 6.6. As a central result, we have the fact that the superiority (in the
Loewner ordering of definite matrices) of one predictor over another predic-
tor can change if the criterion is changed. This was one of the motivations
to define a target as in (6.116), which combines these two risks.

In the following we consider this problem but with the nonstochastic
scalar λ replaced by a nonstochastic matrix Λ. The target function is
therefore

T (y) = Λy + (I − Λ) E(y) = T , say. (6.117)

Our derivation of the results makes no assumption about Λ, but one may
have in mind Λ as a diagonal matrix with elements 0 ≤ λi ≤ 1, i = 1, . . . , T .

6.8.2 Exact Linear Restrictions
Let us suppose that we are given a set of J exact linear restrictions binding
the regression coefficients r = Rβ (see (5.1)).

If these restrictions are ignored, the least squares estimator of β is b =
(X ′X)−1X ′y, which may not necessarily obey r = Rβ. Such is, however,
not the case with the restricted regression estimator given by (see (5.11))

b(R) = b + (X ′X)−1R′[R(X ′X)−1R′]−1(r − Rb).

By employing these estimators, we get the following two predictors for
the values of the study variable within the sample:

T̂ = Xb , (6.118)
T̂ (R) = Xb(R) . (6.119)

In the following, we compare the estimators b and b(R) with respect
to the predictive mean-dispersion error (MDEP) of their corresponding
predictions T̂ = Xb and T̂ (R) = Xb(R) for the target function T .

From (6.117), and the fact that the ordinary least-squares estimator and
the restricted estimator are both unbiased, we see that

EΛ(T ) = E(y) , (6.120)
EΛ(T̂ ) = Xβ = E(y) , (6.121)

EΛ(T̂ (R)) = Xβ = E(y) , (6.122)

but

E(T̂ ) = E(T̂ (R)) �= T . (6.123)
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Equation (6.123) reflects the stochastic nature of the target function T , a
problem that differs from the common problem of unbiasedness of a statistic
for a fixed but unknown (possibly matrix-valued) parameter. Therefore,
both the predictors are only “weakly unbiased” in the sense that

EΛ(T̂ − T ) = 0 , (6.124)
EΛ(T̂ (R) − T ) = 0 . (6.125)

6.8.3 MDEP Using Ordinary Least Squares Estimator
To compare alternative predictors, we use the matrix-valued mean-
dispersion error for T̃ = Xβ̂ as follows:

MDEPΛ(T̃ ) = E(T̃ − T )(T̃ − T )′ . (6.126)

First we note that

T = Λy + (I − Λ) E(y)
= Xβ + Λε , (6.127)

T̂ = Xb

= Xβ + Pε , (6.128)

with the symmetric and idempotent projection matrix P = X(X ′X)−1X ′.
Hence we get

MDEPΛ(T̂ ) = E(P − Λ)εε′(P − Λ)′

= σ2(P − Λ)(P − Λ)′ , (6.129)

using our previously made assumptions on ε.

6.8.4 MDEP Using Restricted Estimator
The problem is now solved by the calculation of

MDEPΛ(T̂ (R)) = E(T̂ (R) − T )(T̂ (R) − T )′ . (6.130)

Using the abbreviation

F = X(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′ (6.131)

and

r − Rb = −R(X ′X)−1X ′ε , (6.132)

we get from (5.11), (6.119), (6.127), and (6.128) the following

T̂ (R) − T = Xb(R) − T

= (P − F − Λ)ε . (6.133)
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As F = F ′, P = P ′, and PF = FP = F , we have

MDEPΛ(T̂ (R)) = σ2(P − F − Λ)(P − F − Λ)′

= σ2[(P − Λ)(P − Λ)′ − (F − ΛF − FΛ′)](6.134)

6.8.5 MDEP Matrix Comparison
Using results (6.129) and (6.134), the difference of the MDEP-matrices can
be written as

∆Λ(T̂ ; T̂ (R)) = MDEPΛ(T̂ ) − MDEPΛ(T̂ (R))
= σ2(F − ΛF − FΛ′)
= σ2 [(I − Λ)F (I − Λ)′ − ΛFΛ′] . (6.135)

Then T̂ (R) becomes MDEP-superior to T̂ if ∆Λ(T̂ ; T̂ (R)) ≥ 0.
For ∆Λ(T̂ ; T̂ (R)) to be nonnegative definite, it follows from Baksalary,

Schipp, and Trenkler (1992) that necessary and sufficient conditions are

(i) R(ΛF ) ⊂ (R(I − Λ)F )
(ii) λ1 ≤ 1

where λ1 denotes the largest characteristic root of the matrix

[(I − Λ)F (I − Λ′)]+ΛFΛ′ .

For the simple special case of Λ = θI, the conditions reduce to θ ≤ 1
2 . Fur-

ther applications of this target function approach are given in Toutenburg,
Fieger, and Heumann (1999).

6.9 Kalman Filter

The Kalman filter (KF) commonly employed by control engineers and
other physical scientists has been successfully used in such diverse areas
as the processing of signals in aerospace tracking and underwater sonar,
and statistical quality control. More recently, it has been used in some
nonengineering applications such as short-term forecasting and analysis of
life lengths from dose-response experiments. Unfortunately, much of the
published work on KF is in engineering literature and uses a language, no-
tation, and style that is not familiar to statisticians. The original papers on
the subject are Kalman (1960) and Kalman and Bucy (1961). We believe
that KF can be discussed under the general theory of linear models and
linear prediction. We first mention the problem and some lemmas used in
the solution of the problem. All the results in this section are discussed in
a paper by Rao (1994).
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6.9.1 Dynamical and Observational Equations
Consider a time sequence of p- and q-vector random variables {x(t), y(t)},
t = 1, 2, . . . with the structural equations

x(t) = Fx(t − 1) + ξ(t) (6.136)
y(t) = Hx(t) + η(t) (6.137)

where F and H are matrices of order p × p and q × p, respectively, and the
following stochastic relationships hold.

1. {ξ(t)} and {η(t)} are independent sequences of p and q ran-
dom vectors with zero means and covariance matrices Vt and Wt,
respectively.

2. ξ(t) and x(u) are independent for t > u, and η(t) and x(u) are
independent for t ≥ u.

We can observe only y(t), and not x(t) and the problem is to predict x(t)
given y(1), . . . , y(t). Generally the covariance matrices Vt and Wt are inde-
pendent of t. In the sequal we take Vt = V and Wt = W , noting that the
theory applies even if Vt and Wt are time dependent.

6.9.2 Some Theorems
Consider the linear model

x = Aβ + ξ (6.138)

where x : p × 1, A : p × K, β : K × 1, and ξ : p × 1,

y = Bβ + η (6.139)

where y : q × 1, B : q × K, η : q × 1 with

E
(

ξ
η

)
=
(

0
0

)
, D
(

ξ
η

)
=
(

V11 V12
V21 V22

)
(6.140)

Note that we write D(x) = E[(x − E(x))(x − E(x))′] for the variance-
covariance matrix of a vector variable x and cov(x, y) = E

[(
x − E(x)

)(
y −

E(y)
)′]

. We wish to predict x given y under different assumptions on the
unknown β.

Assumption A1: β has a prior distribution with E(β) = β0 and D(β) =
Γ. (This is sometimes possible using technological considerations as in
aerospace tracking problems.)

Assumption A2: We may choose a noninformative prior for β.

Assumption A3: We may consider β as an unknown but fixed parameter.
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Theorem 6.12 (Rao, 1994) Under A1, the minimum mean-dispersion linear
predictor (MDLP) of x given y is

x̂ = Aβ0 + C(y − Bβo) (6.141)

where C = (AΓB′ + V12)(BΓB′ + V22)−1 with the mean dispersion (MD)

AΓA′ +V11+C(BΓB′ +V22)C ′ −(AΓB′ +V12)C ′ −C(BΓA′ +V21) (6.142)

The proof follows on standard lines of finding the linear regression of one
vector variable on another, observing that

E(η) = Aβ0 , E(y) = Bβ0 (6.143)
D(y) = BΓB′ + V22 , cov(x, y) = AΓB′ + V12 . (6.144)

The solution for the noninformative prior is obtained by taking the limit
of (6.141) as Γ−1 → 0.

The case of Γ = 0 and a known value of β occurs in economic applications.
The solution in such a case is obtained by putting Γ = 0 and β = β0 (known
value) in (6.141) and (6.142).

If β is a fixed unknown parameter or a random variable with an unknown
prior distribution, we may find predictions independent of β as in Theorem
6.12.

Theorem 6.13 (Rao, 1994) Let R(A′) ⊂ R(B′). Then a linear predictor of
x whose error is independent of the unknown β is (6.147) with the MDLP
(6.148) as given below.

Proof. Let L′y be a predictor of x. The condition that the error x − L′y is
independent of β implies

A − L′B = 0 . (6.145)

Subject to condition (6.145) we minimize the MDLP

D(x − L′y) = D(ξ − D′η) = V11 − L′V21 − V12L + L′V22L .

The minimum is attained when

V22L − BΛ = V21

B′L = A′ (6.146)

where Λ is a Lagrangian matrix multiplier. The optimum L is

L = V −1
22 (V21 + BG)

where

G = (B′V −1
22 B)−1(A′ − B′V −1

22 V21) .

The predictor, which we call a constrained linear predictor (CLP), of x
given y is

(V12 + G′B′)V −1
22 y (6.147)
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with the MDLP

V11 − V12V
−1
22 V21 + G′B′V −1

22 BG . (6.148)

Note that if β is known, then the second terms in (6.146) and (6.147) are
zero, which is the classical case of unconstrained linear prediction.

Theorem 6.14 (Rao 1994) Suppose that the vector y in (6.139) has the
partitioned form

y =
(

y1
y2

)
=
(

B1β + η1
B2β + η2

)
with R(A′) ⊂ R(B′

1) and R(B′
2) ⊂ R(B′

1). Let L′
1y1 be the CLP of x given

y1 and L′
2y1 be the CLP of y2 given y1. Then the CLP of x given y is

D1y1 + K(y2 − L′
2y1) (6.149)

where

K = cov(x − L′
1y1, y2 − L′

2y1)[D(y2 − L′
2y1)]−1

Proof. Observe that a linear predictor of x on y1 and y2 is of the form

x̂ = L′y1 + M ′(y2 − L′
2y1) = L′

1y1 + (L − L1)′y1 + M ′(y2 − L′
2y1) (6.150)

where L and M are arbitrary matrices. Note that if the linear predictor
(6.150) is unbiased for β, that is, E(x̂ − x) = 0, then E(L − L1)′y1 = 0,
since E(x−L′

1y
′
1) = 0 and EM ′(y2 −L′

2y1) = 0. Further, it is easy to verify
that

cov((L − L1)′y1, x − L′
1y1) = 0

cov((L − L1)′y1, M(y2 − L′
2y1)) = 0 .

In such a case

cov(x̂ − x, x̂ − x) = M ′AM + (L − L1)′C(L − L1) − DM ′ − MD′ (6.151)

where

A = cov(y2 − L′
2y1, y2 − L2y1)

C = cov(y1, y1)
D = cov(y1 − L′

1y1, y2 − L′
2y1)

Now, by minimizing (6.151) with respect to L and M , we have

M ′ = DA−1, L = L1

giving the optimum CLP as

L1y1 + DA−1(y2 − L1y1) .
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6.9.3 Kalman Model
Consider the Kalman model introduced in (6.136) and (6.137),

x(t) = Fx(t − 1) + ξ(t) t = 1, 2, . . . (6.152)
y(t) = Hx(t) + η(t) . (6.153)

From (6.152), we have

x(1) = Fx(0) + ξ(1)
x(2) = Fx(1) + ξ(2) = F 2x(0) + ε(2) , ε(2) = Fξ(1) + ξ(2)

...
x(t) = F tx(0) + ε(t) , (6.154)

where ε(t) = F t−1ξ(1) + . . . + ξ(t). Similarly,

y(t) = HF tx(0) + δ(t) , (6.155)

where δ(t) = Hε(t) + η(t). Writing

Y (t) =

 y(1)
...

y(t)

 , Z(t) =

 HF
...

HF t

 , ∆(t) =

 δ(1)
...

δ(t)


we have the observational equation

Y (t) = Z(t)x(0) + ∆(t) t = 1, 2, . . . . (6.156)

Equations (6.154) and (6.156) are of the form (6.138) and (6.139) with x(0)
in the place of β; consequently, the results of Theorems 6.12, 6.13 and 6.14
can be used to predict x(s) given Y (t), depending on the assumptions made
on x(0). We write such a predictor as x(s|t), and its MDLP by P (s|t). We
are seeking x̂(t|t) and its MDLP,

P (t|t) = D
(
x(t) − x̂(t|t)) . (6.157)

We will now show how x̂(t + 1|t + 1) can be derived knowing x̂(t|t) and its
MDLP. From equation (6.152),

x̂(t + 1|t) = Fx̂(t|t)
D(x̂(t + 1|t)) = FP (t|t)F ′ + V = P (t + 1|t) . (6.158)

From the equation (6.153)

ŷ(t + 1|t) = HFx̂(t|t)
D[ŷ(t + 1|t)] = HP (t + 1|t)H ′ + W = S(t + 1)

cov[x̂(t + 1|t), ŷ(t + 1|t)] = P (t + 1|t)H ′ = C(t + 1) .

Then

x̂(t + 1|t + 1) = x̂(t + 1|t) + Kŷ(t + 1|t) (6.159)
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where

K = C(t + 1)[S(t + 1)]−1

D[x̂(t + 1|t + 1)] = P (t + 1|t) − C(t + 1)[S(t + 1)]−1C(t + 1)′ .
(6.160)

Following the terminology in the KF theory, we call the second expression
on the right-hand side of (6.159) the Kalman gain in prediction, which
brings about the reduction in the MDLP by the second term in (6.160).
Thus, starting with x̂(t|t), we can derive x̂(t + 1|t + 1). We begin with
x̂(s|t) making an appropriate assumption on x(0) and build up successively
x̂(s + 1|t), . . . , x̂(t|t).

6.10 Exercises

Exercise 1. Derive optimal homogeneous and heterogeneous predictors for
Xβ and comment on their usefulness.

Exercise 2. If we use θX∗b with θ as a fixed scalar to predict X∗β, find the
value of θ that ensures minimum risk under quadratic loss function with A
as the loss matrix.

Exercise 3. Discuss the main results related to y∗ superiority and X∗β
superiority of classical and optimal predictors when the disturbances in
the model are independently and identically distributed.

Exercise 4. In a classical linear regression model y = Xβ + ε, the predictor
p̂0 can be used for y∗ as well as E(y∗) = X∗β. Compare the quantities
E(p̂0−y∗)′(p̂0−y∗) and E(p̂0−X∗β)′(p̂0−X∗β), and interpret the outcome.

Exercise 5. Let the performance criterion be given as

E
[
λ(y∗ − p̂)′W−1

∗ (y∗ − p̂) + (1 − λ)(X∗β − p̂)′W−1
∗ (X∗β − p̂)

]
(0 < λ < 1) for any predictor p̂. With respect to it, compare the predictors
p̂0 and p̂3.

Exercise 6. Suppose that the predicted values for y are ŷ from model y =
X1β1 + ε1 and ỹ from model y = X1β1 +X2β2 + ε2. Compare ŷ and ỹ with
respect to the criteria of unbiasedness and dispersion matrix.
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Sensitivity Analysis

7.1 Introduction

This chapter discusses the influence of individual observations on the es-
timated values of parameters and prediction of the dependent variable for
given values of regressor variables. Methods for detecting outliers and devi-
ation from normality of the distribution of errors are given in some detail.
The material of this chapter is drawn mainly from the excellent book by
Chatterjee and Hadi (1988).

7.2 Prediction Matrix

We consider the classical linear model

y = Xβ + ε, ε ∼ (0, σ2I)

with the usual assumptions. In particular, we assume that the matrix X
of order T × K has the full rank K. The quality of the classical ex-post
predictor p̂ = Xb0 = ŷ of y with b0 = (X ′X)−1X ′y, the OLSE (ordinary
least-squares estimator), is strongly determined by the T × T -matrix

P = X(X ′X)−1X ′ = (pij) , (7.1)

which is symmetric and idempotent of rank(P ) = tr(P ) = tr(IK) = K. The
matrix M = I − P is also symmetric and idempotent and has rank(M) =
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T − K. The estimated residuals are defined by

ε̂ = (I − P )y = y − Xb0

= y − ŷ = (I − P )ε . (7.2)

Definition 7.1 (Chatterjee and Hadi, 1988) The matrix P given in (7.1) is
called the prediction matrix, and the matrix I − P is called the residuals
matrix.

Remark: The matrix P is sometimes called the hat matrix because it maps
y onto ŷ.

The (i, j)th element of the matrix P is denoted by pij where

pij = pji = x′
j(X

′X)−1xi (i, j = 1, . . . , T ) . (7.3)

The ex-post predictor ŷ = Xb0 = Py has the dispersion matrix

V (ŷ) = σ2P . (7.4)

Therefore, we obtain (denoting the ith component of ŷ by ŷi and the ith
component of ε̂ by ε̂i)

var(ŷi) = σ2pii , (7.5)
V(ε̂) = V

(
(I − P )y

)
= σ2(I − P ) , (7.6)

var(ε̂i) = σ2(1 − pii) (7.7)

and for i �= j

cov(ε̂i, ε̂j) = −σ2pij . (7.8)

The correlation coefficient between ε̂i and ε̂j then becomes

ρij = corr(ε̂i, ε̂j) =
−pij√

1 − pii

√
1 − pjj

. (7.9)

Thus the covariance matrices of the predictor Xb0 and the estimator of
error ε̂ are entirely determined by P . Although the disturbances εi of the
model are i.i.d., the estimated residuals ε̂i are not identically distributed
and, moreover, they are correlated. Observe that

ŷi =
T∑

j=1

pijyi = piiyi +
∑
j �=i

pijyj (i = 1, . . . , T ) , (7.10)

implying that

∂ŷi

∂yi
= pii and

∂ŷi

∂yj
= pij . (7.11)

Therefore, pii can be interpreted as the amount of leverage each value yi has
in determining ŷi regardless of the realized value yi. The second relation of
(7.11) may be interpreted, analogously, as the influence of yj in determining
ŷi.
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Decomposition of P

Assume that X is partitioned as X = (X1, X2) with X1 : T × p and
rank(X1) = p, X2 : T × (K − p) and rank(X2) = K − p. Let P1 =
X1(X ′

1X1)−1X ′
1 be the (idempotent) prediction matrix for X1, and let

W = (I − P1)X2 be the projection of the columns of X2 onto the or-
thogonal complement of X1. Then the matrix P2 = W (W ′W )−1W ′ is the
prediction matrix for W , and P can be expressed as (using Theorem A.45)

P = P1 + P2 (7.12)

or

X(X ′X)−1X ′ = X1(X ′
1X1)−1X ′

1+(I−P1)X2[X ′
2(I−P1)X2]−1X ′

2(I−P1) .
(7.13)

Equation (7.12) shows that the prediction matrix P can be decomposed into
the sum of two (or more) prediction matrices. Applying the decomposition
(7.13) to the linear model including a dummy variable, that is, y = 1α +
Xβ + ε, we obtain

P =
11′

T
+ X̃(X̃ ′X̃)−1X̃ ′ = P1 + P2 (7.14)

and

pii =
1
T

+ x̃′
i(X̃

′X̃)−1x̃i , (7.15)

where X̃ = (xij − x̄i) is the matrix of the mean-corrected x-values. This is
seen as follows. Application of (7.13) to (1, X) gives

P1 = 1(1′1)−11′ =
11′

T
(7.16)

and

W = (I − P1)X = X − 1
(

1
T

1′X
)

= X − (1x̄1, 1x̄2, . . . , 1x̄K)
= (x1 − x̄1, . . . , xK − x̄K) . (7.17)

The size and the range of the elements of P are measures for the influence
of data on the predicted values ŷt. Because of the symmetry of P , we have
pij = pji, and the idempotence of P implies

pii =
n∑

j=1

p2
ij = p2

ii +
∑
j �=i

p2
ij . (7.18)

From this equation we obtain the important property

0 ≤ pii ≤ 1 . (7.19)
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Reformulating (7.18):

pii = p2
ii + p2

ij +
∑

k �=i,j

p2
ik (j fixed) , (7.20)

which implies that p2
ij ≤ pii(1− pii), and therefore, using (7.19), we obtain

−0.5 ≤ pij ≤ 0.5 (i �= j) . (7.21)

If X contains a column of constants (1 or c1), then in addition to (7.19)
we obtain

pii ≥ T−1 (for all i) (7.22)

and

P1 = 1 . (7.23)

Relationship (7.22) is a direct consequence of (7.15). Since X̃ ′1 = 0 and
hence P21 = 0, we get from (7.14)

P1 = 1
T

T
+ 0 = 1 . (7.24)

The diagonal elements pii and the off-diagonal elements pij (i �= j) are
interrelated according to properties (i)–(iv) as follows (Chatterjee and Hadi,
1988, p. 19):

(i) If pii = 1 or pii = 0, then pij = 0.

Proof: Use (7.18).

(ii) We have

(piipjj − p2
ij) ≥ 0 . (7.25)

Proof: Since P is nonnegative definite, we have x′Px ≥ 0 for all x,
and especially for xij = (0, . . . , 0, xi, 0, xj , 0, . . . , 0)′, where xi and xj

occur at the ith and jth positions (i �= j). This gives

x′
ijPxij = (xi, xj)

(
pii pij

pji pjj

)(
xi

xj

)
≥ 0 .

Therefore, Pij =
(

pii pij

pji pjj

)
is nonnegative definite, and hence its

determinant is nonnegative:

|Pij | = piipjj − p2
ij ≥ 0 .

(iii) We have

(1 − pii)(1 − pjj) − p2
ij ≥ 0 . (7.26)
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Proof: Analogous to (ii), using I − P instead of P leads to (7.26).

(iv) We have

pii +
ε̂2i
ε̂′ε̂

≤ 1 . (7.27)

Proof: Let Z = (X, y), PX = X(X ′X)−1X ′ and PZ = Z(Z ′Z)−1Z ′.
Then (7.13) and (7.2) imply

PZ = PX +
(I − PX)yy′(I − PX)

y′(I − PX)y

= PX +
ε̂ε̂′

ε̂′ε̂
. (7.28)

Hence we find that the ith diagonal element of PZ is equal to pii +
ε̂2i /ε̂′ε̂. If we now use (7.19), then (7.27) follows.

Interpretation: If a diagonal element pii is close to either 1 or 0, then the
elements pij (for all j �= i) are close to 0.

The classical predictor of y is given by ŷ = Xb0 = Py, and its first
component is ŷ1 =

∑
p1jyj . If, for instance, p11 = 1, then ŷ1 is fully

determined by the observation y1. On the other hand, if p11 is close to 0,
then y1 itself and all the other observations y2, . . . , yT have low influence
on ŷ1.

Relationship (7.27) indicates that if pii is large, then the standardized
residual ε̂i/ε̂′ε̂ becomes small.

Conditions for pii to be Large

If we assume the simple linear model

yt = α + βxt + εt, t = 1, . . . , T ,

then we obtain from (7.15)

pii =
1
T

+
(xi − x̄)2∑T
t=1(xt − x̄)2

. (7.29)

The size of pii is dependent on the distance |xi−x̄|. Therefore, the influence
of any observation (yi, xi) on ŷi will be increasing with increasing distance
|xi − x̄|.

In the case of multiple regression we have a similar relationship. Let λi

denote the eigenvalues and γi (i = 1, . . . , K) the orthonormal eigenvectors
of the matrix X ′X. Furthermore, let θij be the angle between the column
vector xi and the eigenvector γj (i, j = 1, . . . , K). Then we have

pij = ‖xi‖ ‖xj‖
K∑

r=1

λ−1
r cos θir cos θrj (7.30)
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and

pii = x′
ixi

K∑
r=1

λ−1
r (cos θir)2. (7.31)

The proof is straightforward by using the spectral decomposition of X ′X =
ΓΛΓ′ and the definition of pij and pii (cf. (7.3)), that is,

pij = x′
i(X

′X)−1xj = x′
iΓΛ−1Γ′xj

=
K∑

r=1

λ−1
r x′

iγrx
′
jγr

= ‖xi‖ ‖xj‖
∑

λ−1
r cos θir cos θjr ,

where ‖xi‖ = (x′
ixi)

1
2 is the norm of the vector xi.

Therefore, pii tends to be large if

(i) x′
ixi is large in relation to the square of the vector norm x′

jxj of the
other vectors xj (i.e., xi is far from the other vectors xj) or

(ii) xi is parallel (or almost parallel) to the eigenvector corresponding to
the smallest eigenvalue. For instance, let λK be the smallest eigenvalue
of X ′X, and assume xi to be parallel to the corresponding eigenvector
γK . Then we have cos θiK = 1, and this is multiplied by λ−1

K , resulting
in a large value of pii (cf. Cook and Weisberg, 1982, p. 13).

Multiple X-Rows

In the statistical analysis of linear models there are designs (as, e.g., in the
analysis of variance of factorial experiments) that allow a repeated response
yt for the same fixed x-vector. Let us assume that the ith row (xi1, . . . , xiK)
occurs a times in X. Then it holds that

pii ≤ a−1. (7.32)

This property is a direct consequence of (7.20). Let J = {j : xi = xj}
denote the set of indices of rows identical to the ith row. This implies
pij = pii for j ∈ J , and hence (7.20) becomes

pii = ap2
ii +
∑
j /∈J

p2
ij ≥ ap2

ii ,

including (7.32).

Example 7.1: We consider the matrix

X =

 1 2
1 2
1 1


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with K = 2 and T = 3, and calculate

X ′X =
(

3 5
5 9

)
, |X ′X| = 2 , (X ′X)−1 =

1
2

(
9 −5

−5 3

)
,

P = X(X ′X)−1X ′ =

 0.5 0.5 0
0.5 0.5 0

0 0 1

 .

The first row and the second row of P coincide. Therefore we have p11 ≤ 1
2 .

Inserting x̄ = 5
3 and

∑3
t=1(xt − x̄)2 = 6

9 in (7.29) results in

pii =
1
3

+
(xi − x̄)2∑
(xt − x̄2)

,

that is, p11 = p22 = 1
3 + 1/9

6/9 = 1
2 and p33 = 1

3 + 4/9
6/9 = 1.

7.3 The Effect of a Single Observation
on the Estimation of Parameters

In Chapter 3 we investigated the effect of one variable Xi (or sets of vari-
ables) on the fit of the model. The effect of including or excluding columns
of X is measured and tested by the statistic F .

In this section we wish to investigate the effect of rows (yt, x
′
t) instead of

columns xt on the estimation of β. Usually, not all observations (yt, x
′
t) have

equal influence in a least-squares fit and on the estimator (X ′X)−1X ′y.
It is important for the data analyst to be able to identify observations
that individually or collectively have excessive influence compared to other
observations. Such rows of the data matrix (y, X) will be called influential
observations.

The measures for the goodness of fit of a model are mainly based on the
residual sum of squares

ε̂′ε̂ = (y − Xb)′(y − Xb)
= y′(I − P )y = ε′(I − P )ε . (7.33)

This quadratic form and the residual vector ε̂ = (I −P )ε itself may change
considerably if an observation is excluded or added. Depending on the
change in ε̂ or ε̂′ε̂, an observation may be identified as influential or not. In
the literature, a large number of statistical measures have been proposed
for diagnosing influential observations. We describe some of them and fo-
cus attention on the detection of a single influential observation. A more
detailed presentation is given by Chatterjee and Hadi (1988, Chapter 4).
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7.3.1 Measures Based on Residuals
Residuals play an important role in regression diagnostics, since the ith
residual ε̂i may be regarded as an appropriate guess for the unknown
random error εi.

The relationship ε̂ = (I − P )ε implies that ε̂ would even be a good
estimator for ε if (I − P ) ≈ I, that is, if all pij are sufficiently small and
if the diagonal elements pii are of the same size. Furthermore, even if the
random errors εi are i.i.d. (i.e., E εε′ = σ2I), the identity ε̂ = (I − P )ε
indicates that the residuals are not independent (unless P is diagonal) and
do not have the same variance (unless the diagonal elements of P are equal).
Consequently, the residuals can be expected to be reasonable substitutes
for the random errors if

(i) the diagonal elements pii of the matrix P are almost equal, that
is, the rows of X are almost homogeneous, implying homogeneity
of variances of the ε̂t, and

(ii) the off-diagonal elements pij (i �= j) are sufficiently small, implying
uncorrelated residuals.

Hence it is preferable to use transformed residuals for diagnostic purposes.
That is, instead of ε̂i we may use a transformed standardized residual
ε̃i = ε̂i/σi, where σi is the standard deviation of the ith residual. Sev-
eral standardized residuals with specific diagnostic power are obtained by
different choices of σ̂i (Chatterjee and Hadi, 1988, p. 73).

(i) Normalized Residual . Replacing σi by (ε̂′ε̂)
1
2 gives

ai =
ε̂i√
ε̂′ε̂

(i = 1, . . . , T ). (7.34)

(ii) Standardized Residual . Replacing σi by s =
√

ε̂′ε̂/(T − K), we obtain

bi =
ε̂i

s
(i = 1, . . . , T ). (7.35)

(iii) Internally Studentized Residual . With σ̂i = s
√

1 − pii we obtain

ri =
ε̂i

s
√

1 − pii
(i = 1, . . . , T ). (7.36)

(iv) Externally Studentized Residual . Let us assume that the ith obser-
vation is omitted. This fact is indicated by writing the index (i) in
brackets. Using this indicator, we may define the estimator of σ2

i when
the ith row (yi, x

′
i) is omitted as

s2
(i) =

y′
(i)(I − P(i))y(i)

T − K − 1
, (i = 1, . . . , T ). (7.37)
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If we take σ̂i = s(i)
√

1 − pii, the ith externally Studentized residual
is defined as

r∗
i =

ε̂i

s(i)
√

1 − pii
(i = 1, . . . , T ). (7.38)

7.3.2 Algebraic Consequences of Omitting an Observation
Let (y(i), X(i)) denote the remaining data matrix when the ith observation
vector (yi, xi1, . . . , xiK) is omitted.

Using the rowwise representation of the matrix X ′ = (x1, . . . , xT ), we
obtain

X ′X =
T∑

t=1

xtx
′
t = X ′

(i)X(i) + xix
′
i . (7.39)

Assume that rank(X(i)) = K. Then the inverse of X ′
(i)X(i) may be

calculated using Theorem A.18 (iv) (if x′
i(X

′X)−1xi �= 1 holds) as

(X ′
(i)X(i))−1 = (X ′X)−1 +

(X ′X)−1xix
′
i(X

′X)−1

1 − x′
i(X ′X)−1xi

. (7.40)

This implies that the following bilinear forms become functions of the
elements of the matrix P :

x′
r(X

′
(i)X(i))−1xk = prk +

pripik

1 − pii
(r, k �= i) . (7.41)

The rth diagonal element of the prediction matrix

P(i) = X(i)(X ′
(i)X(i))−1X ′

(i)

then is

prr(i) = prr +
p2

ri

1 − pii
(r �= i) . (7.42)

From (7.42), we observe that prr(i) may be large if either prr or pii is large
and/or if pri is large. Let us look at the case where the ith row of X occurs
twice. If the rth row and the ith row are identical, then (7.42) reduces to

prr(i) =
pii

1 − pii
. (7.43)

If the ith row is identical to the rth row, then (cf. (7.32)) we get pii ≤ 0.5.
If pii (= prr) is near 0.5, this implies that prr(i) (= pii(r)) will be close to 1
and the influence of the ith observation on ŷr will be undetected. This is
called the masking effect .

When the ith observation is omitted, then in the reduced data set the
OLSE for β may be written as

β̂(i) = (X ′
(i)X(i))−1X ′

(i)y(i) . (7.44)
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Therefore, the ith residual is of the form

ε̂i(i) = yi − x′
iβ̂(i) = yi − x′

i(X
′
(i)X(i))−1X ′

(i)y(i)

= yi − x′
i

[
(X ′X)−1 +

(X ′X)−1xix
′
i(X

′X)−1

1 − pii

]
(X ′y − xiyi)

= yi − xib + piiyi − piix
′
ib

1 − pii
+

p2
iiyi

1 − pii

= yi − ŷi + piiyi − piiŷi

1 − pii
+

p2
iiyi

1 − pii

=
yi − ŷi

1 − pii
=

ε̂i

1 − pii
. (7.45)

Hence, the difference between the OLSEs in the full and the reduced data
sets, respectively, is seen to be

b − β̂(i) =
(X ′X)−1xiε̂i

1 − pii
, (7.46)

which can be easily deduced by combining equations (7.44) and (7.40).
Based on formula (7.46) we may investigate the interrelationships among
the four types of residuals defined before. Equations (7.34) and (7.35) pro-
vide us with the relationship between the ith standardized residual bi and
the ith normalized residual ai:

bi = ai

√
T − K . (7.47)

In the same manner it is proved that the ith internally Studentized residual
ri is proportional to bi, and hence to ai, in the following manner:

ri =
bi√

1 − pii
= ai

√
T − K

1 − pii
. (7.48)

7.3.3 Detection of Outliers
To find the relationships between the ith internally and externally Student-
ized residuals, we need to write (T −K)s2 = y′(I−P )y as a function of s2

(i),
that is, as (T − K − 1)s2

(i) = y′
(i)(I − P(i))y(i). This is done by noting that

omitting the ith observation is equivalent to fitting the mean-shift outlier
model

y = Xβ + eiδ + ε , (7.49)

where ei (see Definition A.8) is the ith unit vector; that is, e
′
i = (0, . . . , 0, 1,

0, . . . , 0). The argument is as follows. Suppose that either yi or x′
iβ deviates

systematically by δ from the model yi = x′
iβ + εi. Then the ith observation

(yi, x
′
iβ) would have a different intercept than the remaining observations

and (yi, x
′
iβ) would hence be an outlier. To check this fact, we test the
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hypothesis

H0: δ = 0 (i.e., E(y) = Xβ)

against the alternative

H1: δ �= 0 (i.e., E(y) = Xβ + eiδ)

using the likelihood-ratio test statistic

Fi =

(
SSE(H0) − SSE(H1)

)
/1

SSE(H1)/(T − K − 1)
, (7.50)

where SSE(H0) is the residual sum of squares in the model y = Xβ + ε
containing all the T observations:

SSE(H0) = y′(I − P )y = (T − K)s2.

SSE(H1) is the residual sum of squares in the model y = Xβ + eiδ + ε.
Applying relationship (7.13), we obtain

(X, ei)[(X, ei)′(X, ei)]−1(X, ei)′ = P +
(I − P )eie

′
i(I − P )

e′
i(I − P )ei

. (7.51)

The left-hand side may be interpreted as the prediction matrix P(i) when
the ith observation is omitted. Therefore, we may conclude that

SSE(H1) = (T − K − 1)s2
(i) = y′

(i)(I − P(i))y(i)

= y′
(

I − P − (I − P )eie
′
i(I − P )

e′
i(I − P )ei

)
y

= SSE(H0) − ε̂2i
1 − pii

(7.52)

holds, where we have made use of the following relationships: (I − P )y = ε̂
and e′

iε̂ = ε̂i and, moreover, e′
iIei = 1 and e′

iPei = pii.
Therefore, the test statistic (7.50) may be written as

Fi =
ε̂2i

(1 − pii)s2
(i)

= (r∗
i )2, (7.53)

where r∗
i is the ith externally Studentized residual.

Theorem 7.2 (Beckman and Trussel, 1974) Assume the design matrix X is
of full column rank K.

(i) If rank(X(i)) = K and ε ∼ NT (0, σ2I), then the externally Studentized
residuals r∗

i (i = 1, . . . , T ) are tT−K−1-distributed.

(ii) If rank(X(i)) = K − 1, then the residual r∗
i is not defined.

Assume rank(X(i)) = K. Then Theorem 7.2 (i) implies that the test
statistic (r∗

i )2 = Fi from (7.53) is distributed as central F1,T−K−1 under
H0 and noncentral F1,T−K−1(δ2(1 − pii)σ2) under H1, respectively. The
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noncentrality parameter decreases (tending to zero) as pii increases. That
is, the detection of outliers becomes difficult when pii is large.

Relationships between r∗
i and ri

Equations (7.52) and (7.36) imply that

s2
(i) =

(T − K)s2

T − K − 1
− ε̂2i

(T − K − 1)(1 − pii)

= s2
(

T − K − r2
i

T − K − 1

)
(7.54)

and, hence,

r∗
i = ri

√
T − K − 1
T − K − r2

i

. (7.55)

Inspecting the Four Types of Residuals

The normalized, standardized, and internally and externally Studentized
residuals are transformations of the OLS residuals ε̂i according to ε̂i/σi,
where σi is estimated by the corresponding statistics defined in (7.34) to
(7.37), respectively. The normalized as well as the standardized residuals
ai and bi, respectively, are easy to calculate but they do not measure the
variability of the variances of the ε̂i. Therefore, in the case of large dif-
ferences in the diagonal elements pii of P or, equivalently (cf. (7.7)), of
the variances of ε̂i, application of the Studentized residuals ri or r∗

i is well
recommended. The externally Studentized residuals r∗

i are advantageous in
the following sense:

(i) (r∗
i )2 may be interpreted as the F -statistic for testing the significance

of the unit vector ei in the mean-shift outlier model (7.49).

(ii) The internally Studentized residual ri follows a beta distribution (cf.
Chatterjee and Hadi, 1988, p. 76) whose quantiles are not included in
standard textbooks.

(iii) If r2
i → T − K then r∗2

i → ∞ (cf. (7.55)). Hence, compared to ri, the
residual r∗

i is more sensitive to outliers.

Example 7.2: We go back to Section 3.8.3 and consider the following data
set including the response vector y and the variable X4 (which was detected
to be the most important variable compared to X1, X2, and X3):(

y
X4

)′
=
(

18 47 125 40 37 20 24 35 59 50
−10 19 100 17 13 10 5 22 35 20

)
.
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Table 7.1. Internally and externally Studentized residuals

i 1 − pii ŷi ε̂i r2
i r∗2

i = Fi

1 0.76 11.55 6.45 1.15 1.18
2 0.90 41.29 5.71 0.76 0.74
3 0.14 124.38 0.62 0.06 0.05
4 0.90 39.24 0.76 0.01 0.01
5 0.89 35.14 1.86 0.08 0.07
6 0.88 32.06 –12.06 3.48 5.38
7 0.86 26.93 –2.93 0.21 0.19
8 0.90 44.37 –9.37 2.05 2.41
9 0.88 57.71 1.29 0.04 0.03

10 0.90 42.32 7.68 1.38 1.46

Including the dummy variable 1, the matrix X = (1, X4) gives (T =
10, K = 2)

X ′X =
(

10 231
231 13153

)
, |X ′X| = 78169

(X ′X)−1 =
1

78169

(
13153 −231
−231 10

)
.

The diagonal elements of P = X(X ′X)−1X ′ are

p11 = 0.24 , p66 = 0.12 ,

p22 = 0.10 , p77 = 0.14 ,

p33 = 0.86 , p88 = 0.10 ,

p44 = 0.10 , p99 = 0.12 ,

p55 = 0.11 , p1010 = 0.11 ,

where
∑

pii = 2 = K = trP and pii ≥ 1
10 (cf. (7.22)). The value p33 differs

considerably from the other pii. To calculate the test statistic Fi (7.53), we
have to find the residuals ε̂i = yi − ŷi = yi − x′

ib0, where β̂ = (21.80; 1.03)
(cf. Section 3.8.3, first step of the procedure). The results are summarized
in Table 7.1.

The residuals r2
i and r∗2

i are calculated according to (7.36) and (7.55),
respectively. The standard deviation was found to be s = 6.9.

From Table B.2 (Appendix B) we have the quantile F1,7,0.95 = 5.59,
implying that the null hypothesis H0: “ith observation (yi, 1, x4i) is not
an outlier” is not rejected for all i = 1, . . . , 10. The third observation may
be identified as a high-leverage point having remarkable influence on the
regression line. Taking x̄4 = 23.1 and s2(x4) = 868.544 from Section 3.8.3
and applying formula (7.29), we obtain

p33 =
1
10

+
(100 − 23.1)2∑10

t=1(xt − x̄)2
=

1
10

+
76.92

9 · 868.544
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A

Figure 7.1. High-leverage point A

A

Figure 7.2. Outlier A

= 0.10 + 0.76 = 0.86.

Therefore, the large value of p33 = 0.86 is mainly caused by the large
distance between x43 and the mean value x̄4 = 23.1.

Figures 7.1 and 7.2 show typical situations for points that are very far
from the others. Outliers correspond to extremely large residuals, but high-
leverage points correspond to extremely small residuals in each case when
compared with other residuals.

7.4 Diagnostic Plots for Testing the Model
Assumptions

Many graphical methods make use of the residuals to detect deviations from
the stated assumptions. From experience one may prefer graphical methods
over numerical tests based on residuals. The most common residual plots
are

(i) empirical distribution of the residuals, stem-and-leaf diagrams, Box-
Whisker plots;

(ii) normal probability plots;

(iii) residuals versus fitted values or residuals versus xi plots (see
Figures 7.3 and 7.4).

These plots are useful in detecting deviations from assumptions made on
the linear model.

The externally Studentized residuals also may be used to detect viola-
tion of normality. If normality is present, then approximately 68% of the
residuals r∗

i will be in the interval [−1, 1]. As a rule of thumb, one may
identify the ith observation as an outlier if |r∗

i | > 3.
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ŷt

ε̂t

Figure 7.3. Plot of the residuals ε̂t

versus the fitted values ŷt (suggests
deviation from linearity)

ŷt

ε̂t

Figure 7.4. No violation of linearity

ŷt

ε̂t

Figure 7.5. Signals for heteroscedasticity

If the assumptions of the model are correctly specified, then we have

cov(ε̂, ŷ′) = E
(
(I − P )εε′P

)
= 0 . (7.56)

Therefore, plotting ε̂t versus ŷt (Figures 7.3 and 7.4) exhibits a random
scatter of points. A situation as in Figure 7.4 is called a null plot. A plot
as in Figure 7.5 indicates heteroscedasticity of the covariance matrix.

7.5 Measures Based on the Confidence Ellipsoid

Under the assumption of normally distributed disturbances, that is, ε ∼
N(0, σ2I), we have b0 = (X ′X)−1X ′y ∼ N(β, σ2(X ′X)−1) and

(β − b0)′(X ′X)(β − b0)
Ks2 ∼ FK,T−K . (7.57)



226 7. Sensitivity Analysis

Then the inequality

(β − b0)′(X ′X)(β − b0)
Ks2 ≤ FK,T−K,1−α (7.58)

defines a 100(1−α)% confidence ellipsoid for β centered at b0. The influence
of the ith observation (yi, x

′
i) can be measured by the change of various

parameters of the ellipsoid when the ith observation is omitted. Strong
influence of the ith observation would be equivalent to significant change
of the corresponding measure.

Cook’s Distance

Cook (1977) suggested the index

Ci =
(b − β̂(i))′X ′X(b − β̂(i))

Ks2 (7.59)

=
(ŷ − ŷ(i))′(ŷ − ŷ(i))

Ks2 (i = 1, . . . , T ) (7.60)

to measure the influence of the ith observation on the center of the con-
fidence ellipsoid or, equivalently, on the estimated coefficients β̂(i) (7.44)
or the predictors ŷ(i) = Xβ̂(i). The measure Ci can be thought of as the
scaled distance between b and β̂(i) or ŷ and ŷ(i), respectively. Using (7.46),
we immediately obtain the following relationship:

Ci =
1
K

pii

1 − pii
r2
i , (7.61)

where ri is the ith internally Studentized residual. Ci becomes large if pii

and/or r2
i are large. Furthermore Ci is proportional to r2

i . Applying (7.53)
and (7.55), we get

r2
i (T − K − 1)
T − K − r2

i

∼ F1,T−K−1 ,

indicating that Ci is not exactly F -distributed. To inspect the relative
size of Ci for all the observations, Cook (1977), by analogy of (7.58) and
(7.59), suggests comparing Ci with the FK,T−K-percentiles. The greater the
percentile corresponding to Ci, the more influential is the ith observation.

Let for example K = 2 and T = 32, that is, (T − K) = 30. The 95% and
the 99% quantiles of F2,30 are 3.32 and 5.59, respectively. When Ci = 3.32,
β̂(i) lies on the surface of the 95% confidence ellipsoid. If Cj = 5.59 for j �= i,
then β̂(j) lies on the surface of the 99% confidence ellipsoid, and hence the
jth observation would be more influential than the ith observation.

Welsch-Kuh’s Distance

The influence of the ith observation on the predicted value ŷi can be mea-
sured by the scaled difference (ŷi − ŷi(i))—by the change in predicting yi



7.5 Measures Based on the Confidence Ellipsoid 227

when the ith observation is omitted. The scaling factor is the standard
deviation of ŷi (cf. (7.5)):

|ŷi − ŷi(i)|
σ
√

pii
=

|x′
i(b − β̂(i))|
σ
√

pii
. (7.62)

Welsch and Kuh (1977) suggest the use of s(i) (7.37) as an estimate of σ
in (7.63). Using (7.46) and (7.38), (7.63) can be written as

WKi =
| ε̂i

1−pii
x′

i(X
′X)−1xi|

s(i)
√

pii

= |r∗
i |
√

pii

1 − pii
. (7.63)

WKi is called the Welsch-Kuh statistic. When r∗
i ∼ tT−K−1 (see Theo-

rem 7.2), we can judge the size of WKi by comparing it to the quantiles
of the tT−K−1-distribution. For sufficiently large sample sizes, one may
use 2

√
K/(T − K) as a cutoff point for WKi, signaling an influential ith

observation.

Remark: The literature contains various modifications of Cook’s distance
(cf. Chatterjee and Hadi, 1988, pp. 122–135).

Measures Based on the Volume of Confidence Ellipsoids

Let x′Ax ≤ 1 define an ellipsoid and assume A to be a symmetric
(positive-definite or nonnegative-definite) matrix. From spectral decompo-
sition (Theorem A.30), we have A = ΓΛΓ′, ΓΓ′ = I. The volume of the
ellipsoid x′Ax = (x′ Γ)Λ(Γ′x) = 1 is then seen to be

V = cK

K∏
i=1

λ
− 1

2
i = cK

√
|Λ−1| ,

that is, inversely proportional to the root of |A|. Applying these arguments
to (7.58), we may conclude that the volume of the confidence ellipsoid
(7.58) is inversely proportional to |X ′X|. Large values of |X ′X| indicate
an informative design. If we take the confidence ellipsoid when the ith
observation is omitted, namely,

(β − β̂(i))′(X ′
(i)X(i))(β − β̂(i))

Ks2
(i)

≤ FK,T−K−1,1−α , (7.64)

then its volume is inversely proportional to |X ′
(i)X(i)|. Therefore, omitting

an influential (informative) observation would decrease |X ′
(i)X(i)| relative to

|X ′X|. On the other hand, omitting an observation having a large residual
will decrease the residual sum of squares s2

(i) relative to s2. These two ideas
can be combined in one measure.
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Andrews-Pregibon Statistic

Andrews and Pregibon (1978) have compared the volume of the ellipsoids
(7.58) and (7.64) according to the ratio

(T − K − 1)s2
(i)|X ′

(i)X(i)|
(T − K)s2|X ′X| . (7.65)

Let us find an equivalent representation. Define Z = (X, y) and consider
the partitioned matrix

Z ′Z =
(

X ′X X ′y
y′X y′y

)
. (7.66)

Since rank(X ′X) = K, we get (cf. Theorem A.16 (vii))

|Z ′Z| = |X ′X||y′y − y′X(X ′X)−1X ′y|
= |X ′X|(y′(I − P )y)
= |X ′X|(T − K)s2 . (7.67)

Analogously, defining Z(i) = (X(i), y(i)), we get

|Z ′
(i)Z(i)| = |X ′

(i)X(i)|(T − K − 1)s2
(i). (7.68)

Therefore the ratio (7.65) becomes

|Z ′
(i)Z(i)|
|Z ′Z| . (7.69)

Omitting an observation that is far from the center of data will result in
a large reduction in the determinant and consequently a large increase in
volume. Hence, small values of (7.69) correspond to this fact. For the sake
of convenience, we define

APi = 1 −
|Z ′

(i)Z(i)|
|Z ′Z| , (7.70)

so that large values will indicate influential observations. APi is called the
Andrews-Pregibon statistic.

Using Z ′
(i)Z(i) = Z ′Z − ziz

′
i with zi = (x′

i, yi) and Theorem A.16 (x), we
obtain

|Z ′
(i)Z(i)| = |Z ′Z − ziz

′
i|

= |Z ′Z|(1 − z′
i(Z

′Z)−1zi)
= |Z ′Z|(1 − pzii) ,

implying that

APi = pzii , (7.71)
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where pzii is the ith diagonal element of the prediction matrix PZ =
Z(Z ′Z)−1Z ′. From (7.28) we get

pzii = pii +
ε̂2i
ε̂′ε̂

. (7.72)

Thus APi does not distinguish between high-leverage points in the X-space
and outliers in the Z-space. Since 0 ≤ pzii ≤ 1 (cf. (7.19)), we get

0 ≤ APi ≤ 1 . (7.73)

If we apply the definition (7.36) of the internally Studentized residuals ri

and use s2 = ε̂′ε̂/(T − K), (7.73) implies

APi = pii + (1 − pii)
r2
i

T − K
(7.74)

or

(1 − APi) = (1 − pii)
(

1 − r2
i

T − K

)
. (7.75)

The first quantity of (7.75) identifies high-leverage points and the second
identifies outliers. Small values of (1−APi) indicate influential points (high-
leverage points or outliers), whereas independent examination of the single
factors in (7.75) is necessary to identify the nature of influence.

Variance Ratio

As an alternative to the Andrews-Pregibon statistic and the other meas-
ures, one can identify the influence of the ith observation by comparing the
estimated dispersion matrices of b0 and β̂(i):

V (b0) = s2(X ′X)−1 and V (β̂(i)) = s2
(i)(X

′
(i)X(i))−1

by using measures based on the determinant or the trace of these matrices.
If (X ′

(i)Xi) and (X ′X) are positive definite, one may apply the following
variance ratio suggested by Belsley et al. (1980):

V Ri =
|s2

(i)(X
′
(i)X(i))−1|

|s2(X ′X)−1| (7.76)

=

(
s2
(i)

s2

)K |X ′X|
|X ′

(i)X(i)| . (7.77)

Applying Theorem A.16 (x), we obtain

|X ′
(i)X(i)| = |X ′X − xix

′
i|

= |X ′X|(1 − x′
i(X

′X)−1xi)
= |X ′X|(1 − pii) .
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Table 7.2. Cook’s Ci; Welsch-Kuh, WKi; Andrews-Pregibon, APi; variance ratio
V Ri, for the data set of Table 7.1

i Ci WKi APi V Ri

1 0.182 0.610 0.349 1.260
2 0.043 0.289 0.188 1.191
3 0.166 0.541 0.858 8.967
4 0.001 0.037 0.106 1.455
5 0.005 0.096 0.122 1.443
6 0.241 0.864 0.504 0.475
7 0.017 0.177 0.164 1.443
8 0.114 0.518 0.331 0.803
9 0.003 0.068 0.123 1.466
10 0.078 0.405 0.256 0.995

With this relationship and using (7.54), we may conclude that

V Ri =
(

T − K − r2
i

T − K − 1

)K 1
1 − pii

. (7.78)

Therefore, V Ri will exceed 1 when r2
i is small (no outliers) and pii is large

(high-leverage point), and it will be smaller than 1 whenever r2
i is large

and pii is small. But if both r2
i and pii are large (or small), then V Ri tends

toward 1. When all observations have equal influence on the dispersion
matrix, V Ri is approximately equal to 1. Deviation from unity then will
signal that the ith observation has more influence than the others. Belsley
et al. (1980) propose the approximate cut-off “quantile”

|V Ri − 1| ≥ 3K

T
. (7.79)

Example 7.3 (Example 7.2 continued): We calculate the measures defined
before for the data of Example 7.2 (cf. Table 7.1). Examining Table 7.2,
we see that Cook’s Ci has identified the sixth data point to be the most
influential one. The cutoff quantile 2

√
K/T − K = 1 for the Welsch-Kuh

distance is not exceeded, but the sixth data point has the largest indication,
again.

In calculating the Andrews-Pregibon statistic APi (cf. (7.71) and (7.72)),
we insert ε̂′ε̂ = (T − K)s2 = 8 · (6.9)2 = 380.88. The smallest value (1 −
APi) = 0.14 corresponds to the third observation, and we obtain

(1 − AP3) = 0.14 = (1 − p33)
(

1 − r2
3

8

)
= 0.14 · (1 − 0.000387),

indicating that (y3, x3) is a high-leverage point, as we have noted already.
The sixth observation has an APi value next to that of the third observa-
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tion. An inspection of the factors of (1−AP6) indicates that (y6, x6) tends
to be an outlier:

(1 − AP6) = 0.496 = 0.88 · (1 − 0.437).

These conclusions hold for the variance ratio also. Condition (7.79), namely,
|V Ri − 1| ≥ 6

10 , is fulfilled for the third observation, indicating significance
in the sense of (7.79).

Remark: In the literature one may find many variants and generaliza-
tions of the measures discussed here. A suitable recommendation is the
monograph of Chatterjee and Hadi (1988).

7.6 Partial Regression Plots

Plotting the residuals against a fixed independent variable can be used to
check the assumption that this regression has a linear effect on Y . If the
residual plot shows the inadequacy of a linear relation between Y and some
fixed Xi, it does not display the true (nonlinear) relation between Y and Xi.
Partial regression plots are refined residual plots to represent the correct
relation for a regressor in a multiple model under consideration. Suppose
that we want to investigate the nature of the marginal effect of a variable
Xk, say, on Y in case the other independent variables under consideration
are already included in the model. Thus partial regression plots may provide
information about the marginal importance of the variable Xk that may
be added to the regression model.

Let us assume that one variable X1 is included and that we wish to add a
second variable X2 to the model (cf. Neter, Wassermann, and Kutner, 1990,
p. 387). Regressing Y on X1, we obtain the fitted values

ŷi(X1) = β̂0 + x1iβ̂1 = x̃′
1iβ̃1 , (7.80)

where

β̃1 = (β̂0, β̂1)′ = (X̃ ′
1X̃1)−1X̃ ′

1y (7.81)

and X̃1 = (1, x1).
Hence, we may define the residuals

ei(Y |X1) = yi − ŷi(X1) . (7.82)

Regressing X2 on X̃1, we obtain the fitted values

x̂2i(X1) = x̃′
1ib

∗
1 (7.83)

with b∗
1 = (X̃ ′

1X̃1)−1X̃ ′
1x2 and the residuals

ei(X2|X1) = x2i − x̂2i(X1) . (7.84)
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Analogously, in the full model y = β0 + X1β1 + X2β2 + ε, we have

ei(Y |X1, X2) = yi − ŷi(X1, X2) , (7.85)

where

ŷi(X1, X2) = X̃1b1 + X2b2 (7.86)

and b1 and b2 are as defined in (3.98) (replace X1 by X̃1). Then we have

e(Y |X1, X2) = e(Y |X1) − b2e(X2|X1) . (7.87)

The proof is straightforward. Writing (7.87) explicitly gives

y − X̃1b1 − X2b2 = [y − X̃1(X̃ ′
1X̃1)−1X̃ ′

1y]
− [X2 − X̃1(X̃ ′

1X̃1)−1X̃ ′
1]b2

= M̃1(y − X2b2) (7.88)

with the symmetric idempotent matrix

M̃1 = I − X̃1(X̃ ′
1X̃1)−1X̃1 . (7.89)

Consequently, (7.88) may be rewritten as

X̃1(X̃ ′
1X̃1)−1X̃ ′

1(y − X2b2 − b1) = 0 . (7.90)

Using the second relation in (3.99), we see that (7.90) holds, and hence
(7.87) is proved.

The partial regression plot is obtained by plotting the residuals ei(Y |X1)
against the residuals ei(X2|X1). Figures 7.6 and 7.7 present some stan-
dard partial regression plots. If the vertical deviations of the plotted points
around the line e(Y |X1) = 0 are squared and summed, we obtain the
residual sum of squares

RSSX̃1
=
(
y − X̃1(X̃ ′

1X̃1)−1X̃ ′
1y
)′(

y − X̃1(X̃ ′
1X̃1)−1X̃ ′

1y
)

= y′M̃1y

=
[
e(y|X1)

]′[
e(Y |X1)

]
. (7.91)

The vertical deviations of the plotted points in Figure 7.6 taken with
respect to the line through the origin with slope b1 are the estimated resid-
uals e(Y |X1, X2). Using relation (3.169), we get from (7.86) the extra sum
of squares relationship

SSReg(X2|X̃1) = RSSX̃1
− RSSX̃1,X2

. (7.92)

This relation is the basis for the interpretation of the partial regression
plot: If the scatter of the points around the line with slope b2 is much
less than the scatter around the horizontal line, then adding an additional
independent variable X2 to the regression model will lead to a substantial
reduction of the error sum of squares and, hence, will substantially increase
the fit of the model.
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e(X2|X1)

e(Y |X1)

Figure 7.6. Partial regression plot (of e(X2|X1) versus e(Y |X1)) indicating no
additional influence of X2 compared to the model y = β0 + X1β1 + ε

e(X2|X1)

e(Y |X1)

Figure 7.7. Partial regression plot (of e(X2|X1) versus. e(Y |X1)) indicating
additional linear influence of X2

7.7 Regression Diagnostics for Removing an
Observation with Animating Graphics

Graphical techniques are an essential part of statistical methodology. One
of the important graphics in regression analysis is the residual plot. In
regression analysis the plotting of residuals versus the independent variable
or predicted values has been recommended by Draper and Smith (1966)
and Cox and Snell (1968). These plots help to detect outliers, to assess the
presence of inhomogenity of variance, and to check model adequacy. Larsen
and McCleary (1972) introduced partial residual plots, which can detect
the importance of each independent variable and assess some nonlinearity
or necessary transformation of variables.

For the purpose of regression diagnostics Cook and Weisberg (1989) in-
troduced dynamic statistical graphics. They considered interpretation of
two proposed types of dynamic displays, rotation and animation, in regres-
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sion diagnostics. Some of the issues that they addressed by using dynamic
graphics include adding predictors to a model, assessing the need to trans-
form, and checking for interactions and normality. They used animation to
show dynamic effects of adding a variable to a model and provided methods
for simultaneously adding variables to a model.

Assume the classical linear, normal model:

y = Xβ + ε

= X1β1 + X2β2 + ε, ε ∼ N(0, σ2I) . (7.93)

X consists of X1 and X2 where X1 is a T × (K − 1)-matrix, and X2 is a
T × 1-matrix, that is, X = (X1, X2). The basic idea of Cook and Weisberg
(1989) is to begin with the model y = X1β1 + ε and then smoothly add
X2, ending with a fit of the full model y = X1β1 + X2β2 + ε, where β1 is a
(K − 1) × 1-vector and β2 is an unknown scalar. Since the animated plot
that they proposed involves only fitted values and residuals, they worked
in terms of a modified version of the full model (7.93) given by

y = Zβ∗ + ε

= X1β
∗
1 + X̃2β

∗
2 + ε (7.94)

where X̃2 = Q1X2/||Q1X2|| is the part of X2 orthogonal to X1, normalized
to unit length, Q1 = I − P1, P1 = X1(X ′

1X1)−1X ′
1, Z = (X1, X̃2), and

β∗ = (β∗′
1 , β∗′

2 )′.
Next, for each 0 < λ ≤ 1, they estimate β∗ by

β̂λ =
(

Z ′Z +
1 − λ

λ
ee′
)−1

Z ′y (7.95)

where e is a K × 1-vector of zeros except for single 1 corresponding to X2.
Since (

Z ′Z +
1 − λ

λ
ee′
)−1

=
(

X ′
1X1 0
0′ X̃ ′

2X̃2 + 1−λ
λ

)−1

=
(

X ′
1X1 0
0′ 1

λ

)−1

,

we obtain

β̂λ =
(

(X ′
1X1)−1X ′

1y

λX̃ ′
2y

)
.

So as λ tends to 0, (7.95) corresponds to the regression of y on X1 alone.
And if λ = 1, then (7.95) corresponds to the ordinary least-squares regres-
sion of y on X1 and X2. Thus as λ increases from 0 to 1, β̂λ represents
a continuous change of estimators that add X2 to the model, and an an-
imated plot of ε̂(λ) versus ŷ(λ), where ε̂(λ) = y − ŷ(λ) and ŷ(λ) = Zβ̂λ,
gives a dynamic view of the effects of adding X2 to the model that al-
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ready includes X1. This idea corresponds to the weighted mixed regression
estimator (8.46).

Using Cook and Weisberg’s idea of animation, Park, Kim, and Touten-
burg (1992) proposed an animating graphical method to display the effects
of removing an outlier from a model for regression diagnostic purpose.

We want to view dynamic effects of removing the ith observation from the
model (7.93). First, we consider the mean shift model y = Xβ+γiei+ε (see
(7.49)) where ei is the vector of zeros except for single a 1 corresponding
to the ith observation. We can work in terms of a modified version of the
mean shift model given by

y = Zβ∗ + ε

= Xβ̃ + γ∗
i ẽ + ε (7.96)

where ẽi = Qxei/||Qxei|| is the orthogonal part of ei to X normalized to
unit length, Q = I − P , P = X(X ′X)−1X ′, Z = (X, ẽi), and β∗ =

(
β̃
γ∗

i

)
.

And then for each 0 < λ ≤ 1, we estimate β∗ by

β̂λ =
(

Z ′Z +
1 − λ

λ
ee′
)−1

Z ′y , (7.97)

where e is the (K+1)×1-vector of zeros except for single a 1 for the (K+1)th
element. Now we can think of some properties of β̂λ. First, without loss of
generality, we take X and y of the forms X =

(
X(i)

x′
i

)
and y =

(
y(i)
yi

)
,

where x′
i is the ith row vector of X, X(i) is the matrix X without the ith

row, and y(i) is the vector y without yi. That is, place the ith observation
to the bottom and so ei and e become vectors of zeros except for the last
1. Then since(

Z ′Z +
1 − λ

λ
ee′
)−1

=
(

X ′X 0
0′ 1

λ

)−1

=
(

(X ′X)−1 0
0′ λ

)
and

Z ′y =
(

X ′y
ẽ′

iy

)
we obtain

β̂λ =

( ˆ̃
β

γ̂∗
i

)
=
(

(X ′X)−1X ′y
λẽ∗

i y

)
and

ŷ(λ) = Zβ̂λ = X(X ′X)−1X ′y + λẽẽ′y .

Hence at λ = 0, ŷ(λ) = (X ′X)−1X ′y is the predicted vector of observed
values for the full model by the method of ordinary least squares. And at
λ = 1, we can get the following lemma, where β̂(i) = (X ′

(i)X(i))−1X(i)y(i).
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Lemma 7.3

ŷ(1) =

(
X(i)β̂(i)

y(i)

)

Proof: Using Theorem A.18 (iv),

(X ′X)−1 = (X ′
(i)X(i) + xix

′
i)

−1

= (X ′
(i)X(i))−1 −

(X ′
(i)X(i))−1xix

′
i(X

′
(i)X(i))−1

1 + tii
,

where

tii = x′
i(X

′
(i)X(i))−1xi .

We have

P = X(X ′X)−1X ′

=
(

X(i)

x′
i

)(
(X ′

(i)X(i))−1 −
(X ′

(i)X(i))−1xix
′
i(X

′
(i)X(i))−1

1 + tii

)
(X ′

(i)xi)

and

Py = X(X ′X)−1X ′y

=

(
X(i)β̂(i) − 1

1+tii
(X ′

(i)(X
′
(i)X(i))−1xix

′
iβ̂(i) − X ′

(i)(X
′
(i)X(i))−1xiyi)

1
1+tii

(x′
iβ̂(i) + tiiyi)

)
.

Since

(I − P )ei =
1

1 + tii

(−X(i)(X ′
(i)X(i))−1xi

1

)
and

||(I − P )ei||2 =
1

1 + tii
,

we get

ẽiẽi
′y =

1
1 + tii

(
X ′

(i)(X
′
(i)X(i))−1xix

′
iβ̂(i) − X ′

(i)(X
′
(i)X(i))−1xiyi

−x′
iβ̂(i) + yi

)
.

Therefore,

X(X ′X)−1X ′y + ẽiẽi
′y =

(
X(i)β̂(i)

yi

)
.

Thus as λ increases from 0 to 1, an animated plot of ε̂(λ) versus λ̂ gives
a dynamic view of the effects of removing the ith observation from model
(7.93).
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The following lemma shows that the residuals ε̂(λ) and fitted values ŷ(λ)
can be computed from the residuals ε̂, fitted values ŷ = ŷ(0) from the full
model, and the fitted values ŷ(1) from the model that does not contain the
ith observation.

Lemma 7.4

(i) ŷ(λ) = λŷ(1) + (1 − λ)ŷ(0)

(ii) ε̂(λ) = ε̂ − λ(ŷ(1) − ŷ(0))

Proof: Using the fact(
X ′X X ′ei

e′
iX e′

iei

)
− 1

=
(

(X ′X)−1 + (X ′X)−1X ′eiHe′
iHe′

iX(X ′X)−1 −(X ′X)−1X ′eiH
−He′

iX(X ′X)−1 H

)
where

H = (e′
iei − e′

iX(X ′X)−1Xei)−1

= (e′
i(I − P )ei)−1

=
1

||Qei||2 ,

we can show that P (X, ei), the projection matrix onto the column space
of (X, ei), becomes

P (X, ei) = (X ei)
(

X ′X X ′ei

e′
iX e′

iei

)−1(
X ′

e′
i

)
= P +

(I − P )eie
′
i(I − P )

||Qei||2
= P + ẽiẽ

′
i.

Therefore

ŷ(λ) = X(X ′X)−1X ′y + λeie
′
iy

= ŷ(0) + λ(P (X, ei) − P )y
= ŷ(0) + λ(ŷ(1) − ŷ(0))
= λŷ(1) + (1 − λ)ŷ(0)

and property (ii) can be proved by the fact that

ε̂(λ) = y − ŷ(λ)
= y − ŷ(0) − λ(ŷ(1) − ŷ(0))
= ε̂ − λ(ŷ(1) − ŷ(0)).

Because of the simplicity of Lemma 7.4, an animated plot of ε̂(λ) versus
ŷ(λ) as λ is varied between 0 and 1 can be easily computed.
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The appropriate number of frames (values of λ) for an animated residual
plot depends on the speed with which the computer screen can be refreshed
and thus on the hardware being used. With too many frames, changes often
become too small to be noticed, and as consequence the overall trend can
be missed. With too few frames, smoothness and the behavior of individual
points cannot be detected.

When there are too many observations, and it is difficult to check all an-
imated plots, it is advisable to select several suspicious observations based
on nonanimated diagnostic measures such as Studentized residuals, Cook’s
distance, and so on.

From animated residual plots for individual observations, i = 1, 2, . . . , n,
it would be possible to diagnose which observation is most influential in
changing the residuals ε̂, and the fitted values of y, ŷ(λ), as λ changes
from 0 to 1. Thus, it may be possible to formulate a measure to reflect
which observation is most influential, and which kind of influential points
can be diagnosed in addition to those that can already be diagnosed by
well-known diagnostics. However, our primary intent is only to provide a
graphical tool to display and see the effects of continuously removing a
single observation from a model. For this reason, we do not develop a new
diagnostic measure that could give a criterion when an animated plot of
removing an observation is significant or not. Hence, development of a new
measure based on such animated plots remains open to further research.

Example 7.4 (Phosphorus Data): In this example, we illustrate the use of
ε̂(λ) versus ŷ(λ) as an aid to understanding the dynamic effects of removing
an observation from a model. Our illustration is based on the phosphorus
data reported in Snedecor and Cochran (1967, p. 384). An investigation of
the source from which corn plants obtain their phosphorus was carried out.
Concentrations of phosphorus in parts per millions in each of 18 soils was
measured. The variables are

X1 = concentrations of inorganic phosphorus in the soil,
X2 = concentrations of organic phosphorus in the soil, and

y = phosphorus content of corn grown in the soil at 20◦C.

The data set together with the ordinary residuals ei, the diagonal terms
hii of hat matrix H = X(X ′X)−1X ′, the Studentized residuals ri, and
Cook’s distances Ci are shown in Table 7.3 under the linear model assump-
tion. We developed computer software, that plots the animated residuals
and some related regression results. The plot for the 17th observation shows
the most significant changes in residuals among 18 plots. In fact, the 17th
observation has the largest target residual ei, Studentized residuals rii, and
Cook’s distances Ci, as shown in Table 7.3.

Figure 7.8 shows four frames of an animated plot of ε̂(λ) versus ŷ(λ)
for removing the 17th observation. The first frame (a) is for λ = 0 and
thus corresponds to the usual plot of residuals versus fitted values from
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Soil X1 X2 y ei hii ri Ci

1 0.4 53 64 2.44 0.26 0.14 0.002243
2 0.4 23 60 1.04 0.19 0.06 0.000243
3 3.1 19 71 7.55 0.23 0.42 0.016711
4 0.6 34 61 0.73 0.13 0.04 0.000071
5 4.7 24 54 –12.74 0.16 –0.67 0.028762
6 1.7 65 77 12.07 0.46 0.79 0.178790
7 9.4 44 81 4.11 0.06 0.21 0.000965
8 10.1 31 93 15.99 0.10 0.81 0.023851
9 11.6 29 93 13.47 0.12 0.70 0.022543
10 12.6 58 51 –32.83 0.15 –1.72 0.178095
11 10.9 37 76 –2.97 0.06 –0.15 0.000503
12 23.1 46 96 –5.58 0.13 –0.29 0.004179
13 23.1 50 77 –24.93 0.13 –1.29 0.080664
14 21.6 44 93 –5.72 0.12 –0.29 0.003768
15 23.1 56 95 –7.45 0.15 –0.39 0.008668
16 1.9 36 54 –8.77 0.11 –0.45 0.008624
17 26.8 58 168 58.76 0.20 3.18 0.837675
18 29.9 51 99 –15.18 0.24 –0.84 0.075463

Table 7.3. Data, ordinary residuals ei, diagonal terms hii of hat matrix
H = X(X ′X)−1X ′, studentized residuals ri, and Cook’s distances Ci from
Example 7.4

the regression of y on X = (X1, X2), and we can see in (a) the 17th
observation is located on the upper right corner. The second (b), third
(c), and fourth (d) frames correspond to λ = 1

2 , 2
3 , and 1, respectively. So

the fourth frame (d) is the usual plot of the residuals versus the fitted
values from the regression of y(17) on X(17) where the subscript represents
omission of the corresponding observation. We can see that as λ increases
from 0 to 1, the 17th observation moves to the right and down, becoming
the rightmost point in (b), (c), and (d). Cconsidering the plotting form,
the residual plot in (a) has an undesirable form because it does not have
a random form in a band between −60 and +60, but in (d) its form has
randomness in a band between −20 and +20.

7.8 Exercises

Exercise 1. Examine the impact of an influential observation on the
coefficient of determination.

Exercise 2. Obtain an expression for the change in residual sum of squares
when one observation is deleted. Can it be used for studying the change in
residual sum of squares when one observation is added to the data set?
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Figure 7.8. Four frames λ = 0 (a), λ = 1
3 (b), λ = 2

3 (c) and λ = 1 (d) (left to
right, top down) of an animated plot of ε̂(λ) versus ŷ(λ) for data in Example 7.4
when removing the 17th observation (marked by dotted lines).

Exercise 3. If we estimate β by the mean of vectors β̂(i), what are
its properties? Compare these properties with those of the least-squares
estimator.

Exercise 4. Analyze the effect of including an irrelevant variable in the
model on the least-squares estimation of regression coefficients and its effi-
ciency properties. How does the inference change when a dominant variable
is dropped?

Exercise 5. For examining whether an observation belongs to the model
yt = x′

tβ + εt; t = 1, 2, . . . , n − 1, it is proposed to test the null hypothesis
E(yn) = x′

nβ against the alternative E(yn) �= x′
nβ. Obtain the likelihood

ratio test.



8
Analysis of Incomplete Data Sets

Standard statistical procedures assume the availability of complete data
sets. In frequent cases, however, not all values are available, and some
responses may be missing due to various reasons. Rubin (1976, 1987) and
Little and Rubin (1987) have discussed some concepts for handling missing
data based on decision theory and models for mechanisms of nonresponse.

Standard statistical methods have been developed to analyze rectangular
data sets D of the form

D =



d11 · · · · · · d1m

... ∗ ...

... ∗

... ∗ ...
dT1 · · · · · · dTm


,

where the rows of the matrix D represent units (cases, observations) and
the columns represent variables observed on each unit. In practice, some of
the observations dij are missing. This fact is indicated by the symbol “∗.’

Examples:

• Respondents do not answer all items of a questionnaire. Answers can
be missing by chance (a question was overlooked) or not by chance
(individuals are not willing to give detailed information concerning
sensitive items, such as drinking behavior, income, etc.).
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?I

?II

EventIII

Startpoint Endpoint

Figure 8.1. Censored individuals (I: dropout, II: censored by the endpoint) and
an individual with response (event) (III)

• In clinical long-term studies some individuals do not participate over
the whole period and drop out. The different situations are indicated
in Figure 8.1. In the case of dropout, it is difficult to characterize the
stochastic nature of the event.

• Physical experiments in industrial production (quality control) some-
times end with possible destruction of the object being investigated.
Further measurements for destructed objects cannot be obtained.

• Censored regression, see Section 3.14.

8.1 Statistical Methods with Missing Data

There are several general approaches to handling the missing-data problem
in statistical analysis. We briefly describe the idea behind these approaches
in the following sections.

8.1.1 Complete Case Analysis
The simplest approach is to discard all incomplete cases. The analysis is
performed using only the complete cases, i.e., those cases for which all tc
observations in a row of the matrix D are available. The advantage of this
approach is simplicity, because standard statistical analyses (and statistical
software packages) can be applied to the complete part of the data without
modification.

Using complete case analysis tends to become inefficient if the percentage
of cases with missing values is large. The selection of complete cases can
lead to selectivity biases in estimates if selection is heterogeneous with
respect to covariates.

8.1.2 Available Case Analysis
Another approach to missing values, that is similar to complete case analy-
sis in some sense is the so-called available case analysis. Again, the analysis
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is restricted to complete cases. The difference is the definition of “com-
plete.” For complete case analysis, only cases having observations for all
variables are used. Available case analysis uses all cases that are complete
with respect to the variables of the current step in the analysis. If the cor-
relation of D1 and D2 is of interest, cases with missing values in variable
D3 can still be used.

8.1.3 Filling in the Missing Values
Imputation (“filling in”) is a general and flexible alternative to the com-
plete case analysis. The missing values in the data matrix D are replaced
by guesses or correlation-based predictors transforming D to a com-
plete matrix. The completed data set then can be analyzed by standard
procedures.

However, this method can lead to biases in statistical analyses, as the
imputed values in general are different from the true but missing values. We
shall discuss this problem in detail in the case of regression (see Section 8.6).

Some of the current practices in imputation are:

Hot-deck imputation. The imputed value for each missing value is selected
(drawn) from a distribution, which is estimated from the complete
cases in most applications.

Cold deck-imputation. A missing value is replaced by a constant value from
external sources, such as an earlier realization of the survey.

Mean imputation. Based on the sample of the responding units, means are
substituted for the missing values.

Regression (correlation) imputation. Based on the correlative structure of
the subset of complete data, missing values are replaced by predicted
values from a regression of the missing item on items observed for the
unit.

Multiple imputation. k ≥ 2 values are imputed for a missing value, giving
k completed data sets (cf. Rubin, 1987). The k complete data sets
are analyzed, yielding k estimates, which are combined to a final
estimate.

8.1.4 Model-Based Procedures
Model-based procedures are based on a model for the data and the
missing mechanism. The maximum-likelihood methods, as described in Sec-
tion 8.7.3, factorize the likelihood of the data and the missing mechanism
according to missing patterns. Bayesian methods, which operate on the
observed data posterior of the unknown parameters (conditioned on the
observed quantities), are described in detail in Schafer (1997).



244 8. Analysis of Incomplete Data Sets

8.2 Missing-Data Mechanisms

Knowledge of the mechanism for nonresponse is a central element in choos-
ing an appropriate statistical analysis. The nature of the missing data
mechanism can be described in terms of the distribution f(R|D) of a
missing indicator R conditional on the data D.

8.2.1 Missing Indicator Matrix
Rubin (1976) introduced the matrix R consisting of indicator variables rij ,
which has the same dimension as the data matrix D. The elements rij have
values rij = 1 if dij is observed (reported), and rij = 0 if dij is missing.

8.2.2 Missing Completely at Random
Missing values are said to be missing completely at random (MCAR), if

f(R|D) = f(R) ∀D . (8.1)

The data D cannot be used to specify the distribution of R; the values are
missing completely at random.

8.2.3 Missing at Random
Missing values are said to be missing at random (MAR), if

f(R|D) = f(R|Dobs) ∀Dmis . (8.2)

The dependence of the distribution of R on the data D can be specified
using the observed data Dobs alone. Conditional on the observed values,
the unobserved values Dmis are missing at random.

8.2.4 Nonignorable Nonresponse
The conditional distribution f(R|D) cannot be simplified as above, that
is, even after conditioning on the observed data, the distribution of R
still depends on the unobserved data Dmis. In this case the missing data
mechanism cannot be ignored (see Section 8.7.3).

8.3 Missing Pattern

A pattern of missing values in the data matrix D is called monotone if rows
and columns can be rearranged such that the following condition holds. For
all j = 1, . . . , m − 1: Dj+1 is observed for all cases, where Dj is observed
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D1 D2 . . . Dm

Figure 8.2. Monotone Missing Pattern

D1 D2 . . . Dm

Figure 8.3. Special Missing Pattern

D1 D2 . . . Dm

Figure 8.4. General Missing Pattern

(Figure 8.2). Univariate missingness, that is, missing values in only one
variable Dj , is a special case.

Figure 8.3 shows a pattern in which two variables Dj and Dj′ are never
observed together; a situation that might show up when the data of two
studies are merged. Figure 8.4 shows a general pattern, in which no specific
structure can be described.

8.4 Missing Data in the Response

In controlled experiments, such as clinical trials, the design matrix X is
fixed and the response is observed for factor levels of X. In this situation
it is realistic to assume that missing values occur in the response Y and
not in the design matrix X resulting in unbalanced response. Even if we
can assume that MCAR holds, sometimes it may be more advantageous
to fill up the vector Y than to confine the analysis to the complete cases.
This is the fact, for example, in factorial (cross-classified) designs with few
replications. For the following let us assume that the occurrence of missing
y values does not depend on the values of y, that is, MAR holds.

Let Y be the response variable and X: T × K be the design matrix, and
assume the linear model y = Xβ + ε, ε ∼ N(0, σ2I). The OLSE of β for
complete data is given by b = (X ′X)−1X ′y, and the unbiased estimator of
σ2 is given by s2 = (y−Xb)′(y−Xb)(T −K)−1 =

∑T
t=1(yt − ŷt)2/(T −K).
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8.4.1 Least-Squares Analysis for Filled-up Data—Yates
Procedure

The following method was proposed by Yates (1933). Assume that t∗ =
T − tc responses in y are missing. Reorganize the data matrices according
to (

yobs
ymis

)
=
(

Xc
X∗

)
β +
(

εc
ε∗

)
. (8.3)

The indices c and ∗ indicate the complete and partially incomplete parts of
the model, respectively. In the current case, X∗ is fully observed; the index
∗ is used to denote the connection to the unobserved responses ymis.

The complete-case estimator of β is given by

bc = (X ′
cXc)−1X ′

cyobs (8.4)

using the tc × K-matrix Xc and the observed responses yobs only. The
classical predictor of the (T − tc)-vector ymis is given by

ŷmis = X∗bc . (8.5)

It is easily seen that inserting this estimator into model (8.3) for ymis and
estimating β in the filled-up model is equivalent to minimizing the following
function with respect to β (cf. (3.7)):

S(β) =
{(

yobs
ŷmis

)
−
(

Xc
X∗

)
β

}′{(
yobs
ŷmis

)
−
(

Xc
X∗

)
β

}
=

tc∑
t=1

(yt − x′
tβ)2 +

T∑
t=tc+1

(ŷt − x′
tβ)2 . (8.6)

The first sum is minimized by bc given in (8.4). Replacing β in the second
sum by bc is equating this sum to zero (cf. (8.5)). Therefore, bc is seen to
be the OLSE of β in the filled-up model.

Estimating σ2

If the data are complete, then s2 =
∑T

t=1(yt − ŷt)2/(T − K) is the corre-
sponding estimator of σ2. If T−tc cases are incomplete, that is, observations
ymis are missing in (8.3), then the variance σ2 can be estimated using the
complete case estimator

σ̂2
c =
∑tc

t=1(yt − ŷt)2

(tc − K)
.

On the other hand, if the missing data are filled up according to the
method of Yates, then we automatically get the estimator

σ̂2
Yates =

1
(T − K)

{
tc∑

t=1

(yt − ŷt)2 +
T∑

t=tc+1

(ŷt − ŷt)2
}



8.4 Missing Data in the Response 247

=
∑tc

t=1(yt − ŷt)2

(T − K)
, (8.7)

which makes use of tc observations but has T −K instead of tc −K degrees
of freedom. As

σ̂2
Yates = σ̂2

c
tc − K

T − K
< σ̂2

c

we have to make an adjustment by multiplying by (T − K)/(tc − K)
before using it in tests of significance. It corresponds to the conditional
mean imputation as in first-order regression (which is be described in Sec-
tion 8.8.3). Its main aim is to fill up the data to ensure application of
standard procedures existing for balanced designs.

8.4.2 Analysis of Covariance—Bartlett’s Method
Bartlett (1937) suggested an improvement of Yates’s ANOVA, which is
known under the name Bartlett’s ANCOVA (analysis of covariance). This
procedure is as follows:

(i) The missing values in ymis are replaced by an arbitrary estimator ŷmis
(a guess).

(ii) Define an indicator matrix Z : T × (T − tc) as covariable according to

Z =



0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

...
. . .

...
0 0 0 · · · 1


.

The tc null vectors indicate the observed cases and the (T − tc)-vectors e′
i

indicate the missing values. The covariable Z is incorporated into the linear
model by introducing the (T − tc)-vector γ of additional parameters:(

yobs
ŷmis

)
= Xβ + Zγ + ε = (X, Z)

(
β
γ

)
+ ε . (8.8)

The OLSE of the parameter vector (β′, γ′)′ is found by minimizing the
error sum of squares:

S(β, γ) =
tc∑

t=1

(yt − x′
tβ − 0′γ)2 +

T∑
t=tc+1

(ŷt − x′
tβ − e′

tγ)2 . (8.9)
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The first term is minimal for β̂ = bc (8.4), whereas the second term becomes
minimal (equating to zero) for γ̂ = ŷmis − X∗bc. Therefore the solution to
minβ,γ S(β, γ) is given by (

bc
ŷmis − X∗bc

)
. (8.10)

Choosing the guess ŷmis = X∗bc as in Yates’s method, we get γ̂ = 0. With
both methods we have β̂ = bc, the complete-case OLSE. Introducing the
additional parameter γ (which is without any statistical interest) has one
advantage: The degrees of freedom in estimating σ2 in model (8.8) are now
T minus the number of estimated parameters, that is, T − K − (T − tc) =
tc − K. Therefore we get a correct (unbiased) estimator σ̂2 = σ̂2

c .

8.5 Shrinkage Estimation by Yates Procedure

8.5.1 Shrinkage Estimators
The procedure of Yates essentially involves first estimating the parameters
of the model with the help of the complete observations alone and obtaining
the predicted values for the missing observations. These predicted values
are then substituted in order to get a repaired or completed data set, which
is finally used for the estimation of parameters. This strategy is adopted
now using shrinkage estimators.

Now there are two popular ways for obtaining predicted values of the
study variable. One is the least-squares method, which gives ŷmis = X∗bc

as predictions for the missing observations on the study variable, and the
other is the Stein-rule method, providing the following predictions:

ŷmis =
(

1 − kRc

(tc − K + 2)b′
cX

′
cXcbc

)
X∗bc

=
(

1 − kε̂′
cε̂c

(tc − K + 2)ŷ′
cŷc

)
X∗bc (8.11)

where ŷc = Xcbc and Rc = (yc − Xcbc)′(yc − Xcbc) = ε̂′
cε̂c is the residual

sum of squares and k is a positive nonstochastic scalar.
If we replace ymis in (8.3) by ŷmis and then apply the least-squares

method, the following estimator of β is obtained

β̂ = (X ′
cXc + X ′

∗X∗)−1(X ′
cyc + X ′

∗ŷmis) (8.12)

= bc − kRc

(tc − K + 2)b′
cX

′
cXcbc

(
I + (X ′

∗X∗)−1X ′
cXc
)−1

bc ,

which is of shrinkage type (see Section 3.10.3).
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8.5.2 Efficiency Properties
It can be easily seen that β̂ (8.12) is consistent but biased. The exact
expressions for its bias vector and mean squared error matrix can be
straightforwardly obtained, for example, from Judge and Bock (1978).
However, they turn out to be intricate enough and may not lead to some
clear inferences regarding the gain/loss in efficiency of β̂ with respect to
bc. We therefore consider their asymptotic approximations with the first
specification that tc increases but t∗ stays fixed.

In order to analyze the asymptotic property of β̂ when tc increases but t∗
stays fixed, we assume that Vc = tc(X ′

cXc)−1 tends to a finite nonsingular
matrix as tc tends to infinity.

Theorem 8.1 The asymptotic approximations for the bias vector of β̂ (8.12)
up to order O(t−1

c ) and the mean squared error matrix up to order O(t−2
c )

are given by

Bias(β̂) = − σ2k

tcβ′V −1
c β

β (8.13)

M(β̂) =
σ2

tc
Vc − 2σ4k

t2cβ
′V −1

c β

(
Vc −

(
4 + k

2β′V −1
c β

)
ββ′
)

. (8.14)

From (8.13) we observe that the bias vector has sign opposite to β.
Further, the magnitude of the bias declines as k tends to be small and/or
tc grows large.

Comparing V(bc) = (σ2/tc)Vc and (8.14), we notice that the expression
[V(bc)−M(β̂)] cannot be positive definite for positive values of k. Similarly,
the expression [M(β̂) − V(bc)] cannot be positive definite except in the
trivial case of K = 1. We thus find that none of the two estimators bc and
β̂ dominates over the other with respect to the criterion of mean dispersion
error matrix, at least to the order of our approximation.

Next, let us compare bc and β̂ with respect to a weaker criterion of risk.
If we choose the MDE-III criterion, then β̂ is superior to bc if

k < 2(K − 2) (8.15)

provided that K exceeds 2.
Let us now consider a second specification of more practical interest when

both tc and t∗ increase. Let us define t as tc for tc less than t∗ and as t∗
for tc greater than t∗ so that t → ∞ is equivalent to tc → ∞ and t∗ → ∞.

Assuming the asymptotic cooperativeness of explanatory variables, that
is, Vc = tc(X ′

cXc)−1 and V∗ = t∗(X ′
∗X∗)−1 tend to finite nonsingular

matrices as tc and t∗ grow large, we have the following results for β̂.

Theorem 8.2 For the estimator β̂, the asymptotic approximations for the
bias vector to order O(t−1) and the mean squared error matrix to order



250 8. Analysis of Incomplete Data Sets

O(t−2) are given by

B(β̂) = − σ2k

tcβ′V −1
c β

Gβ (8.16)

M(β̂) =
σ2

tc
Vc (8.17)

− 2σ2k

t2cβ
′V −1

c β

(
GVc − 1

β′V −1
c β

(
Gββ′ + ββ′G′ +

k

2
Gββ′G′))

where

G = Vc

(
Vc +

tc
t∗

V∗

)−1

. (8.18)

Choosing the performance criterion to be the risk under weighted squared
error loss function specified by weight matrix Q of order O(1), we find from
(8.17) that β̂ is superior to bc when

k < 2
(

β′V −1
c β

β′G′QGβ
trQGVc − 2β′G′Qβ

β′G′QGβ

)
(8.19)

provided that the quantity on the right-hand side of the inequality is
positive.

Let δ be the largest characteristic root of QV∗ or Q
1
2 V∗Q

1
2 in the metric

of QVc or Q
1
2 VcQ

1
2 . Now we observe that

trQGVc ≥
(

t∗
t∗ + δtc

)
trQVc

β′G′QGβ

β′V −1
c β

≤
(

t∗
t∗ + δtc

)2

λp (8.20)

β′G′Qβ

β′G′QGβ
≤
(

t∗
t∗ + δtc

)
and hence we see that condition (8.19) is satisfied as long as

k < 2
(

1 +
δtc
t∗

)[
T − 2

(
t∗

t∗ + δt∗

)−1
]

; T >

(
t∗

t∗ + δt∗

)2

, (8.21)

which is easy to check in any given application owing to the absence of β.
Similar to (8.21), one can derive various sufficient versions of the

condition (8.19).
For the proof of the theorem and for further results, the reader is referred

to Toutenburg, Srivastava, and Fieger (1997).
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8.6 Missing Values in the X-Matrix

In econometric models, other than in experimental designs in biology or
pharmacy, the matrix X does not have a fixed design but contains ob-
servations of exogeneous variables, which may be random, including the
possibility that some data are missing. In general, we may assume the
following structure of data: yobs

ymis
yobs

 =

 Xobs
Xobs
Xmis

β + ε , ε ∼ (0, σ2I) .

Estimation of ymis corresponds to the prediction problem, which is dis-
cussed in Chapter 6 in full detail. The classical prediction of ymis using
Xobs is equivalent to the method of Yates.

8.6.1 General Model
Based on the above arguments, we may drop the cases in (ymis, Xobs) and
now confine ourselves to the structure

yobs =
(

Xobs
Xmis

)
β + ε .

We change the notation as follows:(
yc
y∗

)
=
(

Xc
X∗

)
β +
(

εc
ε∗

)
,

(
εc
ε∗

)
∼ (0, σ2I) . (8.22)

The submodel

yc = Xcβ + εc (8.23)

represents the completely observed data, where we have yc : tc × 1,
Xc : tc × K and assume rank(Xc) = K. Let us further assume that X
is nonstochastic (if X is stochastic, unconditional expectations have to be
replaced by conditional expectations).

The remaining part of (8.22), that is,

y∗ = X∗β + ε∗ , (8.24)

is of dimension T − tc = t∗. The vector y∗ is completely observed. The
notation X∗ shall underline that X∗ is partially incomplete (whereas Xmis
stands for a completely missing matrix). Combining both submodels (8.23)
and (8.24) in model (8.22) corresponds to investigating the mixed model
(5.140). Therefore, it seems to be a natural idea to use the mixed model
estimators for handling nonresponse in X∗ by imputation methods.

The optimal, but due to the unknown elements in X∗, nonoperational
estimator is given by the mixed estimator of β in the model (8.22) according
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to Theorem 5.17 as

β̂(X∗) = (X ′
cXc + X ′

∗X∗)−1(X ′
cyc + X ′

∗y∗)
= bc + S−1

c X ′
∗(It∗ + X∗S−1

c X ′
∗)

−1(y∗ − X∗bc) , (8.25)

where bc = (X ′
cXc)−1X ′

cyc is the OLSE of β in the complete-case model
(8.23) and Sc = X ′

cXc.
The estimator β̂(X∗) is unbiased for β and has the dispersion matrix

(cf. (5.148))

V
(
β̂(X∗)

)
= σ2(Sc + S∗)−1 , (8.26)

where S∗ = X ′
∗X∗ is used for abbreviation.

8.6.2 Missing Values and Loss in Efficiency
We now discuss the consequences of confining the analysis to the complete-
case model (8.23), assuming that the selection of complete cases is free of
selectivity bias. Our measure to compare β̂c and β̂(X∗) is the scalar risk

R(β̂, β, Sc) = tr{Sc V(β̂)},

which coincides with the MDE-III risk (cf. (5.66)). From Theorem A.18 (iii)
we have the identity

(Sc + X ′
∗X∗)−1 = S−1

c − S−1
c X ′

∗(It∗ + X∗S−1
c X ′

∗)
−1X∗S−1

c .

Applying this, we get the risk of β̂(X∗) as

σ−2R(β̂(X∗), β, Sc) = tr{Sc(Sc + S∗)−1}
= K − tr{(It∗ + B′B)−1B′B} , (8.27)

where B = S
−1/2
c X ′

∗.
The t∗ × t∗-matrix B′B is nonnegative definite of rank(B′B) = J∗. If

rank(X∗) = t∗ < K holds, then J∗ = t∗ and B′B > 0 follow.
Let λ1 ≥ . . . ≥ λt∗ ≥ 0 denote the eigenvalues of B′B, Λ =

diag(λ1, . . . , λt∗), and let P be the matrix of orthogonal eigenvectors. Then
we have B′B = PΛP ′ (cf. Theorem A.30) and

tr{(It∗ + B′B)−1B′B} = tr{P (It∗ + Λ)−1P ′PΛP ′}

= tr{(It∗ + Λ)−1Λ} =
t∗∑

i=1

λi

1 + λi
. (8.28)

Assuming MCAR and stochastic X, the MDE-III risk of the complete-case
estimator bc is

σ−2R(bc, β, Sc) = tr{ScS
−1
c } = K . (8.29)
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Using the MDE-III criterion for the comparison of bc and β̂(X∗), we may
conclude that

R(bc, β, Sc) − R(β̂(X∗), β, Sc) =
t∗∑

i=1

λi

1 + λi
≥ 0

holds, and, hence, β̂(X∗) in any case is superior to bc. This result is ex-
pected. To have more insight into this relationship, let us apply another
criterion by comparing the size of the risks instead of their differences.

Definition 8.3 The relative efficiency of an estimator β̂1 compared to
another estimator β̂2 is defined by the ratio

eff(β̂1, β̂2, A) =
R(β̂2, β, A)

R(β̂1, β, A)
. (8.30)

β̂1 is said to be less efficient than β̂2 if

eff(β̂1, β̂2, A) ≤ 1 .

Using (8.27)–(8.29), the efficiency of bc compared to β̂(X∗) is

eff(bc, β̂(X∗), Sc) = 1 − 1
K

t∗∑
i=1

λi

1 + λi
≤ 1 . (8.31)

The relative efficiency of the estimator bc compared to the mixed estimator
in the full model (8.22) falls in the interval

max
{

0, 1 − t∗
K

λ1

1 + λ1

}
≤ eff(bc, β̂(X∗), Sc) ≤ 1− t∗

K

λt∗

1 + λt∗
≤ 1 . (8.32)

Examples:

(i) Let X∗ = Xc, so that the matrix Xc is used twice. Then B′B =
XcS

−1
c X ′

c is idempotent of rank K. Therefore, we have λi = 1 for
i = 1, ..., K; λi = 0 else (cf. Theorem A.61 (i)) and

eff(bc, β̂(Xc), Sc) =
1
2

.

(ii) t∗ = 1 (one row of X is incomplete). Then X∗ = x′
∗ becomes a K-

vector and B′B = x′
∗S

−1
c x∗ a scalar. Let µ1 ≥ . . . ≥ µK > 0 be

the eigenvalues of Sc and let Γ = (γ1, . . . , γK) be the matrix of the
corresponding orthogonal eigenvectors.
Therefore, we may write

β̂(x∗) = (Sc + x∗x′
∗)

−1(X ′
cyc + x∗y∗) .

Using Theorem A.44, we have

µ−1
1 x′

∗x∗ ≤ x′
∗S

−1
c x∗ =

K∑
j=1

µ−1
j (x′

∗γj)2 ≤ µ−1
K x′

∗x∗ ,
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and according to (8.31), eff(bc, β̂(x∗), Sc) becomes

eff(bc, β̂(x∗), Sc) = 1 − 1
K

x′
∗S

−1
c x∗

1 + x′∗S
−1
c x∗

= 1 − 1
K

∑K
j=1 µ−1

j (x′
∗γj)2

1 +
∑K

j=1 µ−1
j (x′∗γj)2

≤ 1 .

The interval (8.32) has the form

1 − µ1µ
−1
K x′

∗x∗
K(µ1 + x′∗x∗)

≤ eff(bc, β̂(x∗), Sc) ≤ 1 − x′
∗x∗

K(µ1µ
−1
K )(µK + x′∗x∗)

.

The relative efficiency of bc compared to β̂(x∗) is dependent on the
norm (x′

∗x∗) of the vector x∗ as well as on the eigenvalues of the
matrix Sc, that is, on their condition number µ1/µK and the span
µ1 − µk.
Let x∗ = gγj (j = 1, . . . , K) and µ = (µ1, . . . , µK)′, where g is a
scalar and γi is the jth orthonormal eigenvector of Sc corresponding
to the eigenvalue µj . Then for these vectors x∗ = gγj , which are
parallel to the eigenvectors of Sc, the quadratic risk of the estimators
β̂(gγj) (j = 1, . . . , K) becomes

σ−2R(β̂(gγj), β, Sc) = sp{ΓµΓ′(ΓµΓ′+g2γjγ
′
j)

−1} = K−1+
µj

µj + g2 .

Inspecting this equation, we note that eff(bc, β̂(gγj) has its maximum
for j = 1 (i.e., if x∗ is parallel to the eigenvector corresponding to
the maximal eigenvalue µ1). Therefore, the loss in efficiency by leav-
ing out one incomplete row is minimal for x∗ = gγ1 and maximal
for x∗ = gγK . This fact corresponds to the result of Silvey (1969),
who proved that the goodness of fit of the OLSE may be improved
optimally if additional observations are taken in the direction that is
the most imprecise. But this is just the direction of the eigenvector
γK , corresponding to the minimal eigenvalue µK of Sc.

8.7 Methods for Incomplete X-Matrices

8.7.1 Complete Case Analysis
The technically easiest method is to confine the analysis to the completely
observed submodel (8.23); the partially incomplete cases are not used at
all. The corresponding estimator of β is bc = S−1

c X ′
cyc, with covariance

matrix V(bc) = σ2S−1
c . This estimator is unbiased as long as missingness
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is independent of y, that is, if

f(y|R,X) =
f(y, R|X)
f(R|X)

= f(y|X)

holds, and the model is correctly specified. Here R is the missing indicator
matrix introduced in Section 8.2.1.

8.7.2 Available Case Analysis
Suppose that the regressors X1, . . . , XK (or X2, . . . , XK if X1 = 1) are
stochastic. Then the (X1, . . . , XK , y) have a joint distribution with mean
µ = (µ1, . . . , µK , µy) and covariance matrix

Σ =
(

Σxx Σxy

Σyx σyy

)
.

Then β can be estimated by solving the normal equations

Σ̂xxβ̂ = Σ̂yx , (8.33)

where Σ̂xx is the K × K-sample covariance matrix. The solutions are

β̂ = Σ̂yxΣ̂−1
xx ,

with

β̂0 = µ̂y −
K∑

j=1

β̂jµ̂j ,

the term for the intercept or constant variable X1 = (1, . . . , 1)′.
The (i, j)th element of Σ̂xx is computed from the pairwise observed ele-

ments of the variables xi and xj . Similarly, Σ̂yx makes use of the pairwise
observed elements of xi and y. Based on simulation studies, Haitovsky
(1968) has investigated the performance of this method and has concluded
that in many situations the complete-case estimator bc is superior to the
estimator β̂ from this method.

8.7.3 Maximum-Likelihood Methods
Having a monotone pattern (cf. Figure 8.2), the common distribution of
the data D (given some parameter φ) can be factorized as follows:

T∏
i=1

f(di1, di2, . . . , diK |φ)

=
T∏

i=1

f(di1|φ1)
t2∏

i=1

f(di2|di1, φ2) · · ·
tK∏
i=1

f(diK |di1, . . . , di,K−1, φK) ,
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where t2, . . . , tK are the number of observations for variables 2, . . . , K,
respectively.

Consider a model y = Xβ + ε, where the joint distribution of y and
X is a multivariate normal distribution with mean µ and covariance ma-
trix Σ. Without missing values, ML estimates of µ and Σ are used as in
Section 8.7.2 to obtain the estimates of the regression parameters.

For the case of X = (X1, . . . , XK) with missing values in X1 only, the
joint distribution of Y and X1 conditional on the remaining Xs can be
factored as

f(y, X1|X2, . . . , XK , φ) = f(y|X2, . . . , XK , φ1)f(X1|X2, . . . , XK , y, φ2) .

The corresponding likelihood of φ1 and φ2 can be maximized seperately,
as φ1 and φ2 are distinct sets of parameters. The results are two complete
data problems, which can be solved using standard techniques. The results
can be combined to obtain estimates of the regression of interest (cf. Little,
1992):

β̂y1|1,...,K =
β̃1y|2,...,K,yσ̂yy|2,...,K

σ̃11|2,...,K,y + β̃2
1y|2,...,K,yσ̂yy|2,...,K

β̂yj|1,...,K = − β̂yj|2,...,K σ̃11|2,...,K,y − β̃1y|2,...,K,yβ̃1j|2,...,K,yσ̂yy|2,...,K

σ̃11|2,...,K,y + β̃2
1y|2,...,K,yσ̂yy|2,...,K

where parameters with a tilde (̃ ) belong to φ2 (the regression of X1 on
X2, . . . , XK , y, from the tc complete cases) and parameters with a hat (̂ )
belong to φ1 (the regression of y on X2, . . . , XK , estimated from all T
cases).

In this case the assumption of joint normality has to hold only for (y, X1);
covariates X2, . . . , XK may also be categorical variables. General patterns
of missing data require iterative approaches such as the EM algorithm by
Dempster, Laird, and Rubin (1977). A detailed discussion of likelihood-
based approaches can be found in Little and Rubin (1987).

8.8 Imputation Methods for Incomplete
X-Matrices

This section gives an overview of methods that impute values for miss-
ing observations. Most of the methods presented here are based on the
assumption that the variables in X are continuous.

The conditions under which the respective procedures yield consistent
estimates of the regression parameters are discussed in Section 8.9.
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8.8.1 Maximum-Likelihood Estimates of Missing Values
Suppose that the errors are normally distributed (i.e., ε ∼ N(0, σ2IT ))
and, moreover, assume a monotone pattern of missing values. Then the
likelihood can be factorized with one component for the observed data and
one for the missing data (cf. Little and Rubin, 1987). We confine ourselves
to the simplest case of a completely nonobserved matrix X∗. Therefore,
X∗ may be interpreted as an unknown parameter to be estimated. The
loglikelihood of model (8.22) may be written as

lnL(β, σ2, X∗) = −n

2
ln(2π) − n

2
ln(σ2)

− 1
2σ2 (yc − Xcβ, y∗ − X∗β)′

(
yc − Xcβ
y∗ − X∗β

)
.

Differentiating with respect to β, σ2, and X∗ gives

∂ lnL

∂β
=

1
2σ2

{
X ′

c(yc − Xcβ) + X ′
∗(y∗ − X∗β)

}
= 0 ,

∂ lnL

∂σ2 =
1

2σ2

{
− n +

1
σ2 (yc − Xcβ)′(yc − Xcβ)

. +
1
σ2 (y∗ − X∗β)′(y∗ − X∗β)

}
= 0

∂ lnL

∂X∗
=

1
2σ2 (y∗ − X∗β)β′ = 0 .

Solving for β and σ2,

β̂ = bc = S−1
c X ′

cyc , (8.34)

σ̂2 =
1
m

(yc − Xcbc)′(yc − Xcbc) , (8.35)

results in ML estimators that are based on the data of the complete-case
submodel (8.23). The ML estimate X̂∗ is the solution of the equation

y∗ = X̂∗bc . (8.36)

In the one-regressor model (i.e., K = 1) the solution is unique:

x̂∗ =
y∗
bc

,

where bc = (x′
cxc)−1x′

cyc (cf. Kmenta, 1971). For K > 1 there exists a
t∗ × (K − 1)-fold set of solutions X̂∗. If any solution X̂∗ is substituted for
X∗ in the mixed model, that is,(

yc
y∗

)
=
(

Xc

X̂∗

)
β +
(

εc
ε∗

)
,

then we are led to the following identity:

β̂(X̂∗) = (Sc + X̂ ′
∗X̂∗)−1(X ′

cyc + X̂ ′
∗y∗)



258 8. Analysis of Incomplete Data Sets

= (Sc + X̂ ′
∗X̂∗)−1(Scβ + X ′

cεc + X̂ ′
∗X̂∗β + X̂ ′

∗X̂∗S−1
c X ′

cεc)
= β + (Sc + X̂ ′

∗X̂∗)−1(Sc + X̂ ′
∗X̂∗)S−1

c X ′
cεc

= β + S−1
c X ′

cεc

= bc . (8.37)

This corresponds to the results of Section 8.4.1. Therefore, filling up missing
values X∗ by their ML estimators X̂∗ and calculating the mixed estimator
β̂(X̂∗) gives β̂(X̂∗) = bc.

On the other hand, if we don’t have a monotone pattern, the ML equa-
tions have to be solved by iterative procedures as, for example, the
EM algorithm (Dempster et al., 1977) or other procedures (cf. Oberhofer
and Kmenta, 1974).

8.8.2 Zero-Order Regression
The zero-order regression (ZOR) method is due to Wilks (1938) and is also
called the method of sample means. A missing value xij of the jth regressor
Xj is replaced by the sample mean of the observed values of Xj computed
from the complete cases or the available cases.

Let

Φj = {i : xij missing}, j = 1, . . . , K (8.38)

denote the index sets of the missing values of Xj , and let Mj be the number
of elements in Φj . Then for j fixed, any missing value xij in X∗ is replaced
by

x̂ij = x̄j =
1

T − Mj

∑
i/∈Φj

xij , (8.39)

using all available cases, or

x̂ij = x̄j =
1

T − tc

tc∑
i=1

xij ,

using the complete cases only.
If the sample mean can be expected to be a good estimator for the un-

known mean µj of the jth column, then this method may be recommended.
If, on the other hand, the data in the jth column have a trend or follow a
growth curve, then x̄j is not a good estimator and its use can cause some
bias. If all the missing values in the matrix X∗ are replaced by their corre-
sponding column means x̄j (j = 1, . . . , K), this results in a filled-up matrix
X(1), say, and in an operationalized version of the mixed model (8.22), that
is, (

yc
y∗

)
=
(

Xc
X(1)

)
β +
(

ε
ε(1)

)
.
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Inspecting the vector of errors ε(1), namely,

ε(1) = (X∗ − X(1))β + ε∗ ,

we have

ε(1) ∼ {(X∗ − X(1))β, σ2It∗} ,

where again t∗ = T − tc.
In general, replacing missing values results in a biased mixed estimator

unless X∗−X(1) = 0 holds. If X is a matrix of stochastic regressor variables,
then one may expect that at least E(X∗ − X(1)) = 0 holds.

8.8.3 First-Order Regression
The notation “first-order regression (FOR) is used for a set of methods that
make use of the correlative structure of the covariate matrix X. Based on
the index sets Φj of (8.38), the dependence of any column Xj (j = 1, . . . , K,
j fixed) with the remaining columns is modeled by additional regressions,
that is,

xij = θ0j +
K∑

l=1
l �=j

xilθlj + uij , i /∈ Φ =
K⋃

j=1

Φj = tc + 1, . . . , T , (8.40)

with parameters estimated from the complete cases only. Alternatively, the
parameters could be estimated from all cases i /∈ Φj , but then the auxiliary
regressions would again involve incomplete data.

The missing values xij of X∗ are estimated and replaced by

x̂ij = θ̂0j +
K∑

l=1
l �=j

xilθ̂lj . (8.41)

Example 8.1 (Disjoint sets Φj of indices): Let Xc be an tc ×K-matrix and
X∗ the following 2 × K-matrix:

X∗ =
( ∗ xtc+1,2 xtc+1,3 · · · xtc+1,K

xtc+2,1 ∗ xtc+2,3 · · · xtc+2,K

)
,

where “∗’ indicates missing values. The corresponding index sets are

Φ1 = {tc + 1} , Φ2 = {tc + 2} , Φ3 = · · · = ΦK = ∅ ,

Φ =
⋃K

j=1 Φj = {tc + 1, tc + 2} .

Then we have the following two additional regressions:

x1i = θ01 +
K∑

l=2

xilθl1 + ui1 , i = 1, . . . , tc ,
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xi2 = θ02 + xi1θ12 +
K∑

l=3

xilθl2 + ui2, i = 1, . . . , tc .

The parameters in the above two equations are estimated by their corre-
sponding OLSEs θ̂1 and θ̂2, respectively, and x1i and x2i are estimated by
their respective classical predictors, that is,

x̂tc+1,1 = θ̂01 +
K∑

l=2

xtc+1,lθ̂l1

and

x̂tc+2,2 = θ̂02 +
K∑

l=1
l �=2

xtc+2,lθ̂l2 .

This procedure gives the filled-up matrix

X̂∗ =
(

x̂tc+1,1 xtc+1,2 xtc+1,3 · · · xtc+1,K

xtc+2,1 x̂tc+2,2 xtc+2,3 · · · xtc+2,K

)
= X(2) .

Thus, the operationalized mixed model is(
yc
y∗

)
=
(

Xc
X(2)

)
β +
(

εc
ε(2)

)
with the vector of errors ε(2):

ε(2) = (X∗ − X(2))β + ε∗

=
(

xtc+1,1 − x̂tc+1,1 0 0 · · · 0
0 xtc+2,2 − x̂tc+2,2 0 · · · 0

)
β + ε∗

=
(

(xtc+1,1 − x̂tc+1,1)β1
(xtc+2,2 − x̂tc+2,2)β2

)
+
(

εtc+1
εtc+2

)
.

Example 8.2 (Nondisjoint sets of indices Φj): Let t∗ = 1 and

x∗ = (∗, ∗, xtc+1,3, . . . , xtc+1,K)′ .

Then we have Φ1 = Φ2 = {tc + 1}, Φ3 = · · · = ΦK = ∅. We calculate
the estimators θ̂1 and θ̂2 analogously to the previous example. To calculate
x̂tc+1,1, we need x̂tc+1,2 and vice versa. Many suggestions have been made
to overcome this problem in the case of nondisjoint sets of indices. Afifi
and Elashoff (1967) proposed specific means (cf. Buck, 1960, also). Dage-
nais (1973) described a generalized least-squares procedure using first-order
approximations to impute for missing values in X∗. Alternatively, one takes
that additional regression model having the largest coefficient of determi-
nation. All other missing values are replaced by column means. This way,
one can combine ZOR and FOR procedures.
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This procedure can be extended, in that the values of the response
variable y are also used in the estimation of the missing values in X̂∗.
Toutenburg, Srivastava, and Fieger (1996) have presented some results on
the asymptotic properties of this procedure. Generally biased estimators
result in additionally using y in the auxillary regressions.

8.8.4 Multiple Imputation
Single imputations for missing values as described in Sections 8.8.2 and
8.8.3 underestimate the standard errors, because imputation errors are not
taken into account. Multiple imputation was proposed by Rubin and is
described in full detail in Rubin (1987).

The idea is to impute more than one value, drawn from the predictive
distribution, for each missing observation. The I imputations result in I
complete data problems with estimates θ̂i, that can be combined to the
final estimates by

θ̂ =
1
I

I∑
i=1

θ̂i .

The corresponding variance can be estimated by

ŝ2 = s2
w +
(

1 +
1
I

)
s2
b ,

where s2
w is the average variance within the I repeated imputation steps

(s2
w = 1/I

∑
ŝ2

i ), and s2
b =
∑

(θ̂i − θ̂)2/(I − 1) is the variance between the
imputation steps (which takes care of the imputation error).

The draws are from the predictive distribution of the missing values con-
ditioned on the observed data and the responses y. For example, consider
X = (X1, X2) with missing values in X1. Imputations for missing X1 values
are then drawn from the conditional distribution of X1 given X2 and y.

8.8.5 Weighted Mixed Regression
Imputation for missing values in X∗ in any case gives a filled-up matrix
XR, say, where XR equals X(1) for ZOR, X(2) for FOR, and X̂∗ for ML
estimation. The operationalized mixed model may be written as(

yc
y∗

)
=
(

Xc
XR

)
β +
(

εc
εR

)
(8.42)

with

εR = (X∗ − XR)β + ε∗ .

Let

δ = (X∗ − XR)β ;
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then in general we may expect that δ �= 0. The least-squares estimator of
β in the model (8.42) is given by the mixed estimator

β̂(XR) = (Sc + SR)−1(X ′
cyc + X ′

Ry∗) , (8.43)

which is a solution to the minimization problem

min
β

S(β) = min
β

{(yc − Xcβ)′(yc − Xcβ) + (y∗ − XRβ)′(y∗ − XRβ)} ,

where

SR = X ′
RXR .

The mixed estimator has

E
(
β̂(XR)

)
= β + (Sc + SR)−1X ′

Rδ (8.44)

and hence β̂(XR) is biased if δ �= 0.
The decision to apply either complete-case analysis or to work with some

imputed values depends on the comparison of the unbiased estimator bc
and the biased mixed estimator for β̂(XR). If one of the mean dispersion
error criteria is used, then the results of Section 5.8.3 give the appropriate
conditions.

The scalar MDE-II and MDE-III criteria (cf. Section 5.4) were intro-
duced to weaken the conditions for superiority of a biased estimator over
an unbiased estimator. We now propose an alternative method that, anal-
ogous to weaker MDE superiority, shall weaken the superiority conditions
for the biased mixed estimator. The idea is to give the completely observed
submodel (8.23) a higher weight than the filled-up submodel y∗ = XRβ+εR.

To give the observed “sample’ matrix Xc a different weight than
the nonobserved matrix XR in estimating β, Toutenburg (1989b) and
Toutenburg and Schaffrin (1989) suggested solving

min
β

{(yc − Xcβ)′(yc − Xcβ) + λ(y∗ − XRβ)′(y∗ − XRβ)} , (8.45)

where λ is a scalar factor. Differentiating (8.45) with respect to β and
equating to zero gives the normal equation

(Sc + λSR)β − (X ′
cyc + λX ′

Ry∗) = 0 .

The solution defined by

b(λ) = (Sc + λSR)−1(X ′
cyc + λX ′

Ry∗) . (8.46)

may be called the weighted mixed-regression estimator (WMRE). This
estimator may be interpreted as the familiar mixed estimator in the model(

yc√
λy∗

)
=
(

Xc√
λXR

)
β +
(

εc√
λv∗

)
.

If Z = Z(λ) = (Sc + λSR), and δ = (X∗ − XR)β, we have

b(λ) = Z−1(X ′
cXcβ + X ′

cεc + λX ′
RX∗β + λX ′

Rε∗)
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= β + λZ−1X ′
R(X∗ − XR)β + Z−1(X ′

cεc + λX ′
Rε∗) , (8.47)

from which it follows that the WMRE is biased:

Bias
(
b(λ)
)

= λZ−1X ′
Rδ (8.48)

and has the covariance matrix

V
(
b(λ)
)

= σ2Z−1(Sc + λ2SR)Z−1 . (8.49)

Note: Instead of weighting the approximation matrix XR by a uniform
factor

√
λ, one may give each of the t∗ rows of XR a different weight

√
λj

and solve

min
β

{
(yc − Xcβ)′(yc − Xcβ) +

t∗∑
i=1

λi(y
(i)
∗ − x

′(i)
R β)2

}
or, equivalently,

min
β

{
(yc − Xcβ)′(yc − Xcβ) + (y∗ − XRβ)′Λ(y∗ − XRβ)

}
,

where Λ = diag(λ1, . . . , λt∗). The solution of this optimization problem is
seen to be of the form

b(λ1, . . . , λt∗) =
(
Sc +

t∗∑
i=1

λix
(i)
R x

′(i)
R

)−1(
X ′

cyc +
t∗∑

i=1

λix
(i)
R y

(i)
∗
)

or, equivalently,

b(Λ) = (Sc + X ′
RΛXR)−1(X ′

cyc + X ′
RΛy∗) ,

which may be interpreted as the familiar mixed estimator in the model
yc√

λ1y
(1)
∗

...√
λt∗y

(t∗)
∗

 =


Xc√

λ1x
′(1)
R

...√
λt∗x

′(t∗)
R

+


εc√

λ1v
(1)
∗

...√
λt∗v

(t∗)
∗


or, equivalently written,(

yc√
Λy∗

)
=
(

Xc√
ΛXR

)
+
(

εc√
Λv∗

)
,

where
√

Λ = diag(
√

Λ1, . . . ,
√

Λt∗).

Minimizing the MDEP

In this section we concentrate on the first problem of a uniform weight λ.
A reliable criterion to choose λ is to minimize the mean dispersion error of
prediction (MDEP) with respect to λ. Let

ỹ = x̃′β + ε̃ , ε̃ ∼ (0, σ2),
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be a nonobserved (future) realization of the regression model that is to be
predicted by

p = x̃′b(λ) .

The MDEP of p is

E(p − ỹ)2 = E
(
x̃′(b(λ) − β

)− ε̃
)2

=
(
x̃′ Bias

(
b(λ)
))2

+ x̃′ V
(
b(λ)
)
x̃ + σ2 . (8.50)

Using (8.48) and (8.49), we obtain

E(p − ỹ)2 = g(λ)
= λ2(x̃′Z−1X ′

Rδδ′XRZ−1x̃)
+ σ2x̃′Z−1(Sc + λ2SR)Z−1x̃ + σ2 . (8.51)

Using the relations

∂ trAZ−1

∂λ
= tr

∂ trAZ−1

∂Z−1

∂Z−1

∂λ
,

∂ trAZ−1

∂Z−1 = A′ ,

∂Z−1

∂λ
= −Z−1 ∂Z

∂λ
Z−1

(cf.Theorems A.94, A.95 (i), and A.96, respectively) gives

∂

∂λ
trAZ−1 = − trZ−1A′Z−1 ∂Z

∂λ
.

Now for Z = Z(λ) we get

∂Z

∂λ
= SR .

Differentiating g(λ) in (8.51) with respect to λ and equating to zero then
gives

1
2

∂g(λ)
∂λ

= λ(x̃′Z−1X ′
Rδ)2 − λ2x̃′Z−1SRZ−1X ′

Rδδ′XRZ−1x̃

+ σ2λx̃′Z−1SRZ−1x̃ − σ2x̃′Z−1SRZ−1(Sc + λ2SR)Z−1x̃

= 0 ,

from which we get the relation

λ =
1

1 + σ−2ρ1(λ)ρ−1
2 (λ)

, 0 ≤ λ ≤ 1 , (8.52)

where

ρ1(λ) = x̃′Z−1ScZ
−1X ′

Rδδ′XRZ−1x̃ ,

ρ2(λ) = x̃′Z−1SRZ−1ScZ
−1x̃ .
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Thus, the optimal λ minimizing the MDEP (8.51) of p = x̃′b(λ) is the
solution to relation (8.52). Noting that Z = Z(λ) is a function of λ, also,
solving (8.52) for λ results in a procedure of iterating the λ-values, whereas
σ2 and δ are estimated by some suitable procedure. This general problem
needs further investigation.

The problem becomes somewhat simpler in the case where only one row
of the regressor matrix is incompletely observed, that is, t∗ = 1 in (8.24):

y∗ = x∗β + ε∗ , ε∗ ∼ (0, σ2) .

Then we have SR = xRx′
R, δ = (x′

∗ − x′
R)β (a scalar) and

ρ1(λ) = (x̃′Z−1ScZ
−1xR)(x′

RZ−1x̃)δ2 ,

ρ2(λ) = (x̃′Z−1xR)(x′
RZ−1ScZ

−1x̃) .

So λ becomes

λ =
1

1 + σ−2δ2 . (8.53)

Interpretation of the Result

(i) We note that 0 ≤ λ ≤ 1, so that λ is, indeed, a weight given to the
incompletely observed model.

(ii) λ = 1 holds for σ−2δ2 = 0. If σ2 is finite, then the incompletely
observed but (by the replacement of x∗ by xR) “repaired” model is
given the same weight as the completely observed model when δ = 0.
Now, δ = (x′

∗ − x′
R)β = 0 implies that the unknown expectation

E y∗ = x′
∗β of the dependent variable y∗ is estimated exactly by x′

Rβ
(for all β). Thus δ = 0 is fulfilled when x∗ = xR, that is, when the
missing values in x∗ are reestimated exactly (without error) by xR.
This seems to be an interesting result to be taken into account in the
general mixed regression framework in the sense that additional linear
stochastic restrictions of type r = Rβ+v∗ should not be incorporated
without using a prior weight λ (and λ < 1 in general).
Furthermore, it may be conjectured that the weighted mixed regres-
sion becomes equivalent (in a sense to be specified) to the familiar
(unweighted) mixed regression, when the former is related to a strong
MDE criterion and the latter is related to a weaker MDE criterion.
Now, λ = 1 may be caused by σ2 → ∞ also. Since σ2 is the variance
common to both yc and y∗, σ2 → ∞ leads to unreliable (imprecise)
estimators in the complete model yc = X ′

cβ + εc as well as in the
enlarged mixed model (8.42).

(iii) In general, an increase in δ decreases the weight λ of the additional
stochastic relation y∗ = x′

Rβ + v∗. If δ → ∞, then

λ → 0 and lim
λ→0

b(λ) = bc . (8.54)
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8.8.6 The Two-Stage WMRE
To bring the mixed estimator b(λ) with λ from (8.109) in an operational
form, σ2 and δ have to be estimated by σ̂2 and δ̂, resulting in λ̂ = 1/(1 +
σ̂−2δ̂2) and b(λ̂). By using the consistent estimators

σ̂2 =
1

tc − K
(yc − Xcbc)′(yc − Xcbc)

and

δ̂ = y∗ − x′
Rbc ,

we investigate the properties of the resulting two-stage WMRE b(λ̂). This
will depend on the statistical properties (e.g., mean and variance) of λ̂ itself.
The bootstrap method is one of the nonparametric methods in estimating
variance and bias of a statistic of interest. By following the presentation of
Efron (1979) for the one-sample situation, the starting point is the sample
of size m based on the complete model

yci = x′
ciβ + εci , εci ∼ F , (i = 1, . . . , m) .

The random sample is

εc = (εc1, . . . , εcm)′ .

In the notation of Efron, the parameter of interest is

θ(F ) = λ =
1

1 + σ−2(x′∗β − x′
Rβ)2

,

and its estimator is

t(εc) = λ̂ =
1

1 + σ̂−2(y∗ − x′
Rbc)2

.

Now the sample probability distribution F̂ may be defined by putting mass
1/m at each residual

ε̂ci = yci − x′
cibc , (i = 1, . . . , m)

(for m = tc this yields ¯̂ε = 0; if m < tc the estimated residuals have to be
centered around mean 0).

With (bc, F̂ ) fixed, draw a random sample of size m from F̂ and call this
the bootstrap sample:

yBoot = XBootbc + ε∗
i , ε∗

i ∼ F̂ (i = 1, . . . , m) . (8.55)

Each realization of (8.55) yields a realization of a bootstrap estimator β̂∗

of β:

β̂∗ = min
β

(yBoot − XBootβ)′(yBoot − XBootβ) . (8.56)
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Repeating this procedure N times independently results in a random boot-
strap sample β̂∗1, . . . , β̂∗N , which can be used to construct a bootstrap
sample λ̂∗1, . . . , λ̂∗N of the weight λ:

λ̂∗v =
1

1 + σ̂−2∗v (y∗ − x∗′
Rvβ̂∗v)2

, v = 1, . . . , N .

Here

σ̂2
∗v =

1
m − K

(yBoot,v − XBoot,vβ̂∗v)′(yBoot,v − XBoot,vβ̂∗v)

is the bootstrap estimator of σ2, and x∗
Rv, (v = 1, . . . , N) is the vector

replacement for x∗ owing to dependence on the matrix XBoot,v which comes
from Xc by the vth bootstrap step. Now the random sample λ̂∗1, . . . , λ̂∗N

can be used to estimate the bootstrap distribution of t(εc) = λ̂.

A problem of interest is to compare the bootstrap distributions of λ̂
or b(λ̂) for the different missing-values methods, keeping in mind that
λ = λ(xR) and λ̂ = λ̂(xR) are dependent on the chosen method for finding
xR. This investigation has to be based on a Monte Carlo experiment for
specific patterns. Toutenburg, Heumann, Fieger, and Park (1995) have pre-
sented some results, which indicate that (1) using weights λ yields (MDE)
better estimates and (2) the weights λ̂ are biased, which means that further
improvements can be achieved by using some sort of bias correction.

8.9 Assumptions about the Missing Mechanism

Complete case analysis requires that missingness is independent of the
response y. Least-squares estimation using imputed values yields valid es-
timates if missingness depends on the fully observed covariates, and the
assumption that missing covariates have a linear relationship on the ob-
served covariates holds, that is, the auxiliary regression models are correctly
specified. The maximum-likelihood methods require the MAR assumption
to hold, which includes the case that missingness depends on the (fully
observed) response y.

8.10 Regression Diagnostics to Identify
Non-MCAR Processes

In the preceding sections we have discussed various methods to handle
incomplete X-matrices. In general they are based on assumptions on the
missing data mechanism. The most restrictive one is the assumption based
on the requirement that missingness is independent of the data (observed
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and nonobserved). Less restrictive is the MAR assumption that allows
missingness to be dependent of the observed data.

In the following, we discuss the MCAR assumption in more detail and
especially under the aspect of how to test this assumption. The idea pre-
sented here was first discussed by Simonoff (1988), who used diagnostic
measures known from the sensitivity analysis. These measures are adopted
to the context of missing values. This enables us to identify some well-
defined non-MCAR processes that cannot be detected by standard tests,
such as the comparison of the means of the complete and the incomplete
data sets.

8.10.1 Comparison of the Means
Cohen and Cohen (1983) proposed to compare the sample mean ȳc of the
observations yi of the complete-case model and the sample mean ȳ∗ of the
model with partially nonobserved data.

For the case in which missing values x∗ in the matrix X∗ are of type
MCAR, then the partition of y in yc and y∗ is random, indicating that
there might be no significant difference between the corresponding sample
means.

If their difference would significantly differ from zero, this might be in-
terpreted as a contradiction to a MCAR assumption. Hence, the hypothesis
H0: MCAR would be rejected.

8.10.2 Comparing the Variance-Covariance Matrices
The idea to compare the variance-covariance matrices of the parameter esti-
mates β̂ for the various methods that react on missing X-values is based on
the work of Evans, Cooley, and Piserchia (1979). They propose, to compare
V(bc) and V(β̂) where β̂ is the estimator of β in the repaired model. Severe
differences are interpreted again as a signal against the MCAR-assumption.

8.10.3 Diagnostic Measures from Sensitivity Analysis
In the context of sensitivity analysis we have discussed measures that may
detect the influence of the ith observation by comparing some scalar statis-
tic based either on the full data set or on the data set reduced by the
ith observation (called the “leave-one-out strategy). Adapting this idea for
the purpose of detecting “influential” missingness means to redefine these
measures such that the complete-case model and the filled-up models are
compared to each other.

Let β̂R denote the estimator of β for the linear model y =
(

Xc
XR

)
+ ε,

where XR is the matrix X∗ filled up by some method.



8.10 Regression Diagnostics to Identify Non-MCAR Processes 269

Cook’s Distance: Adapting Cook’s distance Ci (cf. (7.59)) gives

D =
(β̂R − β̂c)′(X ′X)(β̂R − β̂c)

Ks2 ≥ 0 (8.57)

where the estimation s2 is based on the completed data.

Change of the Residual Sum of Squares: Adapting a measure for the change
in the residual sum of squares to our problem results in

DRSS =
(RSSR − RSSc)/nR

RSSc/(T − nr − K + 1)
∈ [0,∞] . (8.58)

Large values of DRSS will indicate departure from the MCAR assumption.

Change of the Determinant: Adaption of the kernel of the Andrews-
Pregibon statistic APi (cf. (7.70)) to our problem gives the change of
determinant DXX as

DXX =
|X ′

cXc|
|X ′X| ∈ [0, 1] . (8.59)

where small values of DXX will indicate departure from the MCAR
assumption.

8.10.4 Distribution of the Measures and Test Procedure
To construct a test procedure for testing H0: MCAR against H1: Non-
MCAR we need the null distributions of the three measures. These
distributions are dependent on the matrix X of regressors, on the vari-
ance σ2 and on the parameter β. In this way, no closed-form solution is
available and we have to estimate these null distributions by Monte Carlo
simulations with the following steps:

At first, missing values in X∗ are filled up by suitable MCAR substitutes.
Then with the estimations β̂c and s2 and with the matrix XR, updated data
ys

∗ = XRβ̂c + εs (superscript s stands for simulation) are calculated where
ε ∼ N(0, s2I) are pseudorandom numbers. Finally, a MCAR mechanism is
selecting cells from the matrix X as missing. This way we get a data set
with missing values that are due to a MCAR mechanism, independent of
whether the real missing values in X∗ were MCAR. Based on these data,
the diagnostic measures are calculated. This process is repeated N times
using an updated εs in each step, so that the null distribution f0 of the
diagnostic measure of interest may be estimated.

Test Procedure: With the estimated null distribution we get a critical value
that is the N(1 − α)th-order statistic for D and DRSS or the Nαth-order
statistic for DXX, respectively. H0: MCAR is rejected if D (or DRSS)
≥ f0,N(1−α) or if DXX ≤ f0,Nα, respectively.
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8.11 Exercises

Exercise 1. Consider the model specified by yc = Xcβ + εc and ymis =
X∗β + ε∗. If every element of ymis is replaced by the mean of the elements
of yc, find the least-squares estimator of β from the repaired model and
discuss its properties.

Exercise 2. Consider the model yc = Xcβ + εc and ymis = X∗β + ε∗. If
δX∗bc with 0 < δ < 1 is used in the repaired model and β is estimated by
the least-squares method, show that the estimator of β is biased. Also find
its dispersion matrix.

Exercise 3. Given the model yc = xcβ + εc and y∗ = xmisβ + ε∗, suppose
that we regress xc on yc and use the estimated equation to find the imputed
values for xmis. Obtain the least-squares estimator of the scalar β from the
repaired model.

Exercise 4. For the model yc = Xcβ +Zcγ + εc and y∗ = Xmisβ +Z∗γ + ε∗,
examine whether the least-squares estimator of β from the complete model
is equal to the least-squares estimator from the filled-in model using a first
order regression method.

Exercise 5. Suppose that β is known in the preceding exercise. How will
you estimate γ then?

Exercise 6. Consider the model yc = Zcβ + αxc + εc and y∗ = Z∗β +
αxmis + ε∗. If the regressor associated with α is assumed to be stochastic
and the regression of xc on Zc is used to find the predicted values for
missing observations, what are the properties of these imputed values?

Exercise 7. For the set-up in the preceding exercise, obtain the least-
squares estimator α̂ of α from the repaired model. How does it differ from
α̃, the least-squares estimator of α using the complete observations alone?

Exercise 8. Offer your remarks on the estimation of α and β in a bivariate
model ymis = α1 + βx∗ + ε∗ and y∗∗ = α1 + βxmis + ε∗∗, where 1 denotes
a column vector (of appropriate length) with all elements unity.
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Robust Regression

9.1 Overview

Consider the multivariate linear model

Yi = X ′
iβ + Ei, i = 1, . . . , n , (9.1)

where Yi : p × 1 is the observation on the ith individual, Xi : q × p is
the design matrix with known elements, β : q × 1 is a vector of unknown
regression coefficients, and Ei : p × 1 is the unobservable random error
that is usually assumed to be suitably centered and to have a p-variate
distribution. A central problem in linear models is estimating the regression
vector β. Note that model (9.1) reduces to the univariate regression model
when p = 1, which we can write as

yi = x′
iβ + εi, i = 1, . . . , n , (9.2)

where xi is now a q-vector. Model (9.1) becomes the classical multivariate
regression, also called MANOVA model, when Xi : q × p is of the special
form

Xi =


xi 0 . . . 0
0 xi . . . 0
...

... . . .
...

0 0 . . . xi

 , (9.3)

where xi : m × 1 and q = mp. Our discussion of the general model will
cover both classical cases considered in the literature.
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When Ei has a p-variate normal distribution, the least-squares method
provides the most efficient estimators of the unknown parameters. In addi-
tion, we have an elegant theory for inference on the unknown parameters.
However, recent investigations have shown that the LS method is sensitive
to departures from the basic normality of the distribution of errors and to
the presence of outliers even if normality holds.

The general method, called the M-estimation, was introduced by Huber
(1964) to achieve robustness in data analysis. This has generated consider-
able research in recent times. It may be pointed out that a special case of
M-estimation based on the L1-norm—estimation by minimizing the sum
of absolute deviations rather than the sum of squares, called the least ab-
solute deviation (LAD) method—was developed and was the subject of
active discussion. The earliest uses of the LAD method may be found in
the seventeenth- and eighteenth-century works of Galilie (1632), Boscovich
(1757), and Laplace (1793). However, because of computational difficul-
ties in obtaining LAD estimates and lack of exact sampling theory based
on such estimates, the LAD method lay in the background and the LS
method became popular. The two basic papers, one by Charnes, Cooper,
and Ferguson (1955) reducing the LAD method of estimation to a linear
programming problem, and another by Bassett and Koenker (1978) devel-
oping the asymptotic theory of LAD estimates, have cleared some of the
difficulties and opened up the possibilities of replacing the LS theory by
more robust techniques using the L1-norm or more general discrepancy
functions in practical applications.

In this chapter, we review some of the recent contributions to the theory
of robust estimation and inference in linear models. In the following section,
we consider the problem of consistency of the LAD and, in general, of M-
estimators. Furthermore we review some contributions to the asymptotic
normality and tests of significance for the univariate and multivariate LAD
and M-estimators.

9.2 Least Absolute Deviation
Estimators—Univariate Case

Consider model (9.2). Let β̂n be any solution to the minimization problem
n∑

i=1

|yi − x′
iβ̂n| = min

β

n∑
i=1

|yi − x′
iβ| . (9.4)

β̂n is called the LAD estimator of the vector parameter β. Some general
properties of the LAD estimators can be found in Rao (1988). An iterative
algorithm for the numerical solution of problem (9.4) is given in Birkes and
Dodge (1993, Chapter 4).
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In almost all related papers, the weak consistency of the LAD estimators
is established under the same conditions that guarantee its asymptotic
normality, although intuitively it should be true under weaker conditions
than those required for the latter. So in the present section we mainly
discuss the strong consistency, except for some remarks in discussing the
significance of the conditions for weak consistency.

Bloomfield and Steiger (1983) give a proof of the strong consistency
of β̂n, where {xi} is a sequence of i.i.d. observations of a random vector
x. Dupaková (1987) and Dupaková and Wets (1988) consider the strong
consistency of LAD estimators under linear constraints, when the xi’s are
random.

It is easy to see that the strong consistency under the random case is
a simple consequence of that for the nonrandom case. In the following we
present several recent results in the set-up of nonrandom xi. Write

Sn =
n∑

i=1

xix
′
i, ρn = the smallest eigenvalue of Sn , (9.5)

dn = max{1, ‖x1‖, . . . , ‖xn‖} , (9.6)

where ‖a‖ denotes the Euclidean norm of the vector a. Wu (1988) proves
the following theorem.

Theorem 9.1 Suppose that the following conditions are satisfied:

(i) ρn

(d2
n log n)

→ ∞ . (9.7)

(ii) There exists a constant k > 1 such that

dn

nk−1 → 0 . (9.8)

(iii) ε1, ε2, . . . are independent random variables, and med(εi) = 0, i =
1, 2, . . ., where med(·) denotes the median.

(iv) There exist constants c1 > 0, c2 > 0 such that

P{−h < εi < 0} ≥ c2h (9.9)
P{0 < εi < h} ≥ c2h (9.10)

for all i = 1, 2, . . . and h ∈ (0, c1). Then we have (cf. Definition
A.101 (ii))

lim
n→∞ β̂n = β0 a.s. , (9.11)

(a.s. almost surely) where β0 is the true value of β. Further, under
the additional condition that for some constant M > 0

ρn

d2
n

≥ Mn for large n , (9.12)
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β̂n converges to β0 at an exponential rate in the following sense: For
arbitrarily given ε > 0, there exists a constant c > 0 independent of n
such that

P{||β̂n − β0|| ≥ ε} ≤ O(e−cn) . (9.13)

The above result was sharpened in Wu (1989) to apply to the case in
which conditions (9.7) and (9.8) are replaced by

∆2
n log n → 0 (9.14)

and (9.12) by

n∆2
n ≤ M , (9.15)

where

∆2
n = max

i≤n
{x′

iS
−1
n xi}. (9.16)

Now consider the inhomogeneous linear model

yi = α0 + x′
iβ0 + εi, i = 1, 2, . . . , n. (9.17)

Theoretically speaking, the inhomogeneous model is merely a special case of
the homogeneous model (9.2) in which the first element of each xi is equal to
1. So the strong consistency of the LAD estimators for an inhomogeneous
model should follow from Theorem 9.1. However, although Theorem 9.2
looks like Theorem 9.1, we have not yet proved that it is a consequence of
Theorem 9.1.

Theorem 9.2 Suppose we have model (9.17), and the conditions of Theorem
9.1 are satisfied, except that here we define Sn as

∑n
i=1(xi − x̄n)(xi − x̄n)′

where x̄n = 1/n
∑n

i=1 xi. Then

lim
n→∞ α̂ = α0 a.s., lim

n→∞ β̂ = β0 a.s. (9.18)

Also, under the additional assumption (9.12) for arbitrarily given ε > 0,
we can find a constant c > 0 independent of n such that

P{||α̂n − α0||2 + ||β̂n − β0||2 ≥ ε2} ≤ O(e−cn). (9.19)

As in Theorem 9.1, Theorem 9.2 can be improved to the case in which
conditions (9.7), (9.8), and (9.12) are replaced by (9.14) and (9.15) with
∆n redefined as

∆̃2
n = max

i≤n
{(xi − x̄n)′S̄−1

n (xi − x̄n)} , (9.20)

S̄n =
n∑

i=1

(xi − x̄n)(xi − x̄n)′, x̄n =
1
n

n∑
i=1

xi . (9.21)
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Remark: Conditions (9.9) and (9.10) stipulate that the random errors
should not be “too thinly” distributed around their median zero. It is likely
that they are not necessary and that further improvement is conceivable,
yet they cannot be totally eliminated.

Example 9.1: Take the simplest case in which we know that α0 = 0 and all
xi are zero. In this case the minimum L1-norm principle gives

α̂ = med(y1, . . . , yn) (9.22)

as an estimate of α0. Suppose that ε1, ε2, . . . are mutually independent;
then εi has the following density function:

fi(x) =

{ |x|
i2

, 0 ≤ |x| ≤ i, i = 1, 2, . . . ,

0 , otherwise.
(9.23)

Then

P{εi ≥ 1} =
1
2

− 1
(2i2)

, i = 1, 2, . . . . (9.24)

Denote by ξn the number of εi’s for which
√

n ≤ i ≤ n and εi ≥ 1. An
application of the central limit theorem shows that for some δ ∈ (0, 1

2 ) we
have

P
{

ξn >
n

2

}
≥ δ (9.25)

for n sufficiently large. This implies that

P{α̂ ≥ 1} ≥ δ (9.26)

for n sufficiently large, and hence α̂n is a consistent estimate of α0.

Remark: In the case of LS estimation, the condition for consistency is

lim
n→∞ S−1

n = 0 (9.27)

whereas that for the LAD estimates is much stronger. However, (9.27) does
not guarantee the strong consistency for LAD estimates, even if the error
sequence consists of i.i.d. random variables.

Example 9.2: This example shows that even when ε1, ε2, . . . are i.i.d.,
consistency may not hold in case dn tends to infinity too fast.

Suppose that in model (9.2) the true parameter β0 = 0, the random errors
are i.i.d. with a common distribution P{εi = 10k} = P{εi = −10k} =
1/[k(k + 1)], k = 6, 7, . . ., and εi is uniformly distributed over (− 1

3 , 1
3 ) with

density 1. Let xi = 10i, i = 1, 2, . . . . We can prove that β̂n is not strongly
consistent.

When the errors are i.i.d., we do not know whether (9.27) implies the
weak consistency of the LAD estimates. However, if we do not assume that
the errors are i.i.d., then we have the following counterexample.
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Example 9.3: Suppose that in model (9.2), the random errors ε1, ε2, . . .
are independent, P{εi = 10i} = P{εi = −10i} = 1

6 , and εi is uniformly
distributed over the interval (− 1

3 , 1
3 ) with density 1. For convenience assume

that the true parameter value β0 = 0. Let xi = 10i, i = 1, 2, . . . . Then the
weak consistency does not hold.

9.3 M-Estimates: Univariate Case

Let ρ be a suitably chosen function on R. Consider the minimization
problem

n∑
i=1

ρ(yi − x′
iβ̂n) = min

β

n∑
i=1

ρ(yi − x′
iβ). (9.28)

Following Huber (1964), β̂n is called the M-estimate of β0.
If ρ is continuously differentiable everywhere, then β̂n is one of the

solutions to the following equation:
n∑

i=1

xiρ
′(yi − x′

iβ) = 0 (9.29)

When ρ′ is not continuous or ρ′ equals the derivative of ρ except at
finite or countably infinitely many points, the following two cases may be
met. First, (9.29) may not have any solution at all, even with a probability
arbitrarily close to 1. In such a situation, the solution of (9.28) cannot be
characterized by that of (9.29). Second, even if (9.29) has solutions, β̂n may
not belong to the set of solutions of (9.28). Such a situation leading to a
wrong solution of (9.28) frequently happens when ρ is not convex. This
may result in serious errors in practical applications. So in this chapter
we always consider the M-estimates to be the solution of (9.28), instead of
being that of (9.29).

Chen and Wu (1988) established the following results. First consider the
case where x1, x2, . . . are i.i.d. random vectors.

Theorem 9.3 Suppose that (x′
1, y1), (x′

2, y2), . . . are i.i.d. observations of a
random vector (x′, y), and the following conditions are satisfied:

(i) The function ρ is continuous everywhere on R, nondecreasing on
[0,∞), nonincreasing on (−∞, 0], and ρ(0) = 0.

(ii) Either ρ(∞) = ρ(−∞) = ∞ and

P{α + x′β = 0} < 1 where (α, β′) �= (0, 0′) , (9.30)

or ρ(∞) = ρ(−∞) ∈ (0,∞) and

P{α + x′β = 0} = 0 where (α, β′) �= (0, 0′) . (9.31)
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(iii) For every (α, β′) ∈ Rp+1, we have

Q(α, β′) ≡ E ρ(y − α − x′β) < ∞ , (9.32)

and Q attains its minimum uniquely at (α0, β
′
0). Then

α̂n → α0 , β̂n → β0 , a.s. as n → ∞ . (9.33)

When ρ is a convex function, condition (9.32) can be somewhat weak-
ened.

Theorem 9.4 If ρ is a convex function, then (9.33) is still true when condi-
tion (i) of Theorem 9.3 is satisfied, condition (ii) is deleted, and condition
(iii) is replaced by condition (iii ′):

(iii ′) For every (α, β′) ∈ Rp+1,

Q∗(α, β′) ≡ E{ρ(y − α − x′β) − ρ(y − α0 − x′β0)} (9.34)

exists and is finite, and

Q∗(α, β′) > 0, for any (α, β′) �= (α0, β
′
0) . (9.35)

The following theorem gives an exponential convergence rate of the
estimate (α̂n, β̂′

n).

Theorem 9.5 Suppose that the conditions of Theorem 9.3 are met, and in
addition the moment-generating function of ρ(y − α − x′β) exists in some
neighborhood of 0. Then for arbitrarily given ε > 0, there exists a constant
c > 0 independent of n such that

P{|α̂n − α0| ≥ ε} = O(e−cn), P{||β̂n − β0|| ≥ ε} = O(e−cn) . (9.36)

This conclusion remains valid if the conditions of Theorem 9.4 are met
and the moment-generating function of ρ(y − α − x′β) − ρ(y − α0 − x′β0)
exists in some neighborhood of 0.

Next we consider the case where x1, x2, . . . are nonrandom q-vectors.

Theorem 9.6 Suppose that in model (9.17) x1, x2, . . . are nonrandom
q-vectors and the following conditions are satisfied:

(i) Condition (i) of Theorem 9.3 is true and ρ(∞) = ρ(−∞) = ∞.

(ii) {xi} is bounded, and if λn denotes the smallest eigenvalue of the
matrix

∑n
i=1(xi − x̄n)(xi − x̄n)′, where x̄n = 1

n

∑n
i=1 xi, then

lim
n→∞ inf

λn

n
> 0 . (9.37)

(iii) {εi} is a sequence of i.i.d. random errors.

(iv) For any t ∈ R, E ρ(ε1 + t) < ∞, E{ρ(ε1 + t)−ρ(ε1)} > 0 for any t �= 0,
and there exists a constant c1 > 0 such that

E{ρ(ε1 + t) − ρ(ε1)} ≥ c1t
2 (9.38)
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for |t| sufficiently small.

Then (9.33) is true. This conclusion remains valid if (i) and (ii) in
Theorem 9.6 are replaced by (i’) and (ii’):

(i ′) Condition (i) of Theorem 9.3 is true,

0 < ρ(∞) = ρ(−∞) < ∞ . (9.39)

(ii ′)

lim
ε→0

lim
n→∞ sup

�{i : 1 ≤ i ≤ n, |α + x′
iβ| ≤ ε}

n
= 0, (α, β′) �= (0, 0′).

(9.40)

where �B denotes the number of elements in a set B. Note that condition
(9.40) corresponds to condition (9.31) of Theorem 9.3.

Also, when ρ is convex, the condition E ρ(ε1 + t) < ∞ can be weakened
to E |ρ(ε1 + t) − ρ(ε)| < ∞.

Now we make some comments concerning the conditions assumed in these
theorems:

1. Condition (iii) of Theorem 9.3, which stipulates that Q attains its
minimum uniquely at the point (α0, β

′
0), is closely related to the in-

terpretation of regression. The essence is that the selection of ρ must be
compatible with the type of regression considered. For example, when
α0 + x′β0 is the conditional median of Y given X = x (median regres-
sion), we may choose ρ(u) = |u|. Likewise, when α0+x′β0 = E(Y |X = x)
(the usual mean regression), we may choose ρ(u) = |u|2. This explains
the reason why we say at the beginning of this chapter that the errors
are suitably centered. An important case is that of the conditional dis-
tribution of Y given X = x being symmetric and unimodal with the
center at α0 + x′β0. In this case, ρ can be chosen as any function sat-
isfying condition (i), and such that ρ(t) > 0 when t �= 0. This gives us
some freedom in the choice of ρ with the aim of obtaining more robust
estimates.

2. Condition (9.38) of Theorem 9.6 reveals a difference between the two
cases of {xi} mentioned earlier. In the case that {xi} is a sequence of
nonrandom vectors, we can no longer assume that only 0 is the unique
minimization point of E ρ(ε1 +u), as shown in the counterexample given
in Bai, Chen, Wu, and Zhao (1987) for ρ(u) = |u|.
Condition (9.38) holds automatically when ρ(u) = u2 and E(ε1) = 0.

When ρ(u) = |u|, it holds when ε1 has median 0 and a density that is
bounded away from 0 in some neighborhood of 0. When ρ is even and ε1 is
symmetric and unimodal with center 0, (9.38) holds if one of the following
two conditions is satisfied:

(i) inf
{ (ρ(u2) − ρ(u1))

(u2 − u1)
: ε ≤ u1 < u2 < ∞

}
> 0 for any ε > 0.
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(ii) There exist positive constants a < b and c, such that

ρ(u2) − ρ(u1)
u2 − u1

≥ c ,
|f(u2) − f(u1)|

u2 − u1
≥ c

for any a ≤ u1 < u2 ≤ b, where f is the density of ε1.

9.4 Asymptotic Distributions of LAD Estimators

9.4.1 Univariate Case
The asymptotic distribution of LAD estimates was first given by Bassett
and Koenker (1978) and later by Amemiya (1982) and Bloomfield and
Steiger (1983, p. 62). Bloomfield and Steiger (1983) also pointed out that
the limiting distribution of the LAD estimate of β (except the constant
term, but the model may have a constant term) follows from a result on
a class of R-estimates due to Jaeckel (1972), who proved the asymptotic
equivalence between his estimates and those introduced and studied by
Jureckova (1971). Heiler and Willers (1988) removed some complicated
conditions on the xi-vectors made by Jureckova (1971) and hence greatly
improved Jaeckel’s result. However, it should be noted that all the above
results about the limiting distribution of LAD estimates are special cases of
those of Ruppert and Carroll (1980), who derived the limiting distribution
of quantile estimates in linear models.

Bai et al. (1987) derived the limiting distribution of the LAD estimates
under mild conditions. The results are given below.

Theorem 9.7 Suppose that in model (9.2), ε1, . . . , εn are i.i.d. with a
common distribution function F , and the following two conditions are
satisfied:

(i) There is a constant ∆ > 0 such that f(u) = F ′(u) exists when |u| ≤
∆, f is continuous and strictly positive at zero, and F (0) = 1

2 .

(ii) The matrix Sn = x1x
′
1 + . . . + xnx′

n is nonsingular for some n and

lim
n→∞ max

1≤i≤n
x′

iS
−1
n xi = 0 .

Then

2f(0)S
1
2
n (β̂n − β) L→ N(0, Iq) , (9.41)

where β̂n is the LAD estimator of β.

The distribution (9.41) is derived by using the Bahadur-type represen-
tation

2f(0)S
1
2
n (β̂n − β) −

n∑
i=1

(signεi)S
− 1

2
n xi = op(1) , (9.42)
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which is valid under the conditions of Theorem 9.7.
Bai et al. (1987) established the following theorem when εi are not i.i.d.

Theorem 9.8 Suppose that in model (9.2), ε1, . . . , εn are independent; the
distribution function Fi of εi is differentiable over the interval (−∆, ∆);
Fi(0) = 1

2 , i = 1, 2, . . .; and ∆ > 0 does not depend on i. Write fi(x) =
F ′

i (x). Suppose that {fi(x)} is equicontinuous at x = 0,

0 < inf
i

fi(0) ≤ sup
i

fi(0) < ∞ ,

Sn = x1x
′
1 + . . . + xnx′

n is nonsingular for some n, and

lim
n→∞ max

1≤i≤n
x′

iS
−1
n xi = 0 .

Then as n → ∞,

2S
− 1

2
n [

n∑
i=1

fi(0)xix
′
i](β̂n − β) L→ N(0, Iq) .

9.4.2 Multivariate Case
Consider model (9.1). Define β̂n = β̂n(y1, . . . , yn) as the LD (least-
distances) estimate of β if it minimizes

n∑
i=1

‖yi − x′
iβ‖ , (9.43)

where ‖ · ‖ denotes the Euclidean norm.
For the special case where X1 = . . . = Xn = Iq, the LD estimate of β

reduces to the spatial median defined by Haldane (1948) and studied by
Brown (1983), Gower (1974), and others. Recently, the limiting distribution
of the general case was obtained by Bai, Chen, Miao, and Rao (1988), whose
results are given below.

We make the following assumptions about model (9.1):

(i) The random errors E1, E2, . . . are i.i.d. with a common distribution
function F having a bounded density on the set {u : ‖u‖ < δ} for
some δ > 0 and P{c′E1 = 0} < 1 for every c �= 0.

(ii)
∫

u‖u‖−1dF (u) = 0.

(iii) There exists an integer n0 such that the matrix (X1, . . . , Xn0) has
rank q.

(iv) Define the matrices

A =
∫

‖u‖−1(Ip − uu′‖u‖−2)dF (u) , (9.44)

B =
∫

uu′‖u‖−2dF (u) . (9.45)
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Condition (i) ensures that A and B exist and are positive definite when
p ≥ 2, so that by condition (iii), the matrices

Sn =
n∑

i=1

XiBX ′
i and Tn =

n∑
i=1

XiAX ′
i (9.46)

are positive definite when n ≥ n0. We assume that

lim
n→∞ dn = 0 where dn = max

1≤i≤n
‖S−1/2

n Xi‖. (9.47)

Theorem 9.9 If p ≥ 2 and conditions (i)–(iv) above are met, then as n → ∞
we have

S
− 1

2
n Tn(β̂n − β) L→ N(0, Iq).

In the limiting distribution, the unknown matrices A and B are involved.
Bai et al. (1988) also proposed the following estimates of A and B:

Â =
1
n

n∑
i=1

‖ε̂ni‖−1(Ip − ‖ε̂ni‖−2ε̂niε̂
′
ni) , (9.48)

B̂ =
1
n

n∑
i=1

‖ε̂ni‖−2ε̂niε̂
′
ni , (9.49)

where ε̂ni = Yi − X ′
iβ̂n, i = 1, 2, . . . , n, and proved the following theorem.

Theorem 9.10 Under the conditions of Theorem 9.9, Â and B̂ are weakly
consistent estimates of A and B, respectively.

Remark: The asymptotic distribution in Theorem 9.9 holds when S and
T are computed by substituting Â and B̂ for the unknown matrices A and
B.

9.5 General M-Estimates

A number of papers in the literature have been devoted to M-estimation.
Basically speaking, there are two kinds of M-estimation:

1. Simple form:

min
β

n∑
i=1

ρ(Yi − X ′
iβ) . (9.50)

2. General form:

min
ρ,σ

n∑
i=1

[
ρ

(
Yi − X ′

iβ

σ

)
+ log σ

]
. (9.51)
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When ρ is differentiable, the solutions of the two forms can be obtained
by solving

n∑
i=1

XiΨ(Yi − X ′
iβ) = 0 , (9.52)

n∑
i=1

XiΨ
(

Yi − X ′
iβ

σ

)
= 0 , (9.53)

n∑
i=1

χ

(
Yi − X ′

iβ

σ

)
= 0 , (9.54)

where Ψ is the derivative (or gradient) of ρ and

χ(t) = tΨ(t) − 1 .

Huber (1964) proposed the M-estimation methodology, which includes
the usual likelihood estimation as a special case. Maronna and Yohai (1981)
generalized Huber’s equation as

n∑
i=1

Xiφ

(
Xi,

Yi − X ′
iβ

σ

)
= 0 , (9.55)

n∑
i=1

χ

(∣∣∣Yi − X ′
iβ

σ

∣∣∣) = 0 , (9.56)

without reference to any minimization problem such as (9.51).
In view of Bickel (1975), once the M-estimate satisfies the above

equations, it can be regarded as Bickel’s one-step estimate and hence
its asymptotic normality follows by showing that it is a square-root-n
consistent estimate.

However, in many practical situations of M-estimation the derivative of
ρ is not continuous. Hence, according to Bai et al. (1987), as mentioned in
Section 9.2, equations (9.52) or (9.53) and (9.54) may have no solutions with
a large probability. Therefore the M-estimate cannot be regarded as Bickel’s
one-step estimate. More important, even though the above equations have
solutions, the set of their solutions may not contain the M-estimate of the
original form (9.50) or (9.51).

A more general form than the classical M-esimation, called quadratic
dispersion or discrepancy, is discussed by Basawa and Koul (1988). Under
a series of broad assumptions, they established the asymptotic proper-
ties of estimates based on quadratic dispersion, and indicated how these
assumptions can be established in some specific applications.

Here we confine ourselves to the case of (9.50). For the univariate case,
Bai, Rao, and Wu (1989) prove some general basic results under the
following assumptions:

(U.1) ρ(x) is convex.
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(U.2) The common distribution function F of εi has no atoms on D.

This last condition is imposed to provide unique values for certain function-
als of Ψ, which appear in our discussion, and it automatically holds when ρ
is differentiable. (For instance, if ρ(x) = |x|p, p > 1, the condition does not
impose any restriction on F .) We conjecture that this condition is crucial
for asymptotic normality but not necessary for consistency of M-estimates.

(U.3) With Ψ as the derivative (or gradient) of ρ

E[Ψ(ε1 + a)] = λa + o(a) as a → 0 , (9.57)

where λ > 0 is a constant.

When (U.2) is true, it is easy to see that if (U.3) holds for one choice of
Ψ, then it holds for all choices of Ψ with the same constant λ. Conversely,
it is not difficult to give an example showing that the constant λ in (U.3)
depends on the choice of Ψ when (U.2) fails. This shows the essence of
assumption (U.2).

(U.4)

g(a) = E[Ψ(ε1 + a) − Ψ(ε1)]2 (9.58)

exists for all small a, and g is continuous at a = 0.

(U.5)

E[Ψ2(ε1)] = σ2 ∈ (0,∞) . (9.59)

(U.6) Sn = x1x
′
1 + . . . + xnx′

n is nonsingular for n ≥ n0 (some value of n)
and

d2
n = max

1≤i≤n
x′

iS
−1
n xi → 0 as n → ∞ . (9.60)

Theorem 9.11 Under assumptions (U.1)–(U.5), for any c > 0,

sup
|S1/2

n (β−β0)|≤c

∣∣∣ n∑
i=1

[
ρ(yi − x′

iβ) − ρ(yi − x′
iβ0)

+ x′
i(β − β0)Ψ(yi − x′

iβ0)
]

− λ

2
(β − β0)′Sn(β − β0)

∣∣∣→ 0 in probability , (9.61)

where β0 is the true value for model (9.2), Sn =
∑n

i=1 xix
′
i is assumed to

be positive definite (for all n ≥ n0), and λ is as defined in (9.57).

Theorem 9.12 Under assumptions (U.1)–(U.6),

β̂n → β0 in probability .
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Theorem 9.13 Under assumptions (U.1)–(U.6), we have for any c > 0

sup
|S1/2

n (β−β0)|≤c

∣∣∣ n∑
i=1

[
Ψ(yi − x′

iβ) − Ψ(yi − x′
iβ0)
]
S

1
2
n xi

+ λS
1
2
n (β − β0)

∣∣∣→ 0 in probability , (9.62)

where λ is defined in (9.57).

Theorem 9.14 Under assumptions (U1)-(U6),

S
1
2
n (β̂n − β0)

L→ N(0, λ−2σ2Iq) , (9.63)

where σ2 is as defined in (9.59).

For the multivariate case, in the same paper, the following results are
established.

The assumptions used in the multivariate case are summarized below,
where Ψ represents any (vector) gradient function of ρ.

(M.1) ρ is convex, ρ(0) = 0, ρ(u) > 0 for any p-vector u �= 0.

(M.2) F (D) = 0, where F is the distribution function of E1 and D is the
set of points at which F is not differentiable.

(M.3) E[Ψ(E1 + a)] = Aa + o(a) as a → 0, A > 0. (Note that if (M3) holds
for one choice of Ψ, then it holds for all choices of Ψ with the same
matrix A).

(M.4) g(a) = E ‖Ψ(E1 +a)−Ψ(E1)‖2 < ∞ for small a, and g is continuous
at a = 0, where ‖ · ‖ denotes the Euclidean norm.

(M.5) B = cov[ψ(E1)] > 0.

(M.6) d2
n = max1≤i≤n |X ′

iS
−1
n Xi| → 0

where Sn = X1X
′
1 + . . . + XnX ′

n is supposed to be positive definite for
n ≥ n0 (some value).

Theorems analogous to those in the univariate case can be extended to
the multivariate case as follows. We use the additional notation

T =
n∑

i=1

XiBX ′
i, K =

n∑
i=1

XiAX ′
i (9.64)

where the matrices A and B are as defined in assumptions (M.3) and (M.5),
respectively.

Theorem 9.15 Under assumptions (M.1)–(M.5), we have for each c > 0

sup
T 1/2(β−β0)|≤c

∣∣∣ n∑
i=1

[
ρ(Yi − X ′

iβ) − ρ(Yi − X ′
iβ0)

+ (β − β′
0)XiΨ(Yi − X ′

iβ0)]
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− 1
2
(β − β0)′K(β − β0)

∣∣∣→ 0 in probability .

Theorem 9.16 Under assumptions (M.1)–(M.6), we have for any cn → ∞,

P
{|T 1

2 (β̂n − β0)| ≥ cn

}→ 0 ⇒ β̂n → β0 in probability .

Theorem 9.17 Under assumptions (M.1)–(M.6), we have for each c > 0

sup
|T − 1

/
2
(β−β0)|≤c

∣∣∣ n∑
i=1

[
T− 1

2 Xi[Ψ(Yi − X ′
iβ) − Ψ(Yi − X ′

iβ0)]]

+ T− 1
2 K(β − β0)

∣∣∣→ 0 in probability .

Theorem 9.18 Under assumptions (M.1)–(M.6),

T− 1
2 K(β̂n − β0)

L→ N(0, Iq).

9.6 Tests of Significance

The test of significance of LAD estimates (univariate case) and for LD
estimates (multivariate case) were considered in Bai et al. (1987) and Bai
et al. (1988), respectively. Because both of the above results are special
cases of those considered in Bai et al. (1989) in this section, we present
results only for the latter.

For the univariate case, we consider a test of the hypothesis H0: Hβ = r
where H is a m × q-matrix of rank m. Let β̃n denote the solution of

min
Hβ=r

n∑
i=1

ρ(yi − x′
iβ) (9.65)

and β̂n the solution for the unrestricted minimum.

Theorem 9.19 Under assumptions (U.1)–(U.6), we have

(i)

2λ

σ2

n∑
i=1

[
ρ(yi − x′

iβ̃n) − ρ(yi − x′
iβ̂n)
] L→ χ2

m , (9.66)

where χ2
m represents the chi-square distribution on m degrees of

freedom.

(ii)

λ2

σ2 (Hβ̂n − r)′(HS−1
n H ′)−1(Hβ̂n − r) L→ χ2

m . (9.67)
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The asymptotic distribution (9.66) involves the nuisance parameters λ
and σ2, which may be unknown. In such a case we suggest the following
procedure. Consider an extended linear model

yi = x′
iβ + Z ′

iγ + εi, i = 1, . . . , n , (9.68)

where the Zi are s-vectors satisfying the conditions

Z ′X = 0, Z ′Z = Is, dn = max
1≤i≤n

|Zi| → 0 (9.69)

with Z = (Z1, . . . , Zn)′ and X = (x1, . . . , xn)′. Let (β∗
n, γ∗

n) be a solution
of

min
β,γ

n∑
i=1

ρ(yi − x′
iβ − Z ′

iγ). (9.70)

By Theorem 9.19, under model (9.2),

2λσ−2
n∑

i=1

[ρ(yi − x′
iβ̂n) − ρ(yi − x′

iβ
∗
n − Z ′

iγ
∗
n)] L→ χ2

s (9.71)

whether or not the hypothesis H is true. Then we have the following
theorem.

Theorem 9.20 For model (9.2), under assumptions (U.1)–(U.6),

s
∑n

i=1[ρ(yi − x′
iβ̃n) − ρ(yi − x′

iβ̂n)]

q
∑n

i=1[ρ(yi − x′
iβ̂n) − ρ(yi − x′

iβ
∗
n − Z ′

iγ
∗
n)]

L→ F (m, s) , (9.72)

where F (m, s) denotes the F -distribution on m and s degrees of freedom.

Now we consider the multivariate case. Let β̃ be a solution of the
minimization problem

min
Hβ=r

[ n∑
i=1

ρ(Yi − X ′
iβ)
]
. (9.73)

Then we have the following theorem.

Theorem 9.21 Under assumptions (M.1)–(M.6),∣∣∣∣ n∑
i=1

[
ρ(Yi−X ′

iβ̃n)−ρ(Yi−X ′
iβ̂n)
]
−1

2

∣∣∣Q′
n∑

i=1

XiΨ(Ei)
∣∣∣2∣∣∣∣→ 0 in probability ,

where Q is a q × m-matrix such that

Q′KQ = Im ,

Q′KG = 0 , (9.74)

with G as a q × (q − m)-matrix determined by

G′TG = Iq−m ,

G′H = 0 . (9.75)
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(Note that Q and G may not be uniquely determined by (9.74) and
(9.75), but the product Q′T−1Q is the same for all choices of Q. In fact,
QQ′ = K−1H(H ′K−1H)−1H ′K−1.)

Remark: If m = q, we take G = 0 and Q = K− 1
2 , whereas if m = 0, we

take H = 0, Q = 0, and G = T− 1
2 . With such choices, Theorem 9.21 is still

true.

Remark: The test statistic
n∑

i=1

ρ(Yi − X ′
iβ̃n) −

n∑
i=1

ρ(Yi − X ′
iβ̂n) (9.76)

has the same asymptotic distribution as 2−1|Q′∑n
i=1 XiΨ(Ei)|2, which, in

general is a mixture of chi-squares.



10
Models for Categorical Response
Variables

10.1 Generalized Linear Models

10.1.1 Extension of the Regression Model
Generalized linear models are a generalization of the classical linear mod-
els of the regression analysis and analysis of variance, which model the
relationship between the expectation of a response variable and unknown
predictor variables according to

E(yi) = xi1β1 + . . . + xipβp

= x′
iβ . (10.1)

The parameters are estimated according to the principle of least squares
and are optimal according to minimum dispersion theory, or in case of a
normal distribution, are optimal according to the ML theory (cf. Chapter
3).

Assuming an additive random error εi, the density function can be
written as

f(yi) = fεi
( yi − x′

iβ) , (10.2)

where ηi = x′
iβ is the linear predictor. Hence, for continuous normally

distributed data, we have the following distribution and mean structure:

yi ∼ N(µi, σ
2), E(yi) = µi , µi = ηi = x′

iβ . (10.3)
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In analyzing categorical response variables, three major distributions may
arise: the binomial, multinomial, and Poisson distributions, which belong
to the natural exponential family (along with the normal distribution).

In analogy to the normal distribution, the effect of covariates on the
expectation of the response variables may be modeled by linear predictors
for these distributions as well.

Binomial Distribution

Assume that I predictors ηi = x′
iβ (i = 1, . . . , I) and Ni realizations yij ,

j = 1, . . . , Ni, respectively, are given, and furthermore, assume that the
response has a binomial distribution

yi ∼ B(Ni, πi) with E(yi) = Niπi = µi .

Let g(πi) = logit(πi) be the chosen link function between µi and ηi:

logit(πi) = ln
(

πi

1 − πi

)
= ln

(
Niπi

Ni − Niπi

)
= x′

iβ . (10.4)

With the inverse function g−1(x′
iβ) we then have

Niπi = µi = Ni
exp(x′

iβ)
1 + exp(x′

iβ)
= g−1(ηi) . (10.5)

Poisson Distribution

Let yi (i = 1, . . . , I) have a Poisson distribution with E(yi) = µi

P (yi) =
e−µiµyi

i

yi!
for yi = 0, 1, 2, . . . . (10.6)

The link function can then be chosen as ln(µi) = x′
iβ.

Contingency Tables

The cell frequencies yij of an I × J contingency table of two categorical
variables can have a Poisson, multinomial, or binomial distribution (de-
pending on the sampling design). By choosing appropriate design vectors
xij , the expected cell frequencies can be described by a loglinear model

ln(mij) = µ + αA
i + βB

j + (αβ)AB
ij

= x′
ijβ (10.7)

and hence we have

µij = mij = exp(x′
ijβ) = exp(ηij) . (10.8)
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In contrast to the classical model of the regression analysis, where E(y) is
linear in the parameter vector β, so that µ = η = x′β holds, the generalized
models are of the following form:

µ = g−1(x′β) , (10.9)

where g−1 is the inverse function of the link function. Furthermore, the
additivity of the random error is no longer a necessary assumption, so that
in general

f(y) = f(y, x′β) (10.10)

is assumed, instead of (10.2).

10.1.2 Structure of the Generalized Linear Model
The generalized linear model (GLM) (cf. Nelder and Wedderburn, 1972) is
defined as follows. A GLM consists of three components:

• the random component, which specifies the probability distribution
of the response variable,

• the systematic component, which specifies a linear function of the
explanatory variables,

• the link function, which describes a functional relationship be-
tween the systematic component and the expectation of the random
component.

The three components are specified as follows:

1. The random component Y consists of N independent observations
y′ = (y1, y2, . . . , yN ) of a distribution belonging to the natural exponen-
tial family (cf. Agresti, 1990, p. 80). Hence, each observation yi has—in
the simplest case of a one-parametric exponential family—the following
probability density function:

f (yi, θi) = a (θi) b (yi) exp (yi Q (θi)) . (10.11)

Remark: The parameter θi can vary over i = 1, 2, . . . , N , depending on the
value of the explanatory variable, which influences yi through the systema-
tic component.

Special distributions of particular importance in this family are the Pois-
son and the binomial distribution. Q(θi) is called the natural parameter of
the distribution. Likewise, if the yi are independent, the joint distribution
is a member of the exponential family.

A more general parameterization allows inclusion of scaling or nuisance
variables. For example, an alternative parameterization with an additional
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scaling parameter φ (the so-called dispersion parameter) is given by

f(yi|θi, φ) = exp
{

yiθi − b(θi)
a(φ)

+ c(yi, φ)
}

, (10.12)

where θi is called the natural parameter. If φ is known, (10.12) represents
a linear exponential family. If, on the other hand, φ is unknown, then
(10.12) is called an exponential dispersion model . With φ and θi, (10.12) is
a two-parametric distribution for i = 1, . . . , N , which is used for normal or
gamma distributions, for instance. Introducing yi and θi as vector-valued
parameters rather than scalars leads to multivariate generalized models,
which include multinomial response models as special case (cf. Fahrmeir
and Tutz, 1994, Chapter 3) .

2. The systematic component relates a vector η = (η1, η2, . . . , ηN ) to a set
of explanatory variables through a linear model

η = Xβ . (10.13)

Here η is called the linear predictor, X : N ×p is the matrix of observations
on the explanatory variables, and β is the (p × 1)-vector of parameters.

3. The link function connects the systematic component with the expec-
tation of the random component. Let µi = E(yi); then µi is linked to ηi by
ηi = g(µi). Here g is a monotonic and differentiable function:

g(µi) =
p∑

j=1

βjxij i = 1, 2, . . . , N . (10.14)

Special cases:

(i) g(µ) = µ is called the identity link . We get ηi = µi.

(ii) g(µ) = Q(θi) is called the canonical (natural) link . We have Q(θi) =∑p
j=1 βjxij .

Properties of the Density Function (10.12)

Let

li = l(θi, φ; yi) = ln f(yi; θi, φ) (10.15)

be the contribution of the ith observation yi to the loglikelihood. Then

li = [yiθi − b(θi)]/a(φ) + c(yi; φ) (10.16)

holds and we get the following derivatives with respect to θi

∂li
∂θi

=
[yi − b′(θi)]

a(φ)
, (10.17)

∂2li
∂θ2

i

=
−b′′(θi)

a(φ)
, (10.18)
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where b′(θi) = ∂b(θi)/∂θi and b′′(θi) = ∂2b(θi)/∂θ2
i are the first and second

derivatives of the function b(θi), assumed to be known. By equating (10.17)
to zero, it becomes obvious that the solution of the likelihood equations is
independent of a(φ). Since our interest belongs to the estimation of θ and
β in η = x′β, we could assume a(φ) = 1 without any loss of generality (this
corresponds to assuming σ2 = 1 in the case of a normal distribution). For
the present, however, we retain a(φ).

Under certain assumptions of regularity, the order of integration und
differentiation may be interchangeable, so that

E
(

∂li
∂θi

)
= 0 (10.19)

− E
(

∂2li
∂θ2

i

)
= E
(

∂li
∂θi

)2

. (10.20)

Hence we have from (10.17) and (10.19)

E(yi) = µi = b′(θi) . (10.21)

Similarly, from (10.18) and (10.20), we find

b′′(θi)
a(φ)

= E{ [yi − b′(θi)]2

a2(φ)
}

=
var(yi)
a2(φ)

, (10.22)

since E[yi − b′(θi)] = 0, and hence

V (µi) = var(yi) = b′′(θi)a(φ) . (10.23)

Under the assumption that the yi (i = 1, . . . , N) are independent, the
loglikelihood of y′ = (y1, . . . , yN ) equals the sum of li(θi, φ; yi). Let θ′ =

(θ1, . . . , θN ), µ′ = (µ1, . . . , µN ), X =

 x′
1
...

x′
N

, and η = (η1, . . . , ηN )′ =

Xβ. We then have, from (10.21),

µ =
∂b(θ)
∂θ

=
(

∂b(θ1)
∂θ1

, . . . ,
∂b(θ1)
∂θN

)′
, (10.24)

and in analogy to (10.23) for the covariance matrix of y′ = (y1, . . . , yN ),

cov(y) = V (µ) =
∂2b(θ)
∂θ∂θ′ = a(φ)diag(b′′(θ1), . . . , b′′(θN )) . (10.25)

These relations hold in general, as we show in the following discussion.
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10.1.3 Score Function and Information Matrix
The likelihood of the random sample is the product of the density functions:

L(θ, φ; y) =
N∏

i=1

f(yi; θi, φ) . (10.26)

The loglikelihood lnL(θ, φ; y) for the sample y of independent yi (i =
1, . . . , N) is of the form

l = l(θ, φ; y) =
N∑

i=1

li =
N∑

i=1

{
(yiθi − b(θi))

a(φ)
+ c(yi; φ)

}
. (10.27)

The vector of first derivatives of l with respect to θi is needed for determin-
ing the ML estimates. This vector is called the score function. For now, we
neglect the parameterization with φ in the representation of l and L and
thus get the score function as

s(θ; y) =
∂

∂θ
l(θ; y) =

1
L(θ; y)

∂

∂θ
L(θ; y) . (10.28)

Let

∂2l

∂θ∂θ′ =
(

∂2l

∂θi∂θj

)
i=1,...,N
j=1,...,N

be the matrix of the second derivatives of the loglikelihood. Then

F(N)(θ) = E
(−∂2l(θ; y)

∂θ∂θ′

)
(10.29)

is called the expected Fisher-information matrix of the sample y′ = (y1, . . . ,
yN ), where the expectation is to be taken with respect to the following
density function

f(y1, . . . , yN |θi) =
∏

f(yi|θi) = L(θ; y) .

In case of regular likelihood functions (where regular means: exchange of
integration and differentiation is possible), to which the exponential families
belong, we have

E(s(θ; y)) = 0 (10.30)

and

F(N)(θ) = E(s(θ; y)s′(θ; y)) = cov(s(θ; y)) , (10.31)

Relation (10.30) follows from∫
f(y1, . . . , yN |θ)dy1 · · ·dyN =

∫
L(θ; y)dy = 1 , (10.32)
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by differentiating with respect to θ using (10.28):∫
∂L(θ; y)

∂θ
dy =

∫
∂l(θ; y)

∂θ
L(θ; y)dy

= E(s(θ; y)) = 0 . (10.33)

Differentiating (10.33) with respect to θ′, we get

0 =
∫

∂2l(θ; y)
∂θ∂θ′ L(θ; y)dy

+
∫

∂l(θ; y)
∂θ

∂l(θ; y)
∂θ′ L(θ; y)dy

= −F(N)(θ) + E(s(θ; y)s′(θ; y)) ,

and hence (10.31), because E(s(θ; y)) = 0.

10.1.4 Maximum-Likelihood Estimation
Let ηi = x′

iβ =
∑p

j=1 xijβj be the predictor of the ith observation of the
response variable (i = 1, . . . , N) or—in matrix representation—

η =

 η1
...

ηN

 =

 x′
1β
...

x′
Nβ

 = Xβ . (10.34)

Assume that the predictors are linked to E(y) = µ by a monotonic
differentiable function g(·):

g(µi) = ηi (i = 1 . . . , N) , (10.35)

or, in matrix representation,

g(µ) =

 g(µ1)
...

g(µN )

 = η . (10.36)

The parameters θi and β are then linked by the relation (10.21), that is
µi = b′(θi), with g(µi) = x′

iβ. Hence we have θi = θi(β). Since we are
interested only in estimating β, we write the loglikelihood (10.27) as a
function of β:

l(β) =
N∑

i=1

li(β) . (10.37)

We can find the derivatives ∂li(β)/∂βj according to the chain rule:

∂li(β)
∂βj

=
∂li
∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj
. (10.38)



296 10. Models for Categorical Response Variables

The partial results are as follows:

∂li
∂θi

=
[yi − b′(θi)]

a(φ)
[cf. (10.17)]

=
[yi − µi]

a(φ)
[cf. (10.21)], (10.39)

µi = b′(θi) ,

∂µi

∂θi
= b′′(θi) =

var(yi)
a(φ)

[cf. (10.23)], (10.40)

∂ηi

∂βj
=

∂
∑p

k=1 xikβk

∂βj
= xij . (10.41)

Because ηi = g(µi), the derivative ∂µi/∂ηi is dependent on the link function
g(·), or rather its inverse g−1(·). Hence, it cannot be specified until the link
is defined.

Summarizing, we now have

∂li
∂βj

=
(yi − µi)xij

Var(yi)
∂µi

∂ηi
, j = 1, . . . , p (10.42)

using the rule

∂θi

∂µi
=
(

∂µi

∂θi

)−1

for inverse functions (µi = b′(θi), θi = (b′)−1(µi)). The likelihood equations
for finding the components βj are now

N∑
i=1

(yi − µi)xij

var(yi)
∂µi

∂ηi
= 0 , j = 1 . . . , p. (10.43)

The loglikelihood is nonlinear in β. Hence, the solution of (10.43) requires
iterative methods. For the second derivative with respect to components of
β, we have, in analogy to (10.20), with (10.42),

E
(

∂2li
∂βj∂βh

)
= − E

(
∂li
∂βj

)(
∂li
∂βh

)
= − E

[
(yi − µi)(yi − µi)xijxih

(var(yi))2

(
∂µi

∂ηi

)2
]

= − xijxih

var(yi)

(
∂µi

∂ηi

)2

, (10.44)

and hence

E
(

− ∂2l(β)
∂βj∂βh

)
=

N∑
i=1

xijxih

var(yi)

(
∂µi

∂ηi

)2

(10.45)
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and in matrix representation for all (j, h)-combinations

F(N)(β) = E
(

−∂2l(β)
∂β∂β′

)
= X ′WX (10.46)

with

W = diag(w1 . . . , wN ) (10.47)

and the weights

wi =

(
∂µi

∂ηi

)2

var(yi)
. (10.48)

Fisher-Scoring Algorithm

For the iterative determination of the ML estimate of β, the method of
iterative reweighted least squares is used. Let β(k) be the kth approximation
of the ML estimate β̂. Furthermore, let q(k)(β) = ∂l(β)/∂β be the vector
of the first derivatives at β(k) (cf. (10.42)). Analogously, we define W (k).
The formula of the Fisher-scoring algorithm is then

(X ′W (k)
X)β(k+1) = (X ′W (k)

X)β(k) + q(k) . (10.49)

The vector on the right side of (10.49) has the components (cf. (10.45) and
(10.42))∑

h

[∑
i

xijxih

var(yi)

(
∂µi

∂ηi

)2

β
(k)
h

]
+
∑

i

(yi − µ
(k)
i )xij

var(yi)

(
∂µi

∂ηi

)
. (10.50)

(j = 1, . . . , p)

The entire vector (10.50) can now be written as

X ′W (k)z(k) , (10.51)

where the (N × 1)-vector z(k) has the jth element as follows:

z
(k)
i =

p∑
j=1

xijβ
(k)
j + (yi − µ

(k)
i )

(
∂η

(k)
i

∂µ
(k)
i

)

= η
(k)
i + (yi − µ

(k)
i )

(
∂η

(k)
i

∂µ
(k)
i

)
. (10.52)

Hence, the equation of the Fisher-scoring algorithm (10.49) can now be
written as

(X ′W (k)
X)β(k+1) = X ′W (k)

z(k) . (10.53)

This is the likelihood equation of a generalized linear model with the re-
sponse vector z(k) and the random error covariance matrix (W (k))−1. If
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rank(X) = p holds, we obtain the ML estimate β̂ as the limit of

β̂(k+1) = (X ′W (k)X)−1X ′W (k)z(k) (10.54)

for k → ∞, with the asymptotic covariance matrix

V(β̂) = (X ′ŴX)−1 = F−1
(N)(β̂) , (10.55)

where Ŵ is determined at β̂. Once a solution is found, then β̂ is consistent
for β, asymptotically normal, and asymptotically efficient (see. Fahrmeir
and Kaufmann (1985) and Wedderburn (1976) for existence and uniqueness
of the solutions). Hence we have β̂

as.∼ N(β,V(β̂)).

Remark: In case of a canonical link function, that is for g(µi) = θi, the
ML equations simplify and the Fisher-scoring algorithm is identical to the
Newton-Raphson algorithm (cf. Agresti, 1990, p. 451). If the values a(φ)
are identical for all observations, then the ML equations are∑

i

xijyi =
∑

i

xijµi . (10.56)

If, on the other hand, a(φ) = ai(φ) = aiφ (i = 1, . . . , N) holds, then the
ML equations are ∑

i

xijyi

ai
=
∑

i

xijµi

ai
. (10.57)

As starting values for the Fisher-scoring algorithm the estimates β̂(0) =
(X ′X)−1X ′y or β̂(0) = (X ′X)−1X ′g(y) may be used.

10.1.5 Testing of Hypotheses and Goodness of Fit
A generalized linear model g(µi) = x′

iβ is—besides the distributional
assumptions—determined by the link function g(·) and the explanatory
variables X1, . . . , Xp, as well as their number p, which determines the length
of the parameter vector β to be estimated. If g(·) is chosen, then the model
is defined by the design matrix X.

Testing of Hypotheses

Let X1 and X2 be two design matrices (models), and assume that the hi-
erarchical order X1 ⊂ X2 holds; that is, we have X2 = (X1, X3) with some
matrix X3 and hence R(X1) ⊂ R(X2). Let β1, β2, and β3 be the corre-
sponding parameter vectors to be estimated. Further let g(µ̂1) = η̂1 = X1β̂1

and g(µ̂2) = η̂2 = X2β̃2 = X1β̃1+X3β̃3, where β̂1 and β̃2 = (β̃′
1, β̃

′
3)

′ are the
maximum-likelihood estimates under the two models, and rank(X1) = r1,
rank(X2) = r2, and (r2 −r1) = r = df . The likelihood ratio statistic, which
compares a larger model X2 with a (smaller) submodel X1, is then defined
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as follows (where L is the likelihood function)

Λ =
maxβ1 L(β1)
maxβ2 L(β2)

. (10.58)

Wilks (1938) showed that −2 ln Λ has a limiting χ2
df -distribution where the

degrees of freedom df equal the difference in the dimensions of the two
models. Transforming (10.58) according to −2 ln Λ, with l denoting the
loglikelihood, and inserting the maximum likelihood estimates gives

−2 ln Λ = −2[l(β̂1) − l(β̃2)] . (10.59)

In fact one tests the hypotheses H0 : β3 = 0 against H1 : β3 �= 0. If H0
holds, then −2 ln Λ ∼ χ2

r. Therefore H0 is rejected if the loglikelihood is
significantly higher under the greater model using X2. According to Wilks,
we write

G2 = −2 ln Λ

Goodness of Fit

Let X be the design matrix of the saturated model that contains the same
number of parameters as observations. Denote by θ̃ the estimate of θ that
belongs to the estimates µ̃i = yi (i = 1, . . . , N) in the saturated model. For
every submodel Xj that is not saturated, we then have (assuming, again,
that a(φ) = ai(φ) = aiφ)

G2(Xj |X) = 2
∑ 1

ai

yi(θ̃i − θ̂i) − b(θ̃i) + b(θ̂i)
φ

=
D(y; µ̂j)

φ
(10.60)

as a measure for the loss in goodness of fit of the model Xj compared to
the perfect fit achieved by the saturated model. The statistic D(y; µ̂j) is
called the deviance of the model Xj . We then have

G2(X1|X2) = G2(X1|X) − G2(X2|X) =
D(y; µ̂1) − D(y; µ̂2)

φ
. (10.61)

That is, the test statistic for comparing the model X1 with the larger model
X2 equals the difference of the goodness-of-fit statistics of the two models,
weighted with 1/φ.

10.1.6 Overdispersion
In samples of a Poisson or multinomial distribution, it may occur that
the elements show a larger variance than that given by the distribution.
This may be due to a violation of the assumption of independence, as, for
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example, a positive correlation in the sample elements. A frequent cause
for this is the cluster-structure of the sample. Examples are

• the behavior of families of insects in the case of the influence of insec-
ticides (Agresti, 1990, p. 42), where the family (cluster, batch) shows
a collective (correlated) survivorship (many survive or most of them
die) rather than an independent survivorship, due to dependence on
cluster-specific covariables such as the temperature,

• the survivorship of dental implants when two or more implants are
incorporated for each patient,

• the developement of diseases or social behavior of the members of a
family,

• heterogeneity not taken into account, which is, for example, caused
by having not measured important covariates for the linear predictor.

The existence of a larger variation (inhomogeneity) in the sample than in
the sample model is called overdispersion. Overdispersion is in the simplest
way modeled by multiplying the variance with a constant φ > 1, where
φ is either known (e.g., φ = σ2 for a normal distribution), or has to be
estimated from the sample (cf. Fahrmeir and Tutz, 1994, Section 10.1.7,
for alternative approaches).

Example (McCullagh and Nelder, 1989, p. 125): Let N individuals be
divided into N/k clusters of equal cluster size k. Assume that the individual
response is binary with P (Yi = 1) = πi, so that the total response

Y = Z1 + Z2 + · · · + ZN/k

equals the sum of independent B(k; πi)-distributed binomial variables Zi

(i = 1, . . . , N/k). The πi’s vary across the clusters and assume that E(πi) =
π and var(πi) = τ2π(1 − π) with 0 ≤ τ2 ≤ 1. We then have

E(Y ) = Nπ

var(Y ) = Nπ(1 − π){1 + (k − 1)τ2} (10.62)
= φNπ(1 − π) .

The dispersion parameter φ = 1+(k−1)τ2 is dependent on the cluster size
k and on the variability of the πi, but not on the sample size N . This fact is
essential for interpreting the variable Y as the sum of binomial variables Zi

and for estimating the dispersion parameter φ from the residuals. Because
of 0 ≤ τ2 ≤ 1, we have

1 ≤ φ ≤ k ≤ N . (10.63)

Relationship (10.62) means that

var(Y )
Nπ(1 − π)

= 1 + (k − 1)τ2 = φ (10.64)
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is constant. An alternative model—the beta-binomial distribution—has the
property that the quotient in (10.64), that is φ, is a linear function of the
sample size N . By plotting the residuals against N , it is easy to recognize
which of the two models is more likely. Rosner (1984) used the the beta-
binomial distribution for estimation in clusters of size k = 2.

10.1.7 Quasi Loglikelihood
The generalized models assume a distribution of the natural exponential
family for the data as the random component (cf. (10.11)). If this assump-
tion does not hold, an alternative approach can be used to specify the
functional relationship between the mean and the variance. For exponential
families, the relationship (10.23) between variance and expectation holds.
Assume the general approach

var(Y ) = φV (µ) , (10.65)

where V (·) is an appropriately chosen function.
In the quasi-likelihood approach (Wedderburn, 1974), only assumptions

about the first and second moments of the random variables are made.
It is not necessary for the distribution itself to be specified. The starting
point in estimating the influence of covariables is the score function (10.28),
or rather the system of ML equations (10.43). If the general specification
(10.65) is inserted into (10.43), we get the system of estimating equations
for β

N∑
i=1

(yi − µi)
V (µi)

xij
∂µi

∂ηi
= 0 (j = 1, . . . , p) , (10.66)

which is of the same form as as the likelihood equations (10.43) for GLMs.
However, system (10.66) is an ML equation system only if the yi’s have a
distribution of the natural exponential family.

In the case of independent response, the modeling of the influence of
the covariables X on the mean response E(y) = µ is done according
to McCullagh and Nelder (1989, p. 324) as follows. Assume that for the
response vector we have

y ∼ (µ, φV (µ)) (10.67)

where φ > 0 is an unknown dispersion parameter and V (µ) is a matrix of
known functions. Expression φV (µ) is called the working variance.

If the components of y are assumed to be independent, the covariance
matrix φV (µ) has to be diagonal, that is,

V (µ) = diag(V1(µ), . . . , VN (µ)) . (10.68)
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Here it is realistic to assume that the variance of each random variable yi

is dependent only on the ith component µi of µ, meaning thereby

V (µ) = diag(V1(µ1), . . . , VN (µN )). (10.69)

A dependency on all components of µ according to (10.68) is difficult to
interpret in practice if independence of the yi is demanded as well. (Ne-
vertheless, situations as in (10.68) are possible.) In many applications it is
reasonable to assume, in addition to functional independency (10.69), that
the Vi functions are identical, so that

V (µ) = diag(v(µ1), . . . , v(µN )) (10.70)

holds, with Vi = v(·).
Under the above assumptions, the following function for a component yi

of y:

U = u(µi, yi) =
yi − µi

φv(µi)
(10.71)

has the properties

E(U) = 0 , (10.72)

var(U) =
1

φv(µi)
, (10.73)

∂U

∂µi
=

−φv(µi) − (yi − µi)φ
∂v(µi)

∂µi

φ2v2(µi)

− E
(

∂U

∂µi

)
=

1
φv(µi)

. (10.74)

Hence U has the same properties as the derivative of a loglikelihood, which,
of course, is the score function (10.28). Property (10.47) corresponds to
(10.31), whereas property (10.74) in combination with (10.73) corresponds
to (10.31). Therefore,

Q(µ; y) =
N∑

i=1

Qi(µi; yi) (10.75)

with

Qi(µi; yi) =
∫ µi

yi

µi − t

φv(t)
dt (10.76)

(cf. McCullagh and Nelder, 1989, p. 325) is the analogue of the loglikeli-
hood function. Q(µ; y) is called quasi loglikelihood. Hence, the quasi score
function, which is obtained by differentiating Q(µ; y), equals

U(β) = φ−1D′V −1(y − µ) , (10.77)

with D = (∂µi/∂βj) (i = 1, . . . , N , j = 1, . . . , p) and V = diag(v1, . . . , vN ).
The quasi-likelihood estimate β̂ is the solution of U(β̂) = 0. It has the
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asymptotic covariance matrix

cov(β̂) = φ(D′V −1
D)−1 . (10.78)

The dispersion parameter φ is estimated by

φ̂ =
1

N − p

∑
(yi − µ̂i)2

v(µ̂i)
=

X2

N − p
, (10.79)

where X2 is the so-called Pearson statistic. In the case of overdispersion
(or assumed overdispersion), the influence of covariables (i.e., of the vector
β) is to be estimated by a quasi-likelihood approach (10.66) rather than by
a likelihood approach.

10.2 Contingency Tables

10.2.1 Overview
This section deals with contingency tables and the appropriate models. We
first consider so-called two-way contingency tables. In general, a bivariate
relationship is described by the joint distribution of the two associated ran-
dom variables. The two marginal distributions are obtained by integrating
(summing) the joint distribution over the respective variables. Likewise,
the conditional distributions can be derived from the joint distribution.

Definition 10.1 (Contingency Table) Let X and Y denote two categorical
variables, with X at I levels and Y at J levels. When we observe sub-
jects with the variables X and Y, there are I × J possible combinations of
classifications. The outcomes (X; Y ) of a sample with sample size n are
displayed in an I × J (contingency) table. (X, Y ) are realizations of the
joint two-dimensional distribution:

P (X = i, Y = j) = πij . (10.80)

The set {πij} forms the joint distribution of X and Y . The marginal
distributions are obtained by summing over rows or columns:

Y Marginal
1 2 . . . J distribution of X

1 π11 π12 . . . π1J π1+
2 π21 π22 . . . π2J π2+

X ...
...

...
...

...
I πI1 πI2 . . . πIJ πI+

Marginal π+1 π+2 . . . π+J

distribution of Y
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π+j =
I∑

i=1

πij , j = 1, . . . , J ,

πi+ =
J∑

j=1

πij , i = 1, . . . , I ,

I∑
i=1

πi+ =
J∑

j=1

π+j = 1 .

In many contingency tables the explanatory variable X is fixed, and
only the response Y is a random variable. In such cases, the main interest
is not the joint distribution, but rather the conditional distribution. πj|i =
P (Y = j|X = i) is the conditional probability, and {π1|i, π2|i, . . . , πJ|i}
with

∑J
j=1 πj|i = 1 is the conditional distribution of Y , given X = i.

A general aim of many studies is the comparison of the conditional
distributions of Y at various levels i of X.

Suppose that X as well as Y are random response variables, so that the
joint distribution describes the association of the two variables. Then, for
the conditional distribution Y |X, we have

πj|i =
πij

πi+
∀i, j . (10.81)

Definition 10.2 Two variables are called independent if

πij = πi+π+j ∀i, j. (10.82)

If X and Y are independent, we obtain

πj|i =
πij

πi+
=

πi+π+j

πi+
= π+j . (10.83)

The conditional distribution is equal to the marginal distribution and thus
is independent of i.

Let {pij} denote the sample joint distribution. They have the following

properties, with nij being the cell frequencies and n =
I∑

i=1

J∑
j=1

nij :

pij =
nij

n
,

pj|i =
pij

pi+
=

nij

ni+
, pi|j =

pij

p+j
=

nij

n+j
,

pi+ =

∑J
j=1 nij

n
, p+j =

∑I
i=1 nij

n
,

ni+ =
∑J

j=1 nij = npi+ , n+j =
∑I

i=1 nij = np+j .


(10.84)
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10.2.2 Ways of Comparing Proportions
Suppose that Y is a binary response variable (Y can take only the values 0
or 1), and let the outcomes of X be grouped. When row i is fixed, π1|i is the
probability for response (Y = 1), and π2|i is the probability for nonresponse
(Y = 0). The conditional distribution of the binary response variable Y ,
given X = i, then is

(π1|i; π2|i) = (π1|i, (1 − π1|i)). (10.85)

We can now compare two rows, say i and h, by calculating the difference
in proportions for response, or nonresponse, respectively:

Response: π1|h − π1|i and
Nonresponse: π2|h − π2|i = (1 − π1|h) − (1 − π1|i)

= −(π1|h − π1|i) .

The differences have different signs, but their absolute values are identical.
Additionally, we have

−1.0 ≤ π1|h − π1|i ≤ 1.0 . (10.86)

The difference equals zero if the conditional distributions of the two rows
i and h coincide. From this, one may conjecture that the response variable
Y is independent of the row classification when

π1|h − π1|i = 0 ∀(h, i) i, h = 1, 2, . . . , I , i �= h . (10.87)

In a more general setting, with the response variable Y having J
categories, the variables X and Y are independent if

πj|h − πj|i = 0 ∀j ,∀(h, i) i, h = 1, 2, . . . , I , i �= h . (10.88)

Definition 10.3 (Relative Risk) Let Y denote a binary response variable. The
ratio π1|h/π1|i is called the relative risk for response of category h in relation
to category i.

For 2×2 tables the relative risk (for response) is

0 ≤ π1|1
π1|2

< ∞ . (10.89)

The relative risk is a nonnegative real number. A relative risk of 1
corresponds to independence. For nonresponse, the relative risk is

π2|1
π2|2

=
1 − π1|1
1 − π1|2

. (10.90)

Definition 10.4 (Odds) The odds are defined as the ratio of the probability of
response in relation to the probability of nonresponse, within one category
of X.
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For 2×2 tables, the odds in row 1 equal

Ω1 =
π1|1
π2|1

. (10.91)

Within row 2, the corresponding odds equal

Ω2 =
π1|2
π2|2

. (10.92)

Hint: For the joint distribution of two binary variables, the definition is

Ωi =
πi1

πi2
, i = 1, 2 . (10.93)

In general, Ωi is nonnegative. When Ωi > 1, response is more likely than
nonresponse. If, for instance, Ω1 = 4, then response in the first row is four
times as likely as nonresponse. The within-row conditional distributions
are independent when Ω1 = Ω2. This implies that the two variables are
independent:

X, Y independent ⇔ Ω1 = Ω2 . (10.94)

Definition 10.5 (Odds Ratio) The odds ratio is defined as:

θ =
Ω1

Ω2
. (10.95)

From the definition of the odds using joint probabilities, we have

θ =
π11π22

π12π21
. (10.96)

Another terminology for θ is the cross-product ratio. X and Y are
independent when the odds ratio equals 1:

X, Y independent ⇔ θ = 1 . (10.97)

When all the cell probabilities are greater than 0 and 1 < θ < ∞,
response for the subjects in the first row is more likely than for the subjects
in the second row, that is, π1|1 > π1|2. For 0 < θ < 1, we have π1|1 < π1|2
(with a reverse interpretation).

The sample version of the odds ratio for the 2×2 table

Y
1 2

1 n11 n12 n1+X
2 n21 n22 n2+

n+1 n+2 n

is

θ̂ =
n11n22

n12n21
. (10.98)
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Odds Ratios for I × J Tables

From any given I ×J table, 2× 2 tables can be constructed by picking two
different rows and two different columns. There are I(I −1)/2 pairs of rows
and J(J − 1)/2 pairs of columns; hence an I × J table contains IJ(I −
1)(J − 1)/4 tables. The set of all 2 × 2 tables contains much redundant
information; therefore, we consider only neighboring 2 × 2 tables with the
local odds ratios

θij =
πi,jπi+1,j+1

πi,j+1πi+1,j
, i = 1, 2, . . . , I − 1 , j = 1, 2, . . . , J − 1 . (10.99)

These (I−1)(J −1) odds ratios determine all possible odds ratios formed
from all pairs of rows and all pairs of columns.

10.2.3 Sampling in Two-Way Contingency Tables
Variables having nominal or ordinal scale are denoted as categorical vari-
ables. In most cases, statistical methods assume a multinomial or a Poisson
distribution for categorical variables. We now elaborate these two sample
models. Suppose that we observe counts ni (i = 1, 2, . . . , N) in the N cells
of a contingency table with a single categorical variable or in N = I × J
cells of a two-way contingency table.

We assume that the ni are random variables with a distribution in R+

and the expected values E(ni) = mi, which are called expected frequencies.

Poisson Sample

The Poisson distribution is used for counts of events (such as response to a
medical treatment) that occur randomly over time when outcomes in dis-
joint periods are independent. The Poisson distribution may be interpreted
as the limit distribution of the binomial distribution b(n; p) if λ = n · p is
fixed for increasing n. For each of the N cells of a contingency table {ni},
we have

P (ni) =
e−mimni

i

ni!
, ni = 0, 1, 2, . . . , i = 1, . . . , N . (10.100)

This is the probability mass function of the Poisson distribution with the
parameter mi. It satisfies the identities var(ni) = E(ni) = mi.

The Poisson model for {ni} assumes that the ni are independent. The
joint distribution for {ni} then is the product of the distributions for ni

in the N cells. The total sample size n =
∑N

i=1 ni also has a Poisson
distribution with E(n) =

∑N
i=1 mi (the rule for summing up independent

random variables with Poisson distribution).
The Poisson model is used if rare events are independently distributed

over disjoint classes.
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Let n =
∑N

i=1 ni be fixed. The conditional probability of a contingency
table {ni} that satisfies this condition is

P
(
ni observations in cell i, i = 1, 2, . . . , N |

N∑
i=1

ni = n
)

=

=
P (ni observations in cell i, i = 1, 2, . . . , N)

P (
∑N

i=1 ni = n)

=

∏N
i=1 e−mi

m
ni
i

ni!

exp(−∑N
j=1 mj)

(
∑N

j=1 mj)n

n!

=

(
n!∏N

i=1 ni!

)
·

N∏
i=1

πni
i , with πi =

mi∑N
i=1 mi

. (10.101)

For N = 2, this is the binomial distribution. For the multinomial distri-
bution for (n1, n2, . . . , nN ), the marginal distribution for ni is a binomial
distribution with E(ni) = nπi and var(ni) = nπi(1 − πi).

Independent Multinomial Sample

Suppose we observe on a categorical variable Y at various levels of an
explanatory variable X. In the cell (X = i, Y = j) we have nij observations.
Suppose that ni+ =

∑J
j=1 nij , the number of observations of Y for fixed

level i of X, is fixed in advance (and thus not random) and that the ni+
observations are independent and have the distribution (π1|i, π2|i, . . . , πJ|i).
Then the cell counts in row i have the multinomial distribution(

ni+!∏J
j=1 nij !

)
·

J∏
j=1

π
nij

j|i . (10.102)

Furthermore, if the samples are independent for different i, then the joint
distribution for the nij in the I × J table is the product of the multino-
mial distributions (10.102). This is called product multinomial sampling or
independent multinomial sampling.

10.2.4 Likelihood Function and Maximum-Likelihood
Estimates

For the observed cell counts {ni, i = 1, 2, . . . , N}, the likelihood function
is defined as the probability of {ni, i = 1, 2, . . . , N} for a given sampling
model. This function in general is dependent on an unknown parameter
θ—here, for instance, θ = {πj|i}. The maximum-likelihood estimate for
this vector of parameters is the value for which the likelihood function of
the observed data takes its maximum.
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To illustrate, we now look at the estimates of the category probabilities
{πi} for multinomial sampling. The joint distribution {ni} is (cf. (10.102)
and the notation {πi}, i = 1, . . . , N , N = I · J , instead of πj|i)

n!∏N
i=1 ni!

N∏
i=1

πni
i︸ ︷︷ ︸

kernel

. (10.103)

It is proportional to the so-called kernel of the likelihood function. The
kernel contains all unknown parameters of the model. Hence, maximizing
the likelihood is equivalent to maximizing the kernel of the loglikelihood
function:

ln(kernel) =
N∑

i=1

ni ln(πi) → max
πi

. (10.104)

Under the condition πi > 0, i = 1, 2, . . . , N ,
∑N

i=1 πi = 1, we have πN =
1 −∑N−1

i=1 πi and hence

∂πN

∂πi
= −1 , i = 1, 2, . . . , N − 1 , (10.105)

∂ lnπN

∂πi
=

1
πN

· ∂πN

∂πi
=

−1
πN

, i = 1, 2, . . . , N − 1 , (10.106)

∂L

∂πi
=

ni

πi
− nN

πN
= 0 , i = 1, 2, . . . , N − 1 . (10.107)

From (10.107) we get

π̂i

π̂N
=

ni

nN
, i = 1, 2, . . . , N − 1 , (10.108)

and thus

π̂i = π̂N
ni

nN
. (10.109)

Using
N∑

i=1

π̂i = 1 =
π̂N

∑N
i=1 ni

nN
, (10.110)

we obtain the solutions

π̂N =
nN

n
= pN . (10.111)

π̂i =
ni

n
= pi , i = 1, 2, . . . , N − 1 . (10.112)

The ML estimates are the proportions (relative frequencies) pi.
For contingency tables, we have for independent X and Y :

πij = πi+π+j . (10.113)
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The ML estimates under this condition are

π̂ij = pi+p+j =
ni+n+j

n2 (10.114)

with the expected cell frequencies

m̂ij = nπ̂ij =
ni+n+j

n
. (10.115)

Because of the similarity of the likelihood functions, the ML estimates
for Poisson, multinomial, and product multinomial sampling are identical
(as long as no further assumptions are made).

10.2.5 Testing the Goodness of Fit
A principal aim of the analysis of contingency tables is to test whether the
observed and the expected cell frequencies (specified by a model) coincide.
For instance, Pearson’s χ2 statistic compares the observed and the expected
cell frequencies from (10.115) for independent X and Y .

Testing a Specified Multinomial Distribution (Theoretical Distribution)

We first want to compare a multinomial distribution, specified by {πi0},
with the observed distribution {ni} for N classes.

The hypothesis for this problem is

H0 : πi = πi0 , i = 1, 2, . . . , N , (10.116)

whereas for the πi we have the restriction
N∑

i=1

πi = 1 . (10.117)

When H0 is true, the expected cell frequencies are

mi = nπi0 , i = 1, 2, . . . , N . (10.118)

The appropriate test statistic is Pearson’s χ2, where

χ2 =
N∑

i=1

(ni − mi)
2

mi

approx.∼ χ2
N−1 . (10.119)

This can be justified as follows: Let p = (n1/n, . . . , nN−1/n) and π0 =
(π10 , . . . , πN−10). By the central limit theorem we then have for n → ∞,

√
n (p − π0) → N (0, Σ0) , (10.120)

and so

n (p − π0)
′ Σ−1

0 (p − π0) → χ2
N−1 . (10.121)

The asymptotic covariance matrix has the form

Σ0 = Σ0(π0) = diag(π0) − π0π
′
0 . (10.122)
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Its inverse can be written as

Σ−1
0 =

1
πN0

11′ + diag
(

1
π10

, . . . ,
1

πN−1 ,0

)
. (10.123)

The equivalence of (10.119) and (10.121) is proved by direct calculation.
To illustrate, we choose N = 3. Using the relationship π1 + π2 + π3 = 1,
we have

Σ0 =
(

π1 0
0 π2

)
−
(

π2
1 π1π2

π1π2 π2
2

)
,

Σ−1
0 =

(
π1(1 − π1) −π1π2

−π1π2 π2(1 − π2)

)−1

=
1

π1π2π3

(
π2(1 − π2) π1π2

π1π2 π1(1 − π1)

)
=
( 1

π1
+ 1

π3

1
π3

1
π3

1
π2

+ 1
π3

)
.

The left side of (10.121) now is

n
(n1

n
− m1

n
,
n2

n
− m2

n

)( n
m1

+ n
m3

n
m3

n
m3

n
m2

+ n
m3

)(
n1
n − m1

n
n2
n − m2

n

)
=

(n1 − m1)2

m1
+

(n2 − m2)2

m2
+

1
m3

[(n1 − m1) + (n2 − m2)]
2

=
3∑

i=1

(ni − mi)2

mi
.

Goodness of Fit for Estimated Expected Frequencies

When the unknown parameters are replaced by the ML estimates for a
specified model, the test statistic is again approximately distributed as χ2

with the number of degrees of freedom reduced by the number of estimated
parameters.

The degrees of freedom are (N − 1) − t, if t parameters are estimated.

Testing for Independence

In two-way contingency tables with multinomial sampling, the hypothesis
H0 : X and Y are statistically independent is equivalent to H0 : πij =
πi+π+j ∀i, j. The test statistic is Pearson’s χ2 in the following form:

χ2 =
∑

i=1,2,...,I
j=1,2,...,J

(nij − mij)2

mij
, (10.124)

where mij = nπij = nπi+π+j (expected cell frequencies under H0) are
unknown.
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Given the estimates m̂ij = npi+p+j , the χ2 statistic then equals

χ2 =
∑

i=1,2,...,I
j=1,2,...,J

(nij − m̂ij)2

m̂ij
(10.125)

with (I − 1)(J − 1) = (IJ − 1) − (I − 1) − (J − 1) degrees of freedom.
The numbers (I − 1) and (J − 1) correspond to the (I − 1) independent
row proportions (πi+)′ and (J − 1) independent column proportions (π+j)
estimated from the sample.

Likelihood-Ratio Test

The likelihood-ratio test (LRT) is a general-purpose method for testing H0
against H1. The main idea is to compare maxH0 L and maxH1∨H0 L with
the corresponding parameter spaces ω ⊆ Ω. As test statistic, we have

Λ =
maxω L

maxΩ L
≤ 1 . (10.126)

It follows that for n → ∞ (Wilks, 1932)

G2 = −2 ln Λ → χ2
d (10.127)

with d = dim(Ω) − dim(ω) as the degrees of freedom.
For multinomial sampling in a contingency table, the kernel of the

likelihood function is

K =
I∏

i=1

J∏
j=1

π
nij

ij , (10.128)

with the constraints for the parameters:

πij ≥ 0 and
I∑

i=1

J∑
j=1

πij = 1 . (10.129)

Under the null hypothesis H0 : πij = πi+π+j , K is maximum for π̂i+ =
ni+/n, π̂+j = n+j/n, and π̂ij = ni+n+j/n2. Under H0∨H1, K is maximum
for π̂ij = nij/n. We then have

Λ =

∏I
i=1
∏J

j=1 (ni+n+j)
nij

nn
∏I

i=1
∏J

j=1 n
nij

ij

. (10.130)

It follows that Wilks’s G2 is given by

G2 = −2 ln Λ = 2
I∑

i=1

J∑
j=1

nij ln
(

nij

m̂ij

)
∼ χ2

(I−1)(J−1) (10.131)

with m̂ij = ni+n+j/n (estimate under H0).
If H0 holds, Λ will be large, that is near 1, and G2 will be small. This

means that H0 is to be rejected for large G2.
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10.3 GLM for Binary Response

10.3.1 Logit Models and Logistic Regression
Let Y be a binary random variable, that is, Y has only two categories (for
instance, success/failure or case/control). Hence the response variable Y
can always be coded as (Y = 0, Y = 1). Yi has a Bernoulli distribution,
with P (Yi = 1) = πi = πi(xi) and P (Yi = 0) = 1 − πi, where xi =
(xi1, xi2, . . . , xip)′ denotes a vector of prognostic factors, which we believe
influence the success probability π(xi), and i = 1, . . . , N denotes individuals
as usual. With these assumptions it immediately follows that

E(Yi) = 1 · πi + 0 · (1 − πi) = πi ,

E(Y 2
i ) = 12 · πi + 02 · (1 − πi) = πi ,

var(Yi) = E(Y 2
i ) − (E(Yi))

2 = πi − π2
i = πi(1 − πi) .

The likelihood contribution of an individual i is further given by

f (yi; πi) = πyi

i (1 − πi)
1−yi

= (1 − πi)
(

πi

1 − πi

)yi

= (1 − πi) exp
(

yi ln
(

πi

1 − πi

))
.

The natural parameter Q(πi) = ln[πi/(1 − πi)] is the log odds of response
1 and is called the logit of πi.

A GLM with the logit link is called a logit model or logistic regression
model . The model is, on an individual basis, given by

ln
(

πi

1 − πi

)
= x′

iβ . (10.132)

This parametrization guarantees a monotonic course (S-curve) of the prob-
ability πi, under inclusion of the linear approach x′

iβ over the range of
definition [0,1]:

πi =
exp(x′

iβ)
1 + exp(x′

iβ)
. (10.133)

Grouped Data

If possible (for example, if prognostic factors are themselves categorical),
patients can be grouped along the strata defined by the number of possi-
ble factor combinations. Let nj , j = 1, . . . , G, G ≤ N , be the number of
patients falling in strata j. Then we observe yj patients having response
Y = 1 and nj − yj patients with response Y = 0. Then a natural estimate
for πj is π̂j = yj/nj . This corresponds to a saturated model, that is, a
model in which main effects and all interactions between the factors are
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Table 10.1. 5 × 2 table of loss of abutment teeth by age groups (Example 10.1)

Age Loss
j group yes no nj

1 < 40 4 70 74
2 40 − 50 28 147 175
3 50 − 60 38 207 245
4 60 − 70 51 202 253
5 > 70 32 92 124

153 718 871

included. But one should note that this is reasonable only if the number of
strata is low compared to N so that nj is not too low. Whenever nj = 1
these estimates degenerate, and more smoothing of the probabilities and
thus a more parsimonious model is necessary.

The Simplest Case and an Example

For simplicity, we assume now that p = 1, that is, we consider only one
explanatory variable. The model in this simplest case is given by

ln
(

πi

1 − πi

)
= α + βxi . (10.134)

For this special situation we get for the odds
πi

1 − πi
= exp(α + βxi) = eα

(
eβ
)xi

, (10.135)

that is, if xi increases by one unit, the odds increases by eβ .
An advantage of this link is that the effects of X can be esti-

mated, whether the study of interest is retrospective or prospective (cf.
Toutenburg, 1992, Chapter 5). The effects in the logistic model refer to the
odds. For two different x-values, exp(α + βx1)/ exp(α + βx2) is an odds
ratio.

To find the appropriate form for the systematic component of the logistic
regression, the sample logits are plotted against x.

Remark: Let xj be chosen (j being a group index). For nj observations of
the response variable Y , let 1 be observed yj times at this setting. Hence
π̂(xj) = yj/nj and ln[π̂j/(1 − π̂j)] = ln[yj/(nj − yj)] is the sample logit.

This term, however, is not defined for yj = 0 or nj = 0. Therefore, a
correction is introduced, and we utilize the smoothed logit:

ln
[(

yj +
1
2
)/(

nj − yj +
1
2
)]

.

Example 10.1: We examine the risk (Y ) for the loss of abutment teeth
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by extraction in dependence on age (X) (Walther and Toutenburg, 1991).
From Table 10.1, we calculate χ2

4 = 15.56, which is significant at the 5 %
level (χ2

4;0.95 = 9.49). Using the unsmoothed sample logits results in the
following table:

Sample
i logits

π̂1|j = yj

nj

1 −2.86 0.054
2 −1.66 0.160
3 −1.70 0.155
4 −1.38 0.202
5 −1.06 0.258 −3

−2.5
−2

−1.5
−1

−0.5
0

•

• •
•

•

x1 x2 x3 x4 x5

π̂1|j is the estimated risk for loss of abutment teeth. It increases linearly
with age group. For instance, age group 5 has five times the risk of age
group 1.

Modeling with the logistic regression

ln
(

π̂1(xj)
1 − π̂1(xj)

)
= α + βxj

results in

Sample Fitted Expected Observed
xj logits logits

π̂1(xj) nj π̂1(xj) yj

35 −2.86 −2.22 0.098 7.25 4
45 −1.66 −1.93 0.127 22.17 28
55 −1.70 −1.64 0.162 39.75 38
65 −1.38 −1.35 0.206 51.99 51
75 −1.06 −1.06 0.257 31.84 32

with the ML estimates

α̂ = −3.233 ,

β̂ = 0.029 .

10.3.2 Testing the Model
Under general conditions the maximum-likelihood estimates are asymptot-
ically normal. Hence tests of significance and setting up of confidence limits
can be based on the normal theory.

The significance of the effect of the variable X on π is equivalent to the
significance of the parameter β. The hypothesis β is significant or β �= 0 is
tested by the statistical hypothesis H0 : β = 0 against H1 : β �= 0. For this
test, we compute the Wald statistic Z2 = β̂′(covβ̂)−1β̂ ∼ χ2

df , where df is
the number of components of the vector β.
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0

1
π(x)

Figure 10.1. Logistic function π(x) = exp(x)/(1 + exp(x))

In the above Example 10.1, we have Z2 = 13.06 > χ2
1;0.95 = 3.84 (the

upper 5% value), which leads to a rejection of H0 : β = 0 so that the trend
is seen to be significant.

10.3.3 Distribution Function as a Link Function
The logistic function has the shape of the cumulative distribution function
of a continuous random variable.

This suggests a class of models for binary responses having the form

π(x) = F (α + βx) , (10.136)

where F is a standard, continuous, cumulative distribution function. If F
is strictly monotonically increasing over the entire real line, we have

F−1(π(x)) = α + βx . (10.137)

This is a GLM with F−1 as the link function. F−1 maps the [0, 1] range of
probabilities onto (−∞,∞).

The cumulative distribution function of the logistic distribution is

F (x) =
exp
(

x − µ
τ

)
1 + exp

(
x − µ

τ

) , −∞ < x < ∞ , (10.138)

with µ as the location parameter and τ > 0 as the scale parameter.
The distribution is symmetric with mean µ and standard deviation

τπ/
√

3 (bell-shaped curve, similar to the standard normal distribution).
The logistic regression π(x) = F (α + βx) belongs to the standardized lo-
gistic distribution F with µ = 0 and τ = 1. Thus, the logistic regression
has mean −α/β and standard deviation π/|β|√3.

If F is the standard normal cumulative distribution function, π(x) =
F (α + βx) = Φ(α + βx), π(x) is called the probit model.
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10.4 Logit Models for Categorical Data

The explanatory variable X can be continuous or categorical. Assume X to
be categorical and choose the logit link; then the logit models are equivalent
to loglinear models (categorical regression), which are discussed in detail in
Section 10.6. For the explanation of this equivalence we first consider the
logit model.

Logit Models for I × 2 Tables

Let X be an explanatory variable with I categories. If response/nonresponse
is the Y factor, we then have an I × 2 table. In row i the probability for
response is π1|i and for nonresponse π2|i, with π1|i + π2|i = 1.

This leads to the following logit model:

ln
(

π1|i
π2|i

)
= α + βi . (10.139)

Here the x-values are not included explicitly but only through the category
i. βi describes the effect of category i on the response. When βi = 0, there
is no effect. This model resembles the one-way analysis of variance and,
likewise, we have the constraints for identifiability

∑
βi = 0 or βI = 0.

Then I −1 of the parameters {βi} suffice for characterization of the model.
For the constraint

∑
βi = 0, α is the overall mean of the logits and βi is

the deviation from this mean for row i. The higher βi is, the higher is the
logit in row i, and the higher is the value of π1|i (= chance for response in
category i).

When the factor X (in I categories) has no effect on the response variable,
the model simplifies to the model of statistical independence of the factor
and response:

ln
(

π1|i
π2|i

)
= α ∀i ,

We now have β1 = β2 = · · · = βI = 0, and thus π1|1 = π1|2 = · · · = π1|I .

Logit Models for Higher Dimensions

As a generalization to two or more categorical factors that have an effect
on the binary response, we now consider the two factors A and B with I
and J levels. Let π1|ij and π2|ij denote the probabilities for response and
nonresponse for the combination ij of factors so that π1|ij + π2|ij = 1. For
the I × J × 2 table, the logit model

ln
(

π1|ij
π2|ij

)
= α + βA

i + βB
j (10.140)

represents the effects of A and B without interaction. This model is equi-
valent to the two-way analysis of variance without interaction.
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10.5 Goodness of Fit—Likelihood-Ratio Test

For a given model M , we can use the estimates of the parameters (α̂ + βi)
and (α̂, β̂) to predict the logits, to estimate the probabilities of response
π̂1|i, and hence to calculate the expected cell frequencies m̂ij = ni+π̂j|i.

We can now test the goodness of fit of a model M with Wilks’s G2-
statistic

G2(M) = 2
I∑

i=1

J∑
j=1

nij ln
(

nij

m̂ij

)
. (10.141)

The m̂ij are calculated by using the estimated model parameters. The
degrees of freedom equal the number of logits minus the number of
independent parameters in the model M .

We now consider three models for binary response (cf. Agresti, 1990,
p. 95).

1. Independence model:

M = I : ln
(

π1|i
π2|i

)
= α . (10.142)

Here we have I logits and one parameter, that is, I − 1 degrees of
freedom.

2. Logistic model:

M = L : ln
(

π1|i
π2|i

)
= α + βxi . (10.143)

The number of degrees of freedom equals I − 2.

3. Logit model:

M = S : ln
(

π1|i
π2|i

)
= α + βi . (10.144)

The model has I logits and I independent parameters. The number
of degrees of freedom is 0, so it has perfect fit. This model, with equal
numbers of parameters and observations, is called a saturated model.

The likelihood-ratio test compares a model M1 with a simpler model M2
(in which a few parameters equal zero). The test statistic then is

Λ =
L(M2)
L(M1)

(10.145)

or G2 (M2|M1) = −2 (lnL(M2) − lnL(M1)) . (10.146)

The statistic G2(M) is a special case of this statistic, in which M2 = M
and M1 is the saturated model. If we want to test the goodness of fit with
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G2(M), this is equivalent to testing whether all the parameters that are in
the saturated model, but not in the model M , are equal to zero.

Let lS denote the maximized loglikelihood function for the saturated
model. Then we have

G2(M2|M1) = −2 (lnL(M2) − lnL(M1))
= −2 (lnL(M2) − lS) − [−2(lnL(M1) − lS)]
= G2(M2) − G2(M1) . (10.147)

That is, the statistic G2(M2|M1) for comparing two models is identical to
the difference of the goodness-of-fit statistics for the two models.

Example 10.2: In Example 10.1 “Loss of abutment teeth/age” we have for
the logistic model:

Age Loss No loss
group observed expected observed expected

1 4 7.25 70 66.75
2 28 22.17 147 152.83
3 38 39.75 207 205.25
4 51 51.99 202 201.01
5 32 31.84 92 92.16

and get G2(L) = 3.66, df = 5 − 2 = 3.
For the independence model, we get G2(I) = 17.25 with df = 4 =

(I − 1)(J − 1) = (5 − 1)(2 − 1). The test statistic for testing H0 : β = 0 in
the logistic model then is

G2(I|L) = G2(I) − G2(L) = 17.25 − 3.66 = 13.59 , df = 4 − 3 = 1 .

This value is significant, which means that the logistic model, compared to
the independence model, holds.

10.6 Loglinear Models for Categorical Variables

10.6.1 Two-Way Contingency Tables
The previous models focused on bivariate response, that is, on I ×2 tables.
We now generalize this set-up to I × J and later to I × J × K tables.

Suppose that we have a realization (sample) of two categorical variables
with I and J categories and sample size n. This yields observations in
N = I × J cells of the contingency table. The number in the (i, j)-th cell
is denoted by nij .

The probabilities πij of the multinomial distribution form the joint
distribution. Independence of the variables is equivalent to

πij = πi+π+j (for all i, j). (10.148)
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If this is applied to the expected cell frequencies mij = nπij , the
condition of independence is equivalent to

mij = nπi+π+j . (10.149)

The modeling of the I × J table is based on this relation as an
independence model on the logarithmic scale:

ln(mij) = lnn + lnπi+ + lnπ+j . (10.150)

Hence, the effects of the rows and columns on ln(mij) are additive. An
alternative expression, following the models of analysis of variance of the
form

yij = µ + αi + βj + εij ,
(∑

αi =
∑

βj = 0
)

, (10.151)

is given by

lnmij = µ + λX
i + λY

j (10.152)

with

λX
i = lnπi+ − 1

I

(
I∑

k=1

lnπk+

)
, (10.153)

λY
j = lnπ+j − 1

J

(
J∑

k=1

lnπ+k

)
, (10.154)

µ = lnn +
1
I

(
I∑

k=1

lnπk+

)
+

1
J

(
J∑

k=1

lnπ+k

)
. (10.155)

The parameters satisfy the constraints

I∑
i=1

λX
i =

J∑
j=1

λY
j = 0 , (10.156)

which make the parameters identifiable.
Model (10.152) is called loglinear model of independence in a two-way

contingency table.
The related saturated model contains the additional interaction param-

eters λXY
ij :

lnmij = µ + λX
i + λY

j + λXY
ij . (10.157)

This model describes the perfect fit. The interaction parameters satisfy

I∑
i=1

λXY
ij =

J∑
j=1

λXY
ij = 0 . (10.158)
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Given the λij in the first (I−1)(J−1) cells, these constraints determine the
λij in the last row or the last column. Thus, the saturated model contains

1︸︷︷︸
µ

+ (I − 1)︸ ︷︷ ︸
λX

i

+ (J − 1)︸ ︷︷ ︸
λY

j

+ (I − 1)(J − 1)︸ ︷︷ ︸
λXY

ij

= I J (10.159)

independent parameters.
For the independence model, the number of independent parameters

equals

1 + (I − 1) + (J − 1) = I + J − 1 . (10.160)

Interpretation of the Parameters

Loglinear models estimate the effects of rows and columns on ln mij . For
this, no distinction is made between explanatory and response variables.
The information of the rows or columns influence mij symmetrically.

Consider the simplest case—the I × 2 table (independence model).
According to (10.160), the logit of the binary variable equals

ln
(

π1|i
π2|i

)
= ln

(
mi1

mi2

)
= ln(mi1) − ln(mi2)
= (µ + λX

i + λY
1 ) − (µ + λX

i + λY
2 )

= λY
1 − λY

2 . (10.161)

The logit is the same in every row and hence independent of X or the
categories i = 1, . . . , I, respectively.

For the constraints

λY
1 + λY

2 = 0 ⇒ λY
1 = −λY

2 ,

⇒ ln
(

π1|i
π2|i

)
= 2λY

1 (i = 1, . . . , I) .

Hence we obtain
π1|i
π2|i

= exp(2λY
1 ) (i = 1, . . . , I) . (10.162)

In each category of X, the odds that Y is in category 1 rather than in
category 2 are equal to exp(2λY

1 ), when the independence model holds.
The following relationship exists between the odds ratio in a 2 × 2 table

and the saturated loglinear model:

ln θ = ln
(

m11 m22

m12 m21

)
= ln(m11) + ln(m22) − ln(m12) − ln(m21)
= (µ + λX

1 + λY
1 + λXY

11 ) + (µ + λX
2 + λY

2 + λXY
22 )

− (µ + λX
1 + λY

2 + λXY
12 ) − (µ + λX

2 + λY
1 + λXY

21 )
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Table 10.2. 2 × 2 × 2-table for endodontic risk

Endodontic
Age Form of treatment

group construction yes no
H 62 1041

< 60
B 23 463
H 70 755≥ 60
B 30 215

Σ 185 2474

= λXY
11 + λXY

22 − λXY
12 − λXY

21 .

Since
∑2

i=1 λXY
ij =

∑2
j=1 λXY

ij = 0, we have λXY
11 = λXY

22 = −λXY
12 =

−λXY
21 and thus ln θ = 4λXY

11 . Hence the odds ratio in a 2 × 2 table equals

θ = exp(4λXY
11 ) , (10.163)

and is dependent on the association parameter in the saturated model.
When there is no association, that is λij = 0, we have θ = 1.

10.6.2 Three-Way Contingency Tables
We now consider three categorical variables X, Y , and Z. The frequencies
of the combinations of categories are displayed in the I×J ×K contingency
table. We are especially interested in I × J × 2 contingency tables, where
the last variable is a bivariate risk or response variable. Table 10.2 shows
the risk for an endodontic treatment depending on the age of patients and
the type of construction of the denture (Walther and Toutenburg, 1991).

In addition to the bivariate associations, we want to model an overall
association. The three variables are mutually independent if the following
independence model for the cell frequencies mijk (on a logarithmic scale)
holds:

ln(mijk) = µ + λX
i + λY

j + λZ
k . (10.164)

(In the above example we have X: age group, Y : type of construction, Z: en-
dodontic treatment.) The variable Z is independent of the joint distribution
of X and Y (jointly independent) if

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij . (10.165)

A third type of independence (conditional independence of two variables
given a fixed category of the third variable) is expressed by the following
model (j fixed!):

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij + λY Z
jk . (10.166)
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This is the approach for the conditional independence of X and Z at level
j of Y . If they are conditionally independent for all j = 1, . . . , J , then X
and Z are called conditionally independent given Y . Similarly, if X and
Y are conditionally independent at level k of Z, the parameters λXY

ij and
λY Z

jk in (10.166) are replaced by the parameters λXZ
ik and λY Z

jk . The param-
eters with two subscripts describe two-way interactions. The appropriate
conditions for the cell probabilities are

(a) mutual independence of X, Y, Z

πijk = πi++π+j+π++k (for all i, j, k). (10.167)

(b) joint independence
Y is jointly independent of X and Z when

πijk = πi+kπ+j+ (for all i, j, k). (10.168)

(c) conditional independence
X and Y are conditionally independent of Z when

πijk =
πi+kπ+jk

π++k
(for all i, j, k). (10.169)

The most general loglinear model (saturated model) for three-way tables
is the following:

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk + λXY Z
ijk . (10.170)

The last parameter describes the three-factor interaction.
All association parameters describing the deviation from the general

mean µ, satisfy the constraints
I∑

i=1

λXY
ij =

J∑
j=1

λXY
ij = . . . =

K∑
k=1

λXY Z
ijk = 0 . (10.171)

Similarly, for the main factor effects we have:
I∑

i=1

λX
i =

J∑
j=1

λY
j =

K∑
k=1

λZ
k = 0 . (10.172)

From the general model (10.170), submodels can be constructed. For this,
the hierarchical principle of construction is preferred. A model is called hi-
erarchical when, in addition to significant higher-order effects, it contains
all lower-order effects of the variables included in the higher-order effects,
even if these parameter estimates are not statistically significant. For in-
stance, if the model contains the association parameter λXZ

ik , it must also
contain λX

i and λZ
k :

ln(mijk) = µ + λX
i + λZ

k + λXZ
ik . (10.173)

A symbol is assigned to the various hierarchical models (Table 10.3).
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Table 10.3. Symbols of the hierarchical models for three-way contingency tables
(Agresti, 1990, p. 144).

Loglinear model Symbol

ln(mij+) = µ + λX
i + λY

j (X, Y )

ln(mi+k) = µ + λX
i + λZ

k (X, Z)

ln(m+jk) = µ + λY
j + λZ

k (Y, Z)

ln(mijk) = µ + λX
i + λY

j + λZ
k (X, Y, Z)

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij (XY, Z)
...

...

ln(mijk) = µ + λX
i + λY

j + λXY
ij (XY )

...
...

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik (XY, XZ)

...
...

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk (XY, XZ, Y Z)
...

...

ln(mijk) = µ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk + λXY Z
ijk (XY Z)

Similar to 2×2 tables, a close relationship exists between the parameters
of the model and the odds ratios. Given a 2 × 2 × 2 table, we have, under
the constraints (10.171) and (10.172), for instance

θ11(1)

θ11(2)
=

π111π221
π211π121
π112π222
π212π122

= exp(8λXY Z
111 ) . (10.174)

This is the conditional odds ratio of X and Y given the levels k = 1
(numerator) and k = 2 (denominator) of Z. The same holds for X and Z
under Y and for Y and Z under X. In the population, we thus have for
the three-way interaction λXY Z

111 ,

θ11(1)

θ11(2)
=

θ1(1)1

θ1(2)1
=

θ(1)11

θ(2)11
= exp(8λXY Z

111 ) . (10.175)

In the case of independence in the equivalent subtables, the odds ratios
(of the population) equal 1. The sample odds ratio gives a first hint at a
deviation from independence.

Consider the conditional odds ratio (10.175) for Table 10.2 assuming that
X is the variable “age group,” Y is the variable “form of construction,”
and Z is the variable “endodontic treatment.”
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We then have a value of 1.80. This indicates a positive tendency for an
increased risk of endodontic treatment in comparing the following subtables
for endodontic treatment (left) versus no endodontic treatment (right):

H B
< 60 62 23
≥ 60 70 30

H B
< 60 1041 463
≥ 60 755 215

The relationship (10.102) is also valid for the sample version. Thus a
comparison of the following subtables for < 60 (left) versus ≥ 60 (right):

treatment
yes no

H 62 1041
B 23 463

treatment
yes no

H 70 755
B 30 215

or for H (left) versus B (right):

treatment
yes no

< 60 62 1041
≥ 60 70 755

treatment
yes no

< 60 23 463
≥ 60 30 215

leads to the same sample value 1.80 and hence λ̂XY Z
111 = 0.073.

Calculations for Table 10.2:

θ̂11(1)

θ̂11(2)
=

n111n221
n211n121
n112n222
n212n122

=
62·30
70·23

1041·215
755·463

=
1.1553
0.6403

= 1.80 ,

θ̂(1)11

θ̂(2)11
=

n111n122
n121n112
n211n222
n221n212

=
62·463
23·1041
70·215
30·755

=
1.1989
0.6645

= 1.80 ,

θ̂1(1)1

θ̂1(2)1
=

n111n212
n211n112
n121n222
n221n122

=
62·755
70·1041
23·215
30·463

=
0.6424
0.3560

= 1.80 .

10.7 The Special Case of Binary Response

If one of the variables is a binary response variable (in our example Z:
endodontic treatment) and the others are explanatory categorical variables
(in our example X: age group and Y : type of construction), these models
lead to the already known logit model.

Given the independence model

ln(mijk) = µ + λX
i + λY

j + λZ
k , (10.176)
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we then have for the logit of the response variable Z

ln
(

mij1

mij2

)
= λZ

1 − λZ
2 . (10.177)

With the constraint
2∑

k=1

λZ
k = 0 we thus have

ln
(

mij1

mij2

)
= 2λZ

1 (for all i, j) . (10.178)

The higher the value of λZ
1 is, the higher is the risk for category Z = 1

(endodontic treatment), independent of the values of X and Y .
In case the other two variables are also binary, implying a 2×2×2 table,

and if the constraints

λX
2 = −λX

1 , λY
2 = −λY

1 , λZ
2 = −λZ

1

hold, then the model (10.176) can be expressed as follows:

ln(m111)
ln(m112)
ln(m121)
ln(m122)
ln(m211)
ln(m212)
ln(m221)
ln(m222)


=



1 1 1 1
1 1 1 −1
1 1 −1 1
1 1 −1 −1
1 −1 1 1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 −1




µ

λX
1

λY
1

λZ
1

 , (10.179)

which is equivalent to ln(m) = Xβ.
This corresponds to the effect coding of categorical variables (Section

10.8). The ML equation is

X ′n = X ′m̂ . (10.180)

The estimated asymptotic covariance matrix for Poisson sampling reads as
follows:

ĉov(β̂) = [X ′(diag(m̂))X]−1
. (10.181)

where diag(m̂) has the elements m̂ on the main diagonal. The solution of
the ML equation (10.180) is obtained by the Newton-Raphson or any other
iterative algorithm—for instance, the iterative proportional fitting (IPF).

The IPF method (Deming and Stephan, 1940; cf. Agresti, 1990, p. 185)
adjusts initial estimates {m̂

(0)
ijk} successively to the respective expected

marginal table of the model until a prespecified accuracy is achieved. For
the independence model the steps of iteration are

m̂
(1)
ijk = m̂

(0)
ijk

(
ni++

m̂
(0)
i++

)
,
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m̂
(2)
ijk = m̂

(1)
ijk

(
n+j+

m̂
(1)
+j+

)
,

m̂
(3)
ijk = m̂

(2)
ijk

(
n++k

m̂
(2)
++k

)
.

Example 10.3 (Tartar-Smoking Analysis): A study cited in Toutenburg
(1992, p. 42) investigates to what extent smoking influences the develop-
ment of tartar. The 3× 3 contingency table (Table 10.4) is modeled by the
loglinear model

ln(mij) = µ + λSmoking
i + λTartar

j + λ
Smoking/Tartar
ij ,

with i, j = 1, 2. Here we have

λSmoking
1 = Effect nonsmoker

λSmoking
2 = Effect light smoker

λSmoking
3 = −(λSmoking

1 + λSmoking
2 ) = Effect heavy smoker .

For the development of tartar, analogous expressions are valid.

(i) Model of independence. For the null hypothesis

H0 : ln(mij) = µ + λSmoking
i + λTartar

j ,

we receive G2 = 76.23 > 9.49 = χ2
4;0.95. This leads to a clear rejection

of this model.

(ii) Saturated model. Here we have G2 = 0. The estimates of the
parameters are (values in parantheses are standardized values)

λSmoking
1 = −1.02 (−25.93)

λSmoking
2 = 0.20 (7.10)

λSmoking
3 = 0.82 (—)

λTartar
1 = 0.31 (11.71)

λTartar
2 = 0.61 (23.07)

λTartar
3 = −0.92 (—)

All single effects are highly significant. The interaction effects are

Tartar
1 2 3

∑
1 0.34 –0.14 –0.20 0

Smoking 2 –0.12 0.06 0.06 0
3 –0.22 0.08 0.14 0∑

0 0 0



328 10. Models for Categorical Response Variables

Table 10.4. Smoking and development of tartar

Tartar
none middle heavy

no 284 236 48
Smoking middle 606 983 209

heavy 1028 1871 425

The main diagonal is very well marked, which is an indication for a
trend. The standardized interaction effects are significant as well:

1 2 3
1 7.30 –3.05 —
2 –3.51 1.93 —
3 — — —

10.8 Coding of Categorical Explanatory Variables

10.8.1 Dummy and Effect Coding
If a bivariate response variable Y is connected to a linear model x′β, with
x being categorical, by an appropriate link, the parameters β are always to
be interpreted in terms of their dependence on the x-scores. To eliminate
this arbritariness, an appropriate coding of x is chosen. Here two ways of
coding are suggested (partly in analogy to the analysis of variance).

Dummy Coding

Let A be a variable in I categories. Then the I − 1 dummy variables are
defined as follows:

xA
i =
{

1 for category i of variable A
0 for others (10.182)

with i = 1, . . . , I − 1.
The category I is implicitly taken into account by xA

1 = . . . = xA
I−1 = 0.

Thus, the vector of explanatory variables belonging to variable A is of the
following form:

xA = (xA
1 , xA

2 , . . . xA
I−1)

′ . (10.183)

The parameters βi, which go into the final regression model proportional
to x′Aβ, are called main effects of A.

Example:
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(i) Sex male/female, with male: category 1, female: category 2

xSex
1 = (1) ⇒ Person is male

xSex
2 = (0) ⇒ Person is female .

(ii) Age groups i = 1, . . . 5

xAge = (1, 0, 0, 0)′ ⇒ Age group is 1
xAge = (0, 0, 0, 0)′ ⇒ Age group is 5 .

Let y be a bivariate response variable. The probability of response (y = 1)
dependent on a categorical variable A in I categories can be modeled as
follows:

P (y = 1 | xA) = β0 + β1x
A
1 + · · · + βI−1x

A
I−1 . (10.184)

Given category i (age group i), we have

P (y = 1 | xA represents the i-th age group) = β0 + βi ,

as long as i = 1, 2, . . . , I − 1 and, for the implicitly coded category I, we
get

P (y = 1 | xA represents the I-th age group) = β0 . (10.185)

Hence for each category i another probability of response P (y = 1 | xA) is
possible.

Effect Coding

For an explanatory variable A in I categories, effect coding is defined as
follows:

xA
i =

 1 for category i, i = 1, . . . I − 1,
−1 for category I,

0 for others.
(10.186)

Consequently, we have

βI = −
I−1∑
i=1

βi , (10.187)

which is equivalent to
I∑

i=1

βi = 0 . (10.188)

In analogy to the analysis of variance, the model for the probability of
response has the following form:

P (y = 1|xA represents the i-th age group) = β0 + βi (10.189)

for i = 1, . . . , I and with the constraint (10.188).
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Example: I = 3 age groups A1, A2, A3. A person in A1 is coded (1, 0), a
person in A2 is coded (0, 1) for both dummy and effect coding. A person in
A3 is coded (0, 0) using dummy coding or (−1, −1) using effect coding. The
two ways of coding categorical variables generally differ only for category I.

Inclusion of More than One Variable

If more than one explanatory variable is included in the model, the cate-
gories of A, B, C (with I, J , and K categories, respectively), for example,
are combined in a common vector

x′ = (xA
1 , . . . , xA

I−1, x
B
1 , . . . , xB

J−1, x
C
1 , . . . , xC

K−1) . (10.190)

In addition to these main effects, the interaction effects xAB
ij , . . . , xABC

ijk can
be included. The codings of the xAB

ij , . . . , xABC
ijk are chosen in consideration

of constraints (10.171).

Example: In case of effect coding, we obtain for the saturated model
(10.157) with binary variables A and B,

ln(m11)
ln(m12)
ln(m21)
ln(m22)

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




µ
λA

1
λB

1
λAB

11

 ,

from which we receive the following values for xAB
ij , recoded for parame-

ter λAB
11 :

Recoding
(i, j) Parameter Constraints for λAB

11

(1,1) xAB
11 = 1 λAB

11
(1,2) xAB

12 = 1 λAB
12 λAB

12 = −λAB
11 xAB

12 = −1
(2,1) xAB

21 = 1 λAB
21 λAB

21 = λAB
12 = −λAB

11 xAB
21 = −1

(2,2) xAB
22 = 1 λAB

22 λAB
22 = −λAB

21 = λAB
11

Thus the interaction effects develop from multiplying the main effects.

Let L be the number of possible (different) combinations of variables. If,
for example, we have three variables A, B, C in I, J, K categories, L equals
IJK.

Consider a complete factorial experimental design (as in an I × J × K
contingency table). Now L is known, and the design matrix X (in effect or
dummy coding) for the main effects can be specified (independence model).

Example (Fahrmeir and Hamerle, 1984, p. 507): Reading habits of women
(preference for a specific magazine: yes/no) are to be analyzed in terms of
dependence on employment (A: yes/no), age group (B: 3 categories), and
education (C: 4 categories). The complete design matrix X (Figure 10.2)
is of dimension IJK × {1 + (I − 1) + (J − 1) + (K − 1)}, therefore (2 · 3 ·
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X =



β0 xA
1 xB

1 xB
2 xC

1 xC
2 xC

3

1 1 1 0 1 0 0
1 1 1 0 0 1 0
1 1 1 0 0 0 1
1 1 1 0 −1 −1 −1
1 1 0 1 1 0 0
1 1 0 1 0 1 0
1 1 0 1 0 0 1
1 1 0 1 −1 −1 −1
1 1 −1 −1 1 0 0
1 1 −1 −1 0 1 0
1 1 −1 −1 0 0 1
1 1 −1 −1 −1 −1 −1
1 −1 1 0 1 0 0
1 −1 1 0 0 1 0
1 −1 1 0 0 0 1
1 −1 1 0 −1 −1 −1
1 −1 0 1 1 0 0
1 −1 0 1 0 1 0
1 −1 0 1 0 0 1
1 −1 0 1 −1 −1 −1
1 −1 −1 −1 1 0 0
1 −1 −1 −1 0 1 0
1 −1 −1 −1 0 0 1
1 −1 −1 −1 −1 −1 −1


Figure 10.2. Design matrix for the main effects of a 2 × 3 × 4 contingency table

4)× (1+1+2+3) = 24×7. In this case, the number of columns m is equal
to the number of parameters in the independence model (cf. Figure 10.2).

10.8.2 Coding of Response Models
Let

πi = P (y = 1 | xi) , i = 1, . . . , L

be the probability of response dependent on the level xi of the vector of
covariates x. Summarized in matrix representation we then have

π
L,1

= X
L,m

β
m,1

. (10.191)
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Ni observations are made for the realization of covariates coded by xi. Thus,
the vector {y

(j)
i }, j = 1, . . . Ni is observed, and we get the ML estimate

π̂i = P̂ (y = 1 | xi) =
1
Ni

Ni∑
j=1

y
(j)
i (10.192)

for πi (i = 1, . . . , L). For contingency tables the cell counts with binary
response N

(1)
i and N

(0)
i are given from which π̂i = N

(1)
i /(N (1)

i + N
(0)
i ) is

calculated.
The problem of finding an appropriate link function h(π̂) for estimating

h(π̂) = Xβ + ε (10.193)

has already been discussed in several previous sections. If model (10.191)
is chosen, that is, the identity link, the parameters βi are to be interpreted
as the percentages with which the categories contribute to the conditional
probabilities.

The logit link

h(π̂i) = ln
(

π̂i

1 − π̂i

)
= x′

iβ (10.194)

is again equivalent to the logistic model for π̂i:

π̂i =
exp(x′

iβ)
1 + exp(x′

iβ)
. (10.195)

The design matrices under inclusion of various interactions (up to the
saturated model) are obtained as an extension of the designs for effect-
coded main effects.

10.8.3 Coding of Models for the Hazard Rate
The analysis of lifetime data, given the variables Y = 1 (event) and
Y = 0 (censored), is an important special case of the application of binary
response in long-term studies.

The Cox model is often used as a semiparametric model for the modeling
of failure time. Under inclusion of the vector of covariates x, this model can
be written as follows:

λ(t | x) = λ0(t) exp(x′β) . (10.196)

If the hazard rates of two vectors of covariates x1, x2 are to be compared
with each other (for example, stratification according to therapy x1, x2),
the following relation is valid

λ(t | x1)
λ(t | x2)

= exp((x1 − x2)′β) . (10.197)
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In order to be able to realize tests for quantitative or qualitative in-
teractions between types of therapy and groups of patients, J subgroups
of patients are defined (for example, stratification according to prognos-
tic factors). Let therapy Z be bivariate, that is Z = 1 (therapy A) and
Z = 0 (therapy B). For a fixed group of patients the hazard rate λj(t | Z)
j = 1, . . . , J , for instance, is determined according to the Cox approach:

λj(t | Z) = λ0j(t) exp(βjZ) . (10.198)

In the case of β̂j > 0, the risk is higher for Z = 1 than for Z = 0 (jth
stratum).

Test for Quantitative Interaction

We test H0: effects of therapy is identical across the J strata, that is,
H0 : β1 = . . . = βJ = β, against the alternative H1 : βi

<
>βj for at least one

pair (i, j). Under H0, the test statistic

χ2
J−1 =

J∑
j=1

(
β̂j − ¯̂

β
)2

var(β̂j)
(10.199)

with

¯̂
β =

J∑
j=1

[
β̂j

var(β̂j)

]
J∑

j=1

[
1

var(β̂j)

] (10.200)

is distributed according to χ2
J−1.

Test for Qualitative Differences

The null hypothesis H0: therapy B (Z = 0) is better than therapy A
(Z = 1) means H0 : βj ≤ 0 ∀j. We define the sum of squares of the
standardized estimates

Q− =
∑

j:βj<0

[
β̂j

var(β̂j)

]2
(10.201)

and

Q+ =
∑

j:βj>0

[
β̂j

var(β̂j)

]2
, (10.202)

as well as the test statistic

Q = min(Q−, Q+) . (10.203)

H0 is rejected if Q > c (Table 10.5).
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Table 10.5. Critical values for the Q-test for α = 0.05 (Gail and Simon, 1985).

J 2 3 4 5
c 2.71 4.23 5.43 6.50

Starting with the logistic model for the probability of response

P (Y = 1 | x) =
exp(θ + x′β)

1 + exp(θ + x′β)
, (10.204)

and

P (Y = 0 | x) = 1 − P (Y = 1 | x) =
1

1 + exp(θ + x′β)
(10.205)

with the binary variable

Y = 1 : {T = t | T ≥ t, x} ⇒ failure at time t
Y = 0 : {T > t | T ≥ t, x} ⇒ no failure

we obtain the model for the hazard function

λ(t | x) =
exp(θ + x′β)

1 + exp(θ + x′β)
for t = t1, . . . , tT (10.206)

(Cox, 1972; cf. Doksum and Gasko, 1990; Lawless, 1982; Hamerle and Tutz,
1989). Thus the contribution of a patient to the likelihood (x fixed) with
failure time t is

P (T = t | x) =
exp(θt + x′β)

t∏
i=1

(1 + exp(θi + x′β))
. (10.207)

Example 10.4: Assume that a patient has an event in the 4 failure times
(for example, loss of abutment teeth by extraction). Let the patient have
the following categories of the covariates: sex = 1 and age group=5 (60–70
years). The model is then l = θ + x′β:

Sex Age
0
0
0
1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 5
1 5
1 5
1 5︸ ︷︷ ︸

x




θ1
θ2
θ3
θ4
β11
β12



 θt

}
β

(10.208)

For N patients we have the model
l1
l2
...

lN

 =


I1 x1
I2 x2
...

IN xN


(

θ
β

)
,
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The dimension of the identity matrices Ij (patient j) is the number of
survived failure times plus 1 (failure time of the jth patient). The vectors lj
for the jth patient contain as many zeros as the number of survived failure
times of the other patients and the value 1 at the failure time of the jth
patient.

The numerical solutions (for instance, according to Newton-Raphson) for
the ML estimates θ̂ and β̂ are obtained from the product of the likelihood
functions (10.207) of all patients.

10.9 Extensions to Dependent Binary Variables

Although loglinear models are sufficiently rich to model any dependence
structure between categorical variables, if one is interested in a regression
of multivariate binary responses on a set of possibly continuous covari-
ates, alternative models, which are better suited and have easier parameter
interpretation, exist. Two often used-models in applications are marginal
models and random effects models. In the following, we emphasize the idea
of marginal models, because these seem to be a natural extension of the
logistic regression model to more than one response variable. The first ap-
proach we describe in detail is called the quasi-likelihood approach (cf.
Section 10.1.7), because the distribution of the binary response variables
is not fully specified. We start describing these models in detail in Section
10.9.3. Then the generalized estimating equations (GEE) approach (Liang
and Zeger, 1986) is introduced and two examples are given. The third ap-
proach is a full likelihood approach (Section 10.9.12). That section mainly
gives an overview of the recent literature.

10.9.1 Overview
We now extend the problems of categorical response to the situations of
correlation within the response values. These correlations are due to clas-
sification of the individuals into clusters of “related” elements. As already
mentioned in Section 10.1.6, a positive correlation among related elements
in a cluster leads to overdispersion if independence among these elements
is falsely assumed.

Examples:

• Two or more implants or abutment teeth in dental reconstructions
(Walther and Toutenburg, 1991).

• Response of a patient in cross-over in case of significant carry-over
effect.
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• Repeated categorical measurement of a response such as function
of the lungs, blood pressure, or performance in training (repeated
measures design or panel data).

• Measurement of paired organs (eyes, kidneys, etc.)

• Response of members of a family.

Let yij be the categorical response of the jth individual in the ith cluster:

yij , i = 1, . . . , N, j = 1, . . . , ni . (10.209)

We assume that the expectation of the response yij is dependent on
prognostic variables (covariables) xij by a regression, that is,

E(yij) = β0 + β1xij . (10.210)

Assume var(yij) = σ2 and

cov(yij , yij′) = σ2ρ (j �= j′). (10.211)

The response of individuals from different clusters is assumed to be uncor-
related. Let us assume that the covariance matrix for the response of every
cluster equals

V

 yi1
...

yini

 = V(yi) = σ2(1 − ρ)Ini
+ σ2ρJni

(10.212)

and thus has a compound symmetric structure. Hence, the covariance
matrix of the entire sample vector is block-diagonal

W = V

 y1
...

yN

 = diag(V(y1), . . . ,V(yN )) . (10.213)

Notice that the matrix W itself does not have a compound symmetric
structure. Hence, we have a generalized regression model. The best linear
unbiased estimate of β = (β0, β1)′ is given by the Gauss-Markov-Aitken
estimator (4.64):

b = (X ′W−1
X)−1X ′W−1y , (10.214)

and does not coincide with the OLS estimator, because the preconditions
of Theorem 4.6 are not fulfilled. The choice of an incorrect covariance
structure leads, according to our remarks in Section (4.3), to a bias in
the estimate of the variance. On the other hand, the unbiasedness or con-
sistency of the estimator of β stays untouched even in case of incorrect
choice of the covariance matrix. Liang and Zeger (1993) examined the bias
of var(β̂1) for the wrong choice of ρ = 0. In the case of positive correla-
tion within the cluster, the variance is underestimated. This corresponds to



10.9 Extensions to Dependent Binary Variables 337

the results of Goldberger (1964) for positive autocorrelation in econometric
models.

The following problems arise in practice:

(i) identification of the covariance structure,

(ii) estimation of the correlation,

(iii) application of an Aitken-type estimate.

However, it is no longer possible to assume the usual GLM approach,
because this does not take the correlation structure into consideration.
Various approaches were developed as extensions of the GLM approach, in
order to be able to include the correlation structure in the response:

• marginal model,

• random-effects model,

• observation-driven model,

• conditional model.

For binary response, simplifications arise (Section 10.9.8). Liang and Zeger
(1989) proved that the joint distribution of the yij can be descibed by ni

logistic models for yij given yik (k �= j). Rosner (1984) used this approach
and developed beta-binomial models.

10.9.2 Modeling Approaches for Correlated Response
The modeling approaches can be ordered according to diverse criteria.

Population-Averaged versus Subject-Specific Models

The essential difference between population-averaged (PA) and subject-
specific (SS) models lies in the answer to the question of whether the
regression coefficients vary for the individuals. In PA models, the β’s are
independent of the specific individual i. Examples are the marginal and con-
ditional models. In SS models, the β’s are dependent on the specific i and
are therefore written as βi. An example for a SS model is the random-effects
model.

Marginal, Conditional, and Random-Effects Models

In the marginal model, the regression is modeled seperately from the de-
pendence within the measurement in contrast to the two other approaches.
The marginal expectation E(yij) is modeled as a function of the explana-
tory variables and is interpreted as the mean response over the population
of individuals with the same x. Hence, marginal models are mainly suitable
for the analysis of covariable effects in a population.
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The random-effects model, often also titled the mixed model, assumes
that there are fixed effects, as in the marginal model, as well as individual
specific effects. The dependent observations on each individual are assumed
to be conditionally independent given the subject-specific effects.

Hence random-effects models are useful if one is interested in subject-
specific behavior. But, concerning interpretation, only the linear mixed
model allows an easy interpretation of fixed effect parameters as population-
averaged effects and the others as subject-specific effects. Generalized linear
mixed models are more complex, and even if a parameter is estimated as a
fixed effect it may not be easily interpreted as a population-averaged effect.

For the conditional model (observation-driven model), a time-dependent
response yit is modeled as a function of the covariables and of the past
response values yit−1, . . . , yi1. This is done by assuming a specific correla-
tion structure among the response values. Conditional models are useful if
the main point of interest is the conditional probability of a state or the
transition of states.

10.9.3 Quasi-Likelihood Approach for Correlated Binary
Response

The following sections are dedicated to binary response variables and
especially the bivariate case (that is, cluster size ni = 2 for all i = 1, . . . , N).

In case of a violation of independence or in case of a missing distribution
assumption of the natural exponential family, the core of the ML method,
namely the score function, may be used, nevertheless, for parameter esti-
mation. We now want to specify the so-called quasi-score function (10.77)
for the binary response (cf. Section 10.1.7).

Let y′
i = (yi1, . . . , yini

) be the response vector of the ith cluster (i =
1, . . . , N) with the true covariance matrix cov(yi) and let xij be the p × 1-
vector of the covariable corresponding to yij . Assume the variables yij are
binary with values 1 and 0, and assume P (yij = 1) = πij . We then have
µij = πij . Let π′

i = (πi1, . . . , πini
). Suppose that the link function is g(·),

that is,

g(πij) = ηij = x′
ijβ .

Let h(·) be the inverse function, that is,

µij = πij = h(ηij) = h(x′
ijβ) .

For the canonical link

logit(πij) = ln
(

πij

1 − πij

)
= g(πij) = x′

ijβ

we have

πij = h(ηij) =
exp(ηij)

1 + exp(ηij)
=

exp(x′
ijβ)

1 + exp(x′
ijβ)

.
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Hence

D =
(

∂µij

∂β

)
=
(

∂πij

∂β

)
.

We have
∂πij

∂β
=

∂πij

∂ηij

∂ηij

∂β
=

∂h(ηij)
∂ηij

xij ,

and hence, for i = 1, . . . , N and the p × ni-matrix X ′
i = (xi1, . . . , xini)

Di = D̃i Xi with D̃i =
(

∂h(ηij)
∂ηij

)
.

For the quasi-score function for all N clusters, we now get

U(β) =
N∑

i=1

X ′
iD̃

′
i V−1

i (yi − πi) , (10.215)

where Vi is the matrix of the working variances and covariances of the
yij of the ith cluster. The solution of U(β̂) = 0 is found iteratively under
further specifications, which we describe in the next section.

10.9.4 The GEE Method by Liang and Zeger
The variances are modeled as a function of the mean, that is,

vij = var(yij) = v(πij)φ . (10.216)

(In the binary case, the form of the variance of the binomial distribution
is often chosen: v(πij) = πij(1 − πij).) With these, the following matrix is
formed

Ai = diag(vi1, . . . , vini
) . (10.217)

Since the structure of dependence is not known, an ni×ni quasi-correlation
matrix Ri(α) is chosen for the vector of the ith cluster y′

i = (yi1, . . . , yini
)

according to

Ri(α) =


1 ρi12(α) · · · ρi1ni

(α)
ρi21(α) 1 · · · ρi2ni

(α)
...

...
ρini1(α) ρini2(α) · · · 1

 , (10.218)

where the ρikl(α) are the correlations as function of α (α may be a scalar
or a vector). Ri(α) may vary for the clusters.

By multiplying the quasi-correlation matrix Ri(α) with the root diagonal
matrix of the variances Ai, we obtain a working covariance matrix

Vi(β, α, φ) = A
1
2
i Ri(α)A

1
2
i , (10.219)
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which is no longer completely specified by the expectations, as in the case
of independent response. We have Vi(β, α, φ) = cov(yi) if and only if Ri(α)
is the true correlation matrix of yi.

If the matrices Vi in (10.215) are replaced by the matrices Vi(β, α, φ)
from (10.219), we get the generalized estimating equations by Liang and
Zeger (1986), that is,

U(β, α, φ) =
N∑

i=1

(
∂πi

∂β

)′
V−1

i (β, α, φ)(yi − πi) = 0 . (10.220)

The solutions are denoted by β̂G. For the quasi-Fisher matrix, we have

FG(β, α) =
N∑

i=1

(
∂πi

∂β

)′
V−1

i (β, α, φ)
(

∂πi

∂β

)
. (10.221)

To avoid the dependence of α in determining β̂G, Liang and Zeger (1986)
propose to replace α by a N

1
2 -consistent estimate α̂(y1, . . . , yN , β, φ) and

φ by φ̂ (10.79) and to determine β̂G from U(β, α̂, φ̂) = 0.

Remark: The iterative estimating procedure for GEE is described in de-
tail in Liang and Zeger (1986). For the computational translation, a SAS
macro by Karim and Zeger (1988) and a program by Kastner, Fieger, and
Heumann (1997) exist.

If Ri(α) = Ini
for i = 1, . . . , N , is chosen, then the GEE are reduced to

the independence estimating equations (IEE) . The IEE are

U(β, φ) =
N∑

i=1

(
∂πi

∂β

)′
A−1

i (yi − πi) = 0 (10.222)

with Ai = diag(v(πij)φ). The solution is denoted by β̂I . Under some weak
conditions, we have (Theorem 1 in Liang and Zeger, 1986) that β̂I is asymp-
totically consistent if the expectation πij = h(x′

ijβ) is correctly specified and
the dispersion parameter φ is consistantly estimated.

β̂I is asymptotically normal

β̂I
a.s.∼ N(β; F−1

Q (β, φ)F2(β, φ)F−1
Q (β, φ)), (10.223)

where

F−1
Q (β, φ) =

[
N∑

i=1

(
∂πi

∂β

)′
Ai

−1
(

∂πi

∂β

)]−1

,

F2(β, φ) =
N∑

i=1

(
∂πi

∂β

)′
Ai

−1 cov(yi)Ai
−1
(

∂πi

∂β

)
and cov(yi) is the true covariance matrix of yi.
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A consistent estimate for the variance of β̂I is found by replacing βI by
β̂I , cov(yi) by its estimate (yi − π̂i)(yi − π̂i)′, and φ by φ̂ from (10.79), if φ
is an unknown nuisance parameter. The consistency is independent of the
correct specification of the covariance.

The advantages of β̂I are that β̂I is easy to calculate with available
software for generalized linear models (see Appendix C) and that in case of
correct specification of the regression model, β̂I and cov(β̂I) are consistent
estimates. However, β̂I loses in efficiency if the correlation between the
clusters is large.

10.9.5 Properties of the GEE Estimate β̂G

Liang and Zeger (1986, Theorem 2) state that under some weak assump-
tions and under the conditions

(i) α̂ is N
1
2 -consistent for α, given β and φ

(ii) φ̂ is a N
1
2 -consistent estimate for φ, given β

(iii) the derivation ∂α̂(β, φ)/∂φ is independent of φ and α and is of
stochastic order Op(1)

the estimate β̂G is consistent and asymptotic normal:

β̂G
as.∼ N(β, VG) (10.224)

with the asymptotic covariance matrix

VG = F−1
Q (β, α)F2(β, α)F−1

Q (β, α), (10.225)

where

F−1
Q (β, α) =

(
N∑

i=1

(
∂πi

∂β

)′
Vi

−1
(

∂πi

∂β

))−1

,

F2(β, α) =
N∑

i=1

(
∂πi

∂β

)′
Vi

−1 cov(yi) Vi
−1
(

∂πi

∂β

)
and cov(yi) = E[(yi − πi)(yi − πi)′] is the true covariance matrix of yi. A
short outline of the proof may be found in the appendix of Liang and Zeger
(1986).

The asymptotic properties hold only for N → ∞. Hence, it should be
remembered that the estimation procedure should be used only for a large
number of clusters.

An estimate V̂G for the covariance matrix VG may be found by replacing
β, φ, α by their consistent estimates in (10.225), or by replacing cov(yi) by
(yi − π̂i)(yi − π̂i)′.
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If the covariance structure is specified correctly so that Vi = cov(yi),
then the covariance of β̂G is the inverse of the expected Fisher information
matrix

VG =

(
N∑

i=1

(
∂πi

∂β

)′
Vi

−1
(

∂πi

∂β

))−1

= F−1(β, α).

The estimate of this matrix is more stable than that of (10.225), but it has
a loss in efficiency if the correlation structure is specified incorrectly (cf.
Prentice, 1988, p. 1040).

The method of Liang and Zeger leads to an asymptotic variance of β̂G

that is independent of the choice of the estimates α̂ and φ̂ within the class
of the N

1
2 -consistent estimates. This is true for the asymptotic distribution

of β̂G as well.
In case of correct specification of the regression model, the estimates β̂G

and V̂G are consistent, independent of the choice of the quasi-correlation
matrix Ri(α). This means that even if Ri(α) is specified incorrectly, β̂G and
V̂G stay consistent as long as α̂ and φ̂ are consistent. This robustness of the
estimates is important, because the admissibility of the working covariance
matrix Vi is difficult to check for small ni. An incorrect specification of
Ri(α) can reduce the efficiency of β̂G.

If the identity matrix is assumed for Ri(α), that is, Ri(α) = I, i =
1, · · · , N , then the estimating equations for β are reduced to the IEE. If
the variances of the binomial distribution are chosen, as is usually done in
the binary case, then the IEE and the ML score function (with binomially
distributed variables) lead to the same estimates for β. However, the IEE
method should be preferred in general, because the ML estimation proce-
dure leads to incorrect variances for β̂G and, hence, for example, incorrect
test statistics and p-values. This leads to incorrect conclusions, for instance,
related to significance or nonsignificance of the covariables (cf. Liang and
Zeger, 1993).

Diggle, Liang, and Zeger (1994, Chapter 7.5) have proposed checking the
consistency of β̂G by fitting an appropriate model with various covariance
structures. The estimates β̂G and their consistent variances are then com-
pared. If these differ too much, the modeling of the covariance structure
calls for more attention.

10.9.6 Efficiency of the GEE and IEE Methods
Liang and Zeger (1986) stated the following about the comparison of β̂I

and β̂G. β̂I is almost as efficient as β̂G if the true correlation α is small.
β̂I is very efficient if α is small and the data are binary.
If α is large, then β̂G is more efficient than β̂I , and the efficiency of β̂G

can be increased if the correlation matrix is specified correctly.
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In case of a high correlation within the blocks, the loss of efficiency of β̂I

compared to β̂G is larger if the number of subunits ni, i = 1, · · · , N , varies
between the clusters than if the clusters are all of the same size.

10.9.7 Choice of the Quasi-Correlation Matrix Ri(α)
The working correlation matrix Ri(α) is chosen according to considerations
such as simplicity, efficiency, and amount of existing data. Furthermore,
assumptions about the structure of the dependence among the data should
be considered by the choice. As mentioned before, the importance of the
correlation matrix is due to the fact that it influences the variance of the
estimated parameters.

The simplest specification is the assumption that the repeated observa-
tions of a cluster are uncorrelated, that is,

Ri(α) = I, i = 1, · · · , N.

This assumption leads to the IEE equations for uncorrelated response
variables.

Another special case, which is the most efficient according to Liang and
Zeger (1986, §4) but may be used only if the number of observations per
cluster is small and the same for all clusters (e.g., equals n), is given by the
choice

Ri(α) = R(α)

where R(α) is left totally unspecified and may be estimated by the empirical
correlation matrix. The n(n − 1)/2 parameters have to be estimated.

If it is assumed that the same pairwise dependencies exist among all re-
sponse variables of one cluster, then the exchangeable correlation structure
may be chosen:

Corr(yik, yil) = α, k �= l, i = 1, . . . , N .

This corresponds to the correlation assumption in random-effects models.
If Corr(yik, yil) = α(|k−l|) is chosen, then the correlations are stationary.

The specific form α(|k − l|) = α|l−k| corresponds to the autocorrelation
function of an AR(1)-process.

Further methods for parameter estimation in quasi-likelihood approaches
are the GEE1 method by Prentice (1988) that estimates the α and β si-
multaneously from the GEE for α and β; the modified GEE1 method by
Fitzmaurice and Laird (1993) based on conditional odds ratios; those by
Lipsitz, Laird, and Harrington (1991) and Liang, Zeger, and Qaqish (1992)
based on marginal odds ratios for modeling the cluster correlation; the
GEE2 method by Liang et al. (1992) that estimates δ′ = (β′, α) simul-
taneously as a joint parameter; and the pseudo-ML method by Zhao and
Prentice (1990) and Prentice and Zhao (1991).
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10.9.8 Bivariate Binary Correlated Response Variables
The previous sections introduced various methods developed for regression
analysis of correlated binary data. They were described in a general form
for N blocks (clusters) of size ni. These methods may, of course, be used
for bivariate binary data as well. This has the advantage that it simplifies
the matter.

In this section, the GEE and IEE methods are developed for the bivariate
binary case. Afterwards, an example demonstrates for the case of bivariate
binary data the difference between a naive ML estimate and the GEE
method by Liang and Zeger (1986).

We have: yi = (yi1, yi2)′, i = 1, · · · , N . Each response variable yij , j =
1, 2, has its own vector of covariables x′

ij = (xij1, · · · , xijp). The chosen link
function for modeling the relationship between πij = P (yij = 1) and xij is
the logit link

logit(πij) = ln
(

πij

1 − πij

)
= x′

ijβ . (10.226)

Let

π′
i = (πi1, πi2) , ηij = x′

ijβ , η′ = (ηi1, ηi2) . (10.227)

The logistic regression model has become the standard method for
regression analysis of binary data.

10.9.9 The GEE Method
From Section 10.9.4 it can be seen that the form of the estimating equations
for β is as follows:

U(β, α, φ) = S(β, α) =
N∑

i=1

(
∂πi

∂β

)′
Vi

−1(yi − πi) = 0 , (10.228)

where Vi = Ai
1
2 Ri(α)Ai

1
2 , Ai = diag(v(πij)φ), j = 1, 2, and Ri(α) is

the working correlation matrix. Since only one correlation coefficient ρi =
Corr(yi1, yi2), i = 1, · · · , N , has to be specified for bivariate binary data,
and this is assumed to be constant, we have for the correlation matrix:

Ri(α) =
(

1 ρ
ρ 1

)
, i = 1, · · · , N . (10.229)

For the matrix of derivatives we have:(
∂πi

∂β

)′
=
(

∂h(ηi)
∂β

)′
=
(

∂ηi

∂β

)′(
∂h(ηi)

∂ηi

)′

=
(

x′
i1

x′
i2

)′( ∂h(ηi1)
∂ηi1

0
0 ∂h(ηi2)

∂ηi2

)
.
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Since h(ηi1) = πi1 = exp(x′
i1β)

1+exp(x′
i1β) and exp(x′

i1β) = πi1
1−πi1

, we have 1 +
exp(x′

i1β) = 1 + πi1
1−πi1

= 1
1−πi1

, and

∂h(ηi1)
∂ηi1

=
πi1

1 + exp(x′
i1β)

= πi1(1 − πi1). (10.230)

holds. Analogously we have:

∂h(ηi2)
∂ηi2

= πi2(1 − πi2). (10.231)

If the variance is specified as var(yij) = πij(1 − πij), φ = 1, then we get(
∂πi

∂β

)′
= x′

i

(
var(yi1) 0

0 var(yi2)

)
= x′

i∆i

with x′
i = (xi1, xi2) and ∆i =

(
var(yi1) 0

0 var(yi2)

)
. For the covariance

matrix Vi we have:

Vi =
(

var(yi1) 0
0 var(yi2)

) 1
2
(

1 ρ
ρ 1

)(
var(yi1) 0

0 var(yi2)

) 1
2

=
(

var(yi1) ρ(var(yi1) var(yi2))
1
2

ρ(var(yi1) var(yi2))
1
2 var(yi2)

)
(10.232)

and for the inverse of Vi:

V−1
i =

1
(1 − ρ2) var(yi1) var(yi2)(

var(yi2) −ρ(var(yi1) var(yi2))
1
2

−ρ(var(yi1) var(yi2))
1
2 var(yi1)

)

=
1

1 − ρ2

(
[var(yi1)]−1 −ρ(var(yi1) var(yi2))− 1

2

−ρ(var(yi1) var(yi2))− 1
2 [var(yi2)]−1

)
.

(10.233)

If ∆i is multiplied by Vi
−1, we obtain

Wi = ∆i Vi
−1 =

1
1 − ρ2

 1 −ρ
(

var(yi1)
var(yi2)

) 1
2

−ρ
(

var(yi2)
var(yi1)

) 1
2

1

 (10.234)

and for the GEE method for β in the bivariate binary case:

S(β, α) =
N∑

i=1

x′
iWi(yi − πi) = 0. (10.235)

According to by Liang and Zeger (1986, Theorem 2), under some weak
conditions and under the assumption that the correlation parameter was
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consistently estimated, the solution β̂G is consistent and asymptotic normal
with expectation β and covariance matrix (10.225).

10.9.10 The IEE Method
If it is assumed that the response variables of each of the blocks are inde-
pendent, that is, Ri(α) = I and Vi = Ai, then GEE method is reduced to
IEE method.

U(β, φ) = S(β) =
N∑

i=1

(
∂πi

∂β

)′
Ai

−1(yi − πi) = 0. (10.236)

As we just showed, we have for the bivariate binary case:(
∂πi

∂β

)′
= x′

i∆i = x′
i

(
var(yi1) 0

0 var(yi2)

)
(10.237)

with var(yij) = πij(1 − πij), φ = 1, and

Ai
−1 =

(
[var(yi1)]−1 0

0 [var(yi2)]−1

)
.

The IEE method then simplifies to

S(β) =
N∑

i=1

x′
i(yi − πi) = 0. (10.238)

The solution β̂I is consistent and asymptotic normal, according to by Liang
and Zeger (1986, Theorem 1).

10.9.11 An Example from the Field of Dentistry
In this section, we demonstrate the procedure of the GEE method by means
of a “twin’ data set, that was documented by the Dental Clinic in Karl-
sruhe, Germany (Walther, 1992). The focal point is to show the difference
between a robust estimate (GEE method) that takes the correlation of the
response variables into account and the naive ML estimate. For the param-
eter estimation with the GEE method, a SAS macro is available (Karim
and Zeger, 1988), as well as a procedure by Kastner et al. (1997).

Description of the “Twin’ Data Set

During the examined interval, 331 patients were provided with two conical
crowns each in the Dental Clinic in Karlsruhe. Since 50 conical crowns
showed missing values and since the SAS macro for the GEE method needs
complete data sets, these patients were excluded. Hence, for estimation of
the regression parameters, the remaining 612 completely observed twin data
sets were used. In this example, the twin pairs make up the clusters and
the twins themselves (1.twin, 2.twin) are the subunits of the clusters.
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The Response Variable

For all twin pairs in this study, the lifetime of the conical crowns was
recorded in days. This lifetime is chosen as the response and is transformed
into a binary response variable yij of the jth twin (j = 1, 2) in the ith
cluster with

yij =
{

1 , if the conical crown is in function longer than x days
0 , if the conical crown is not in function longer than x days.

Different values may be defined for x. In the example, the values, in days,
of 360 (1 year), 1100 (3 years), and 2000 (5 years) were chosen. Because
the response variable is binary, the response probability of yij is modeled
by the logit link (logistic regression). The model for the log-odds (i.e.,
the logarithm of the odds πij/(1 − πij) of the response yij = 1) is linear
in the covariables, and in the model for the odds itself, the covariables
have a multiplicative effect on the odds. Aim of the analysis is to find out
whether the prognostic factors have a significant influence on the response
probability.

Prognostic Factors

The covariables that were included in the analysis with the SAS macro, are

• age (in years)

• sex (1: male, 2: female)

• jaw (1: upper jaw, 2: lower jaw)

• type (1: dentoalveolar design, 2: transversal design)

All covariables, except for the covariable age, are dichotomous. The two
types of conical crown constructions, dentoalveolar and transversal design,
are distinguished as follows (cf. Walther, 1992):

• The dentoalveolar design connects all abutments exclusively by a rigid
connection that runs on the alveolar ridge.

• The transversal design is used if the parts of reconstruction have to
be connected by a transversal bar. This is the case if teeth in the
front area are not included in the construction.

A total of 292 conical crowns were included in a dentoalveolar designs and
320 in a transversal design. Of these, 258 conical crowns were placed in the
upper jaw, and 354 in the lower jaw.

The GEE Method

A problem that arises for the twin data is that the twins of a block are
correlated. If this correlation is not taken into account, then the estimates
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β̂ stay unchanged but the variance of the β̂ is underestimated. In case of
positive correlation in a cluster, we have:

var(β̂)naive < var(β̂)robust.

Therefore,

β̂√
var(β̂)naive

>
β̂√

var(β̂)robust

,

which leads to incorrect tests and possibly to significant effects that might
not be significant in a correct analysis (e.g., GEE). For this reason, appro-
priate methods that estimate the variance correctly should be chosen if the
response variables are correlated.

The following regression model without interaction is assumed:

ln
P (Lifetime ≥ x)
P (Lifetime < x)

= β0+β1 ·Age+β2 ·Sex+β3 ·Jaw+β4 ·Type. (10.239)

Additionally, we assume that the dependencies between the twins are
identical and hence the exchangeable correlation structure is suitable for
describing the dependencies.

To demonstrate the effects of various correlation assumptions on the
estimation of the parameters, the following logistic regression models, which
differ only in the assumed association parameter, are compared:

Model 1: naive (incorrect) ML estimation

Model 2: robust (correct) estimation, where independence is assumed, that
is, Ri(α) = I

Model 3: robust estimation with exchangeable correlation structure (ρikl =
Corr(yik, yil) = α, k �= l)

Model 4: robust estimation with unspecified correlation structure (Ri(α) =
R(α)).

As a test statistic (z-naive and z-robust) the ratio of estimate and
standard error is calculated.

Results

Table 10.6 summarizes the estimated regression parameters, the standard
errors, the z-statistics, and the p-values of models 2, 3, and 4 of the response
variables

yij =
{

1 , if the conical crown is in function longer than 360 days
0 , if the conical crown is in function not longer than 360 days.

It turns out that the β̂-values and the z-statistics are identical, indepen-
dent of the choice of Ri, even though a high correlation between the twins
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Table 10.6. Results of the robust estimates for models 2, 3, and 4 for x = 360.

Model 2 Model 3 Model 4
(independence assump.) (exchangeable) (unspecified)

Age 0.0171) (0.012)2) 0.017 (0.012) 0.017 (0.012)
1.333) (0.185)4) 1.33 (0.185) 1.33 (0.185)

Sex −0.117 (0.265) −0.117 (0.265) −0.117 (0.265)
−0.44 (0.659) −0.44 (0.659) −0.44 (0.659)

Jaw 0.029 (0.269) 0.029 (0.269) 0.029 (0.269)
0.11 (0.916) 0.11 (0.916) 0.11 (0.916)

Type −0.027 (0.272) −0.027 (0.272) −0.027 (0.272)
−0.10 (0.920) −0.10 (0.920) −0.10 (0.920)

1) estimated regression values β̂ 2) standard errors of β̂
3) z-statistic 4) p-value

Table 10.7. Comparison of the standard errors, the z-statistics, and the p-values
of models 1 and 2 for x = 360. (∗ indicates significace at the 10% level)

Model 1 (naive) Model 2 (robust)
σ z p-value σ z p-value

Age 0.008 1.95 0.051∗ 0.012 1.33 0.185
Sex 0.190 −0.62 0.538 0.265 −0.44 0.659
Jaw 0.192 0.15 0.882 0.269 0.11 0.916
Type 0.193 −0.14 0.887 0.272 −0.10 0.920

exists. The exchangeable correlation model yields the value 0.9498 for the
estimated correlation parameter α̂. In the model with the unspecified cor-
relation structure, ρi12 and ρi21 were estimated as 0.9498 as well. The fact
that the estimates of models 2, 3, and 4 coincide was observed in the anal-
yses of the response variables with x = 1100 and x = 2000 as well. This
means that the choice of Ri has no influence on the estimation procedure
in the case of bivariate binary response. The GEE method is robust with
respect to various correlation assumptions.

Table 10.7 compares the results of models 1 and 2. A striking difference
between the two methods is that the covariate age in case of a naive ML
estimation (model 1) is significant at the 10% level, even though this sig-
nificance does not turn up if the robust method with the assumption of
independence (model 2) is used. In the case of coinciding estimated regres-
sion parameters, the robust variances of β̂ are larger and, accordingly, the
robust z-statistics are smaller than the naive z-statistics. This result shows
clearly that the ML method, which is incorrect in this case, underestimates
the variances of β̂ and hence leads to an incorrect age effect.

Tables 10.8 and 10.9 summarize the results with x-values 1100 and 2000.
Table 10.8 shows that if the response variable is modeled with x = 1100,
then none of the observed covariables is significant. As before, the estimated
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Table 10.8. Comparison of the standard errors, the z-statistics, and the p-values
of models 1 and 2 for x = 1100.

Model 1 (naive) Model 2 (robust)
β̂ σ z p-value σ z p-value

Age 0.0006 0.008 0.08 0.939 0.010 0.06 0.955
Sex −0.0004 0.170 −0.00 0.998 0.240 −0.00 0.999
Jaw 0.1591 0.171 0.93 0.352 0.240 0.66 0.507
Type 0.0369 0.172 0.21 0.830 0.242 0.15 0.878

Table 10.9. Comparison of the standard errors, the z-statistics, and the p-values
of models 1 and 2 for x = 2000. (∗ indicates significace at the 10% level)

Model 1 (naive) Model 2 (robust)
β̂ σ z p-value σ z p-value

Age −0.0051 0.013 −0.40 0.691 0.015 −0.34 0.735
Sex −0.2177 0.289 −0.75 0.452 0.399 −0.55 0.586
Jaw 0.0709 0.287 0.25 0.805 0.412 0.17 0.863
Type 0.6531 0.298 2.19 0.028∗ 0.402 1.62 0.104

correlation parameter α̂ = 0.9578 indicates a strong dependency between
the twins. In Table 10.9, the covariable “type’ has a significant influence
in the case of naive estimation. In the case of the GEE method (R =
I), it might be significant with a p-value = 0.104 (10% level). The result
β̂type = 0.6531 indicates that a dentoalveolar design significantly increases
the log-odds of the response variable

yij =
{

1 , if the conical crown is in function longer than 2000 days
0 , if the conical crown is in function not longer than 2000 days.

Assuming the model

P (Lifetime ≥ 2000)
P (Lifetime < 2000)

= exp(β0 + β1 · Age + β2 · Sex + β3 · Jaw + β4 · Type)

the odds P (Lifetime≥ 2000)
P (Lifetime< 2000)

for a dentoalveolar design is higher than the
odds for a transversal design by the factor exp(β4) = exp(0.6531) = 1.92,
or alternatively, the odds ratio equals 1.92. The correlation parameter yields
the value 0.9035.

In summary, it can be said that age and type are significant but not
time-dependent covariables. The robust estimation yields no significant
interaction, and a high correlation α exists between the twins of a pair.

Problems

The GEE estimations, which were carried out stepwise, have to be com-
pared with caution, because they are not independent due to the time effect
in the response variables. In this context, time-adjusted GEE methods that
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could be applied in this example are still missing. Therefore, further efforts
are necessary in the field of survivorship analysis, in order to be able to
complement the standard procedures, such as the Kaplan-Meier estimate
and log-rank test, which are based on the independence of the response
variables.

10.9.12 Full Likelihood Approach for Marginal Models
A useful full likelihood approach for marginal models in the case of multi-
variate binary data was proposed by Fitzmaurice and Laird (1993). Their
starting point is the joint density

f(y; Ψ, Ω) = P (Y1 = y1, . . . , YT = yT ; Ψ, Ω) = exp{y′Ψ + w′Ω − A(Ψ,Ω)}
(10.240)

with y = (y1, . . . , yT )′, w = (y1y2, y1y3, . . . , yT−1yT , . . . , y1y2 · · · yT )′, Ψ =
(Ψ1, . . . ,ΨT )′ and Ω = (ω12, ω13, . . . , ωT−1T , . . . , ω12···T )′. Further

exp{A(Ψ,Ω)} =
y=(1,1,...,1)∑
y=(0,0,...,0)

exp{y′Ψ + w′Ω}

is a normalizing constant. Note that this is essentially the saturated param-
eterization in a loglinear model for T binary responses, since interactions
of order 2 to T are included. A model that considers only all pairwise inter-
actions, that is w = (y1y2), . . . , (yT−1yT ) and Ω = (ω12, ω13, . . . , ωT−1,T ),
was already proposed by Cox (1972) and Zhao and Prentice (1990). The
models are special cases of the so-called partial exponential families that
were introduced by Zhao, Prentice, and Self (1992). The idea of Fitzmau-
rice and Laird (1993) was then to make a one-to-one transformation of the
canonical parameter vector Ψ to the mean vector µ, which then can be
linked to covariates via link functions such as in logistic regression. This
idea of transforming canonical parameters one-to-one into (eventually cen-
tralized) moment parameters can be generalized to higher moments and to
dependent categorical variables with more than two categories. Because the
details, theoretically and computationally, are somewhat complex, we refer
the reader to Lang and Agresti (1994), Molenberghs and Lesaffre (1994),
Glonek (1996), Heagerty and Zeger (1996), and Heumann (1998). Each of
these sources gives different possibilities on how to model the pairwise and
higher interactions.

10.10 Exercises

Exercise 1. Let two models be defined by their design matrices X1 and
X2 = (X1, X3). Name the test statistic for testing H0 : Model X1 holds
and its distribution.
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Exercise 2. What is meant by overdispersion? How is it parameterized in
case of a binomial distribution?

Exercise 3. Why would a quasi-loglikelihood approach be chosen? How is
the correlation in cluster data parameterized?

Exercise 4. Compare the models of two-way classification for contin-
uous, normal data (ANOVA) and for categorical data. What are the
reparametrization conditions in each case?

Exercise 5. The following table gives G2-analysis of a two-way model with
all submodels:

Model G2 p-value
A 200 0.00
B 100 0.00

A+B 20 0.10
A∗B 0 1.00

Which model is valid?

Exercise 6. The following I × 2-table gives frequencies for the age group
X and the binary response Y :

1 0
< 40 10 8

40–50 15 12
50–60 20 12
60–70 30 20
> 70 30 25

Analyze the trend of the sample logits.

Exercise 7. Consider the likelihood model of Section 10.9.12 for the case
T = 2. Derive the Jacobian matrix J of the one-to-one transformation
(ψ1, ψ2, ω12) to (µ1, µ2, γ12) where γ12 = ω12, and

J =


∂µ1
∂Ψ1

∂µ1
∂Ψ2

∂µ1
∂ω12

∂µ2
∂Ψ1

∂µ2
∂Ψ2

∂µ2
∂ω12

∂γ12
∂Ψ1

∂γ12
∂Ψ2

∂γ12
∂ω12

 .

Also derive its inverse J−1.



Appendix A
Matrix Algebra

There are numerous books on matrix algebra that contain results useful for
the discussion of linear models. See for instance books by Graybill (1961);
Mardia, Kent, and Bibby (1979); Searle (1982); Rao (1973a); Rao and
Mitra (1971); and Rao and Rao (1998), to mention a few. We collect in
this Appendix some of the important results for ready reference. Proofs
are generally omitted. References to original sources are given wherever
necessary.

A.1 Overview

Definition A.1 An m × n-matrix A is a rectangular array of elements in m
rows and n columns.

In the context of the material treated in the book and in this Appendix,
the elements of a matrix are taken as real numbers. We indicate an m ×
n-matrix by writing A : m × n or A

m,n
.

Let aij be the element in the ith row and the jth column of A. Then A
may be represented as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · ·

am1 am2 · · · amn

 = (aij) .
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A matrix with n = m rows and columns is called a square matrix. A square
matrix having zeros as elements below (above) the diagonal is called an
upper (lower) triangular matrix.

Definition A.2 The transpose A′ : n × m of a matrix A : m × n is given by
interchanging the rows and columns of A. Thus

A′ = (aji) .

Then we have the following rules:

(A′)′ = A , (A + B)′ = A′ + B′ , (AB)′ = B′A′ .

Definition A.3 A square matrix is called symmetric if A′ = A.

Definition A.4 An m × 1 matrix a is said to be an m-vector and written as
a column

a =

 a1
...

am

 .

Definition A.5 A 1 × n-matrix a′ is said to be a row vector

a′ = (a1, · · · , an).

A : m × n may be written alternatively in a partitioned form as

A = (a(1), . . . , a(n)) =

 a′
1
...

a′
m


with

a(j) =

 a1j

...
amj

 , ai =

 ai1
...

ain

 .

Definition A.6 The n × 1 row vector (1, · · · , 1)′ is denoted by 1′
n or 1′.

Definition A.7 The matrix A : m × m with aij = 1 (for all i,j) is given the
symbol Jm, that is,

Jm =


1 · · · 1
...

...

1
... 1

 = 1m1′
m .

Definition A.8 The n-vector

ei = (0, · · · , 0, 1, 0, · · · , 0)′

with the ith component as 1 and all the others as 0, is called the ith unit
vector.
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Definition A.9 A n×n (square) matrix with elements 1 on the main diagonal
and zeros off the diagonal is called the identity matrix In.

Definition A.10 A square matrix A : n × n with zeros in the off diagonal is
called a diagonal matrix. We write

A = diag(a11, · · · , ann) = diag(aii) =

 a11 0
. . .

0 ann

 .

Definition A.11 A matrix A is said to be partitioned if its elements are
arranged in submatrices.

Examples are

A
m,n

= (A1
m,r

, A2
m,s

) with r + s = n

or

A
m,n

=

 A11
r,n−s

A12
r,s

A21
m−r,n−s

A22
m−r,s

 .

For partitioned matrices we get the transposess as

A′ =
(

A′
1

A′
2

)
, A′ =

(
A′

11 A′
21

A′
12 A′

22

)
,

respectively.

A.2 Trace of a Matrix

Definition A.12 Let a11, . . . , ann be the elements on the main diagonal of a
square matrix A : n × n. Then the trace of A is defined as the sum

tr(A) =
n∑

i=1

aii .

Theorem A.13 Let A and B be square n × n matrices, and let c be a scalar
factor. Then we have the following rules:

(i) tr(A ± B) = tr(A)± tr(B);

(ii) tr(A′) = tr(A);

(iii) tr(cA) = c tr(A);

(iv) tr(AB) = tr(BA) (here A and B can be rectangular matrices of the
form A : m × n and B : n × m);

(v) tr(AA′) = tr(A′A) =
∑

i,j a2
ij;



356 Appendix A. Matrix Algebra

(vi) If a = (a1, . . . , an)′ is an n-vector, then its squared norm may be
written as

‖a‖2 = a′a =
n∑

i=1

a2
i = tr(aa′).

Note, that rules (iv) and (v) also hold for the case A : n×m and B : m×n.

A.3 Determinant of a Matrix

Definition A.14 Let n > 1 be a positive integer. The determinant of a square
matrix A : n × n is defined by

|A| =
n∑

i=1

(−1)i+jaij |Mij | (for any j, j fixed),

with |Mij | being the minor of the element aij. |Mij | is the determinant of
the remaining (n−1)× (n−1) matrix when the ith row and the jth column
of A are deleted. Aij = (−1)i+j |Mij | is called the cofactor of aij.

Examples:

For n = 2: |A| = a11a22 − a12a21.

For n = 3 (first column (j = 1) fixed):

A11 = (−1)2
∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ = (−1)2M11

A21 = (−1)3
∣∣∣∣ a12 a13

a32 a33

∣∣∣∣ = (−1)3M21

A31 = (−1)4
∣∣∣∣ a12 a13

a22 a23

∣∣∣∣ = (−1)4M31

⇒ |A| = a11A11 + a21A21 + a31A31.

Note: As an alternative one may fix a row and develop the determinant of
A according to

|A| =
n∑

j=1

(−1)i+jaij |Mij | (for any i, i fixed).

Definition A.15 A square matrix A is said to be regular or nonsingular if
|A| �= 0. Otherwise A is said to be singular.

Theorem A.16 Let A and B be n × n square matrices, and c be a scalar.
Then we have

(i) |A′| = |A|,
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(ii) |cA| = cn|A|,
(iii) |AB| = |A||B|,
(iv) |A2| = |A|2,
(v) If A is diagonal or triangular, then

|A| =
n∏

i=1

aii .

(vi) For D =

 A
n,n

C
n,m

0
m,n

B
m,m

 we have

∣∣∣∣ A C
0 B

∣∣∣∣ = |A||B|,

and analogously ∣∣∣∣ A′ 0′

C ′ B′

∣∣∣∣ = |A||B|.

(vii) If A is partitioned with A11 : p × p and A22 : q × q square and non-
singular, then∣∣∣∣ A11 A12

A21 A22

∣∣∣∣ = |A11||A22 − A21A
−1
11 A12|

= |A22||A11 − A12A
−1
22 A21|.

Proof: Define the following matrices

Z1 =
(

I −A12A
−1
22

0 I

)
and Z2 =

(
I 0

−A−1
22 A21 I

)
,

where |Z1| = |Z2| = 1 by (vi). Then we have

Z1AZ2 =
(

A11 − A12A
−1
22 A21 0

0 A22

)
and [using (iii) and (iv)]

|Z1AZ2| = |A| = |A22||A11 − A12A
−1
22 A21|.

(viii)
∣∣∣∣ A x

x′ c

∣∣∣∣ = |A|(c − x′A−1x) where x is an n-vector.

Proof: Use (vii) with A instead of A11 and c instead of A22.

(ix) Let B : p×n and C : n×p be any matrices and A : p×p a nonsingular
matrix. Then

|A + BC| = |A||Ip + A−1BC|
= |A||In + CA−1B|.
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Proof: The first relationship follows from (iii) and

(A + BC) = A(Ip + A−1BC)

immediately. The second relationship is a consequence of (vii) applied
to the matrix ∣∣∣∣ Ip −A−1B

C In

∣∣∣∣ = |Ip||In + CA−1B|

= |In||Ip + A−1BC|.

(x) |A + aa′| = |A|(1 + a′A−1a), if A is nonsingular.

(xi) |Ip + BC| = |In + CB|, if B : p × n and C : n × p.

A.4 Inverse of a Matrix

Definition A.17 A matrix B : n × n is said to be an inverse of A : n × n
if AB = I. If such a B exists, it is denoted by A−1. It is easily seen that
A−1 exists if and only if A is nonsingular. It is easy to establish that if A−1

exists; then AA−1 = A−1A = I.

Theorem A.18 If all the inverses exist, we have

(i) (cA)−1 = c−1A−1.

(ii) (AB)−1 = B−1A−1.

(iii) If A : p × p, B : p × n, C : n × n and D : n × p then

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1.

(iv) If 1 + b′A−1a �= 0, then we get from (iii)

(A + ab′)−1 = A−1 − A−1ab′A−1

1 + b′A−1a
.

(v) |A−1| = |A|−1.

Theorem A.19 (Inverse of a partitioned matrix) For partitioned regular A

A =
(

E F
G H

)
,

where E : (n1 × n1), F : (n1 × n2), G : (n2 × n1) and H : (n2 × n2)
(n1 + n2 = n) are such that E and D = H − GE−1F are regular, the
partitioned inverse is given by

A−1 =
(

E−1(I + FD−1GE−1) −E−1FD−1

−D−1GE−1 D−1

)
=
(

A11 A12

A21 A22

)
.
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Proof: Check that the product of A and A−1 reduces to the identity matrix,
that is,

AA−1 = A−1A = I.

A.5 Orthogonal Matrices

Definition A.20 A square matrix A : n×n is said to be orthogonal if AA′ =
I = A′A. For orthogonal matrices, we have

(i) A′ = A−1.

(ii) |A| = ±1.

(iii) Let δij = 1 for i = j and 0 for i �= j denote the Kronecker symbol.
Then the row vectors ai and the column vectors a(i) of A satisfy the
conditions

aia
′
j = δij , a′

(i)a(j) = δij .

(iv) AB is orthogonal if A and B are orthogonal.

Theorem A.21 For A : n×n and B : n×n symmetric matrices, there exists
an orthogonal matrix H such that H ′AH and H ′BH become diagonal if
and only if A and B commute, that is,

AB = BA.

A.6 Rank of a Matrix

Definition A.22 The rank of A : m × n is the maximum number of linearly
independent rows (or columns) of A. We write rank(A) = p.

Theorem A.23 (Rules for ranks)

(i) 0 ≤ rank(A) ≤ min(m, n).

(ii) rank(A) = rank(A′).

(iii) rank(A + B) ≤ rank(A) + rank(B).

(iv) rank(AB) ≤ min{rank(A), rank(B)}.
(v) rank(AA′) = rank(A′A) = rank(A) = rank(A′).

(vi) For nonsingular B : m × m and C : n × n, we have rank(BAC) =
rank(A).

(vii) For A : n × n, rank(A) = n if and only if A is nonsingular.

(viii) If A = diag(ai), then rank(A) equals the number of the ai �= 0.
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A.7 Range and Null Space

Definition A.24

(i) The range R(A) of a matrix A : m × n is the vector space spanned by
the column vectors of A, that is,

R(A) =

{
z : z = Ax =

n∑
i=1

a(i)xi, x ∈ Rn

}
⊂ Rm ,

where a(1), . . . , a(n) are the column vectors of A.

(ii) The null space N (A) is the vector space defined by

N (A) = {x ∈ Rn and Ax = 0} ⊂ Rn.

Theorem A.25

(i) rank(A) = dimR(A), where dimV denotes the number of basis vectors
of a vector space V.

(ii) dimR(A) + dimN (A) = n.

(iii) N (A) = {R(A′)}⊥. (V⊥ is the orthogonal complement of a vector
space V defined by V⊥ = {x : x′y = 0 ∀ y ∈ V}.)

(iv) R(AA′) = R(A).

(v) R(AB) ⊆ R(A) for any A and B.

(vi) For A ≥ 0 and any B, R(BAB′) = R(BA).

A.8 Eigenvalues and Eigenvectors

Definition A.26 If A : p × p is a square matrix, then

q(λ) = |A − λI|
is a pth order polynomial in λ. The p roots λ1, . . . , λp of the characteristic
equation q(λ) = |A − λI| = 0 are called eigenvalues or characteristic roots
of A.

The eigenvalues possibly may be complex numbers. Since |A − λiI| = 0,
A − λiI is a singular matrix. Hence, there exists a nonzero vector γi �= 0
satisfying (A − λiI)γi = 0, that is,

Aγi = λiγi.

γi is called the (right) eigenvector of A for the eigenvalue λi. If λi is com-
plex, then γi may have complex components. An eigenvector γ with real
components is called standardized if γ′γ = 1.
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Theorem A.27

(i) If x and y are nonzero eigenvectors of A for λi, and α and β are any
real numbers, then αx + βy also is an eigenvector for λi, that is,

A(αx + βy) = λi(αx + βy).

Thus the eigenvectors for any λi span a vector space, which is called
the eigenspace of A for λi.

(ii) The polynomial q(λ) = |A − λI| has the normal form in terms of the
roots

q(λ) =
p∏

i=1

(λi − λ).

Hence, q(0) =
∏p

i=1 λi and

|A| =
p∏

i=1

λi.

(iii) Matching the coefficients of λn−1 in q(λ) =
∏p

i=1(λi −λ) and |A−λI|
gives

tr(A) =
p∑

i=1

λi.

(iv) Let C : p × p be a regular matrix. Then A and CAC−1 have the
same eigenvalues λi. If γi is an eigenvector for λi, then Cγi is an
eigenvector of CAC−1 for λi.

Proof: As C is nonsingular, it has an inverse C−1 with CC−1 = I.
We have |C−1| = |C|−1 and

|A − λI| = |C||A − λC−1C||C−1|
= |CAC−1 − λI|.

Thus, A and CAC−1 have the same eigenvalues. Let Aγi = λiγi, and
multiply from the left by C:

CAC−1Cγi = (CAC−1)(Cγi) = λi(Cγi).

(v) The matrix A + αI with α a real number has the eigenvalues λ̃i =
λi + α, and the eigenvectors of A and A + αI coincide.

(vi) Let λ1 denote any eigenvalue of A : p × p with eigenspace H of
dimension r. If k denotes the multiplicity of λ1 in q(λ), then

1 ≤ r ≤ k.
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Remarks:

(a) For symmetric matrices A, we have r = k.

(b) If A is not symmetric, then it is possible that r < k. Example:

A =
(

0 1
0 0

)
, A �= A′

|A − λI| =
∣∣∣∣ −λ 1

0 −λ

∣∣∣∣ = λ2 = 0.

The multiplicity of the eigenvalue λ = 0 is k = 2.

The eigenvectors for λ = 0 are γ = α

(
1
0

)
and generate an eigenspace

of dimension 1.

(c) If for any particular eigenvalue λ, dim(H) = r = 1, then the
standardized eigenvector for λ is unique (up to the sign).

Theorem A.28 Let A : n × p and B : p × n with n ≥ p be any two matrices.
Then from Theorem A.16 (vii),∣∣∣∣ −λIn −A

B Ip

∣∣∣∣ = (−λ)n−p|BA − λIp| = |AB − λIn|.

Hence the n eigenvalues of AB are equal to the p eigenvalues of BA plus the
eigenvalue 0 with multiplicity n − p. Suppose that x �= 0 is an eigenvector
of AB for any particular λ �= 0. Then y = Bx is an eigenvector of BA for
this λ and we have y �= 0, too.

Corollary: A matrix A = aa′ with a as a nonnull vector has all eigenvalues
0 except one, with λ = a′a and the corresponding eigenvector a.

Corollary: The nonzero eigenvalues of AA′ are equal to the nonzero
eigenvalues of A′A.

Theorem A.29 If A is symmetric, then all the eigenvalues are real.

A.9 Decomposition of Matrices

Theorem A.30 (Spectral decomposition theorem) Any symmetric matrix A :
(p × p) can be written as

A = ΓΛΓ′ =
∑

λiγ(i)γ
′
(i) ,

where Λ = diag(λ1, . . . , λp) is the diagonal matrix of the eigenvalues of
A, and Γ = (γ(1), . . . , γ(p)) is the orthogonal matrix of the standardized
eigenvectors γ(i).

Theorem A.31 Suppose A is symmetric and A = ΓΛΓ′. Then
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(i) A and Λ have the same eigenvalues (with the same multiplicity).

(ii) From A = ΓΛΓ′ we get Λ = Γ′AΓ.

(iii) If A : p×p is a symmetric matrix, then for any integer n, An = ΓΛnΓ′

and Λn = diag(λn
i ). If the eigenvalues of A are positive, then we can

define the rational powers

A
r
s = ΓΛ

r
s Γ′ with Λ

r
s = diag(λ

r
s
i )

for integers s > 0 and r. Important special cases are (when λi > 0)

A−1 = ΓΛ−1Γ′ with Λ−1 = diag(λ−1
i ) ;

the symmetric square root decomposition of A (when λi ≥ 0)

A
1
2 = ΓΛ

1
2 Γ′ with Λ

1
2 = diag(λ

1
2
i )

and if λi > 0

A− 1
2 = ΓΛ− 1

2 Γ′ with Λ− 1
2 = diag(λ− 1

2
i ).

(iv) For any square matrix A, the rank of A equals the number of nonzero
eigenvalues.

Proof: According to Theorem A.23 (vi) we have rank(A) = rank(ΓΛΓ′)
= rank(Λ). But rank(Λ) equals the number of nonzero λi’s.

(v) A symmetric matrix A is uniquely determined by its distinct eigen-
values and the corresponding eigenspaces. If the distinct eigenvalues
λi are ordered as λ1 ≥ · · · ≥ λp, then the matrix Γ is unique (up to
sign).

(vi) A
1
2 and A have the same eigenvectors. Hence, A

1
2 is unique.

(vii) Let λ1 ≥ λ2 ≥ · · · ≥ λk > 0 be the nonzero eigenvalues and λk+1 =
· · · = λp = 0. Then we have

A = (Γ1Γ2)
(

Λ1 0
0 0

)(
Γ′

1
Γ′

2

)
= Γ1Λ1Γ′

1

with Λ1 = diag(λ1, · · · , λk) and Γ1 = (γ(1), · · · , γ(k)), whereas Γ′
1Γ1 =

Ik holds so that Γ1 is column-orthogonal.

(viii) A symmetric matrix A is of rank 1 if and only if A = aa′ where a �= 0.

Proof: If rank(A) = rank(Λ) = 1, then Λ =
(

λ 0
0 0

)
, A = λγγ′ =

aa′ with a =
√

λγ. If A = aa′, then by Theorem A.23 (v) we have
rank(A) = rank(a) = 1.
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Theorem A.32 (Singular-value decomposition of a rectangular matrix) Let A :
n × p be a rectangular matrix of rank r. Then we have

A
n,p

=U
n,r

L
r,r

V ′
r,p

with U ′U = Ir, V ′V = Ir, and L = diag(l1, · · · , lr), li > 0.
For a proof, see Rao (1973, p. 42).

Theorem A.33 If A : p × q has rank(A) = r, then A contains at least
one nonsingular (r, r)-submatrix X, such that A has the so-called normal
presentation

A
p,q

=

 X
r,r

Y
r,q−r

Z
p−r,r

W
p−r,q−r

 .

All square submatrices of type (r + s, r + s) with (s ≥ 1) are singular.

Proof: As rank(A) = rank(X) holds, the first r rows of (X, Y ) are linearly
independent. Then the p−r rows (Z, W ) are linear combinations of (X, Y );
that is, there exists a matrix F such that

(Z, W ) = F (X, Y ).

Analogously, there exists a matrix H satisfying(
Y
W

)
=
(

X
Z

)
H.

Hence we get W = FY = FXH, and

A =
(

X Y
Z W

)
=
(

X XH
FX FXH

)
=
(

I
F

)
X(I, H)

=
(

X
FX

)
(I, H) =

(
I
F

)
(X, XH) .

As X is nonsingular, the inverse X−1 exists. Then we obtain F = ZX−1,
H = X−1Y , W = ZX−1Y , and

A =
(

X Y
Z W

)
=
(

I
ZX−1

)
X(I, X−1Y )

=
(

X
Z

)
(I, X−1Y )

=
(

I
ZX−1

)
(X Y ).
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Theorem A.34 (Full rank factorization)

(i) If A : p × q has rank(A) = r, then A may be written as

A
p,q

=K
p,r

L
r,q

with K of full column rank r and L of full row rank r.

Proof: Theorem A.33.

(ii) If A : p × q has rank(A) = p, then A may be written as

A = M(I, H) , where M : p × p is regular.

Proof: Theorem A.34 (i).

A.10 Definite Matrices and Quadratic Forms

Definition A.35 Suppose A : n×n is symmetric and x : n× 1 is any vector.
Then the quadratic form in x is defined as the function

Q(x) = x′Ax =
∑
i,j

aijxixj .

Clearly, Q(0) = 0.

Definition A.36 The matrix A is called positive definite (p.d.) if Q(x) > 0
for all x �= 0. We write A > 0.

Note: If A > 0, then (−A) is called negative definite.

Definition A.37 The quadratic form x′Ax (and the matrix A, also) is called
positive semidefinite (p.s.d.) if Q(x) ≥ 0 for all x and Q(x) = 0 for at least
one x �= 0.

Definition A.38 The quadratic form x′Ax (and A) is called nonnegative def-
inite (n.n.d.) if it is either p.d. or p.s.d., that is, if x′Ax ≥ 0 for all x. If
A is n.n.d., we write A ≥ 0.

Theorem A.39 Let the n × n matrix A > 0. Then

(i) A has all eigenvalues λi > 0.

(ii) x′Ax > 0 for any x �= 0.

(iii) A is nonsingular and |A| > 0.

(iv) A−1 > 0.

(v) tr(A) > 0.
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(vi) Let P : n × m be of rank(P ) = m ≤ n. Then P ′AP > 0 and in
particular P ′P > 0, choosing A = I.

(vii) Let P : n×m be of rank(P ) < m ≤ n. Then P ′AP ≥ 0 and P ′P ≥ 0.

Theorem A.40 Let A : n×n and B : n×n such that A > 0 and B : n×n ≥ 0.
Then

(i) C = A + B > 0.

(ii) A−1 − (A + B)−1 ≥ 0.

(iii) |A| ≤ |A + B|.
Theorem A.41 Let A ≥ 0. Then

(i) λi ≥ 0.

(ii) tr(A) ≥ 0.

(iii) A = A
1
2 A

1
2 with A

1
2 = ΓΛ

1
2 Γ′.

(iv) For any matrix C : n × m we have C ′AC ≥ 0.

(v) For any matrix C, we have C ′C ≥ 0 and CC ′ ≥ 0.

Theorem A.42 For any matrix A ≥ 0, we have 0 ≤ λi ≤ 1 if and only if
(I − A) ≥ 0.

Proof: Write the symmetric matrix A in its spectral form as A = ΓΛΓ′.
Then we have

(I − A) = Γ(I − Λ)Γ′ ≥ 0

if and only if

Γ′Γ(I − Λ)Γ′Γ = I − Λ ≥ 0.

(a) If I − Λ ≥ 0, then for the eigenvalues of I − A we have 1 − λi ≥ 0
(i.e., 0 ≤ λi ≤ 1).

(b) If 0 ≤ λi ≤ 1, then for any x �= 0,

x′(I − Λ)x =
∑

x2
i (1 − λi) ≥ 0,

that is, I − Λ ≥ 0.

Theorem A.43 (Theobald, 1974) Let D : n × n be symmetric. Then D ≥ 0
if and only if tr{CD} ≥ 0 for all C ≥ 0.

Proof: D is symmetric, so that

D = ΓΛΓ′ =
∑

λiγiγ
′
i ,
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and hence

tr{CD} = tr
{∑

λiCγiγ
′
i

}
=
∑

λiγ
′
iCγi .

(a) Let D ≥ 0, and, hence, λi ≥ 0 for all i. Then tr(CD) ≥ 0 if C ≥ 0.

(b) Let tr{CD} ≥ 0 for all C ≥ 0. Choose C = γiγ
′
i (i = 1, . . . , n, i fixed)

so that

0 ≤ tr{CD} = tr{γiγ
′
i(
∑

j

λjγjγ
′
j)}

= λi (i = 1, · · · , n)

and D = ΓΛΓ′ ≥ 0.

Theorem A.44 Let A : n × n be symmetric with eigenvalues λ1 ≥ · · · ≥ λn.
Then

sup
x

x′Ax

x′x
= λ1, inf

x

x′Ax

x′x
= λn .

Proof: See Rao (1973, p. 62).

Theorem A.45 Let A : n × r = (A1, A2), with A1 of order n × r1, A2 of
order n × r2, and rank(A) = r = r1 + r2. Define the orthogonal projectors
M1 = A1(A′

1A1)−1A′
1 and M = A(A′A)−1A′. Then

M = M1 + (I − M1)A2(A′
2(I − M1)A2)−1A′

2(I − M1).

Proof: M1 and M are symmetric idempotent matrices fulfilling the condi-
tions M1A1 = 0 and MA = 0. Using Theorem A.19 for partial inversion of
A′A, that is,

(A′A)−1 =
(

A′
1A1 A′

1A2
A′

2A1 A′
2A2

)−1

and using the special form of the matrix D defined in A.19, that is,

D = A′
2(I − M1)A2,

straightforward calculation concludes the proof.

Theorem A.46 Let A : n × m with rank(A) = m ≤ n and B : m × m be any
symmetric matrix. Then

ABA′ ≥ 0 if and only if B ≥ 0.

Proof:

(a) B ≥ 0 ⇒ ABA′ ≥ 0 for all A.
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(b) Let rank(A) = m ≤ n and assume ABA′ ≥ 0, so that x′ABA′x ≥ 0
for all x ∈ Rn.
We have to prove that y′By ≥ 0 for all y ∈ Rm. As rank(A) = m, the
inverse (A′A)−1 exists. Setting z = A(A′A)−1y, we have A′z = y and
y′By = z′ABA′z ≥ 0 so that B ≥ 0.

Definition A.47 Let A : n×n and B : n×n be any matrices. Then the roots
λi = λB

i (A) of the equation

|A − λB| = 0

are called the eigenvalues of A in the metric of B. For B = I we obtain the
usual eigenvalues defined in Definition A.26 (cf. Dhrymes, 1974, p. 581).

Theorem A.48 Let B > 0 and A ≥ 0. Then λB
i (A) ≥ 0.

Proof: B > 0 is equivalent to B = B
1
2 B

1
2 with B

1
2 nonsingular and unique

(A.31 (iii)). Then we may write

0 = |A − λB| = |B 1
2 |2|B− 1

2 AB− 1
2 − λI|

and λB
i (A) = λI

i (B
− 1

2 AB− 1
2 ) ≥ 0, as B− 1

2 AB− 1
2 ≥ 0.

Theorem A.49 (Simultaneous diagonalization) Let B > 0 and A ≥ 0, and
denote by Λ = diag

(
λB

i (A)
)

the diagonal matrix of the eigenvalues of A in
the metric of B. Then there exists a nonsingular matrix W such that

B = W ′W and A = W ′ΛW.

Proof: From the proof of Theorem A.48 we know that the roots λB
i (A) are

the usual eigenvalues of the matrix B− 1
2 AB− 1

2 . Let X be the matrix of the
corresponding eigenvectors:

B− 1
2 AB− 1

2 X = XΛ,

that is,

A = B
1
2 XΛX ′B

1
2 = W ′ΛW

with W ′ = B
1
2 X regular and

B = W ′W = B
1
2 XX ′B

1
2 = B

1
2 B

1
2 .

Theorem A.50 Let A > 0 (or A ≥ 0) and B > 0. Then

B − A > 0 if and only if λB
i (A) < 1 .

Proof: Using Theorem A.49, we may write

B − A = W ′(I − Λ)W ,

namely,

x′(B − A)x = x′W ′(I − Λ)Wx
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= y′(I − Λ)y

=
∑(

1 − λB
i (A)

)
y2

i

with y = Wx, W regular, and hence y �= 0 for x �= 0. Then x′(B −A)x > 0
holds if and only if

λB
i (A) < 1.

Theorem A.51 Let A > 0 (or A ≥ 0) and B > 0. Then

A − B ≥ 0

if and only if

λB
i (A) ≤ 1 .

Proof: Similar to Theorem A.50.

Theorem A.52 Let A > 0 and B > 0. Then

B − A > 0 if and only if A−1 − B−1 > 0.

Proof: From Theorem A.49 we have

B = W ′W, A = W ′ΛW.

Since W is regular, we have

B−1 = W−1W ′−1
, A−1 = W−1Λ−1W ′−1

,

that is,

A−1 − B−1 = W−1(Λ−1 − I)W ′−1
> 0,

as λB
i (A) < 1 and, hence, Λ−1 − I > 0.

Theorem A.53 Let B − A > 0. Then |B| > |A| and tr(B) > tr(A).
If B − A ≥ 0, then |B| ≥ |A| and tr(B) ≥ tr(A).

Proof: From Theorems A.49 and A.16 (iii), (v), we get

|B| = |W ′W | = |W |2,
|A| = |W ′ΛW | = |W |2|Λ| = |W |2

∏
λB

i (A),

that is,

|A| = |B|
∏

λB
i (A).

For B − A > 0, we have λB
i (A) < 1 (i.e., |A| < |B|). For B − A ≥ 0, we

have λB
i (A) ≤ 1 (i.e., |A| ≤ |B|). B − A > 0 implies tr(B − A) > 0, and

tr(B) > tr(A). Analogously, B − A ≥ 0 implies tr(B) ≥ tr(A).
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Theorem A.54 (Cauchy-Schwarz inequality) Let x, y be real vectors of the
same dimension. Then

(x′y)2 ≤ (x′x)(y′y),

with equality if and only if x and y are linearly dependent.

Theorem A.55 Let x, y be real vectors and A > 0. Then we have the follow-
ing results:

(i) (x′Ay)2 ≤ (x′Ax)(y′Ay).

(ii) (x′y)2 ≤ (x′Ax)(y′A−1y).

Proof:

(a) A ≥ 0 is equivalent to A = BB with B = A
1
2 (Theorem A.41 (iii)).

Let Bx = x̃ and By = ỹ. Then (i) is a consequence of Theorem A.54.

(b) A > 0 is equivalent to A = A
1
2 A

1
2 and A−1 = A− 1

2 A− 1
2 . Let A

1
2 x = x̃

and A− 1
2 y = ỹ; then (ii) is a consequence of Theorem A.54.

Theorem A.56 Let A > 0 and T be any square matrix. Then

(i) supx�=0
(x′y)2

x′Ax = y′A−1y.

(ii) supx�=0
(y′Tx)2

x′Ax = y′TA−1T ′y.

Proof: Use Theorem A.55 (ii).

Theorem A.57 Let I : n×n be the identity matrix and let a be an n-vector.
Then

I − aa′ ≥ 0 if and only if a′a ≤ 1.

Proof: The matrix aa′ is of rank 1 and aa′ ≥ 0. The spectral decomposition
is aa′ = CΛC ′ with Λ = diag(λ, 0, · · · , 0) and λ = a′a. Hence, I − aa′ =
C(I − Λ)C ′ ≥ 0 if and only if λ = a′a ≤ 1 (see Theorem A.42).

Theorem A.58 Assume MM ′ − NN ′ ≥ 0. Then there exists a matrix H
such that N = MH.

Proof (Milliken and Akdeniz, 1977) : Let M (n, r) of rank(M) = s, and
let x be any vector ∈ R(I − MM−), implying x′M = 0 and x′MM ′x = 0.
As NN ′ and MM ′ − NN ′ (by assumption) are n.n.d., we may conclude
that x′NN ′x ≥ 0 and

x′(MM ′ − NN ′)x = −x′NN ′x ≥ 0,

so that x′NN ′x = 0 and x′N = 0. Hence, N ⊂ R(M) or, equivalently,
N = MH for some matrix H (r, k).

Theorem A.59 Let A be an n × n-matrix and assume (−A) > 0. Let a be
an n-vector. In case n ≥ 2, the matrix A + aa′ is never n.n.d.
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Proof (Guilkey and Price, 1981) : The matrix aa′ is of rank ≤ 1. In case
n ≥ 2, there exists a nonzero vector w such that w′aa′w = 0, implying
w′(A + aa′)w = w′Aw < 0.

A.11 Idempotent Matrices

Definition A.60 A square matrix A is called idempotent if it satisfies

A2 = AA = A .

An idempotent matrix A is called an orthogonal projector if A = A′.
Otherwise, A is called an oblique projector.

Theorem A.61 Let A : n×n be idempotent with rank(A) = r ≤ n. Then we
have:

(i) The eigenvalues of A are 1 or 0.

(ii) tr(A) = rank(A) = r.

(iii) If A is of full rank n, then A = In.

(iv) If A and B are idempotent and if AB = BA, then AB is also
idempotent.

(v) If A is idempotent and P is orthogonal, then PAP ′ is also idempotent.

(vi) If A is idempotent, then I − A is idempotent and

A(I − A) = (I − A)A = 0.

Proof:

(a) The characteristic equation

Ax = λx

multiplied by A gives

AAx = Ax = λAx = λ2x.

Multiplication of both equations by x′ then yields

x′Ax = λx′x = λ2x′x,

that is,

λ(λ − 1) = 0.

(b) From the spectral decomposition

A = ΓΛΓ′ ,

we obtain

rank(A) = rank(Λ) = tr(Λ) = r,
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where r is the number of characteristic roots with value 1.

(c) Let rank(A) = rank(Λ) = n, then Λ = In and

A = ΓΛΓ′ = In .

(a)–(c) follow from the definition of an idempotent matrix.

A.12 Generalized Inverse

Definition A.62 Let A be an m × n-matrix. Then a matrix A− : n × m is
said to be a generalized inverse of A if

AA−A = A

holds (see Rao (1973), p. 24).

Theorem A.63 A generalized inverse always exists although it is not unique
in general.

Proof: Assume rank(A) = r. According to the singular-value decomposi-
tion (Theorem A.32), we have

A
m,n

= U
m,r

L
r,r

V ′
r,n

with U ′U = Ir and V ′V = Ir and

L = diag(l1, · · · , lr), li > 0.

Then

A− = V

(
L−1 X
Y Z

)
U ′

(X, Y and Z are arbitrary matrices of suitable dimensions) is a g-inverse
of A. Using Theorem A.33, namely,

A =
(

X Y
Z W

)
with X nonsingular, we have

A− =
(

X−1 0
0 0

)
as a special g-inverse.

Definition A.64 (Moore-Penrose inverse) A matrix A+ satisfying the follow-
ing conditions is called the Moore-Penrose inverse of A:

(i) AA+A = A ,

(ii) A+AA+ = A+ ,
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(iii) (A+A)′ = A+A ,

(iv) (AA+)′ = AA+ .

A+ is unique.

Theorem A.65 For any matrix A : m × n and any g-inverse A− : m × n,
we have

(i) A−A and AA− are idempotent.

(ii) rank(A) = rank(AA−) = rank(A−A).

(iii) rank(A) ≤ rank(A−).

Proof:

(a) Using the definition of g-inverse,

(A−A)(A−A) = A−(AA−A) = A−A.

(b) According to Theorem A.23 (iv), we get

rank(A) = rank(AA−A) ≤ rank(A−A) ≤ rank(A),

that is, rank(A−A) = rank(A). Analogously, we see that rank(A) =
rank(AA−).

(c) rank(A) = rank(AA−A) ≤ rank(AA−) ≤ rank(A−).

Theorem A.66 Let A be an m × n-matrix. Then

(i) A regular ⇒ A+ = A−1.

(ii) (A+)+ = A.

(iii) (A+)′ = (A′)+.

(iv) rank(A) = rank(A+) = rank(A+A) = rank(AA+).

(v) A an orthogonal projector ⇒ A+ = A.

(vi) rank(A) : m × n = m ⇒ A+ = A′(AA′)−1 and AA+ = Im.

(vii) rank(A) : m × n = n ⇒ A+ = (A′A)−1A′ and A+A = In.

(viii) If P : m × m and Q : n × n are orthogonal ⇒ (PAQ)+ =
Q−1A+P−1.

(ix) (A′A)+ = A+(A′)+ and (AA′)+ = (A′)+A+.

(x) A+ = (A′A)+A′ = A′(AA′)+.

For further details see Rao and Mitra (1971).
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Theorem A.67 (Baksalary, Kala, and Klaczynski (1983)) Let M : n × n ≥ 0
and N : m × n be any matrices. Then

M − N ′(NM+N ′)+N ≥ 0

if and only if

R(N ′NM) ⊂ R(M).

Theorem A.68 Let A be any square n × n-matrix and a be an n-vector with
a �∈ R(A). Then a g-inverse of A + aa′ is given by

(A + aa′)− = A− − A−aa′U ′U
a′U ′Ua

− V V ′aa′A−

a′V V ′a
+ φ

V V ′aa′U ′U
(a′U ′Ua)(a′V V ′a)

,

with A− any g-inverse of A and

φ = 1 + a′A−a, U = I − AA−, V = I − A−A.

Proof: Straightforward by checking AA−A = A.

Theorem A.69 Let A be a square n × n-matrix. Then we have the following
results:

(i) Assume a, b are vectors with a, b ∈ R(A), and let A be symmetric.
Then the bilinear form a′A−b is invariant to the choice of A−.

(ii) A(A′A)−A′ is invariant to the choice of (A′A)−.

Proof:

(a) a, b ∈ R(A) ⇒ a = Ac and b = Ad. Using the symmetry of A gives

a′A−b = c′A′A−Ad

= c′Ad.

(b) Using the rowwise representation of A as A =

 a′
1
...

a′
n

 gives

A(A′A)−A′ = (a′
i(A

′A)−aj).

Since A′A is symmetric, we may conclude then (i) that all bilinear
forms a′

i(A
′A)aj are invariant to the choice of (A′A)−, and hence (ii)

is proved.

Theorem A.70 Let A : n × n be symmetric, a ∈ R(A), b ∈ R(A), and
assume 1 + b′A+a �= 0. Then

(A + ab′)+ = A+ − A+ab′A+

1 + b′A+a
.
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Proof: Straightforward, using Theorems A.68 and A.69.

Theorem A.71 Let A : n × n be symmetric, a be an n-vector, and α > 0 be
any scalar. Then the following statements are equivalent:

(i) αA − aa′ ≥ 0.

(ii) A ≥ 0, a ∈ R(A), and a′A−a ≤ α, with A− being any g-inverse of A.

Proof:

(i) ⇒ (ii): αA − aa′ ≥ 0 ⇒ αA = (αA − aa′) + aa′ ≥ 0 ⇒ A ≥ 0. Using
Theorem A.31 for αA−aa′ ≥ 0, we have αA−aa′ = BB, and, hence,

αA = BB + aa′ = (B, a)(B, a)′.
⇒ R(αA) = R(A) = R(B, a)
⇒ a ∈ R(A)
⇒ a = Ac with c ∈ Rn

⇒ a′A−a = c′Ac.

As αA − aa′ ≥ 0 ⇒
x′(αA − aa′)x ≥ 0

for any vector x, choosing x = c, we have

αc′Ac − c′aa′c = αc′Ac − (c′Ac)2 ≥ 0,

⇒ c′Ac ≤ α.

(ii) ⇒ (i): Let x ∈ Rn be any vector. Then, using Theorem A.54,

x′(αA − aa′)x = αx′Ax − (x′a)2

= αx′Ax − (x′Ac)2

≥ αx′Ax − (x′Ax)(c′Ac)

⇒ x′(αA − aa′)x ≥ (x′Ax)(α − c′Ac).

In (ii) we have assumed A ≥ 0 and c′Ac = a′A−a ≤ α. Hence,
αA − aa′ ≥ 0.

Note: This theorem is due to Baksalary and Kala (1983). The version given
here and the proof are formulated by G. Trenkler.

Theorem A.72 For any matrix A we have

A′A = 0 if and only if A = 0.

Proof:

(a) A = 0 ⇒ A′A = 0.
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(b) Let A′A = 0, and let A = (a(1), · · · , a(n)) be the columnwise
presentation. Then

A′A = (a′
(i)a(j)) = 0,

so that all the elements on the diagonal are zero: a′
(i)a(i) = 0 ⇒ a(i) = 0

and A = 0.

Theorem A.73 Let X �= 0 be an m×n-matrix and A an n×n-matrix. Then

X ′XAX ′X = X ′X ⇒ XAX ′X = X and X ′XAX ′ = X ′ .

Proof: As X �= 0 and X ′X �= 0, we have

X ′XAX ′X − X ′X = (X ′XA − I)X ′X = 0
⇒ (X ′XA − I) = 0

⇒ 0 = (X ′XA − I)(X ′XAX ′X − X ′X)
= (X ′XAX ′ − X ′)(XAX ′X − X) = Y ′Y ,

so that (by Theorem A.72) Y = 0, and, hence XAX ′X = X.

Corollary: Let X �= 0 be an m × n-matrix and A and b n × n-matrices.
Then

AX ′X = BX ′X ⇔ AX ′ = BX ′ .

Theorem A.74 (Albert’s theorem)

Let A =
(

A11 A12
A21 A22

)
be symmetric. Then

(i) A ≥ 0 if and only if

(a) A22 ≥ 0,
(b) A21 = A22A

−
22A21,

(c) A11 ≥ A12A
−
22A21,

((b) and (c) are invariant of the choice of A−
22).

(ii) A > 0 if and only if

(a) A22 > 0,
(b) A11 > A12A

−1
22 A21.

Proof (Bekker and Neudecker, 1989) :

(i) Assume A ≥ 0.

(a) A ≥ 0 ⇒ x′Ax ≥ 0 for any x. Choosing x′ = (0′, x′
2)

⇒ x′Ax = x′
2A22x2 ≥ 0 for any x2 ⇒ A22 ≥ 0.

(b) Let B′ = (0, I − A22A
−
22) ⇒

B′A =
(
(I − A22A

−
22)A21, A22 − A22A

−
22A22

)
=
(
(I − A22A

−
22)A21, 0

)
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and B′AB = B′A
1
2 A

1
2 B = 0. Hence, by Theorem A.72 we get

B′A
1
2 = 0.

⇒ B′A
1
2 A

1
2 = B′A = 0.

⇒ (I − A22A
−
22)A21 = 0.

This proves (b).
(c) Let C ′ = (I,−(A−

22A21)′). A ≥ 0 ⇒
0 ≤ C ′AC = A11 − A12(A−

22)
′A21 − A12A

−
22A21

+ A12(A−
22)

′A22A
−
22A21

= A11 − A12A
−
22A21 .

(Since A22 is symmetric, we have (A−
22)

′ = A22.)

Now assume (a), (b), and (c). Then

D =
(

A11 − A12A
−
22A21 0

0 A22

)
≥ 0,

as the submatrices are n.n.d. by (a) and (b). Hence,

A =
(

I A12(A−
22)

0 I

)
D

(
I 0

A−
22A21 I

)
≥ 0.

(ii) Proof as in (i) if A−
22 is replaced by A−1

22 .

Theorem A.75 If A : n × n and B : n × n are symmetric, then

(i) 0 ≤ B ≤ A if and only if

(a) A ≥ 0,
(b) B = AA−B,
(c) B ≥ BA−B.

(ii) 0 < B < A if and only if 0 < A−1 < B−1.

Proof: Apply Theorem A.74 to the matrix
(

B B
B A

)
.

Theorem A.76 Let A be symmetric and c ∈ R(A). Then the following
statements are equivalent:

(i) rank(A + cc′) = rank(A).

(ii) R(A + cc′) = R(A).

(iii) 1 + c′A−c �= 0.

Corollary 1: Assume (i) or (ii) or (iii) holds; then

(A + cc′)− = A− − A−cc′A−

1 + c′A−c

for any choice of A−.
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Corollary 2: Assume (i) or (ii) or (iii) holds; then

c′(A + cc′)−c = c′A−c − (c′A−c)2

1 + c′A−c

= 1 − 1
1 + c′A−c

.

Moreover, as c ∈ R(A+cc′), the results are invariant for any special choices
of the g-inverses involved.

Proof: c ∈ R(A) ⇔ AA−c = c ⇒
R(A + cc′) = R(AA−(A + cc′)) ⊂ R(A).

Hence, (i) and (ii) become equivalent. Proof of (iii): Consider the following
product of matrices:(

1 0
c A + cc′

)(
1 −c
0 I

)(
1 0

−A−c I

)
=
(

1 + c′A−c −c
0 A

)
.

The left-hand side has the rank

1 + rank(A + cc′) = 1 + rank(A)

(see (i) or (ii)). The right-hand side has the rank 1 + rank(A) if and only
if 1 + c′A−c �= 0.

Theorem A.77 Let A : n × n be a symmetric and nonsingular matrix and
c �∈ R(A). Then we have

(i) c ∈ R(A + cc′).

(ii) R(A) ⊂ R(A + cc′).

(iii) c′(A + cc′)−c = 1.

(iv) A(A + cc′)−A = A.

(v) A(A + cc′)−c = 0.

Proof: As A is assumed to be nonsingular, the equation Al = 0 has a
nontrivial solution l �= 0, which may be standardized as (c′l)−1l such that
c′l = 1. Then we have c = (A + cc′)l ∈ R(A + cc′), and hence (i) is proved.
Relation (ii) holds as c �∈ R(A). Relation (i) is seen to be equivalent to

(A + cc′)(A + cc′)−c = c.

Then (iii) follows:

c′(A + cc′)−c = l′(A + cc′)(A + cc′)−c

= l′c = 1 ,
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which proves (iii). From

c = (A + cc′)(A + cc′)−c

= A(A + cc′)−c + cc′(A + cc′)−c

= A(A + cc′)−c + c ,

we have (v).
(iv) is a consequence of the general definition of a g-inverse and of (iii)

and (iv):

A + cc′ = (A + cc′)(A + cc′)−(A + cc′)
= A(A + cc′)−A

+ cc′(A + cc′)−cc′ [= cc′ using (iii)]
+ A(A + cc′)−cc′ [= 0 using (v)]
+ cc′(A + cc′)−A [= 0 using (v)].

Theorem A.78 We have A ≥ 0 if and only if

(i) A + cc′ ≥ 0.

(ii) (A + cc′)(A + cc′)−c = c.

(iii) c′(A + cc′)−c ≤ 1.

Assume A ≥ 0; then

(a) c = 0 ⇔ c′(A + cc′)−c = 0.

(b) c ∈ R(A) ⇔ c′(A + cc′)−c < 1.

(c) c �∈ R(A) ⇔ c′(A + cc′)−c = 1.

Proof: A ≥ 0 is equivalent to

0 ≤ cc′ ≤ A + cc′.

Straightforward application of Theorem A.75 gives (i)–(iii).
Proof of (a): A ≥ 0 ⇒ A + cc′ ≥ 0. Assume

c′(A + cc′)−c = 0 ,

and replace c by (ii) ⇒
c′(A + cc′)−(A + cc′)(A + cc′)−c = 0 ⇒
(A + cc′)(A + cc′)−c = 0

as (A + cc′) ≥ 0. Assuming c = 0 ⇒ c′(A + cc′)c = 0.
Proof of (b): Assume A ≥ 0 and c ∈ R(A), and use Theorem A.76

(Corollary 2) ⇒

c′(A + cc′)−c = 1 − 1
1 + c′A−c

< 1.
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The opposite direction of (b) is a consequence of (c).
Proof of (c): Assume A ≥ 0 and c �∈ R(A), and use Theorem A.77 (iii) ⇒

c′(A + cc′)−c = 1.

The opposite direction of (c) is a consequence of (b).

Note: The proofs of Theorems A.74–A.78 are given in Bekker and
Neudecker (1989).

Theorem A.79 The linear equation Ax = a has a solution if and only if

a ∈ R(A) or AA−a = a

for any g-inverse A.
If this condition holds, then all solutions are given by

x = A−a + (I − A−A)w ,

where w is an arbitrary m-vector. Further, q′x has a unique value for all
solutions of Ax = a if and only if q′A−A = q′, or q ∈ R(A′).

For a proof, see Rao (1973, p. 25).

A.13 Projectors

Consider the range space R(A) of the matrix A : m × n with rank r. Then
there exists R(A)⊥, which is the orthogonal complement of R(A) with
dimension m − r. Any vector x ∈ Rm has the unique decomposition

x = x1 + x2 , x1 ∈ R(A) , and x2 ∈ R(A)⊥ ,

of which the component x1 is called the orthogonal projection of x on R(A).
The component x1 can be computed as Px, where

P = A(A′A)−A′ ,

which is called the projection operator on R(A). Note that P is unique for
any choice of the g-inverse (A′A)−.

Theorem A.80 For any P : n × n, the following statements are equivalent:

(i) P is an orthogonal projection operator.

(ii) P is symmetric and idempotent.

For proofs and other details, the reader is referred to Rao (1973) and
Rao and Mitra (1971).

Theorem A.81 Let X be a matrix of order T × K with rank r < K, and
U : (K − r) × K be such that R(X ′) ∩ R(U ′) = {0}. Then

(i) X(X ′X + U ′U)−1U ′ = 0.
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(ii) X ′X(X ′X + U ′U)−1X ′X = X ′X; that is, (X ′X + U ′U)−1 is a g-
inverse of X ′X.

(iii) U ′U(X ′X + U ′U)−1U ′U = U ′U ; that is, (X ′X + U ′U)−1 is also a
g-inverse of U ′U .

(iv) U(X ′X + U ′U)−1U ′u = u if u ∈ R(U).

Proof: Since X ′X + U ′U is of full rank, there exists a matrix A such that

(X ′X + U ′U)A = U ′

⇒ X ′XA = U ′ − U ′UA ⇒ XA = 0 and U ′ = U ′UA

since R(X ′) and R(U ′) are disjoint.
Proof of (i):

X(X ′X + U ′U)−1U ′ = X(X ′X + U ′U)−1(X ′X + U ′U)A = XA = 0 .

Proof of (ii):

X ′X(X ′X + U ′U)−1(X ′X + U ′U − U ′U)
= X ′X − X ′X(X ′X + U ′U)−1U ′U = X ′X .

Result (iii) follows on the same lines as result (ii).
Proof of (iv):

U(X ′X + U ′U)−1U ′u = U(X ′X + U ′U)−1U ′Ua = Ua = u

since u ∈ R(U).

A.14 Functions of Normally Distributed Variables

Let x′ = (x1, · · · , xp) be a p-dimensional random vector. Then x is said to
have a p-dimensional normal distribution with expectation vector µ and
covariance matrix Σ > 0 if the joint density is

f(x; µ,Σ) = {(2π)p|Σ|}− 1
2 exp

{
−1

2
(x − µ)′Σ−1(x − µ)

}
.

In such a case we write x ∼ Np(µ,Σ).

Theorem A.82 Assume x ∼ Np(µ,Σ), and A : p × p and b : p × 1
nonstochastic. Then

y = Ax + b ∼ Nq(Aµ + b, AΣA′) with q = rank(A).

Theorem A.83 If x ∼ Np(0, I), then

x′x ∼ χ2
p

(central χ2-distribution with p degrees of freedom).
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Theorem A.84 If x ∼ Np(µ, I), then

x′x ∼ χ2
p(λ)

has a noncentral χ2-distribution with noncentrality parameter

λ = µ′µ =
p∑

i=1

µ2
i .

Theorem A.85 If x ∼ Np(µ,Σ), then

(i) x′Σ−1x ∼ χ2
p(µ

′Σ−1µ).

(ii) (x − µ)′Σ−1(x − µ) ∼ χ2
p.

Proof: Σ > 0 ⇒ Σ = Σ
1
2 Σ

1
2 with Σ

1
2 regular and symmetric. Hence,

Σ− 1
2x = y ∼ Np(Σ− 1

2µ, I) ⇒
x′Σ−1x = y′y ∼ χ2

p(µ
′Σ−1µ)

and

(x − µ)′Σ−1(x − µ) = (y − Σ− 1
2 µ)′(y − Σ− 1

2 µ) ∼ χ2
p.

Theorem A.86 If Q1 ∼ χ2
m(λ) and Q2 ∼ χ2

n, and Q1 and Q2 are
independent, then

(i) The ratio

F =
Q1/m

Q2/n

has a noncentral Fm,n(λ)-distribution.

(ii) If λ = 0, then F ∼ Fm,n (the central F -distribution).

(iii) If m = 1, then
√

F has a noncentral tn(
√

λ)-distribution or a central
tn-distribution if λ = 0.

Theorem A.87 If x ∼ Np(µ, I) and A : p × p is a symmetric, idempotent
matrix with rank(A) = r, then

x′Ax ∼ χ2
r(µ

′Aµ).

Proof: We have A = PΛP ′ (Theorem A.30) and without loss of generality

(Theorem A.61 (i)) we may write Λ =
(

Ir 0
0 0

)
, that is, P ′AP = Λ with

P orthogonal. Let P = (P1
p,r

P2
p,(p−r)

) and

P ′x = y =
(

y1
y2

)
=
(

P ′
1x

P ′
2x

)
.
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Therefore

y ∼ Np(P ′µ, Ip) (Theorem A.82)
y1 ∼ Nr(P ′

1µ, Ir)
and y′

1y1 ∼ χ2
r(µ

′P1P
′
1µ) (Theorem A.84).

As P is orthogonal, we have

A = (PP ′)A(PP ′) = P (P ′AP )P

= (P1 P2)
(

Ir 0
0 0

)(
P ′

1
P ′

2

)
= P1P

′
1 ,

and therefore

x′Ax = x′P1P
′
1x = y′

1y1 ∼ χ2
r(µ

′Aµ).

Theorem A.88 Let x ∼ Np(µ, I), A : p × p be idempotent of rank r, and
B : n × p be any matrix. Then the linear form Bx is independent of the
quadratic form x′Ax if and only if BA = 0.

Proof: Let P be the matrix as in Theorem A.87. Then BPP ′AP = BAP =
0, as BA = 0 was assumed. Let BP = D = (D1, D2) = (BP1, BP2), then

BPP ′AP = (D1, D2)
(

Ir 0
0 0

)
= (D1, 0) = (0, 0),

so that D1 = 0. This gives

Bx = BPP ′x = Dy = (0, D2)
(

y1
y2

)
= D2y2 ,

where y2 = P ′
2x. Since P is orthogonal and hence regular, we may conclude

that all the components of y = P ′x are independent ⇒ Bx = D2y2 and
x′Ax = y′

1y1 are independent.

Theorem A.89 Let x ∼ Np(0, I) and A and B be idempotent p × p-matrices
with rank(A) = r and rank(B) = s. Then the quadratic forms x′Ax and
x′Bx are independently distributed if and only if BA = 0.

Proof: If we use P from Theorem A.87 and set C = P ′BP (C symmetric),
we get with the assumption BA = 0,

CP ′AP = P ′BPP ′AP

= P ′BAP = 0 .

Using

C =
(

P1
P2

)
B(P ′

1 P ′
2)

=
(

C1 C2
C ′

2 C3

)
=
(

P1BP ′
1 P1BP ′

2
P2BP ′

1 P2BP ′
2

)
,



384 Appendix A. Matrix Algebra

this relation may be written as

CP ′AP =
(

C1 C2
C ′

2 C3

)(
Ir 0
0 0

)
=
(

C1 0
C ′

2 0

)
= 0 .

Therefore, C1 = 0 and C2 = 0,

x′Bx = x′(PP ′)B(PP ′)x
= x′P (P ′BP )P ′x
= x′PCP ′x

= (y′
1, y

′
2)
(

0 0
0 C3

)(
y1
y2

)
= y′

2C3y2 .

As shown in Theorem A.87, we have x′Ax = y′
1y1, and therefore the quad-

ratic forms x′Ax and x′Bx are independent.

A.15 Differentiation of Scalar Functions
of Matrices

Definition A.90 If f(X) is a real function of an m × n-matrix X = (xij),
then the partial differential of f with respect to X is defined as the m ×
n-matrix of partial differentials ∂f/∂xij:

∂f(X)
∂X

=


∂f

∂x11
· · · ∂f

∂x1n
...

...
∂f

∂xm1
· · · ∂f

∂xmn

 .

Theorem A.91 Let x be an n-vector and A be a symmetric n × n-matrix.
Then

∂

∂x
x′Ax = 2Ax.

Proof:

x′Ax =
n∑

r,s=1

arsxrxs ,

∂f

∂xi
x′Ax =

n∑
s=1
(s�=i)

aisxs +
n∑

r=1
(r �=i)

arixr + 2aiixi

= 2
n∑

s=1

aisxs (as aij = aji)

= 2a′
ix (a′

i: ith row vector of A).
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According to Definition A.90, we get

∂x′Ax

∂x
=


∂

∂x1
...
∂

∂xn

 (x′Ax) = 2

 a′
1
...

a′
n

x = 2Ax.

Theorem A.92 If x is an n-vector, y is an m-vector, and C an n×m-matrix,
then

∂

∂C
x′Cy = xy′.

Proof:

x′Cy =
m∑

r=1

n∑
s=1

xscsryr,

∂

∂ckλ
x′Cy = xkyλ (the (k, λ)th element of xy′),

∂

∂C
x′Cy = (xkyλ) = xy′ .

Theorem A.93 Let x be a K-vector, A a symmetric T × T -matrix, and C a
T × K-matrix. Then

∂x′C ′

∂C
x′C ′ACx = 2ACxx′ .

Proof: We have

x′C ′ =

(
K∑

i=1

xic1i, · · · ,
K∑

i=1

xicTi

)
,

∂

∂ckλ
= (0, · · · , 0, xλ, 0, · · · , 0) (xλ is an element of the kth column).

Using the product rule yields

∂

∂ckλ
x′C ′ACx =

(
∂

∂ckλ
x′C ′
)

ACx + x′C ′A
(

∂

∂ckλ
Cx

)
.

Since

x′C ′A =

(
T∑

t=1

K∑
i=1

xictiat1, · · · ,
T∑

t=1

K∑
i=1

xictiaTt

)
,

we get

x′C ′A
(

∂

∂ckλ
Cx

)
=
∑
t,i

xixλctiakt

=
∑
t,i

xixλctiatk (as A is symmetric)
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=
(

∂

∂ckλ
x′C ′
)

ACx.

But
∑

t,i xixλctiatk is just the (k, λ)-th element of the matrix ACxx′.

Theorem A.94 Assume A = A(x) to be an n×n-matrix, where its elements
aij(x) are real functions of a scalar x. Let B be an n × n-matrix, such that
its elements are independent of x. Then

∂

∂x
tr(AB) = tr

(
∂A

∂x
B

)
.

Proof:

tr(AB) =
n∑

i=1

n∑
j=1

aijbji,

∂

∂x
tr(AB) =

∑
i

∑
j

∂aij

∂x
bji

= tr
(

∂A

∂x
B

)
,

where ∂A/∂x = (∂aij/∂x).

Theorem A.95 For the differentials of the trace we have the following rules:

y ∂y/∂X

(i) tr(AX) A′

(ii) tr(X ′AX) (A + A′)X
(iii) tr(XAX) X ′A + A′X ′

(iv) tr(XAX ′) X(A + A′)
(v) tr(X ′AX ′) AX ′ + X ′A
(vi) tr(X ′AXB) AXB + A′XB′

Differentiation of Inverse Matrices

Theorem A.96 Let T = T (x) be a regular matrix, such that its elements
depend on a scalar x. Then

∂T−1

∂x
= −T−1 ∂T

∂x
T−1.

Proof: We have T−1T = I, ∂I/∂x = 0, and

∂(T−1T )
∂x

=
∂T−1

∂x
T + T−1 ∂T

∂x
= 0.

Theorem A.97 For nonsingular X, we have

∂ tr(AX−1)
∂X

= −(X−1AX−1)′ ,
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∂ tr(X−1AX−1B)
∂X

= −(X−1AX−1BX−1 + X−1BX−1AX−1)′ .

Proof: Use Theorems A95 and A96 and the product rule.

Differentiation of a Determinant

Theorem A.98 For a nonsingular matrix Z, we have

(i) ∂
∂Z |Z| = |Z|(Z ′)−1.

(ii) ∂
∂Z log|Z| = (Z ′)−1.

A.16 Miscellaneous Results, Stochastic
Convergence

Theorem A.99 (Kronecker product) Let A : m × n = (aij) and B : p × q =
(brs) be any matrices. Then the Kronecker product of A and B is defined
as

C
mp,nq

= A
m,n

⊗ B
p,q

=

 a11B a12B · · · a1nB
...

... · · ·
am1B am2B · · · amnB

 ,

and the following rules hold:

(i) c(A ⊗ B) = (cA) ⊗ B = A ⊗ (cB) (c a scalar),

(ii) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C,

(iii) A ⊗ (B + C) = (A ⊗ B) + (A ⊗ C),

(iv) (A ⊗ B)′ = A′ ⊗ B′.

Theorem A.100 (Chebyschev’s inequality) For any n-dimensional random
vector X and a given scalar ε > 0, we have

P{|X| ≥ ε} ≤ E |X|2
ε2

.

Proof: Let F (x) be the joint distribution function of X = (x1, . . . , xn).
Then

E |x|2 =
∫

|x|2dF (x)

=
∫

{x:|x|≥ε}
|x|2dF (x) +

∫
{x:|x|<ε}

|x|2dF (x)

≥ ε2
∫

{x:|x|≥ε}
dF (x) = ε2P{|x| ≥ ε} .
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Definition A.101 Let {x(t)}, t = 1, 2, . . . be a multivariate stochastic
process.

(i) Weak convergence: If

lim
t→∞ P{|x(t) − x̃| ≥ δ} = 0 ,

where δ > 0 is any given scalar and x̃ is a finite vector, then x̃ is
called the probability limit of {x(t)}, and we write

p limx = x̃ .

(ii) Strong convergence: Assume that {x(t)} is defined on a probability
space (Ω, Σ, P ). Then {x(t)} is said to be strongly convergent to x̃,
that is,

{x(t)} → x̃ almost surely (a.s.)

if there exists a set T ∈ Σ, P (T ) = 0, and xω(t) → x̃ω, as T → ∞,
for each ω ∈ Ω − T

Theorem A.102 (Slutsky’s theorem) Using Definition A.101, we have

(i) if p limx = x̃, then limt→∞ E{x(t)} = Ē(x) = x̃,

(ii) if c is a vector of constants, then p lim c = c,

(iii) (Slutsky’s theorem) if p limx = x̃ and y = f(x) is any continuous
vector function of x, then p lim y = f(x̃),

(iv) if A and B are random matrices, then the following limits exist:

p lim(AB) = (p limA)(p limB)

and

p lim(A−1) = (p limA)−1 ,

(v) if p lim
[√

T (x(t) − Ex(t))
]′ [√

T (x(t) − Ex(t))
]

= V , then the
asymptotic covariance matrix is

V̄(x, x) = Ē
[
x − Ē(x)

]′ [
x − Ē(x)

]
= T−1V .

Definition A.103 If {x(t)}, t = 1, 2, . . . is a multivariate stochastic process
satisfying

lim
t→∞ E |x(t) − x̃|2 = 0 ,

then {x(t)} is called convergent in the quadratic mean, and we write

l.i.m. x = x̃ .

Theorem A.104 If l.i.m. x = x̃, then p limx = x̃.
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Proof: Using Theorem A.100 we get

0 ≤ lim
t→∞ P (|x(t) − x̃| ≥ ε) ≤ lim

t→∞
E |x(t) − x̃|2

ε2
= 0 .

Theorem A.105 If l.i.m. (x(t) − Ex(t)) = 0 and limt→∞ Ex(t) = c, then
p limx(t) = c.

Proof:

lim
t→∞ P (|x(t) − c| ≥ ε)

≤ ε−2 lim
t→∞ E |x(t) − c|2

= ε−2 lim
t→∞ E

∣∣x(t) − Ex(t) + Ex(t) − c
∣∣2

= ε−2 lim
t→∞ E

∣∣x(t) − Ex(t)
∣∣2 + ε−2 lim

t→∞
∣∣E x(t) − c

∣∣2
+ 2ε−2 lim

t→∞
{(

Ex(t) − c)′(x(t) − Ex(t)
)}

= 0 .

Theorem A.106 l.i.m. x = c if and only if

l.i.m.
(
x(t) − Ex(t)

)
= 0 and lim

t→∞ Ex(t) = c .

Proof: As in Theorem A.105, we may write

lim
t→∞ E

∣∣x(t) − c
∣∣2 = lim

t→∞ E
∣∣x(t) − E x(t)

∣∣2 + lim
t→∞

∣∣Ex(t) − c
∣∣2

+ 2 lim
t→∞ E

(
E x(t) − c

)′(
x(t) − Ex(t)

)
= 0 .

Theorem A.107 Let x(t) be an estimator of a parameter vector θ. Then we
have the result

lim
t→∞ Ex(t) = θ if l.i.m. (x(t) − θ) = 0 .

That is, x(t) is an asymptotically unbiased estimator for θ if x(t) converges
to θ in the quadratic mean.

Proof: Use Theorem A.106.

Theorem A.108 Let V : p× p and n.n.d. and X : p×m matrices. Then one
choice of the g-inverse of (

V X
X ′ 0

)
is (

C1 C2
C ′

2 −C4

)
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where, with T = V + XX ′,

C1 = T − T−X(X ′T−X)−X ′T−

C ′
2 = (X ′T−X)−X ′T−

−C4 = (X ′T−X)−(X ′T−X − I)

For details, see Rao (1989).
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Table B.1. Quantiles of the χ2-distribution

Level of significance α

df 0.99 0.975 0.95 0.05 0.025 0.01

1 0.0001 0.001 0.004 3.84 5.02 6.62
2 0.020 0.051 0.103 5.99 7.38 9.21
3 0.115 0.216 0.352 7.81 9.35 11.3
4 0.297 0.484 0.711 9.49 11.1 13.3
5 0.554 0.831 1.15 11.1 12.8 15.1

6 0.872 1.24 1.64 12.6 14.4 16.8
7 1.24 1.69 2.17 14.1 16.0 18.5
8 1.65 2.18 2.73 15.5 17.5 20.1
9 2.09 2.70 3.33 16.9 19.0 21.7

10 2.56 3.25 3.94 18.3 20.5 23.2

11 3.05 3.82 4.57 19.7 21.9 24.7
12 3.57 4.40 5.23 21.0 23.3 26.2
13 4.11 5.01 5.89 22.4 24.7 27.7
14 4.66 5.63 6.57 23.7 26.1 29.1
15 5.23 6.26 7.26 25.0 27.5 30.6

16 5.81 6.91 7.96 26.3 28.8 32.0
17 6.41 7.56 8.67 27.6 30.2 33.4
18 7.01 8.23 9.39 28.9 31.5 34.8
19 7.63 8.91 10.1 30.1 32.9 36.2
20 8.26 9.59 10.9 31.4 34.2 37.6

25 11.5 13.1 14.6 37.7 40.6 44.3
30 15.0 16.8 18.5 43.8 47.0 50.9
40 22.2 24.4 26.5 55.8 59.3 63.7
50 29.7 32.4 34.8 67.5 71.4 76.2

60 37.5 40.5 43.2 79.1 83.3 88.4
70 45.4 48.8 51.7 90.5 95.0 100.4
80 53.5 57.2 60.4 101.9 106.6 112.3
90 61.8 65.6 69.1 113.1 118.1 124.1

100 70.1 74.2 77.9 124.3 129.6 135.8
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Table B.2. Quantiles of the Fdf1,df2 -distribution with df1 and df2 degrees of
freedom (α = 0.05)

df1

df2 1 2 3 4 5 6 7 8 9

1 161 200 216 225 230 234 237 239 241
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80
13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72
14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40
30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21
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Table B.3. Quantiles of the Fdf1,df2 -distribution with df1 and df2 degrees of
freedom (α = 0.05)

df1

df2 10 11 12 14 16 20 24 30

1 242 243 244 245 246 248 249 250
2 19.39 19.40 19.41 19.42 19.43 19.44 19.45 19.46
3 8.78 8.76 8.74 8.71 8.69 8.66 8.64 8.62
4 5.96 5.93 5.91 5.87 5.84 5.80 5.77 5.74
5 4.74 4.70 4.68 4.64 4.60 4.56 4.53 4.50

6 4.06 4.03 4.00 3.96 3.92 3.87 3.84 3.81
7 3.63 3.60 3.57 3.52 3.49 3.44 3.41 3.38
8 3.34 3.31 3.28 3.23 3.20 3.15 3.12 3.08
9 3.13 3.10 3.07 3.02 2.98 2.93 2.90 2.86

10 2.97 2.94 2.91 2.86 2.82 2.77 2.74 2.70

11 2.86 2.82 2.79 2.74 2.70 2.65 2.61 2.57
12 2.76 2.72 2.69 2.64 2.60 2.54 2.50 2.46
13 2.67 2.63 2.60 2.55 2.51 2.46 2.42 2.38
14 2.60 2.56 2.53 2.48 2.44 2.39 2.35 2.31
15 2.55 2.51 2.48 2.43 2.39 2.33 2.29 2.25

20 2.35 2.31 2.28 2.23 2.18 2.12 2.08 2.04
30 2.16 2.12 2.00 2.04 1.99 1.93 1.89 1.84
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Software for Linear Regression Models

This chapter describes computer programs that support estimation of re-
gression models and model diagnostics (the description skips aspects that
don’t relate to regression models). Sections C.1 and C.2 describe available
software. Section C.3 lists some sources that might be of interest to the
user who has access to the Internet.

C.1 Software

Available statistical software can be divided into roughly three categories,
but the categorization is not strict; several programs may fall into more
than one group, and current development shows that the software that falls
into one of the first two categories is often extended in the other direction
as well.

• Statistical programming languages. These are programming lan-
guages that have special support for statistical problems, such as
built-in datatypes for matrices or special statistical functions. These
packages are generally more extensible than the members of the fol-
lowing group in that the user can supply code for new procedures
that are not available in the base system. Prominent examples are
Gauss, S-plus, Matlab, Xlisp-Stat, Minitab, and SAS.

• Statistical software with a graphical user interface. These programs
allow the user to analyze models interactively. Dialogues allow specifi-
cation of models and selection of different model-selection approaches.
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These tools are not extensible unless some kind of programming lan-
guage is also provided. This loss in flexibility is opposed by the user
interface that makes the tool easier to use. Examples are SPSS,
Systat, SAS, S-plus (the Windows versions), JMP, Statistica, and
STATA.

• Special-purpose software. These are smaller packages that fall in one
of the above categories with the difference that they provide meth-
ods only for a certain class of models. They often originate from
research projects and cover the work done there (MAREG, R-Code
extensions/macro packages for Xlisp-Stat, SAS, etc.). The programs
shown here are meant only as examples; it is difficult to give complete
coverage, which in addition would have to be updated frequently.

The following lists of features are taken from the documentation of the
respective programs and cover only the basic systems (i.e., third party
extensions available are not covered).

Gauss
Available for DOS, OS/2, Windows, Unix.
Information under http://www.aptech.com/. Gauss is a programming
language especially designed to handle matrices.

Linear Regression: The linear regression module is a set of procedures
for estimating single equations or a simultaneous system of equations.
Constraints on coefficients can be incorporated. Two-stage least squares,
three-stage least squares, and seemingly unrelated regression are available.

Gauss calculates heteroscedastic-consistent standard errors, and per-
forms both influence and collinearity diagnostics inside the ordinary least
squares routine. Performs multiple linear hypothesis testing with any form.

Loglinear Analysis: The estimation is based on the assumption that the
cells of the K-way table are independent Poisson random variables. The
parameters are found by applying the Newton-Raphson method using an
algorithm found in Agresti (1990). User-defined design matrices can be
incorporated.

S-plus
Available for DOS, Windows, Unix, Linux.
Information under http://www.mathsoft.com/splus.html/. S-plus is
based on the S language (Becker, Chambers, and Wilks, 1988)

Linear Regression: Linear regression includes basic linear regression, poly-
nomial regression, least-trimmed-squares regression, constrained regression,
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logistic regression, generalized linear models, linear mixed-effect models,
minimum absolute-residual regression, and robust MM regression.

Nonlinear Regression and Maximum Likelihood: Nonlinear regression, non-
linear maximum likelihood, constrained nonlinear regression, nonlinear
mixed effects.

Nonparametric Regression: Generalized additive models, local regression
(loess), projection pursuit, ACE, AVAS, and tree-based models.

ANOVA: Fixed effects, random effects, rank tests, repeated measures, vari-
ance components, split-plot models, MANOVA, and multiple comparisons.

(X)Lisp-Stat
Available for Macintosh, UNIX systems running X11, Windows.
Information under http://www.stat.umn.edu/˜luke/xls/xlsinfo/.
This package is by Luke Tierney (free).

(From the documentation): Lisp-Stat is an extensible statistical com-
puting environment for data analysis, statistical instruction, and research,
with an emphasis on providing a framework for exploring the use of dy-
namic graphical methods. Extensibility is achieved by basing Lisp-Stat on
the Lisp language, in particular on a subset of Common Lisp.

A portable window system interface forms the basis of a dynamic graph-
ics system that is designed to work identically in a number of different
graphical user interface environments, such as the Macintosh operating
system, the X window system, and Microsoft Windows.

The object-oriented programming system is also used as the basis for
statistical model representations, such as linear and nonlinear regression
models and generalized linear models. Many aspects of the system design
were motivated by the S language.

Minitab
Available for Windows, Macintosh and for Mainframes and Workstations.
Information under http://www.minitab.com/.

Regression Analysis: Regression analysis includes simple and multiple lin-
ear regression, model selection using stepwise or best-subsets regression,
residual plots, identification of unusual observations, model diagnostics,
and prediction/confidence intervals for new observations.

Logistic Regression: Binary, ordinal, or normal data; diagnostic plots,
polynomial regression, with or without log transforms.
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ANOVA: General linear model for balanced, unbalanced and nested de-
signs; fixed and random effects; and unbalanced nested designs. Multiple
factor ANOVA for balanced models; fixed and random effects; multiple
comparisons; multivariate analysis of variance; analysis of fully nested de-
signs; sequential sum of squares; identification of unusual observations;
model diagnostics; residual, main effects, and interaction plots; and tests
of homogeneity of variances.

SAS
Available for Windows, Unix.
Information under http://www.sas.com/.

Regression Analysis: Regression analysis includes ridge regression; lin-
ear regression; model-selection techniques (backwards, forwards, stepwise,
based on R-squared); diagnostics; hypothesis tests; partial regression lever-
age plots; outputs predicted values and residuals; graphics device plots;
response surface regression; nonlinear regression; derivative-free; steepest-
descent; Newton, modified Gauss-Newton, Marquardt and DUD methods;
linear models with optimal nonlinear transformation; and partial least
squares.

Analysis of Variance: ANOVA for balanced data; general linear models;
unbalanced data; analysis of covariance; response-surface models; weighted
regression; polynomial regression; MANOVA; repeated measurements anal-
ysis; least squares means; random effects; estimate linear functions of
the parameters; test linear functions of the parameters; multiple com-
parison of means; homogeneity of variance testing; mixed linear models;
fixed and random effects; REML; maximum likelihood, and MIVQUE0
estimation methods; least-squares means and differences; sampling-based
Bayesian analysis; different covariance structures (compound symmetry,
unstructured, AR(1), Toeplitz, heterogeneous AR(1), Huynh-Feldt); mul-
tiple comparison of least-squares means; repeated measurements analysis;
variance components; nested models; and lattice designs.

SPSS
Available for DOS, Windows, Unix.
Information under http://www.spss.com/.

Regression: Multiple linear regression, curve estimation, weighted least
squares regression, two-stage least squares, logistic regression, probit
models, optimal scaling, nonlinear regression, model-selection techniques
(backward, forward, stepwise), hypothesis tests, predicted values and
residuals, residual plots, and collinearity diagnostics.
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ANOVA: General linear model: general factorial, multivariate, repeated
measures and variance components covers the the ANOVA and ANOVA
models.

Missing Values: SPSS also provides a missing-values module. Patterns of
missing data can be displayed, and t-tests and cross-tabulation of cat-
egorical and indicator variables can be used to investigate the missing
mechanism. Esitmation of missing values is available via the EM algorithm,
regression estimation, and listwise or pairwise estimation.

Systat
Available for Windows.
Information under http://www.spss.com/software/science/systat/.

Regression: Classification and regression trees, design of experiments, gen-
eral linear model, linear regression, logistic regression, loglinear models,
nonlinear regression, probit, and two-stage least squares.

ANOVA: One and two way ANOVA, post hoc tests, mixed models,
repeated measures ANOVA and MANOVA.

JMP
Available for Windows and Macintosh.
Information under http://www.jmpdiscovery.com/

JMP (by SAS) is an environment for statistical visualization and ex-
ploratory data analysis. Analysis of variance and multiple regression and
nonlinear fitting are offered.

BMDP
For DOS BMDP/Classic for DOS, see http://www.spss.com/software/
science/Bmdp/. For BMDP Professional, with its Windows interface, see
http://statsol.ie/bmdp.html.

Regression: Simple linear, multiple linear, stepwise, regression on principal
components, ridge regression, and all possible subsets regression.

Nonlinear regression: Derivative-free non linear regression, polynomial re-
gression, stepwise logistic regression, and polychotomous logistic regression.

Mathematical Software
Mathematical software such as Maple (see http://www.maplesoft.com/),
Mathematica (see http://mathematica.com/), or Matlab (see http://
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www.mathworks.com/) often comes with libraries for statistical problems.
For example, Matlab’s statistics library contains functions for linear models
including regression diagnostics and ridge regression.

C.2 Special-Purpose Software

MAREG/WinMAREG
Available for DOS/Windows and Unix, Linux (MAREG only) (free soft-
ware).
Information under http://www.stat.uni-muenchen.de/˜andreas/mareg/
winmareg.html.

MAREG is a tool for estimating marginal regression models. Marginal
regression models are an extension of the well-known regression models to
the case of correlated observations. MAREG currently handles binary, cate-
gorical, and continuous data with several link functions. Although intended
for the analysis of correlated data, uncorrelated data can be analyzed. Two
different approaches for these problems—generalized estimating equations
and maximum-likelihood methods—are supplied. Handling of missing data
is also provided.

WinMAREG is a Windows user interface for MAREG, allowing method
specification, selection and coding of variables, treatment of missing values,
and selection of general settings.

R-Code
The R-Code is based on Xlsip-Stat.
Information under http://stat.umn.edu/˜rcode/.

The software comes with the book by Cook and Weisberg (1994),
which describes the concepts of structure in regression, diagnostics, and
visualization, and gives a tutorial to the software.

GLIM
Available for DOS and Unix.
Information under http://www.nag.co.uk/stats/GDGE.html.

GLIM is a specialized, interactive statistical modeling package that al-
lows the user to fit a variety of statistical models developed by the GLIM
Working Party of the Royal Statistical Society. It has a concise command
language that allows the user to fit and refit simple or complex models it-
eratively. GLIM is better run interactively because model fitting is largely
an iterative process, but GLIM may also be run noninteractively. Linear re-
gression models, models for the analysis of designed experiments, log-linear
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models for contingency tables, probit analysis, and logistic regression are
available.

C.3 Resources

StatLib Server
http://lib.stat.cmu.edu/. StatLib is a system for distributing statis-
tical software, datasets, and information by electronic mail, FTP, and
WWW, hosted by the Department of Statistics at Carnegie Mellon Uni-
versity. Several sites around the world serve as full or partial mirrors to
StatLib.

Data and Story Library (DASL)
http://lib.stat.cmu.edu/DASL/. The DASL is a repository of stories
and datafiles that illustrate various concepts in statistics and data analy-
sis. The stories are organized both by content area and by methodology
employed. The data can be downloaded as a space- or tab-delimited table
of text, easily read by most statistics programs.

Statistics on the Web
http://execpc.com/˜helberg/statistics.html. A very nice page and a
good starting point covering several aspects of statistics that can be found
on the Web. Organizations, institutes, educational resources, publications,
and software are listed.
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binary response variable, 305
binomial distribution, 290
bivariate

binary correlated response, 344
regression, 44
scatterplot, 56

BLUE, 104
bootstrap

estimator, 266
sample, 266

canonical form, 57
canonical link, 292
categorical response variables, 290
categorical variables, 303
Cauchy-Schwarz inequality, 370
censored regression, 80
central limit theorem, 310
chain rule, 295
Chebyschev’s inequality, 387
classical

linear regression model, 19
multivariate linear regression

model, 17
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prediction, 184
cluster, 300, 336
Cobb-Douglas production function, 7
coding of response models, 331
coefficient of determination, 47

adjusted, 51, 52
cold-deck imputation, 243
column space, 25
complete case analysis, 242, 254
compound symmetric, 108
compound symmetric structure, 336
condition number, 59
conditional distribution, 304
conditional least-squares, 27
conditional model, 337
confidence ellipsoid, 52, 225
confidence intervals, 47, 52
constant mean model, 181
constraints, 320
contemporaneously uncorrelated

observations, 122
contingency table, 303

I × J , 290
I × J × 2, 322
three-way, 322
two-way, 303, 311, 319

Cook’s distance, 226, 269
corrected logit, 314
corrected sum of squares, 45
correlated response, 337
correlation coefficient

sample, 46, 47
covariance matrix, 310

estimated asymptotic, 326
covariance matrix, asymptotic, 310
Cox approach, 333
Cramér-Rao bound, 37
criteria for model choice, 50
cross-product ratio, 306
cross-validation, 68

decomposition
of a matrix, 362
singular-value, 364

decomposition of σ̂2
Ω, 42

decomposition of P , 213
deficiency in rank, 30
dependent binary variables, 335

design matrix for the main
effects, 331

detection of outliers, 220
determinant of a matrix, 356
determination coefficient

adjusted, 55
deviance, 299
diagnostic plots, 224
differences

test for qualitative, 333
dispersion parameter, 292
distribution

beta-binomial, 301
conditional, 304
logistic, 316
multinomial, 307
poisson, 307

dummy coding, 328
dummy variable, 44
Durbin-Watson test, 56, 113

Eckart-Young-Mirsky matrix
approximation theorem, 71

econometric model, 12
effect coding, 326, 329
efficiency of prediction ellipsoids, 200
eigenvalue, 360
eigenvector, 360
endodontic treatment, 322
ergodic, 11
error back-propagation, 87
estimate

ridge, 78
shrinkage, 64

estimating equations, 301
estimation

best linear unbiased, 27
minimax, 72
OLS, 51
ridge, 59–61

estimation of σ2, 34
estimator

OLS, 44
exact knowledge of a subvector, 140
exact linear restrictions, 38
exact restriction, 59
exchangeable correlation, 343
expected coverage, 200
exponential dispersion model, 292
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exponential family, 291
externally Studentized residual, 218

F -change, 52, 56
filling in the missing values, 243
first-order regression, 259
Fisher-information matrix, 294
Fisher-scoring algorithm, 297
fit, perfect, 320
fixed effect, 119
form

canonical, 57
reduced, 6, 12
structural, 6

Frobenius norm, 70
full rank factorization, 365

G2-statistic, 318
Gauss-Markov Least Squares, 131
GEE, 340
generalized

esimation equations (GEE), 340
inverse, 372
linear model (GLM), 291
linear models, 289
linear regression model, 18, 97

GLM, 291
for binary response, 313

GLSE, 108
goodness of fit, 299

testing, 310
grouped data, 313

hat matrix, 212
hazard function

model for the, 334
hazard rate, 332
heteroscedasticity, 109, 225
hierarchical models for three-way

contingency tables, 324
hot-deck imputation, 243

identification, 15
identity link, 292
IEE, 340, 346
inclusion of inequality restrictions in

an ellipsoid, 73
independence, 304

conditional, 322

joint, 322
mutual, 322
testing, 311

independence estimating equations
(IEE), 340

independent multinomial sample, 308
independent single regression, 18
inequality restricted least squares, 72
inequality restrictions, 72
influential observations, 217
inspecting the residuals, 222
Instrumental Variable Estimator, 122
interaction, test for quantitative, 333
internally Studentized residual, 218
intraclass correlation, 111
iterative proportional fitting

(IPF), 326
I × J contingency table, 290

kernel of the likelihood, 309
Keynes’s model, 13
Kolmogorov-Smirnov test, 56
Kronecker product, 17

LAD estimator, 81
asymptotic distribution, 279
multivariate case, 280
univariate case, 272

least absolute deviation
estimators, 272

leverage, 212
likelihood equations, 37
likelihood function, 308
likelihood ratio, 38
likelihood-ratio test, 312, 318
linear estimators, 32
linear hypothesis, 37, 39
linear minimax estimates, 75
linear regression, 23
linear trend model, 182
link, 291

canonical, 292, 338
identity, 292
natural, 292

link function, 316
log odds, 313
logistic distribution, 316
logistic regression, 313



424 Index

logistic regression and neural
networks, 87

logistic regression model, 313
logit link, 313
logit models, 313

for categorical data, 317
loglinear model, 319

of independence, 320
long-term studies, 242
LR test, 47

M-estimate
general, 281
univariate case, 276

Mallows’s Cp, 52
MANOVA, 271
MAR, 244
marginal distribution, 303
marginal model, 337
marginal probability, 304
masking effect, 219
matrix

decomposition of, 362
definite, 365
determinant, 356
diagonal, 355
differentiation of, 384, 386
generalized inverse, 372
idempotent, 371
identity, 355
inverse of, 358
Moore-Penrose inverse, 372
nonsingular, 356
orthogonal, 359
partitioned, 358
rank of, 359
regular, 356
singular, 356
square, 354
trace of, 355
triangular, 354

maximum likelihood, 344
maximum-likelihood

estimates, 308, 311
methods, 255
principle, 36

MCAR, 244
MDE, 33

matrix comparison
of two biased estimators, 149
of two biased restricted

estimators, 156
of two linear biased

estimators, 154
matrix criterion, 193
scalar, 58
superiority, 33

MDE-I
criterion, 33, 146
superiority, 78
superiority of β̂(R), 168, 169
superiority of b(k), 62

MDE-II
criterion, 147
superiority of β̂(R), 170

MDE-III
criterion, 147

MDEP, 263
MDLUE, 29
MDUE, 28
mean dispersion error (MDE), 33
mean imputation, 243
mean shift model, 235
mean-shift outlier model, 220
measuring the gain in efficiency, 167
method by Yates, 246
minimax

estimate, 75
estimation, 72
principle, 72, 75
risk, 78

missing at random (MAR), 244
missing completely at random

(MCAR), 244
missing data, 241

in the response, 245
missing indicator matrix, 244
missing values

filling in, 243
in the X-matrix, 251
loss in efficiency, 252
maximum-likelihood estimates, 257

missing-data mechanisms, 244
misspecification , 79
misspecification of the dispersion

matrix, 106
mixed effects model, 117
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mixed estimator, 163
mixed model, 164
ML-estimator, 36
model

choice, 51
criteria for, 50

complete-case, 251
econometric, 12
independence, 318
Keynes’s, 13
logistic, 318
logistic regression, 313
logit, 313, 318
MANOVA, 271
multivariate, 6
saturated, 318, 320
univariate, 6

model of statistical independence, 317
model-based procedures, 243
Moore-Penrose inverse, 372
multicollinearity, 60

exact, 58
methods for dealing with, 59
strict, 58
weak, 58

multinomial
distribution, 307
independent sample, 308

multinomial distribution, 310
multiple X-rows, 216
multiple coefficient of

determination, 50
multiple imputation, 243, 261
multiple regression, 49
multivariate model, 6
multivariate regression model, 14
MVUE, 27

natural link, 292
natural parameter, 291
nested test, 50
neural networks, 86
nonestimable function, 30
nonignorable nonresponse, 244
normal equations, 24
normal regression

generalized, 19
normalized residual, 218
null space, 360

observation-driven model, 337
odds, 305

log, 313
odds ratio, 306
odds ratio for I × J tables, 307
OLS estimate

restrictive, 60
OLS estimator, 44, 108
omitting an observation, 219
one-step-ahead prediction, 189
optimal

heterogeneous prediction, 185
homogeneous prediction, 187
linear estimation of β, 97
substitution of β, 176

orthogonal projection, 26
orthogonal projector, 157, 367
outlier, 224
overdispersion, 299

parameter
natural, 291

partial inversion, 41
partial least squares, 65
partial regression plots, 231
Pearson’s χ2, 310
perceptron, 87
Poisson

distribution, 290, 307
sampling, 326

polynomial models, 183
posterior precision , 168
prediction

classical, 184, 190
one-step-ahead, 189
optimal heterogeneous, 185
optimal homogeneous, 187

prediction matrix, 211, 212
prediction model, 184
prediction regions, 197
principal components, 58
principal components regression, 59
principle

minimax, 72, 75
ordinary least squares, 24

prior information, 137
in the form of restrictions, 138

probit model, 316
procedure



426 Index

stepwise, 54
process

stochastic, 9
product multinomial sampling, 308
prognostic factor, 313
projection pursuit regression, 68
projector, 380

quadratic form, 365
quasi likelihood, 301
quasi loglikelihood, 301
quasi-correlation matrix, 339, 343
quasi-score function, 302

R(A) superiority, 32
R1-Optimal Estimators, 98
R1(β̂, β, A), 98
R2-optimal estimators, 102
R2(β̂, β, a), 98
R3-optimal estimators, 103
R3(β̂, β), 98
random effect, 120
random-effects model, 337, 343
range, 360
rank of a matrix, 359
Rao Least Squares, 132
Rao’s score statistic, 82
reduced form, 6, 12
regression

bivariate, 44
linear, 23
multiple, 49
principal components, 59

regression analysis
checking the adequacy of, 46

regression diagnostics, 233
regression imputation, 243
regression model

classical linear, 19
classical multivariate linear, 17
generalized linear, 18
multivariate, 14

regression under normal errors, 35
regular model, 19
relative efficiency, 253
relative risk, 305
residual sum of squares, 49, 50
residuals

externally Studentized, 218

internally Studentized, 218
normalized, 218
standardized, 218
sum of squared, 24

residuals matrix, 212
response

binary, 300
response probability, model for, 329
response variable

binary, 305
restricted least-squares estimator, 138
restricted regression, 88
restricted Zellner’s estimator

(RZE), 124
restrictions

exact linear, 38
inequality, 72

restrictive OLS estimate, 60
ridge estimation, 59–61, 78
ridge parameter, 64
risk

minimax, 78
relative, 305

risk function
quadratic, 32

RLSE instead of the mixed
estimator, 178

robust regression, 271

sample
independent multinomial, 308

sample correlation coefficient, 46, 47
sample logit, 314
scalar

MDE, 58
risk function, 98

scatterplot
bivariate, 56

Scheffés simultaneous confidence
intervals, 84

score function, 294
seemingly unrelated regression, 123
sensitivity analysis, 56
separation of b, 41
shrinkage estimate, 64

in the canonical model, 64
single regression, 15
singular-value decomposition, 364
Slutsky’s theorem, 388
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spectral decomposition, 58, 362
SS corrected, 45
SS regression, 45
SS residual, 45
standardized residual, 218
Stein-rule method, 248
Stein-type estimator, 163
stepwise biased restrictions, 159
stepwise inclusion of exact linear

restrictions, 141
stepwise procedure, 54
stochastic convergence, 387
stochastic linear restrictions, 163
stochastic process, 9
stochastic regression, 121
structural form, 6
submodel, 51
sum of squares

residual, 49
superiority

R(A), 32
x∗β, 195
MDE, 33
MDE-I, 78

SXX, 46
SXY , 46
systematic component, 291
SY Y , 45, 46

table
ANOVA, 45

test
for qualitative differences, 333
for quantitative interaction, 333
Kolmogorov-Smirnov, 56
likelihood-ratio, 312
nested, 50
of significance, 285

test statistic, 48
Durbin-Watson, 56

testing for autoregression, 113

testing goodness of fit, 310
testing linear hypotheses, 37
therapy effect, 333
three-factor interaction, 323
three-way contingency table, 322
Tobit model, 80
total least squares, 70
trace of a matrix, 355
transformation of variables, 115
two-way

contingency table, 311
interactions, 323

unbiased, 33
univariate model, 6

variance ratio, 229

Wald statistic, 315
weakened linear restrictions, 172
weakly (R, r)-unbiasedness, 172
weakly unbiased, 204
weighted mixed regression, 261
weighted mixed-regression estimator

(WMRE), 262
Welsch-Kuh’s distance, 226
Wilks’ G2, 312
Wilks’s G2, 299
WMRE, 262

two-stage, 266
workability conditions, 72
working covariance matrix, 339
working variances, 301, 339

X∗β superiority, 191
X∗β-superiority, 195

y∗ superiority, 192
Yates procedure, 246

zero-order regression, 258






