
Appendix A Page 1

Additional Branch and Bound Topics

The first part of this appendix extends the basic ideas of branch and bound to problems
that contain both continuous and integer variables. The discussion is restricted to the
case in which the integer variables are binary. In the second part of this appendix, we
present the additive algorithm developed by Egon Balas to solve pure 0-1 integer linear
programs. The interesting aspect of this algorithm is that it does not use the linear
programming relaxation for the construction of the bound.

0-1 Mixed-Integer Linear Programming

The branch and bound algorithm described in Section 8.3 can be used to
solve virtually all optimization problems containing integer variables, but
problem classes will differ in the implementation of the subroutines
Branch, Approximate, and Variable Fixing. We now discuss some of the
issues that arise when trying to solve a 0-1 MILP. The problem has the
following form

Maximize c1x + c2y

subject to A1x + A2y ≤ b

xj ≥ 0, j = 1,…,n1

yj = 0 or 1, j = 1,…,n2

where x is an n1-dimensional vector of real variables, y is an n2-

dimensional vector of binary variables, and n = n1 + n2. The number of

structural constraints is m, and the parameters c1, c2, A1, A2 and b are

appropriately sized arrays.

Bound

The most obvious relaxation of this problem is obtained by removing the
integrality requirements on the binary variables. The result is a bounded
variable linear program with the same format as above except the
integrality requirements are replaced by

0 ≤ yj ≤ 1, j = 1,…,n2

2 Integer Programming Methods

Assume at some point in the enumeration process that the sets S
+
k,

S
–
k and S0

k are available. The linear programming relaxation of the

problem is

z k
UB = Maximize c1x + ∑

j∈S0
k

 c2jyj + ∑
j∈S+

k

 c2j

subject to A1x + A2y ≤ b

xj ≥ 0, j = 1,…,n1

0 ≤ yj ≤ 1, j ∈ S0
k

yj = 1, j ∈ S
+
k

yj = 0, j ∈ S
–
k

where the third term in the objective function is a constant, and the last
two constraints fix a subset of the binary variables to either 0 or 1. The
solution to this LP provides an upper bound to the set of solutions
associated with node k. If the problem is infeasible, the node can be
fathomed.

Note that we can no longer use Eq. (4) in Chapter 8 to reduce z k
UB

by its fractional part and thus obtain a more powerful bound. Because
some of the variables are allowed to be noninteger, the optimal objective
value may be fractional.

Approximate

Obtaining a feasible integer solution from the relaxed solution is not, in
general, simple since rounding will rarely produce the desired result. Of
course, if the relaxed solution has all integer values for y, it is also feasible
to the original problem. In this case, it is considered as a replacement for
the incumbent yB in the Update subroutine. In any case, when the relaxed

solution satisfies the integrality requirement the node is fathomed and
backtracking occurs.

Example 3 (Facility Location Problem)

To illustrate this branch and bound procedure for a 0-1 MILP we consider
a simplification of the facility location problem discussed in Section 7.4.
Figure A1 gives the unit costs of transporting a commodity from each of

Additional Branch and Bound Topics 3

three proposed warehouse locations to five different customer sites. The
demand for the commodity is given at the bottom of the matrix.

Customer

Warehouse 1 2 3 4 5

1 15 15 16 11 11

2 13 11 15 9 6

3 8 12 11 7 8

Demand 5 10 15 5 10

Figure A1. Data for facility location problem

We must decide which of the three locations should have a
warehouse. The capacity of a warehouse, if built, is 30. The cost of
building a warehouse at location 1, 2 or 3 is 200, 300 and 200,
respectively.

We use the model that defines the variables as a proportion of
demand rather than as the amount shipped. The corresponding LP
relaxation has a feasible region that is closer to the MILP feasible region
and provides better bounds for the fathoming test. Recall that the decision
variables are

xij = fraction of jth customer’s demand met from warehouse i

yi = 1 if warehouse is built at location i; 0 otherwise

and the model is:

Minimize z =
i =1

m

∑ d jcij xij
j =1

n

∑ + fiyi
i =1

m

∑

(All demand must be met) x ij
i =1

m

∑ = 1, j = 1,…,n

(Warehouse capacity limits) d jxij
j =1

n

∑ ≤ uiyi, i = 1,…,m

(Nonnegativity) xij ≥ 0, i = 1,…,m; j = 1,…,n

(Integrality) yi = 0 or 1, i = 1,…,m

xij ≤ yi , i = 1,…,m; j = 1,…,n

The last set of mn constraints is redundant, but its inclusion can
increase the computational efficiency of the B&B algorithm significantly.

4 Integer Programming Methods

The idea is to explicitly limit the use of any shipping link whose
corresponding warehouse is not opened. The constraints force the values
of the yi variables to assume the maximum value of the amount shipped

(that is, maxj xij) from warehouse i. This produces a tighter LP feasible

region and hence better bounds.

To form the linear programming relaxation, the integrality
constraints are replaced by simple bounds 0 ≤ yi ≤ 1. The search tree

resulting from the branch and bound computations is illustrated in Fig. A2.
Table A1 provides the details for each iteration. The vector yLB gives the

relaxed solution for the 0-1 variables with zLB the objective value.

Because we are minimizing rather than maximizing, the LP returns a
lower bound rather than an upper bound as was the case up until now.
This means that we must reverse the sense of the inequality in condition
(3) in Chapter 8. With this modification, the appropriate test for
fathoming node k becomes

z k
LB ≥ zB (A1)

The separation variable is identified in the column labeled s and
was chosen to be the yi closest to 0.5 amongst all fractional yi; that is, ys =

mini{|yi – 0.5|}. When the value of the fraction was exactly 0.5, the ys =

1 node was explored first. Because we are solving a mixed-integer
program, condition (4) in Chapter 8 can no longer be use to round the LP
objective value.

0

4

2 3 5

1

6 7

8

-2+2

-3+3 +1 -1

-3+3

z = 790.0
LB

z = 860.0
LB

z = 910.0
F

z = 792.0
LB

(0, 1, 1)

Feasible

z = 932.5
LB z = 857.5

LB

Infeasible

Infeasible

z = 885.0
B

(1, 0, 1)

Feasible

Figure A2. Search tree for warehouse location problem

Additional Branch and Bound Topics 5

The first feasible solution is uncovered at node 2 yielding an
objective value zF = 910. The algorithm then backtracks to node 3 where

the LP objective value is zLB = 932.5. Condition (A1) allows us to fathom

this node so we backtrack to node 4. A second feasible solution is found
at node 6 which turns out to be the optimum. This is confirmed after
examining two more nodes. A final point about the example is that from
the data we see that the total demand is 45 and the capacity of each
warehouse is 30. Consequently, all solutions that specify only one
warehouse can be fathomed immediately without attempting the LP
relaxation. When solving integer programs, it is important to identify
these types of problem-dependent restrictions. They often occasion large
reductions in the computational effort.

Table A1. B&B Results for Warehouse Location Problem

Node, k Level, l Pk zLB yLB zB yB s Action

0 0 Ø 790.0 (0, 0.5, 1) M –– 2 Set y2=1

1 1 (+2) 860.0 (0, 1, 0.5) M –– 3 Set y3=3

2 2 (+2, +3) 910.0 (0, 1, 1) 910 (0, 1, 1) –– Backtrack

3 2 (+2, –3) 932.5 (1, 1, 0) 910 (0, 1, 1) –– Fathom and
backtrack

4 1 (–2) 792.0 (0.5, 0,1) 910 (0, 1, 1) 1 Set y1=1

5 2 (–2, +1) 857.5 (1, 0, 0.5) 910 (0, 1, 1) 3 Set y3=1

6 3 (–2, +1, +3) 885.0 (1, 0, 1) 885 (1, 0, 1) –– Backtrack

7 3 (–2, +1, –3) Infeas. –– 885 (1, 0, 1) –– Backtrack

8 2 (–2, –1) Infeas. –– 885 (1, 0, 1) –– Stop

Additive Algorithm for the Pure 0–1 Integer Programming

We now present a B&B algorithm that can be used to solve a 0-1 integer
program without relying on linear programming to find upper bounds.
The approach is due to Egon Balas and is referred to as the additive
algorithm. We write the model as

Maximize c j x j
j =1

n

∑

subject to aij x j
j =1

n

∑ ≤ bi, i = 1,…,m

6 Integer Programming Methods

xj = 0 or 1, j = 1,…,n

For reasons that will soon become apparent it is assumed that all
constraints are of the “less than or equal to” type. If a model is not in this
form, the following transformations can be used to achieve it.

• If some constraint i is of the “greater than or equal to” type, make
the following substitution.

aij x j
j =1

n

∑ ≥ bi –aij x j
j =1

n

∑ ≤ –bi

• If some constraint i is an equality, replace it with the following in-
equalities.

∑
j=1

n
 aijxj = bi

∑

j=1

n
 aijxj ≤ bi

∑
j=1

n
 –aijxj ≤ –bi

It is also assumed that all coefficients cj in the objective function are

nonpositive. If cj > 0, we replace xj with 1 – x̂j, where x̂j is a binary

variable. This transformation introduces constants on the left-hand side of
the constraints that must be moved to the right. Constant terms in the
objective function are ignored during the optimization but added back
when the solution is found.

As an illustration of the variable transformation step, consider the
knapsack example below.

Maximize z = 5x1 + 3x2 + 7x3

subject to 4x1 + 2x2 + 5x3 ≤ 8

xj = 0 or 1, j = 1, 2, 3

To obtain negative coefficients in the objective, each of the variables must
be transformed. The revised problem in the form required by the
algorithm is

Maximize z = –5 x̂1 – 3x̂2 – 7x̂3 + 15

subject to –4 x̂1 – 2x̂2 – 5x̂3 ≤ 8 – 11 = –3

Additional Branch and Bound Topics 7

x̂j = 0 or 1, j = 1, 2, 3

To use implicit enumeration as the solution technique, it is necessary to
define a relaxation that will provide bounds and allow us to test for
feasibility.

Bound

A very simple relaxation of an integer program is one that requires only
addition to obtain a solution. If we are at node k in the search tree with

sets S
+
k, S

–
k and S0

k, the problem under consideration can be written

z k
UB = Maximize ∑

j∈S0
k

 cjxj + ∑
j∈S

+
k

 cj

subject to ∑
j∈S0

k

 aijxj ≤ ri, i = 1,…,m (A2)

xj = 0 or 1, j ∈ S0
k

where the second term in the objective function is a constant -- the
contribution of the variables fixed at 1. Of course, the variables fixed at 0
do not affect the objective function. To simplify the notation, we have
introduced ri to represent the right-hand side of constraint i; that is,

ri = bi – ∑
j∈S

+
k

 aij, i = 1,…,m

The value ri is the original right-hand-side value less the coefficients of

the variables that are set to 1.

Because cj ≤ 0, a relaxed solution xk that maximizes the objective

is obtained by setting all the free variables xj = 0, j ∈ S0
k. The

corresponding objective value is computed by summing the coefficients of

the variables fixed to 1; that is, z k
UB = Σj∈S+

k cj. In addition, if r =

(r1,..., rm) ≥ 0 implying that all the constraints are satisfied, xk is optimal

to the IP at node k. In this case, we update the incumbent by putting zB ←

max{zB, z k
UB} and backtrack.

If some of the constraints are not satisfied when all free variables
are set to zero, neglecting these constraints is a relaxation of the problem.

8 Integer Programming Methods

The objective value obtained is an upper bound. The solution to this
relaxation is always integer, but some of the constraints in Eq. (A2) may
be violated.

For the transformed knapsack example, when all variables are free

at node 0 the bound obtained is z 0
UB = 0 (the constant 15 will be ignored

for the remainder of this section). Clearly, this is an upper bound on the
optimal objective value since all the objective coefficients are negative.
Given r1 = –3 for the constraint, we see, however, that the solution is not

feasible.

Approximate

This procedure is aimed at finding a feasible solution at a given node that
can be used in subsequent fathoming tests. For the additive algorithm, we
simply examine the values of ri to see if each is positive. If so, a feasible

solution has been found.

Variable Fixing

For a 0-1 integer program, various logical tests may be included to
determine whether a particular node in the search tree can be fathomed
because it admits no feasible solutions. Again assume that the
enumerative process has progressed to node k and consider constraint i.
Let ti be the sum of the negative coefficients of the free variables. Thus

ti = ∑
j∈S0

k

 min{0, aij}

represents the smallest possible left-hand-side value for constraint i and is
always nonpositive. The right-hand-side value ri may be positive, zero, or

negative. When all the ri are nonnegative, the solution to the relaxation is

feasible and optimal for the node.

If ri is negative for some constraint i and ti > ri, there is no feasible

solution in the set represented by the node. This follows because
constraint i cannot be satisfied even if all the free variables with negative
structural coefficients are set to 1 and the remaining free variables set to 0.
This is one feasibility test. If a node fails the test, it is fathomed and the
process backtracks.

For example, consider the constraint

Additional Branch and Bound Topics 9

∑
j∈S0

k

 aijxj = –6x1 + 5x2 + 2x3 – 3x4 ≤ –12 = ri

The computations give ti = –9 > ri = –12 so node k is fathomed. For the

knapsack example at node 0, r1 = –3 and t1 = –4 – 2 – 5 = –11 so the

feasibility test is satisfied. This indicates that we must continue to
enumerate.

Similar reasoning can be used to determine when free variables
must be fixed to 1 or 0 to assure feasibility.

• If aij > 0, j ∈ S0
k and aij + ti > ri, xj must be set to 0 for feasibility.

• If aij < 0, j ∈ S0
k and –aij + ti > ri, xj must be set to 1 for feasibility.

In this manner, variables may be fixed outside the usual enumeration
process thus reducing the size of the search tree. For the knapsack
example, these conditions do not indicate that any of the variables can be
fixed.

These tests together with the simple relaxation, can be incorporated
in an implicit enumeration scheme to solve the pure 0-1 IP. Because only
addition is used at each step in the computations, the full procedure is
called the “additive” algorithm.

Branch

The enumeration procedure requires that a separation variable be chosen at
each live node. One method is to choose the variable that most reduces
the infeasibility of the current solution. To implement this idea let

Rk = {j : j ∈ S0
k and aij < 0 for some i such that ri < 0}

If there is no i such that ri < 0, the node is fathomed; otherwise, at least

one variable whose index is an element of Rk must equal 1 in any feasible

solution. Therefore, we can separate on some xj, j ∈ Rk, and then branch

to the successor node corresponding to xj = 1. The following rule chooses
such a j ∈ Rk in an attempt to move toward feasibility. Define

Ik = ∑
i=1

m

 max{0, – ri}

to be the infeasibility of (A2). By choosing xj for branching, the
infeasibility at the successor node is

10 Integer Programming Methods

Ik(j) = ∑
i=1

m

 max{0, – ri + aij}

We choose xs to minimize this value; that is,

Ik(s) =

min
j∈Rk

Ik(j)

For example, if the constraints at node k are

–6x1 – 2x2 + 2x3 ≤ –3

–3x1 – 4x2 + x3 ≤ –2

7x1 + 5x2 – 5x3 ≤ 4

then Rk = {1,2}, Ik(1) = 3 and Ik(2) = 2 so x3 is chosen as the separation

variable. Adapting, once again, the depth-first rule for branching
simplifies the representation of the search tree. A consequence of this rule
and of branching to xk = 1 is that the path vector Pk uniquely determines

the remaining enumeration required.

Example 4 (Knapsack Problem)

Consider the transformed knapsack problem introduced above. Table A2
describes the solution obtained with additive algorithm. At node 0, the
infeasibility index I0 = 3 and R0 = {1, 2, 3}. Also, I0(1) = 0, I0(2) = 1 and

I0(3) = 0 implying that both x̂1 and x̂3 will reduce the infeasibility to 0 if

either is set to 1. We arbitrarily choose x̂3. At node 1, the value of r1 is

positive so a feasible solution has been obtained. The algorithm thus
backtracks to node 2 where the variable fixing procedure indicates that x̂1
should be set to 1. Branching to node 3 yields a second feasible solution
with P3 = (–3, +1). Because all the components of P3 are underlined, the

termination criterion is met and the computations cease. The optimal
solution is ˆ x = (1, 0, 0) with zB = –5. In terms of the original problem

statement we have x = (0, 1, 1) with zIP = 10.

Additional Branch and Bound Topics 11

Table A2. Additive Algorithm Results for Knapsack Example

Node, k Level, l Pk zUB t1 r1 zB
ˆ x B s Action

0 0 Ø 0 –11 –3 –M –– 3 Set x̂3 =1

1 1 (+3) –7 –6 2 –7 (0, 0, 1) –– Backtrack

2 1 (–3) 0 –6 –3 –7 (0, 0, 1) –– Fix variable

x̂1 = 1

3 2 (–3, +1) –5 –2 1 –5 (1, 0, 0) –– Stop

12 Integer Programming Methods

Exercises

1. You are using Balas’s additive algorithm to solve the following 0-1 IP.

Maximize –10x1 – 5x2 – 7x3 – 2x4 – 8x5 – 11x6 – 4x7 – 12x8

subject to 3x1 – x2 – 5x3 – 3x4 + 2x5 + 2x6 + 8x7 + 4x8 ≤ –6

–2x1 + 3x2 + 1x3 – 10x4 + 1x5 – 4x6 – 6x7 + 2x8 ≤ –9

–5x1 – 4x2 – 10x3 + 2x4 – 2x5 – 3x6 – 5x7 – 3x8 ≤ –8

 3x1 + 3x2 + 4x3 – 5x4 + 5x5 – x6 + 8x7 – 4 x8 ≤ –4

xj = 0 or 1, for j = 1,…,8

a. At node 0 of the search tree, use the feasibility tests discussed at the end of
Section 8.3 (variable fixing) to fix as many variables as possible. Determine the
first separation variable.

b. Say you are at an intermediate point in the enumeration process. The following
information concerning the search tree is given:

Pk = (–5, +1, +2, –8) and zB = –99,999

Execute the additive algorithm for as many iterations as required until
backtracking is indicated. Construct a table showing all information associated
with the nodes created in the search tree from the current point forward
including the node reached after the backtrack operation.

2. Consider the 0-1 knapsack problem below.

Maximize z = 84x1 + 48x2 + 25x3 + 29x4 + 128x5

subject to 49x1 + 30x2 + 19x3 + 29x4 + 91x5 ≤ 130

xj = 0 or 1, j = 1,…,5

a. Solve with Balas's algorithm by hand showing the implicit enumeration tree that
results. Do not use a computer.

b. Solve by hand using branch and bound with LP relaxation. Construct the search
tree and show all computations.

3. You are given the following 0-1 integer program.

Exercises 13

Maximize –10x1 – 5x2 – 7x3 – 2x4 – 8x5 – 11x6 – 4x7 – 12x8

subject to 3x1 – x2 – 5x3 – 3x4 + 2x5 + 2x6 + 8x7 + 4x8 ≤ –6

–2x1 + 3x2 + x3 – 10x4 + x5 – 4x6 – 6x7 + 2x8 ≤ –9

–5x1 – 4x2 – 10x3 + 2x4 – 2x5 – 3x6 – 5x7 – 3x8 ≤ –8

 3x1 + 3x2 + 4x3 – 5x4 + 5x5 – x6 + 8x7 – 4x8 ≤ –4

xj = 0 or 1, j = 1,…,8

a. For node 0 of the search tree, use Balas’s feasibility tests to fix as many variables
as possible. Determine the first separation variable.

b. Say you are at an intermediate point in the enumeration process. The following
information concerning the search tree is given at node k.

S
+
k = {1, 2}, S

–
k = {5, 8}

Pk = (–5, 1, 2, –8), zB = –99,999

Use Balas’s algorithm to go as many steps as necessary until backtracking is

indicated. Show S
+
k, S

–
k, Pk and zB for all nodes created in the tree including the

node reached after the backtrack operation.

4. For the problem

Maximize 84x1 + 48x2 + 25x3 + 29x4 + 128x5

subject to 49x1 + 30x2 + 19x3 + 29x4 + 91x5 ≤ 130

 xj = 0 or 1, j = 1,…,5

a. Solve with Balas's algorithm by hand showing the complete search tree
generated and all calculations.

b. Solve by hand using branch and bound with linear programming relaxation at
each node. Show the complete search tree and all computations.

14 Integer Programming Methods

5. You are given the following 0-1 integer program for which you are using the
additive algorithm to solve.

Maximize –10x1 – 30x2 – 20x3 – 20x4 – 10x5

subject to –8x1 – 12x2 – x3 – 8x4 – 2x5 ≤ –16

–9x1 – 7x2 – 4x3 – 10x4 – x5 ≤ –15

–6x1 – x2 – 8x3 – 3x4 – 7x5 ≤ –9

xj = 0 or 1, j = 1,…,5

At the current iteration, the solution sets are S
–
 = {2, 4}, S

+
 = ∅.

a. Draw the corresponding search tree. Starting from this point use the feasibility
tests to fix as many variables as possible. Comment on the solution obtained.

b. Continue iterating and find the optimum.

