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1. Introduction
HIV/AIDS is arguably the number one epidemic today. The United Nations

organization UNAIDS [2004] reported these staggering estimates for 2004:

• 39.4 million people have HIV/AIDS;

• 2.3 million children under the age of 15 have HIV/AIDS;

• 4.9 million new cases of HIV were reported;

• 640,000 children under 15 were newly infected with HIV (the vast majority
from their mothers); and

• over 3 million people died of AIDS (an average of more than 8,000 per day).

Sub-Saharan Africa, where over 30 million people have HIV, is the current
hotbed of the HIV/AIDS epidemic. Officials warn that major epidemics may
arise in Eastern Europe, China, and India. Through a nationwide campaign,
Uganda, once regarded as the epicenter of the HIV/AIDS epidemic, has now
become a model of successful intervention in reducing its HIV/AIDS population
from over 30% in some urban centers to under 10% of its total population. We do
well to heed these words of the Ugandan Aids Commission [2001]: “Everyone
is called to individually or collectively fight the epidemic within their capacities
and mandates.”

Mathematical models have been used by immunologists and epidemiolo-
gists to help understand and combat HIV/AIDS:

• Immunological models describe how the HIV virus attacks the body’s defense
against disease.

• Epidemiological models describe the spread of the HIV/AIDS disease through-
out a population.

In the years since the first immunological model was proposed by Leon
Cooper [1986], a wide variety of deterministic and stochastic models have con-
tributed insight into either the immunology or epidemiology, while failing to
capture the full scope of either aspect of the viral behavior.

Model assumptions must remain speculative whenever the underlying mech-
anisms are not well understood. For example, there is no decisive experimental
evidence favoring one of several different proposed mechanisms explaining the
various stages occurring in critical T-cell decrease in HIV-infected individuals
[Covert and Kirschner 2000]. Even so, assuming the validity of their assump-
tions, HIV/AIDS models can be useful in predicting the effectiveness of dif-
ferent intervention strategies such as chemotherapy treatments or vaccination
programs.

In this Module, after presenting a description of the human immune system
(Section 2) and summary of the necessary background in ordinary differential
equations (Section 3), we describe two systems of ordinary differential equa-
tions that have been used in HIV/AIDS research:

1
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• Perelson’s immunological model (Section 4) describes the dynamics of the HIV
virus in attacking T-cells in the human immune system. Perelson’s model
can be used to explore how these dynamics are affected by chemotherapy
(Section 4.4).

• Blower’s epidemiological model (Section 5) describes the spread of the HIV/
AIDS disease in a population. Blower’s model can be extended to explore
the long-range effect of vaccination programs (Section 5.4).

The global magnitude of the HIV/AIDS problem and the role of mathematics
in predicting effects of chemotherapy treatments and vaccination programs
should compel every undergraduate math major to become familiar with the
basic background information and modeling described in this Module. For
those not already involved, this study can serve as a starting point for greater
involvement in the struggle against HIV/AIDS.

2. The Human Immune System
The immune system is a group of cells, molecules, and organs that act

together to protect our bodies from foreign invaders. There are two main
strategies employed by the immune system:

• innate, i.e., act in a general way against all invaders; and

• acquired, i.e., target a specific invader.

The immune system also employs two basic lines of defense:

• a front-line defense seeks to keep invaders from entering the body or blood-
stream; and

• a second-line defense helps the body to fight off invaders that have passed
through the front-line.

The innate immune system is involved in both lines of defense, while the
acquired immune system acts only in the second-line defense. The front-line
innate immune system includes such things as our skin, stomach acid, mucus,
and cough reflex, which do not require previous exposure to the invader to be
effective defenses. The second-line innate immune system includes an army of
cells called phagocytes that seek to destroy invading microbes. Phagocytes are
of two main types:

• microphages, which are short-lived and constantly circulating through the
bloodstream; and

• macrophages, which are longer-lived and stationed strategically in places such
as the top skin layer, lungs, and intestines.

2
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Complementary to the innate immune system’s use of phagocytes, the ac-
quired immune system employs cells known as lymphocytes to destroy foreign
invaders. Lymphocytes hone in on targets by identifying antigens, i.e., large
molecules on the surfaces of cells, viruses, fungi, or bacteria. Antigens are
usually proteins that uniquely identify the invader. Antibodies can attach them-
selves to a particular antigen making it an easier target for phagocytes.

Lymphocytes are divided into B-cells and T-cells. B-cells, produced by bone
marrow, can either be “antibody-factories” that produce as many antibodies
as they can, or “B-cell factories” that make clones of themselves. T-cells are
produced by the marrow and matured in the thymus; there are two main types:

• CD4+ T-cells are “helper” T-cells that normally average about 1000 per cubic
mm of blood and serve as the command center for the immune system,
directing the activity of B-cells;

• CD8+ T-cells are “killer/suppressor” T-cells that destroy infected cells and
subsequently dampen the level of activity of the immune system.

CD4+ T-cells can also direct the activity of NK (“natural killer”) cells that work
in a manner similar to CD8+ cells in destroying tumor cells.

For more information on the immune system, see Linnemeyer [1993]. In
what follows, we are particularly interested in the dynamics of healthy and
HIV-infected T-cells as we model the immunological aspects of HIV/AIDS.

3. Background in Differential Equations
In the differential equations that we consider in this Module, the indepen-

dent variable t represents time, and that is the only variable that we differentiate
with respect to. Because partial derivatives are not involved, our differential
equations are called ordinary differential equations (ODEs). We begin this brief
tutorial on ODEs by discussing several important scalar equations, i.e., equa-
tions involving a single function of time t. We then proceed to ODE systems,
which involve two or more functions of t. (This section can be skipped by those
conversant with ordinary differential equations including stability analysis of
equilibria in nonlinear systems.)

3.1 Exponential and Logistic Growth
3.1.1 Exponential Growth

In modeling the dynamics of some population x = x(t), it may be reasonable
to assume that the rate of increase in population is proportional to the size of
the population. In this case,

x′ = kx,

3
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where k is a positive constant. The solution to this differential equation (ob-
tainable by inspection or by separation of variables) is

x(t) = x0e
kt,

where x0 is the value of x at time t = 0.
This model of population growth implicitly assumes unrestricted growth,

since for all positive values of x0 and k, the model predicts that the population
x(t) increases to infinity.

3.1.2 Logistic Growth

A more realistic assumption is that the environment has a finite capacity
M , meaning that the population can increase up to but not exceed M . This
assumption is incorporated into the logistic growth model specified by the equa-
tion

x′ = kx − k

M
x2. (1)

If kx2 is very small in comparison with M , the linear term kx dominates, so
the model behavior is essentially the same as exponential growth. When x
becomes larger, the negative quadratic term −kx2/M becomes more important
and slows down the growth.

3.1.3 Equilibrium

An equilibrium or steady-state solution is a solution that does not change
with time; that is, a solution such that x(t) is a constant function. To find
an equilibrium state for the logistic growth equation (1), set the derivative
x′ = kx − kx2/M equal to zero and solve for x. The result is two equilibrium
solutions (or “points”), xeq1 = 0 and xeq2 = M .

3.1.4 Stability of an Equilibrium

An equilibrium x = xeq is stable if all solutions initially close to the equilib-
rium value approach the equilibrium as time increases without bound. More
technically, an equilibrium x = xeq is stable if there is an open interval I con-
taining xeq such that all solutions x(t) with initial value x0 ∈ I satisfy

lim
t→∞x(t) = xeq.

If an equilibrium is not stable, it is unstable: Given any open interval containing
xeq, there is at least one solution with initial point in I that does not approach
xeq as t → ∞.

In the case of the logistic growth equation (1), we can qualitatively analyze
the stability of each equilibrium point:

4
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• For the equilibrium xeq1 = 0, let x0 = ε, with ε an arbitrarily small positive
value. Since the quadratic term is negligible, the derivative x′(t) will initially
be positive, so that x(t) must increase. As long as x(t) < M , the derivative
will remain positive. Hence, as t → ∞, x(t) cannot approach zero, so the
equilibrium point xeq1 = 0 is unstable.

• On the other hand, the equilibrium xeq2 = M is stable. If x(t) > M , then the
value of x′(t) will be negative and x(t) will decrease towards the equilibrium
value M ; if x(t) < M , then the derivative remains positive and so x(t) must
increase towards M .

This qualitative reasoning can be checked by obtaining an exact solution. (See
Exercise 1.)

3.2 Linear and Bernoulli Equations
3.2.1 The Bernoulli Equation

The logistic growth equation is a special case of the Bernoulli equation

x′ + h(t)x = q(t)xn. (2)

In the logistic equation (1), the coefficient functions h(t) and q(t) are both con-
stant functions, h(t) ≡ −k and q(t) ≡ −k/M .

To solve a Bernoulli equation, we use a change of variables y = x1−n to
transform the equation into a basic linear differential equation, that is, one with
the general form

y′ + p(t)y = q(t). (3)

For the Bernoulli equation (2), p(t) = (1−n)h(t). (See Exercise 1a for a specific
example of how to transform a Bernoulli equation into a linear equation.)

3.2.2 Solving the General Linear Equation

The general linear equation (3) is solved by means of an integrating factor

µ(t) = e
∫

p(t) dt,

where for simplicity, the constant of integration is zero. Multiplying both sides
of (3) by the integrating factor µ(t) , we have

y′µ(t) + p(t)µ(t)y = q(t)µ(t). (4)

The integrating factor is defined so that the left side of (4) is exactly the deriva-
tive of µ(t)y. By integrating both sides with respect to t, we obtain

yµ(t) =
∫

q(t)µ(t) dt + C,

5
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and hence

y =
1

µ(t)

(∫
q(t)µ(t) dt + C

)
.

Finally, the solution to the Bernoulli equation (2) is obtained from the relation

x(t) = y(t)
1

1−n .

Exercises

1. a) Use the Bernoulli change of variable y = x1−n to transform the logistic
growth equation x′ = kx− kx2/M , which is quadratic in x, into a linear
differential equation of the form (3) which is linear in y.

b) Find the integrating factor for the linear equation obtained in part a) and
find the solution that satisfies y(0) = y0.

c) Use your answer to part b) to find an explicit formula for x(t).
d) Use your answer to c) to prove that the equilibrium xeq1 = 0 is unstable

and the equilibrium xeq2 = M is stable.

2. Consider the modified logistic equation

y′ = s + ry

(
1 − y

ymax

)
− µy, (5)

in which s is a nonnegative real constant and µ, ymax, and r are positive con-
stants. (In Section 4, we use an equation of this form when developing an
immunological model describing the spread of the HIV virus.)

a) Solve (5) for the case s = 0.
b) Solve (5) for the case s > 0 by making a change of variables x = y − yeq,

where yeq is the positive equilibrium solution to (5).
c) Make a plot that shows how the value of yeq varies with s.

3.3 Linear Systems
3.3.1 Autonomous Linear Systems

As we will see in Section 5, in modeling the spread of HIV/AIDS throughout
a population, the number of healthy people, the number of HIV infected people,
and the number of those who have contracted AIDS are represented by three
different functions of time t; we have a system of differential equations, rather
than a single scalar equation.

Consider the simple system

x′ = x, (6)

y′ = x + 2y, (7)

6
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with initial conditions x(0) = x0 and y(0) = y0. This is a two-dimensional
system, meaning that two functions x(t) and y(t) are under consideration.
This system is autonomous because the independent variable t does not appear
explicitly on the right side of either differential equation.

A solution to this system is a vector-valued function of the form

γ(t) =
(
f1(t), f2(t)

)
,

meaning that both of the equations (6) and (7) are satisfied when x is replaced
by f1(t) and y is replaced by f2(t). If both f1 and f2 are constant, the solution
is called an equilibrium or steady-state solution.

3.3.2 Equilibrium

An equilibrium solution is obtained by setting equal to zero the right-hand
sides of all the differential equations in the system, yielding a system of simul-
taneous algebraic equations. In our example, the algebraic system is

x = 0,

x + 2y = 0.

Since in this case x = y = 0, the equilibrium solution is the vector-valued func-
tion γ(t) = (0, 0), meaning that f1 and f2 are both the zero function. We refer to
(0, 0) as an equilibrium point for the system. Each solution γ(t) =

(
f1(t), f2(t)

)
to a two-dimensional system can be graphed as a parametric curve in the xy
plane (with t as the parameter). The graph of an equilibrium solution is a single
point.

An n-dimensional system of ordinary differential equations has the form

x′
1 = F1(x1, x2, . . . , xn; t),

x′
2 = F2(x1, x2, . . . , xn; t),
... =

...
x′

n = Fn(x1, x2, . . . , xn; t),

where x1, x2, . . . , xn are functions of time t. If each of the Fi is a function only
of x1, x2, . . . , xn so that the independent variable t does not appear explicitly
on the right-hand side of any equation, the system is autonomous. A solution to
this system is a vector-valued function

γ(t) =
(
f1(t), f2(t), . . . , fn(t)

)
.

If each fi is constant, the solution is an equilibrium or steady-state solution. Equi-
librium solutions can be obtained by solving simultaneously for x1, · · · , xn the
system of n algebraic equations specified by Fi = 0 (i = 1, . . . , n).

7
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3.3.3 Stability

Just as for scalar equations, it is important to determine the stability of an
equilibrium solution to a system of ODEs. Roughly speaking, if all solutions
with initial points sufficiently close to the equilibrium converge to the equilib-
rium as t → ∞, the equilibrium point is stable; otherwise, it is unstable.

For our example (6)–(7), the solution with initial point (x0, y0) is given by
(see Exercise 3)

x(t) = x0e
t, (8)

y(t) = −x0e
t + (x0 + y0)e2t. (9)

The explicit form of x(t) indicates that for any choice of x0 	= 0 , the solution(
x(t), y(t)

)
cannot converge to the equilibrium (0, 0). Hence, the equilibrium

is unstable.

3.3.4 The Method of Eigenvalues

In the theory of differential equations, a method involving eigenvalues and
eigenvectors is developed to determine the stability of equilibrium points. We
illustrate this method for our example, indicating why the method works, with-
out going into any details of the general proof.

First, we rewrite the system in the matrix form(
x′

y′

)
=

(
1 0
1 2

)(
x
y

)
,

where the matrix A =
(

1 0
1 2

)
is called the coefficient matrix of the system.

Given a square matrix A, an eigenvector is a nonzero vector
→
v that is trans-

formed by A into a multiple of itself. That is,

A
→
v = λ

→
v ,

where λ is a scalar (number). Observe that

A
→
v = λ

→
v =⇒ A

→
v −λ

→
v = 0 =⇒ (A − λI)

→
v = 0. (10)

One solution is the trivial solution
→
v =

→
0 . For a nonzero solution to exist, we

require that λ satisfy the characteristic equation

det(A − λI) = 0.

Solutions to the characteristic equation are called eigenvalues.
In our example, the eigenvalues of the coefficient matrix A are obtained

from the equation

det
(

1 − λ 0
1 2 − λ

)
= (1 − λ)(2 − λ) = 0.

8
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From this, we obtain two positive eigenvalues: λ1 = 1, λ2 = 2.
Using back-substitution, we can determine eigenvectors

→
v λ1 and

→
v λ2 cor-

responding to the eigenvalues λ1 and λ2. First, to find
→
v λ1 , note that the matrix

equation (
0 0
1 1

) (
v1

v2

)
=

(
0
0

)
is equivalent to the system

0v1 + 0v2 = 0,

v1+ v2 = 0.

From the relation v1 = −v2, we take as our eigenvector

→
v λ1=

(
1

−1

)
.

In the same way, we find
→
v λ2 :( −1 0

1 0

)(
v1

v2

)
=

(
0
0

)
;

−v1 + 0v2 = 0,

v1 + 0v2 = 0;

v1 = 0 =⇒ →
v λ2=

(
0
1

)
.

There is an important relationship between these eigenvectors and eigen-
values and the solution

(
x(t), y(t)

)
to the system given by (8) and (9). Letting

c1 = x0 and c2 = (x0 + y0), we rewrite the solution in matrix form as(
x(t)
y(t)

)
=

(
c1e

t

−c1e
t + c2e

2t

)

= c1e
t

(
1

−1

)
+ c2e

2t

(
0
1

)
.

It follows that (
x(t)
y(t)

)
= c1e

λ1t →
v λ1 +c2e

λ2t →
v λ2 .

This example suggests that

the stability of the equilibrium point (0, 0) is related to the signs of the eigenvalues
of the coefficient matrix:

• If all the eigenvalues are negative, this equilibrium is stable.

• If any of the eigenvalues is positive, the equilibrium is unstable.

9



62 The UMAP Journal 26.1 (2005)

Exercises

3. Solve the system

x′ = x, (11)

y′ = x + 2y (12)

by using (11) to obtain x(t) explicitly and then substituting your answer
into (12) and solving the resulting linear equation for y(t).

4. Use eigenvalues to determine the stability of the equilibrium solution (0, 0)
for the system

x′ = −x,

y′ = −x − 2y.

3.4 Nonlinear Systems
3.4.1 Equilibrium in Nonlinear Systems

An n-dimensional ODE system is nonlinear if at least one of the functions
F1, . . . , Fn on the right-hand side is nonlinear. For example, the system

x′ = −x − x2, (13)

y′ = −x − 2y (14)

is nonlinear since the function F1(x, y) = −x − x2 is nonlinear in x.
To find the equilibrium points of this nonlinear system of differential equa-

tions, we begin as we would for a linear system:

0 = −x − x2,

0 = −x − 2y.

Solving this algebraic system simultaneously, we obtain two equilibrium points,
namely (0, 0) and (−1, 1/2).

3.4.2 Stability

Stability of an equilibrium point for a nonlinear system can be determined
from the stability of a corresponding equilibrium point in a closely-related
linear system, which we call the linearized system.

For example, the stability of (0, 0) in the nonlinear system (13),(14) is related
to the stability of the equilibrium (0, 0) for the linearized system

x′ = −x, (15)

y′ = −x − 2y. (16)

10
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Intuitively, in approximating the behavior of solutions to the nonlinear system
(13)–(14) near (0, 0), the nonlinear term x2 can be omitted since x is small. Using
the result of Exercise 4, we know that (0, 0) is stable for the linearized system
(15)–(16). Hence, (0, 0) is also stable for the nonlinear system (13)–(14).

Determining the stability of the equilibrium point (−1, 1/2) for the system
(13)–(14) can be accomplished by first making a simple change of coordinates

u = x − (−1),
v = y − 1/2.

Observe that if (x, y) is near the equilibrium point (−1, 1/2), then (u, v) will be
near (0, 0). The system of differential equations satisfied by u and v is

u′ = −(u − 1) − (u − 1)2 = u − u2, (17)

v′ = −(u − 1) − 2(v + 1/2) = − u − 2v. (18)

Once again, when u is small, we can neglect the −u2 term and thereby obtain
a linearized system

u′ = u, (19)

v′ = −u − 2v. (20)

For this linearized system, the coefficient matrix is(
1 0

−1 −2

)
.

The eigenvalues λ1 = 1, λ2 = −2 of this coefficient matrix indicate the instabil-
ity of the equilibrium (u, v) = (0, 0) for both the linearized system (19)–(20) and
the nonlinear system (17)–(18). It follows that the equilibrium (x, y) = (−1, 1/2)
in the nonlinear system (13)–(14) is also unstable.

For a system of the form

x′ = F1(x, y),
y′ = F2(x, y),

where F1 and F2 are both polynomials in x and y, we can determine the stability
of an equilibrium point using the Jacobian matrix

J(x, y) =




∂F1(x, y)
∂x

∂F1(x, y)
∂y

∂F2(x, y)
∂x

∂F2(x, y)
∂y


 .

If both eigenvalues of the matrix J(xeq, yeq) are negative, the equilibrium point
(xeq, yeq) is stable; if either (or both) of the eigenvalues is positive, the equilib-
rium is unstable.
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Exercise

5. Compute the Jacobian matrix J(x, y) for the system

x′ = −x − x2,

y′ = −x − 2y

and then use J(0, 0) and J(−1, 1/2) to determine the stability of the two
equilibrium points for this system.

4. T-Cell and HIV Viral Dynamics
In Section 2, we described the importance of T-cells within the acquired

immune system. Perelson’s immunological model describes the dynamics of
healthy CD4+ T-cells as they become infected with the HIV virus. Clinically,
after the primary infection with the HIV virus, a variable latency period of be-
tween 2 and 18 years has been observed, during which time T-cells are infected
but the healthy T-cell count remains at a high enough level so that the immune
system is not critically impaired. The onset of AIDS is signalled by a decrease
in healthy T-cell concentration to a dangerously low level and rapid increase in
free HIV viral concentration, thereby crippling the acquired immune system.

Figure 1 shows qualitatively the three stages observed in clinical data: pri-
mary infection, latency period, and destruction of the immune system that oc-
curs after the onset of AIDS. Stochastic models of the primary infection period
have been developed (see Murray [2002]), but we do not consider them in this
Module. The Perelson model describes only the latency period and destruction
of the immune system following onset of AIDS. Microbiological mechanisms
for the transitions between the three stages are not completely understood.

4.1 Basic Model Formulation and Assumptions
Perelson’s immunological model is a nonlinear system of four ordinary dif-

ferential equations in which T (t), T ∗(t), T ∗∗(t), and V (t) represent respectively
the number of healthy T-cells, latently infected T-cells, actively infected T-cells
and free viral cells:

dT

dt
= s + rT (1 − T + T ∗ + T ∗∗

Tmax
) − µT T − k1TV, (21)

dT ∗

dt
= k1TV − µT∗T ∗ − k2T

∗, (22)

dT ∗∗

dt
= k2T

∗ − µT∗∗T ∗∗, (23)

dV

dt
= NµT∗∗T ∗∗ − k1TV − µV V. (24)

12
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Figure 1. Qualitative dynamics of the healthy T-cell and HIV-viral concentrations based
on clinical data. The Perelson immunological model simulates the dynamics beginning
at t = t0.

Immunologically, it is important to differentiate between latently infected
T-cells and actively infected T-cells because only the latter are utilized by the
virus to replicate new free viral cells.

Clinically, flow cytometry is the most commonly used method of evaluating
T-cell counts and differentiating between healthy, latently infected, and actively
infected T-cells. Cells are suspended in a solution that passes through the flow
cytometer in front of a laser. Light from the laser refracts off each cell, and
the device measures these angles. The angles depend on the enzymes coating
the cell, which are slightly different for healthy, latently infected, and actively
infected T- cells.

Referring to Figure 2 and Table 1, we now outline explicit assumptions used
in formulating the four equations of Perelson’s system:

Equation (21), giving the rate of change dT/dt in the concentration T (t) of
healthy T-cells:

dT

dt
= s + rT

(
1 − T + T ∗ + T ∗∗

Tmax

)
− µT T − k1TV.

• New, healthy T-cells enter into the blood stream at a constant rate s. (This
is an oversimplification, since the rate is expected to decrease during the
course of the HIV infection. See Kirschner and Webb [1996].)

• In the absence of free virus (V = 0), the entire right-hand side of the

13
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Figure 2. Rates of increase/decrease in concentrations described by Perelson’s immunological
model (21)–(24).

Table 1.

Variables and parameters in Perelson’s immunological model (21)–(24).

Initial or default value

Independent Variable
t time days

Dependent Variables
T Uninfected CD4+ cell concentration 500 mm−3

T ∗ Latently infected CD4+ helper cell concentration 0 mm−3

T ∗∗ Actively infected CD4+ helper cell concentration 0 mm−3

V Free HIV viral concentration 10−3 mm−3

Parameters and constants
s Rate of supply of CD4+ T cells from precursors 10 mm−3 day−1

r Growth rate constant for the CD4+ T cells 0.03 day−1

Tmax Maximum CD4+ T cell concentration 1500 mm−3

µT , µT∗ Death rates of uninfected and latently infected
CD4+ T cells 0.02 day−1

µT∗∗ Death rate of actively infected CD4+

T cell population 0.24 day−1

µV Death rate of free virus 2.4 day−1

k1 Rate constant for infection of CD4+ T cells
with free virus 2.4×10−5 mm3 day−1

k2 Rate latently infected CD4+ T cells convert to
actively infected CD4+ T cells 3×10−3 day−1

N Number of free virus produced by lysing varies
a CD4+ T cell

Derived quantities
Tuninfected Steady-state concentration of CD4+ T cells in

uninfected individuals 1000 mm−3

Ncrit Critical number of viral progeny needed for
endemic infection 774

14
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equation reduces to

s + rT

(
1 − T

Tmax

)
− µT T,

which implies that healthy T-cell dynamics is described by the modified
logistic equation presented in Exercise 2.

• The −k1TV term assumes that the rate of infection of T-cells by free
viral cells is jointly proportional to the concentration of T-cells and the
concentration of free virus.

Equation (22), giving the rate of change dT ∗/dt in the concentration T ∗(t) of
latently infected T-cells:

dT ∗

dt
= k1TV − µT∗T ∗ − k2T

∗.

• Growth is due to the infection of healthy T-cells with free viral cells
(k1TV ).

• Decreases are due to death (−µT∗T ) (the death rates may be different for
healthy, latently infected, and actively infected T-cells), and by progres-
sion from latent to active infection (−k2T

∗).

Equation (23), giving the rate of change dT ∗∗/dt in the concentration T ∗∗(t) of
actively infected T-cells:

dT ∗∗

dt
= k2T

∗ − µT∗∗T ∗∗.

• Growth is due to latently infected cells becoming actively infected (k2T
∗).

• Decrease in concentration is due only to death (µT∗∗T ∗∗).

Equation (24), giving the rate of change dV/dt in the concentration V (t) of the
free virus:

dV

dt
= NµT∗∗T ∗∗ − k1TV − µV V.

• Growth occurs when an actively infected T-cell lyses (i.e., explodes). It
is assumed that N copies of the free viral cell are created upon lysing
(NµT∗∗T ∗∗).

• The free viral concentration decreases as the free virus becomes attached
to healthy T-cells (−k1TV ) and also through death (−µV V ).

15
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4.2 Numerical Analysis
Perelson’s model is sufficiently complex to allow extended analysis well be-

yond the scope of this Module. Rather than seeking exact solutions analytically,
we follow Perelson et al. [1993] and use Mathematica to obtain approximate
numerical solutions to this system.

Table 1 gives the initial and constant values (based on experimental data)
used in our numerical simulations. We focus on how the value of N (the
number of infectious virus particles produced per actively infected cell) affects
the long-term T-cell concentration.

In Figure 3 (see the Appendix for the Mathematica commands to generate
this figure), with N = 500, we see that the uninfected T-cell level approaches a
steady-state concentration of Tuninfected= 1000 cells mm−3 after about 150 days.

Figure 3. T (t) converges to the stable equilibrium value Tuninfected = 1000 when N = 500.

Investigating sensitivity of the system to changes in the parameter N , we
find that a small increase in N does not affect this steady-state concentration.
However, if we increase N to 1400, the stable steady-state concentration de-
creases dramatically to about 580 cells mm−3 (Figure 4).

Figure 4. When N = 1400, the equilibrium value Tuninfected = 1000 is unstable but the equilibrium
value Tuninfected = 580 is stable.

If we continue to increase the value of N , the steady-state concentration
will continue to decrease. This suggests that there is a critical value of N

16
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beyond which there is an important change in the stable steady-state values of
T . We now gain insight into this numerical observation by means of equilibrium
stability analysis.

4.3 Equilibrium Analysis
Analytical methods are helpful to clarify these numerical observations about

the steady-state concentration of T in relationship to N . In the computations
that follow, we observe the coexistence of two different steady-state values of T :

• Tuninfected, corresponding to V = 0 and having a constant value of 1000
independent of N ; and

• Tinfected, corresponding to V 	= 0, and having a value inversely related to N .

Furthermore, there is a critical value Ncrit (called a bifurcation point) such that
for N < Ncrit, the steady-state value Tuninfected is stable, and for N > Ncrit, the
steady-state value Tinfected is stable.

The steady states Tuninfected and Tinfected are obtained from Perelson’s im-
munological model as follows:

dT

dt
= 0 =⇒ s + rT

(
1 − T + T ∗ + T ∗∗

Tmax

)
− µT T − k1TV = 0, (25)

dT ∗

dt
= 0 =⇒ T ∗ =

k1

µT∗ + k2
TV, (26)

dT ∗∗

dt
= 0 =⇒ T ∗∗ =

k2

µT∗∗
T ∗ =

k2k1

µT∗∗(µT∗ + k2)
TV, (27)

dV

dt
= 0 =⇒ NµT∗∗T ∗∗ − k1TV − µV V = 0, (28)

=⇒
[(

Nk2k1

µT∗ + k2
− k1

)
T − µV

]
V = 0. (29)

The uninfected steady state Tuninfected is obtained by taking V = 0 in (29), in
which case from (26) and (27) we have T ∗ = T ∗∗ = 0; and from (25), we have

s + (r − µT )T − r

Tmax
T 2 = 0.

Solving the quadratic equation gives

Tuninfected =
Tmax

2r

(
r − µT +

[
(r − µT )2 +

4sr

Tmax

]1/2
)

.

Using the parameter values given in Table 1, we have Tuninfected = 1000.
The infected steady state Tinfected is obtained from (29) with V 	= 0, so that

Tinfected =
µV

Nk2k1
µT∗+k2

− k1

.
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In this case, we find that Tinfected is a decreasing function of N .
To determine the stability of Tuninfected and Tinfected, we must extend slightly

the method introduced for a two-dimensional nonlinear system at the end of
Section 3.4. Observe that the Perelson model is a four-dimensional system:

dT

dt
=f1(T, T ∗, T ∗∗, V ),

dT ∗

dt
=f2(T, T ∗, T ∗∗, V ),

dT ∗∗

dt
=f3(T, T ∗, T ∗∗, V ),

dV

dt
=f4(T, T ∗, T ∗∗, V ).

Let Γeq = (Teq, T
∗
eq, T

∗∗
eq , Veq) be an equilibrium point satisfying f1(Γeq) =

f2(Γeq) = f3(Γeq) = f4(Γeq) = 0. The equilibrium point Γeq is stable if all
nearby solutions (i.e., those with

(
T (0), T ∗(0), T ∗∗(0), V (0)

)
sufficiently close

to Γeq) approach Γeq as t =⇒ ∞. To determine whether Γeq is stable, we com-
pute the Jacobian matrix



∂f1

∂T

∂f1

∂T ∗
∂f1

∂T ∗∗
∂f1

∂V

∂f2

∂T

∂f2

∂T ∗
∂f2

∂T ∗∗
∂f2

∂V

∂f3

∂T

∂f3

∂T ∗
∂f3

∂T ∗∗
∂f3

∂V

∂f4

∂T

∂f4

∂T ∗
∂f4

∂T ∗ ∗
∂f4

∂V




,

where all the partials are evaluated at Γeq. If all the eigenvalues have a negative
real part, then the equilibrium Γeq is stable; if any of the eigenvalues have a
positive real part, the equilibrium is unstable. In Exercises 6 and 7, you are
asked to use this method to verify that the stability of the uninfected equilibrium
solution changes for the values of N corresponding to Figure 3 and Figure 4.
(For the latter, it turns out that two of the eigenvalues are negative and one
positive. This explains why the plot of T (t) in Figure 4 first rises and remains
near the equilibrium level of 1000 before dropping sharply.)

Perelson et al. [1993] prove that the coexisting steady states exchange sta-
bility as N crosses the bifurcation value Ncrit ≈ 774. Perelson’s model provides
a nice example of the exchange of stability of equilibria known as a transcritical
bifurcation (see Figure 5).
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Figure 5. In the Perelson immunological model, a transcritical bifurcation occurs in which the two
equilibrium solutions with T = Tuninfected and T = Tinfected exchange stability as the parameter N

crosses a critical value Ncrit ≈ 774.

Exercises

6. Compute the Jacobian matrix for the functions f1, f2, f3, f4 given by the
Perelson model (21)–(24).

7. Show that the equilibrium Tuninfected = (1000, 0, 0, 0) is stable when N = 500
and unstable when N = 1400.

4.4 Chemotherapy Treatment
An important part of mathematical modeling is sensitivity analysis, which

investigates how the system behavior is affected by a change in one or more of
the model parameters or initial conditions. We have already seen one example
of this type of analysis related to the transcritical bifurcation value for the
parameter N .

Modeling the possible efficacy of chemotherapy treatment with antiretro-
viral drugs can be regarded as an extended form of sensitivity analysis. We
would like to study changes in parameters that effectively delay or perhaps
even eliminate altogether the onset of AIDS:

Drug Target What are the key parameters with greatest effect on the onset of
AIDS? Can drugs be designed to alter those parameters favorably?

Drug Potency How much does a key parameter need to be changed in order
to make a substantial difference in patient history? Can a drug accomplish
this degree of parameter change?
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Treatment Duration How long does a key parameter need to be changed in
order to make a significant difference in patient history?

Two of the key parameters that might be targeted by chemotherapy are:

• the rate k1 at which healthy T-cells become latently infected T-cells; and/or

• the number N of free viral cells created upon lysing of a healthy T-cell.

Four main classes of antiretroviral drugs are in use. All affect either the
value of N or that of k1.

• NRTIs, NNRTIs, and PIs all reduce N . NRTIs and NNRTIs do so by prevent-
ing the virus from reproducing inside infected T-cells. (AZT is an example
of an NRTI, a nucleotide reverse transcriptase inhibitor.) PIs still allow new
viruses to be produced when an infected cell lyses, but the PIs bond to the
viral enzymes in such a way that these new viruses are ineffective and cannot
actively infect new cells.

• Fusion inhibitors reduce k1 by bonding to the viral cells so that those cells can
no longer couple with healthy T-cells.

These drugs, taken separately or in combinations, can significantly delay
the onset of AIDS. Current research seeks to perfect the drugs, enhancing their
effect on the key parameters.

We illustrate how Perelson’s model can predict the effect produced by a
change in the parameter k1. We delegate a similar investigation of the param-
eter N to Exercise 8. (In addition, we encourage readers to design their own
simulations on the possible effectiveness of combination drug treatments.)

Let zp,t1,t2(t) be the step function defined by

zp,t1,t2 =

{
p, if t1 ≤ t ≤ t2;
1, otherwise.

Here p is a positive constant, 0 ≤ p ≤ 1, and the values of t1 and t2 specify the
time interval during which the drug treatment has a direct effect. We assume
that a chemotherapy treatment by a fusion inhibitor multiplies by a factor p the
rate at which healthy T-cells become latently infected during the time interval
t1 ≤ t ≤ t2. In other words, the smaller the value of p, the more effective the
treatment. This effect is incorporated by modifying (21), (22), and (24) of the
Perelson model (p. 12):

dT

dt
= s + rT

(
1 − T + T ∗ + T ∗∗

Tmax

)
− µ1T − zp,t1,t2k1TV, (21’)

dT ∗

dt
= zp,t1,t2k1TV − µT∗T ∗ − k2T

∗, (22’)

dV

dt
= NµT∗∗T ∗∗ − zp,t1,t2k1TV − µV V. (24’)
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We designate Perelson’s model with equations (21), (22), and (24) revised in
this way as Perelson (21’, 22’, 24’).

To study the effect of chemotherapy numerically, we must define what is
meant by the onset of AIDS. In what follows, we fix N = 1400 and use the
initial and constant values given in Table 1. Referring back to Figure 4, we see
that the T-cell concentration eventually drops dramatically from the healthy
equilibrium concentration of 1000 mm−3. We therefore define the onset of
AIDS to be the time tonset at which the value of T falls to 999 (Figure 6).

Figure 6. We define the onset of AIDS to be the time tonset when T falls to 999. In this case,
tonset ≈ 806.

Without chemotherapy (i.e., taking p = 1), tonset ≈ 806 days. For a six-
month chemotherapy treatment modeled by taking p = .4, t1 = 500, t2 = 680,
Perelson (21’, 22’, 24’) predicts that the progression to AIDS will be delayed by
about eight months (Figure 7).

Figure 7. An effective chemotherapy treatment, as modeled by Perelson (21’,22’,24’) with p = .4,
t1 = 500, and t2 = 680, delays the onset of AIDS by about 8 months (239 days) to tonset ≈ 1045.

Exercise

8. This exercise suggests a second way to modify the Perelson model to study
the efficacy of chemotherapy treatment. If, during the time interval t1 ≤
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t ≤ t2, a chemotherapy treatment using a drug such as AZT reduces the pa-
rameter N by a factor p, equation (24) of Perelson’s model must be modified
to

dV

dt
= zp,t1,t2NµT∗∗T ∗∗ − k1TV − µV V. (30)

Call the resulting system Perelson (30). Using the same values (p = .4,
t1 = 500, and t2 = 680) that we employed above for Perelson (21’, 22’, 24’),
what does Perelson (30) predict will happen to the value of tonset, the time
marking the onset of AIDS?

4.5 Discussion
Immunological aspects of HIV/AIDS are sufficiently varied and complex to

elude hope of a complete description by means of a single deterministic model.
Three major stages of this disease—primary infection, latency, and AIDS—
have been clinically identified, but the biological mechanisms responsible for
transitions between stages are not well understood. Perelson’s model only
seeks to capture the transition from the latency period to AIDS. The dramatic
decrease in the CD4+ T-cell concentration associated with the onset of AIDS
is explained mathematically by a transcritical bifurcation. The healthy T-cell
equilibrium level loses its stability, and the T-cell concentration is attracted
towards a much lower infected equilibrium level.

One reason why Perelson’s model does not capture qualitatively the dynam-
ics of all three stages of the disease is that viral mutations are not taken into
account. If the viral cell population V (t) is viewed in a nonhomogeneous way,
taking into account viral mutations that counter T-cells in absence of chemother-
apy, plus viral mutations that develop resistance to chemotherapy, all three
stages (primary infection, latency, AIDS) can be captured, as seen, for example,
in the models discussed by Kirschner and Webb [1996] and Hersberger et al.
[2002].

Since there is considerable variability in the length of the latency period
(2 to 18 years), the numerically generated graphs of the CD4+ concentration
in Perelson’s system give qualitative agreement with clinical data (as shown
in Figure 1.). Perelson’s model is elegant in its simplicity of conception and
flexible because of the large number of parameters. A strength of the model is its
ability to predict effects due to changes in parameters, as we have demonstrated
in discussing the possible effect of antiretroviral drugs in delaying the onset of
AIDS.

5. The HIV/AIDS Epidemic
We used Perelson’s immunological model (21)–(24) to show how the HIV

virus affects the immune system without drug intervention. We then modified
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Perelson’s model to study the efficacy of chemotherapy treatment. In this
section, we begin our epidemiological modeling by introducing another system
of ordinary differential equations in which the dynamics of the spread of HIV
within a population is analyzed, at first without public health intervention. We
then use sensitivity analysis to investigate abstinence intervention (Section 5.3).
Finally, by extending the basic model using additional variables and equations,
we study the efficacy of vaccination intervention programs (Section 5.4).

Our ODE systems approach to epidemiological modeling parallels closely
the approach of our study of immunological modeling. We delegate a greater
part of the parallel analysis to the exercises, to maximize active learning. (Most
solutions are provided.)

5.1 Basic Model Formulation and Assumptions
To model the spread of HIV/AIDS throughout a sexually active population,

we follow Blower et al. [2001] and divide the population into three groups. Let

X(t) denote the number of susceptible individuals at time t measured in years,

YW (t) the number of individuals infected with wild-type HIV (as opposed to
a weakened strain of HIV used in certain vaccines), and

A(t) the number of individuals with AIDS.

The population dynamics is described by the following third-order linear sys-
tem of differential equations, which we call Blower’s epidemiological model:

dX

dt
= π − X(cλW + µX), (31)

dYW

dt
= XcλW − YW (νW + µW ), (32)

dA

dt
= YW νW − A(µA + δA). (33)

The meaning of the constants and their values are displayed in Table 2, with
a diagram showing the transition rates displayed in Figure 8. (Realistic initial
and constant values can be obtained by statistical study and would vary by
country; we use hypothetical values.)

In Exercise 9a, you are asked to explain the assumptions employed in for-
mulating the three equations of Blower’s epidemiological model (31)–(33) in a
manner similar to the explanation that we gave immediately for the equations
in Perelson’s immunological model (21)–(24).

5.2 Analysis
The Mathematica plot of the sexually active wild-strain HIV population

YW (t) shown in Figure 9 indicates that this population will rise from the hy-
pothesized initial value of 3 million to roughly 12 million after five years before
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Table 2.

Variables and constants used in Blower’s epidemiological model (31)–(33).

Initial or default value
Independent Variable
t time years

Dependent Variables
X Number of susceptible individuals 15 × 106 people
YW Number of individuals infected with wild-type HIV 3 × 106 people
A Number of individuals with AIDS 0.05 × 106 people

Constants
π Rate new susceptibles join the population 1 × 106 people yr−1

λW Probability that sexual partner is infected
with wild-type HIV .2

c Average rate of acquiring new partners 2 yr−1

νW Proportion of wild strain infected HIV population
that progress to AIDS .1 yr−1

µX Proportion of total healthy population that becomes
sexually inactive .025 yr−1

µW Proportion of total HIV population that becomes
sexually inactive .025 yr−1

µA Proportion of total Aids population that becomes
sexually inactive .025 yr−1

δA Proportion of AIDS population that will die .95 yr−1

Yw

Inactive Death

AX
wc w

µX

µW
µA

Figure 8. Transition rates for Blower’s epidemiological model (31)–(33).
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decreasing towards an equilibrium level of about 7.5 million (see Exercise 9b).
The epidemic rise in the HIV population is accompanied by a fall in the sus-
ceptible population X(t) from an initial value of 15 million to an equilibrium
level of about 2.3 million. The sexually active AIDS population A(t), initially
50,000, climbs to an equilibrium level of about 772,000.

Figure 9. Plot of YW (t) over a 50-year time span using the initial and constant values in Table 2.
Blower’s epidemiological model (31)–(33) predicts an equilibrium HIV population of about 7.5
million.

A simple yet important sensitivity analysis that can be performed for this
model determines how an increase in each of the parameters affects the equi-
librium levels (see Table 3).

Table 3.

The effect of parameter changes on the equilibrium values of Blower’s epidemiological model.

Parameter increased X Yw A

π ↑ ↑ ↑
λw ↓ ↑ ↑
c ↓ ↑ ↑

νw no change ↓ ↑
µX ↓ ↓ ↓
µW no change ↓ ↓
µA no change no change ↓
δA no change no change ↓

The unique equilibrium point for Blower’s linear model (31)–(33):

• is globally stable (the eigenvalues determining stability are all negative
(−δA − µA, −cλW − µX , and −µW − νW ), so all solutions converge to the
equilibrium values regardless of initial conditions); and

• does not depend explicitly on the initial conditions.
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If a country has equilibrium HIV/AIDS populations exhibiting these two
characteristics (global stability and independence from initial conditions), any
intervention that moves one or more of the parameter values in the right di-
rection (i.e., toward a decrease in the equilibrium HIV and AIDS populations)
will in the long run be effective regardless of the current magnitude of the
problem (i.e., initial conditions). In this case, we say that the country exhibits
fundamental hope of intervention.

Exercises

9. a) With the help of the transition diagram shown in Figure 8 and Table 2
explain the assumptions used in formulating Blower’s epidemiological
model (31)–(33).

b) Find the equilibrium values for Blower’s epidemiological model, and
then show that the system’s equilibrium point is stable. (For the latter,
you need to compute the eigenvalues of a 3 × 3 Jacobian matrix.)

c) Use the values determined in part b) to find the equilibrium percentage
of the total sexually active population (X + YW + A) that has HIV. (In
Exercise 10, we investigate how this percentage is affected as we model
the introduction of a vaccination program into this population.)

5.3 Intervention Strategies
Comprehensive intervention programs can make a significant difference

in mitigating the deadly consequences of an HIV/AIDS epidemic. Practical
methods to combat the deadly spread of HIV/AIDS include:

• advocating the highest standards of sexual morality, including abstinence
outside of marriage as foolproof protection, above and beyond so-called
“safe sex” (using the limited protection of condoms);

• identifying HIV-positive individuals and informing the public about best
practices;

• making chemotherapy and vaccination programs widely available;

• providing job-training for young women as an alternative to prostitution;

• curbing needle-sharing by drug users (in some countries, the largest group
of the HIV/AIDS infected population);

• proper discarding of used syringes in hospitals and clinics;

• reducing the transmission of HIV/AIDS from mother to child during preg-
nancy via antiretroviral drugs; and

• replacing breastfeeding by HIV-positive mothers with formula feeding.
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An important type of sensitivity analysis relates to sexual abstinence as
an intervention strategy. (This was a major factor in Uganda’s successful
HIV/AIDS intervention.) Intuitively, an abstinence campaign should increase
the value of µX , µW , and µA (the proportions of the populations becoming
sexually inactive) while decreasing the value of c (the average rate of acquiring
new partners). If we let µX = µW = µA = µ, even a modest increase in µ—
say, from µ = .025 to µ = .03— along with a decrease in the rate of acquiring
sexual partners—say, to c = 1.75—results in a decrease in the equilibrium HIV
population YW (t) by almost half a million, to 7.1 milllion (see Figure 10).
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Figure 10. Equilibrium values of YW vs. µ.

5.4 Vaccination Model
Similar to vaccines used to control smallpox, polio, and measles, HIV vac-

cines have been developed that employ a weakened “vaccine-strain” of HIV to
help the body build immunity to the wild-strain virus. However, it is possible
for a vaccinated individual to contract the wild-strain virus; even worse, there
is the possibility that the vaccine strain will cause AIDS.

Unlike abstinence intervention, vaccination intervention requires a more
substantial change in the model, in particular, an increase by two in the number
of functions under consideration—that is, the dimension of the system increases
from three to five. In particular, we extend Blower’s epidemiological model to
include a variable YV that gives the number of sexually active individuals that
have received the vaccination, and a variable YV W that indicates the number
of sexually active, vaccinated individuals that have contracted the wild-strain
HIV virus. The resulting fifth-order system, which we call the extended Blower
epidemiological model, is

dX

dt
= (1 − p)π − X(cλV + cλW + µX), (34)

dYV

dt
= pπ + XcλV − (1 − ψ)YV cλW − YV (νV + µV ), (35)
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dYW

dt
= XcλW − YW (νW + µW ), (36)

dYV W

dt
= (1 − ψ)YV cλW − YV W (νV W+µV W ), (37)

dA

dt
= YW νW + YV W νV W + YV νV − A(µA + δA). (38)

With the help of Table 2 and 4, which explain the meaning of the dependent
variables and constants, you are asked in Exercise 10 to construct a transition
diagram for equations (34)–(38) similar to Figures 2 and 8, and also to explain
the assumptions behind formulation of the extended five-dimensional system.

Table 4.

Additional variables and parameters used to study vaccination programs.

Initial or
default value

Dependent Variables
YV Number of vaccinated individuals 1000 people
YV W Number of vaccinated individuals infected with wild-type HIV 0 people

Parameters and constants
p Proportion of entering sexually active population that is vaccinated .4
λV Probability that sexual partner is vaccinated .5
ψ Degree of protection provided by the vaccine .93
νV Proportion of vaccinated pop. that progress to AIDS .005 year−1

νV W Proportion of vaccinated wild-strain pop. that progress to AIDS .95 year−1

µV Proportion of vaccinated pop. that becomes sexually inactive .025 year−1

µV W Proportion of vaccinated HIV pop. that becomes sexually inactive .025 year−1

Many HIV vaccine trials are controlled by the HVTN, a network of research
and medical institutions that oversee and unify different approaches to HIV
vaccination. Current research involves HIV vaccinations which do not employ
weakened strain HIV, but rather, tiny pieces of bacterium that produce HIV pro-
teins, chemically synthesized replicas of HIV proteins, or direct injection of the
DNA that creates coding for HIV proteins. Vaccines have succeeded in reduc-
ing the viral load, which significantly decreases the probability of transmission
from an infected individual to a healthy one.

Vaccines have not yet been able to prevent primary HIV infection, but we
can do a simple simulation experiment to predict the effect if such a vaccine
could be developed. The Mathematica plot in Figure 11 indicates that under the
assumptions that 40% of the entering sexual population has been vaccinated
(p = .4) and that the vaccine reduces the rate of infection with HIV by 93%
(ψ = .93), the growth of the wild-strain HIV population YW (t) is curbed, so
that the equilibrium value is under 2 million. This is a dramatic improvement
over the HIV population equilibrium level (7.5 million) in the absence of a
vaccination program (Figure 9, p. 25).
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Figure 11. Using the initial and constant values in Tables 2 and 4, Blower’s extended epidemi-
ological model (34)–(38) predicts that the vaccination program will curb the growth of the HIV
population YW (t) to an equilibrium value under 2 million. (Compare this with the growth with-
out vaccination shown in Figure 9, p. 25.)

Exercises

10. a) Construct a transition diagram for the dependent variables in Blower’s
epidemiological model extended for the study of vaccination programs
(34)–(38).

b) Explain the role and makeup of the equations in Blower’s extended
epidemiological model.

c) Find the equilibrium values for Blower’s extended epidemiological model
using the constant values given in Tables 2 and 4, and then determine
the stability of the equilibrium point.

d) How effective is the vaccination program in reducing the percentage of
the total sexually active equilibrium population (X+YV +YV W +YW +A)
that has AIDS? (Compare your answer with the answer to Exercise 9c).

11. Does Blower’s extended epidemiological model (34)–(38)
a) allow for the fact that vaccinated individuals may contract AIDS as a

result of receiving the vaccine?
b) model a population with fundamental hope of intervention in the sense

defined at the end of Section 5.2?

5.5 Discussion
Blower’s epidemiological models are based on a simple conceptual frame-

work. The inclusion of a large number of parameter values allows consider-
able flexibility in the specific assumptions being made about the population.
A major difficulty arises in trying to determine specific parameters that are
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applicable to a particular country. Though extensive statistical studies have
been performed in a country such as Uganda, the studies were not designed to
determine the relevant parameters needed to apply Blower’s model.

Determination of T-cell counts by flow cytometry is an expensive procedure.
Hence, to differentiate the population that has progressed to AIDS, clinical
diagnosis based on characteristic symptoms are employed. In other words, it
is difficult to obtain accurate values for YW (t) and A(t).

Once parameter and initial values are established, predictions can be ob-
tained by numerical simulation under a wide variety of hypothesized inter-
ventions. This information may provide some guidance as to effective policy.

6. The Ongoing Challenge
We have attempted to make accessible to calculus students two differen-

tial equation models of the immunological and epidemiological aspects of
HIV/AIDS. We have also suggested how the assumptions of the basic mod-
els introduced can be revised to obtain a more complete description of the
disease dynamics.

Those far removed from the epicenter of the HIV/AIDS pandemic all too
easily dismiss the enormous magnitude of the present-day global crisis. At the
13th International Conference on AIDS and STIs in Africa, held in September
2003, Pres. Kibaki of the host country Kenya put the ongoing challenge in no
uncertain terms: “the pandemic cannot only be fought sometimes, but must be
fought all the time, every moment, every day” [Piot 2003].

7. Solutions to Selected Exercises

1. a) Since n = 2, letting y = x1−n we have that y = 1/x and x = 1/y, so

dx

dt
= − 1

y2

dy

dt
.

Substituting these expressions for dx/dt and x into the logistic equation
gives

− 1
y2

dy

dt
=

k

y
− k

My2
.

Simplifying, we obtain

y′ + ky =
k

M
, (39)

which is linear in y.
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b) In (39), the integrating factor is µ(t) = e
∫

kdt = ekt. Multiplying both
sides of (39) by µ(t), we obtain

y′ekt + kyekt =
kekt

M
.

Integrating both sides with respect to t gives

yekt =
ekt

M
+ C, or y =

1
M

+
C

ekt
.

Using the initial condition y(0) = y0, we obtain C = y0 − 1/M . Hence,

y =
ekt + My0 − 1

Mekt
(40)

is a solution to (39).
c) Recalling that y = 1/x, the solution (40) expressed in terms of x is

x =
Mekt

ekt + My0 − 1
. (41)

Substituting y0 = 1/x0, we obtain an explicit solution to the logistic
growth equation:

x =
Mekt

ekt + M
x0

− 1
.

d) The explicit form of x obtained in c) can be written

x =
M

1 +
(

M
x0

− 1
)

e−kt
.

For any x0 > 0, limt→∞ x(t) = M , which proves the stability of M . It
also demonstrates the instability of the 0 equilibrium, because positive
initial conditions arbitrarily close to 0 converge to M rather than 0.

2. a) We need to solve the equation y′ = ay − dy2, where a = r − µ and
d = r/ymax. The change of variables v = 1/y leads to the equation

− 1
v2

v′ =
a

v
− d

v2
=⇒ v′ + av = d.

Multiplying through by the integrating factor eat gives

v′eat + aveat = deat.

Integrating both sides, we find

veat =
deat

a
+ C =⇒ v(t) =

d

a
+

C

eat
.
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The initial condition v(0) = v0 is used to find C:

v(0) = v0 =
d

a
+ C =⇒ C = v0 − d

a
=⇒ v(t) =

d

a
+

v0 − d
a

eat

=⇒ v(t) =
av0 − d + deat

aeat
.

It follows that

y(t) =
aeat

a
y0

− d + deat
.

b) We again let a = r − µ and d = r/ymax and now seek to solve the
differential equation

y′ = s + ay − dy2.

By making the change of variables u = y − yeq, where

yeq =
a +

√
a2 + 4ds

2d
,

we obtain u′ = −du2 − u
√

a2 + 4ds. If we let q =
√

a2 + 4ds, then
u′ + qu = −du2, which is a Bernoulli differential equation in u. Letting
v = 1/u, we obtain v′ − qv = d. Multiplying through by the integrating
factor e−qt, and then integrating both sides with respect to t, we reach

ve−qt =
−d

q
e−qt + C, v =

−d

q
+ Ceqt.

Back substitution gives

y =
q

−d + qCeqt
+ yeq.

If y0 	= yeq, then we have

qC =
q

y0 − yeq
+ d,

and so obtain the following formula for nonequilibrium solutions:

y =
qe−qt

q
y0−yeq

+ d − de−qt
+ yeq.
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3. From the first equation, we see that x′ = x =⇒ x = x0e
t. Substituting

this expression for x(t) into the second equation yields

y′ = x0e
t + 2y =⇒ y′ − 2y = x0e

t.

Letting µ(t) = e
∫ −2dt = e−2t gives

y′e−2t − 2ye−2t = x0e
−t =⇒ (ye−2t)′ = x0e

−t

=⇒ ye−2t = −x0e
−t + c =⇒ y(t) = −x0e

t + ce2t.

Since y(0) = y0 , then

y0 = −x0 + c =⇒ c = x0 + y0 =⇒ y(t) = −x0e
t + (x0 + y0)e2t.

4. The system

x′ = −x

y′ = −x − 2y

can be expressed in matrix form as(
x′

y′

)
=

( −1 0
−1 −2

) (
x
y

)
.

The eigenvalues of the coefficient matrix are obtained as follows:

det
( −1 − λ 0

−1 −2 − λ

)
= 0 =⇒ (−1 − λ)(−2 − λ) = 0

=⇒ λ1 = −1, λ2 = −2.

Since both eigenvalues for this system are negative, the equilibrium point
(0, 0) must be stable.

5. The Jacobian matrix is

J(x, y) =
( −1 − 2x 0

−1 −2

)
, so J(0, 0) =

( −1 0
−1 −2

)
,

giving (−1−λ)(−2−λ) = 0 and λ = −1, −2. Since both of the eigenvalues
are negative, this system has a stable equilibrium at (0, 0).

J(−1, 1/2) =
(

1 0
−1 −2

)
gives (1 − λ)(−2 − λ) = 0 and λ = 1, −2.

Since one of the eigenvalues is positive, this system has an unstable equi-
librium at (−1, 1/2).
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6. The matrix is


r − 2rT+rT∗+rT∗∗
Tmax

− µT − k1V −rT/Tmax −rT/Tmax −k1T

k1V −µT∗ − k2 0 k1T
0 k2 −µT∗∗ 0

−k1V 0 NµT∗∗ −k1T − µV


 .

7. Substituting in the parameter values given in Table 1, using the value T =
Tunifected = 1000, we obtain the matrix


−0.03 −0.02 −0.02 −0.024

0 −0.023 0 .024
0 0.003 −0.24 0
0 0 N(0.24) −2.424


 .

Using a symbolic manipulator such as Maple, we find that when N = 500,
the eigenvalues are all negative reals (≈ −0.03, −0.257, −0.008, −2.422),
and when N = 1400, three eigenvalues are negative (−0.03, −0.283 −2.419)
and one of the eigenvalues is positive (0.016).

8. A simulation using Mathematica indicates that Perelson (30) predicts a sim-
ilar delay in the onset of AIDS as Perelson (21’,22’,24’). Can the similarity
in effect be investigated analytically?

9. a)

• Equation (31) gives the rate of change dX/dt for the susceptible population
X(t). Growth is due to new susceptibles joining the population at a constant
rate (π), while decreases are due to infection with wild-strain HIV (−cλW X)
and transition to sexual inactivity (−µXX).

• Equation (32) gives the rate of change dYW /dt of the sexually active wild-
strain HIV population (YW (t)). Growth is due to infection of susceptible
individuals (cλW X) while decreases are due to transition to AIDS (−YW νW )
and transition to sexual inactivity (−µW YW ).

• Equation (33) gives the rate of change dA/dt of the sexually active AIDS
population A(t). Growth is due to progression to AIDS in the population
infected with HIV (YW νW ) and decreases are due to transition to sexual
inactivity (−AµA) and AIDS-related death (−AδA).

b) Setting the right-hand side of each equation in Blower’s epidemiological
model equal to zero, we find the following equilibrium values:

X =
π

cλW + µX
≈ 2,353,000,

YW =
πcλW

(cλW + µX)(νW + µW )
≈ 7,530,000,

34



HIV/AIDS Modelling 87

A =
πcλW νW

(cλW + µX)(νW + µW )(µA + δA)
≈ 772,000.

The stability of this equilibrium can be determined by finding the eigen-
values of the matrix

 −(cλW + µX) 0 0
cλW −(νW + µW ) 0

0 νW −(µA + δA)


 .

For the parameter values given in Table 2, the equilibrium must be
stable, since the eigenvalues are all negative (−.425, −.125 and −.975).

c) In equilibrium, roughly 71% of the total sexually active population have
HIV.

10. a) See Figure S1.

W

Y

(1 p)

v

vw

p

c v

c w

Inactive

AY

Death

X

µ

v

wc

Y

(1       )

w

X
A
µ

µ
µ µ

w

vw

VW
V

Figure S1. Solution to Exercise 10a showing the transition rates for the modification of Blower’s
epidemiological model used to study the efficacy of HIV vaccination programs.

11. Yes. This is built into the model as the term YV νV in (35) and (38) and by
the arrow from YV to A in Figure S1.

Appendix: Mathematica Program
The following Mathematica commands

• solve Perelson’s immunological model (21)–(24) numerically, using the ini-
tial values and parameter values given in Table 1; and
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• generate the graph show in Figure 3.

In addition to several other minor notational modifications, we have used
n, T1, and T2 in place of N , T ∗, and T ∗∗ respectively.

%% Assignment of Parameter Values
s = 10
r = .03
Tmax = 1500
muT = .02
mub = .24
muV = 2.4
k1 = .000024
k2 = .003
n = 500

%% Obtaining the Numerical Solution
sol = NDSolve[{T’[t]

== s + r*T[t]*(1-(T[t]+T1[t]+T2[t])/Tmax)
- muT*T[t]-k1*T[t]*V[t],

T1’[t] == k1*T[t]*V[t] - muT*T1[t]-k2*T1[t],
T2’[t] == k2*T1[t] - mub*T2[t],
V’[t] == n*mub*T2[t] - k1*T[t]*V[t] - muV*V[t],
T[0] == 500, T1[0] == 0, T2[0] == 0, V[0] == .001},
{T,T1,T2,V}, {t,0,2000}]

%% Generating the Graph of T(t)
Plot[{0,Evaluate[T[t].sol]}, {t,0,1600}, PlotRange -> {0,1001}]
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