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1. Introduction
During the last few decades, air temperatures at ground level over the

Earth’s land surfaces have been going up. Curiously, the increase has been
unequally distributed between night and day, with nighttime lows rising three
times as fast as daytime highs. The diurnal temperature range (DTR)—the dif-
ference between highs and lows—has thus been decreasing. In this Module,
we’ll construct a mathematical model of the Earth and its atmosphere in order
to gain insight into that behavior.

Temperatures fluctuate, of course, from day to day and location to location;
but, on average, near-surface air temperatures over land rose by about 1◦ F
during the period from 1951 to 1990. During the same period (chosen because
reliable data is available for that time), nighttime lows went up by about 1.5◦ F,
while daytime highs rose by only 0.5◦ F. Thus, the diurnal temperature range
fell and the average temperature rose at about the same rate. (The figures are
based on a study of 37% of the Earth’s land mass [Karl et al. 1993, 1007, 1009].)

The model that we’ll study, though extremely simple as atmospheric mod-
els go, is nonetheless mathematically interesting and sophisticated enough to
simulate the effects on the daily temperature cycle of two influences that warm
the surface:

• increases in the Sun’s intensity, which increases the rate at which energy
enters the Earth/atmosphere system; and

• increases in the concentration of greenhouse gases in the atmosphere, which
makes the atmosphere more efficient at absorbing energy from the surface
and at emitting energy down to the surface.

The most prevalent greenhouse gas in the Earth’s atmosphere, after water
vapor, is carbon dioxide (CO2). There is always some natural variation in the
amount of atmospheric CO2; for example, the atmosphere absorbs CO2 from
volcanic eruptions and gives up CO2 to the oceans. But during the thousand
years prior to the industrial revolution, the variation was small, about 4%
[Houghton et al. 1996, 18]. In contrast, the concentration of CO2 has increased
by about 25% since 1850 [Peixoto and Oort 1992, 435; Houghton et al. 1996, 18],
with most of the increase probably due to human activities such as burning of
fossil fuels. Depending on the future pattern of fuel consumption, the amount
of atmospheric CO2 is likely to become double its 1850 value at some time in
the next 50 to 150 years [Peixoto and Oort 1992, 436; Houghton et al. 1996,
8]. Concentrations of other greenhouse gases have been rising, too [Houghton
et al. 1996, 19]. Thus, it’s reasonable to conjecture that the observed rise in
temperature is caused by increases in atmospheric greenhouse gases. Although
the case for that conjecture is good, there’s some uncertainty, in part because
good historical data isn’t available on variations in the intensity of the Sun
[Baliunas and Soon 1996].

Qualitatively, the daily temperature cycle in the model that we’re going
to study exhibits strikingly different responses to changes in solar intensity
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Table 1.
Symbol table.

A constant = σT 4
e /c

A absorptivity of the atmosphere, assumed equal to ε
ATR annual temperature range
a co-albedo, the fraction of sunlight absorbed
α albedo, the fraction of sunlight intercepted but not absorbed
B constant = AP/2 (Sections 6, 7);

constant = PqσT 4
e /2c0 (Section 9)

β constant
C heat capacity of the surface
c heat capacity per square meter

∆Te rise in equilibrium surface temperature
DTR diurnal (daily) temperature range umax − umin

ε emissivity of the atmosphere = absorptivity of the atmosphere = εc + εw
εc fraction of surface-emitted longwave radiation absorbed by atmospheric CO2

εw fraction of surface-emitted longwave radiation absorbed by atmospheric H2O
G greenhouse function, the factor by which an atmosphere increases

surface temperature
γ constant
H constant
J symbol for joules, a unit of energy
K symbol for Kelvins (Kelvin degrees), a unit of temperature
k constant = 4σT 3

e /c
k exponential decay constant; k = 1/τ
λ wavelength

K.E. kinetic energy = mv2/2
Ω,ΩE solar constant for Earth = 1372 W/m2

ΩV solar constant for Venus
ω constant = kP/2 = P/2τ (Sections 6, 7);

constant = 2Pσ bT 3
0 /c0 (Section 9)

P period of solar flux
ψ piecewise-continuous function, periodic of period 2, with mean value 0
q fraction of shortwave flux absorbed by the surface
S Earth’s surface area
s seconds; dummy variable for integration;

time measured in units of half a planetary day, s = 2t/P
σ Stefan–Boltzmann constant = 5.67× 10−8 W/m2K4

T temperature in Kelvins
T surface temperature of an airless planet
bT equilibrium surface temperature of an airless planet
TC temperature in Celsius degrees
Te effective temperature
TF temperature in Fahrenheit degrees
T0 surface temperature of a planet that has an atmosphere
bT0 equilibrium surface temperature of a planet that has an atmosphere
T1 atmospheric temperature
bT1 equilibrium atmospheric temperature
t time
τ e-folding time, the time for the value of u to diminish by a factor of e; τ = 1/k
u displacement of surface temperature from its equilibrium value
W symbol for units of Watts
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versus changes in concentrations of greenhouse gases. Neither response is large
enough to match the observed response, however, which suggests that factors
are at work that our model doesn’t account for—not surprising in a model that
essentially consists of a single linear ordinary differential equation—and we’ll
discuss at the end what those factors might be. In the meantime, we’ll develop
a feeling for how mathematics can be used to begin to understand a complex
part of nature, and for how even simple mathematics can lead us to conjectures
that we’d have been unlikely to make by thinking purely qualitatively.

Simple models, in fact, though their predictions are only suggestive of how
reality might behave, and far from the final word on it, have some advantages
over complex ones. Reality is hard to analyze because phenomena are inter-
twined, with multiple causes leading to multiple effects. For the same reason,
models sophisticated enough to mimic the reality convincingly are hard to
analyze. The most sophisticated climate models, the Global Climate Models
(GCMs), simulate winds, temperatures, pressures, clouds, and precipitation
over the whole globe and at all vertical levels of the atmosphere, along with
oceanic phenomena such as currents, salinity effects, and air-sea interactions,
and “[t]he artificial climates generated by these models are typically as com-
plicated and inscrutable as the Earth’s climate” [North et al. 1981, 91].

The model that we’ll study, on the other hand, effectively views the Earth’s
surface as a single point and the atmosphere as another point; and it takes into
account two physical processes, namely, storage of heat energy by the surface
and atmosphere, and transfer of energy between the two via electromagnetic
radiation. (Models that account only for those processes are called energy balance
models.) It will therefore be relatively easy to investigate the effect on model
temperatures of changing a single factor. We’ll begin, in fact (after a review
of the physics that we need) with a planet without an atmosphere. That will
allow us to build up, in a simple setting, the mathematics that we’ll also use
later when we include an atmosphere; it will also help us to isolate the role that
the atmosphere plays in controlling the daily temperature cycle of the surface.

2. Temperature, Energy, and Power
Almost everything that we will do involves the ideas of energy and tem-

perature. The only two forms of energy that we’ll need to deal with are radiant
energy (Section 3) and heat energy (described below), but it’s helpful to be
able to compare those forms with kinetic energy: the energy associated with an
object’s motion. (Regarding the names for the different types of energy, see
Feynman et al. [1963, Chapter 4].) The kinetic energy of an object of mass m
moving at speed v is K.E. = mv2/2. For example, let’s estimate the kinetic
energy of a bicycle and its rider, coasting at 10 miles per hour, if together they
weigh 200 lbs. One purpose of this example is to ease into the metric system.
If you’re not fluent in metric units, the following very rough conversions, ac-
curate to within about 10% except where noted, are useful to know (precise
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conversions appear in Appendix II): 1 meter (m) is about 1 yard; 1 kilometer
(km) is about half a mile (accurate to within about 25%); 1 kilogram (1 kg) is
about 2 pounds (mass); 1 meter per second (m/s) is about 2 miles per hour.

Thus, the bike and rider are coasting at about 5 m/s, and their combined
mass is about 100 kg. Their combined kinetic energy is about

(100 kg)× (5 m/s)2/2 = 1,250 kg m2/s2.

We’ll measure energy in joules (J): 1 J = 1 kg m2/s2. The bike and rider have
kinetic energy 1,250 J. A 100-watt lightbulb uses 100 J of electrical energy per
second, so the same amount of energy that was required to pedal the bike up
to its coasting speed (ignoring the energy used to overcome friction and air
resistance) would keep the bulb lit for about 12 seconds.

Another form of energy is heat energy: the sum of the kinetic energies of all
the molecules that make up the object. Objects that have higher heat energies
also have higher temperatures, and the two ideas are related to each other by
the notions of specific heat and heat capacity.

The specific heat of a substance is the amount of energy that it takes to raise
the temperature of one unit mass of the substance by one degree.

The heat capacity of an object is the amount of energy it takes to raise the
temperature of the object by one degree.

The “degrees” that we’ll use are on the Kelvin scale, which is related to
the Fahrenheit and Celsius scales by the formulas TF = 32 + 9TC/5 and TC =
T − 273.15, where TF , TC , and T are the temperatures in Fahrenheit, Celsius,
and Kelvin. In particular, a temperature rise of one degree Kelvin (1◦ K) or just
”one Kelvin” (1 K) is also an increase of one degree Celsius (1◦ C), or, roughly,
2◦ F.

Now, suppose that you draw 0.05 m3 of hot water into your bathtub, and
that during the bath the water cools by 10 K (about 20◦ F), thereby losing heat
energy (which goes into heating the walls of the tub and the air in the bathroom).
To calculate the change in energy, we first multiply the mass of water in the
tub (volume times density; water’s density is about 1.00×103 kg/m3) by the
specific heat of water. That gives the heat capacity of the water in the tub. Then
we multiply the heat capacity by the change in temperature:

∆Energy =
(
0.05 m3

)(
1.00× 103 kg

m3

)(
4,184

J
kg K

)
(−10 K) = −2.1×106 J.

If the energy lost could be captured and used to power a 100-watt lightbulb,
the bulb would burn for about 2×104 s, or nearly 6 hours.

Power is rate at which energy is generated or consumed per unit time. The
unit that we’ll use for power is the Watt (W): 1 W = 1 J/s. A 100-watt lightbulb
consumes energy at the rate of 100 joules of electrical energy each second, or
100 Watts. A 60-watt lightbulb, if left on for an hour, would use energy equal
to (60 W)(1 hour) = (60 J/s)(3600 s) = 2.16×105 J.

4
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To predict the Earth’s temperature, we need to know the rate at which the
Earth receives radiant energy from the Sun. We’ll calculate that in the next
section.

Exercises
To do many of the exercises throughout this Module, you’ll need Appendix II.

1. Convert the following temperatures (given in degrees Fahrenheit) to Celsius
and to Kelvin: 32◦ F, 64◦ F, 90◦ F.

2. Calculate the mass, in kilograms, of a kindergartner who weighs 40 lbs.

3. If a house is a cube of side 10 m, how many kilograms of air does it hold,
assuming that no room is taken up by walls, furniture, people, etc.? (Assume
a day of low humidity.)

4. The Earth’s atmosphere is a roughly spherical shell of air, very thin com-
pared to the size of the Earth; that is, we can imagine the space taken up by
the atmosphere as the space between two spheres, one coinciding with the
Earth’s surface and the other concentric with it and of only slightly larger
radius. (“If proportions were preserved, the thickness of the atmosphere
would be represented on an ordinary office globe by scarcely more than the
thickness of a coat of paint” [Peixoto and Oort 1992, 14].) Now imagine
allowing the outer sphere to shrink in such a way that the atmosphere still
remains in the space between the Earth’s surface and the outer sphere. The
more the outer sphere shrinks, the denser the enclosed air becomes. If you
continue to compress the outer sphere until the enclosed air has the den-
sity of water, how thick will the atmosphere be? That is, what will be the
difference in radii between the outer and inner spheres?

5. A baseball has mass 150 g [de Mestre 1990, 137]. Compute the kinetic energy
of a baseball moving at 40 m/s.

6. How much energy does it take to raise the temperature of a house from 64◦ F
to 68◦ F? The answer depends on the house. But assume the following:

• the house is air-tight,

• all the energy goes into heating the air (and not into running a circu-
lating pump or heating the floor, walls, furniture, etc.), and

• the house has the dimensions given in Exercise 3.

3. Radiation, Flux, and the Solar Constant
The Sun puts out radiant energy carried by electromagnetic radiation, a fancy

name for “light.” It propagates through space as a wave (at a speed of 3 ×
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108 m/sec); and, as with water waves, the wavelength is the distance between
peaks of adjacent waves.

Some light is visible, some not. The shortest wavelength of visible light is
0.390×10−6 m (purple light), while the longest wavelength is 0.760×10−6 m
(red light). Invisible light includes ultraviolet light, X-rays, and gamma rays
(the latter emitted by radioactive substances), all with wavelengths shorter than
those of visible light; and infrared light, microwaves, and television and radio
waves (all with wavelengths longer those that of visible light). If our eyes were
sensitive to infrared light in addition to the usual visible light, we would see a
broader rainbow, with an infrared arc above the red arc [Greenler 1980, 18–21].

The radiation emitted by the Sun travels outward in ever-expanding spheres.
Some of that radiation reaches the Earth/atmosphere system and is absorbed
by it, which provides energy to keep the atmosphere, oceans, and continents
warm, and to make wind and storms.

We need a measure of how much power solar power the Earth intercepts.
In most of our work, it will be convenient to measure the power per unit area,
called flux. Imagine a large transparent sphere—a soap bubble—centered at
the Sun, which just touches the top of the Earth’s atmosphere (see Figure 1).

Figure 1. A Sun-centered ”soap bubble” tangent to the top of the Earth’s atmosphere.

The flux of electromagnetic radiation crossing the bubble (i.e., the amount
of energy passing through the bubble per second per unit surface area of the
bubble) is called the solar constant, denoted by Ω. Values given for Ω vary
somewhat from book to book; we’ll take Ω = 1372 W/m2 [Harte 1988, 69] .
The sunlight crossing each square meter of the bubble provides nearly enough
power to illuminate fourteen 100-watt lightbulbs.

That value of Ω pertains to the Earth: the flux crossing a Sun-centered bubble
just touching the top of Venus’s atmosphere, for instance, is larger because
the radiation crosses a smaller bubble, each square meter of which therefore
receives a larger fraction of the total. Thus, Venus’s constant, ΩV , is bigger than
the Earth’s constant ΩE = Ω.

To compute ΩV , first notice that the total solar power passing through the

6
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Earth’s bubble is 1372 W times the bubble’s area:

4π(149.6× 109 m)2(1372 W/m2) = 3.86× 1026 W.

Then, assuming that no energy is lost on the way from Venus to the Earth,
this last figure is also the total power crossing Venus’s bubble; so, to compute
Venus’s solar constant, we divide the figure by that bubble’s area:

ΩV =
3.86× 1026 W

4π(108.20× 109 m)2
= 2623 W/m2.

In studying the Earth’s (or any planet’s) climate we need, not the power per
unit area of the bubble, but rather, the power intercepting the Earth per unit area
of the Earth’s surface. Different locations on the Earth receive different amounts
of radiation, and those amounts vary with the time of day and the time of year,
but we can easily compute an average flux as follows. Imagine that, as part
of some inscrutable cosmic experiment, extraterrestrial beings have placed a
gigantic cardboard screen close to the Earth, on the opposite side of the Earth
from the Sun, and oriented perpendicular to the line joining the Sun and the
Earth (see Figure 2).

Figure 2. Sunlight, coming in from the left, puts Earth on the Big Screen.

The Sun casts a disk-shaped shadow of the Earth on the screen; because
the Earth/Sun distance is large compared to the size of the Earth, the disk’s
radius equals the radius of the Earth. So the shadow’s area is πr2, where r is
the Earth’s radius. Each square meter of the screen not blocked by the Earth
intercepts solar power Ω. The power intercepted by the Earth is the power
not received by the screen, namely, πr2Ω. The average solar power received
by the Earth and its atmosphere, per unit area of the Earth’s surface, is thus
πr2Ω/4πr2 = Ω/4.

7
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Not all of the power received is absorbed, however. A planet’s (global aver-
age) albedo, denoted by α, is the proportion of incoming sunlight that is inter-
cepted, but not absorbed, by the planet (by “planet” here is meant the whole
system: planet and atmosphere). The Earth’s albedo is currently about .3,
meaning that 30% of the solar energy intercepted is reflected away. The energy
is reflected by air, clouds, oceans, land, and ice and snow. The planet’s co-albedo,
denoted by a, is the proportion of incoming sunlight that is absorbed by the
planet and its atmosphere. Then a = 1 − α; for the Earth, a = .7. The Earth
and its atmosphere together thus absorb an average solar flux equal to aΩ/4.

To practice the ideas of this section, let’s calculate how much energy an
average square meter of the Earth’s surface absorbs in the form of solar radiation
each year and relate that to temperature changes.

Of all the incoming solar radiation absorbed by the Earth/atmosphere sys-
tem, about one-third is absorbed by the atmosphere (some of it after first being
reflected from the surface). About two-thirds is absorbed by the surface (some
after first being reflected up and down several times between the surface and
the atmosphere) [Harte 1988, 165]. It follows that a typical one-meter-square
patch of surface absorbs solar energy at an average rate of

(2/3)(aΩ/4)(1 m2) ≈ 160 J/s.

Therefore, during the course of a year, the energy absorbed by the patch is

(160 J/s)(31,536,000 s) ≈ 5× 109 J.

Does that energy raise the surface temperature? Let’s estimate the surface’s
heat capacity. Two-thirds of the surface is covered with ocean. The sunlight
that falls on the ocean penetrates to only a few meters below the surface, but
convection and wind-generated turbulence mix those sun-warmed surface wa-
ters with a layer of water, about 50–100 m deep, called the mixed layer. Over
the course of a year, that’s as deep as the energy gets. (Over longer time scales,
other, slower, processes mix the mixed layer with the deep ocean. In paleocli-
matology, the study of the climate’s ancient past, time scales of thousands or
millions of years must be dealt with, and the entire ocean volume taken into
account.)

What about land? Land surfaces have a density roughly comparable to that
of water, but their specific heats are only about one-quarter that of water, and,
over the course of a year, the solar energy that strikes land is only communi-
cated, by conduction, a few meters deep [Peixoto and Oort 1992, 221]. We are
therefore safe, when making a rough estimate, in neglecting land in compari-
son to water. Taking the heat capacity of the Earth’s land surfaces to be zero,
then, and taking the depth of the mixed layer to be 75 m, we have for the heat
capacity of a typical one-meter-square patch of surface,

(2/3)(heat capacity of oceanic mixed layer) + (1/3)(heat capacity of land)

= (2/3)(specific heat of water)(mass of water in patch) + (1/3)(0)

= (2/3)(4,184 J/kgK)(75 m3)(1000 kg/m3) ≈ 2× 108 J/K.

8
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So the surface receives enough solar energy each year to raise the surface tem-
perature by

solar energy absorbed
energy required to raise surface temperature by 1 K

=
5× 109 J

2× 108 J/K
= 25 K.

If the surface temperature were really rising at 25 K/yr, the Earth would
soon be uninhabitable. In reality, the annual global average surface temperature
is observed to be approximately constant. What keeps the temperature from
rising is that the surface not only absorbs radiation, but also emits it. We’ll
discuss emission in the next section.

Exercises

7. Compute Mars’s solar constant.

8. How much power does the Earth’s surface (the entire surface, not just a one-
meter-square patch) absorb from the Sun? How does this figure compare
to world energy consumption? A typical nuclear or coal-fired power plant
generates about 109 Watts [Harte 1988, 68]. How many power plants worth
of power does the Earth’s surface absorb from the Sun?

9. Determine the heat capacity of the Earth’s atmosphere per square meter of
the Earth’s surface. (Use the specific heat of air at constant pressure.) How
large is your answer relative to the heat capacity of the mixed layer per
square meter of the Earth’s surface?

4. Blackbodies and Effective Temperature
Any object at non-zero absolute (Kelvin) temperature emits electromag-

netic radiation at a variety of wavelengths. The total rate of emission, and the
distribution of emission among the various wavelengths, depends on various
characteristics of the object, including its temperature.

Because the Sun is very hot, most of the radiation that it emits has a short
wavelength; its maximum emission is around 0.5 millionths of a meter [Peixoto
and Oort 1992, 92], which is in the visible range—presumably because our eyes
are adapted to see sunlight. The Earth, too, emits radiation—it glows!—but
mostly at a much longer wavelength (mostly infrared, about 4 to 60 millionths
of a meter) because the Earth is much cooler than the Sun; since our eyes aren’t
sensitive to radiation at that wavelength, we don’t see it. (What we do see
when we look at the ground is reflected sunlight.) If you hold your hand near
(not too near) the burner of an electric stove, you’ll experience a sensation
of heat before you see any change in the burner: Your hand is able to detect
changes in emission at lower wavelengths than your eye is. The sensation of
heat will become more and more intense as the burner gets hotter and hotter:
this is because, the hotter an object is, the more power it emits. The burner will

9
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start to glow orange when it gets hot enough to emit a significant amount of
radiation in the visible range.

The Sun emits mostly shortwave radiation, defined as radiation whose wave-
length is less than 4×10−6 m; the Earth emits mostly longwave radiation, with
wavelength greater than 4×10−6 m.

A blackbody [Wallace and Hobbs 1977, 287–289] is a hypothetical object, at
uniform temperature, that absorbs all the radiation that it intercepts (hence
reflects none) in all wavelengths, and that emits radiation at the maximum
possible rate in each wavelength. Such an object emits flux from its boundary
surface at a rate given by the Stefan–Boltzmann Law, which says that, for a
blackbody at temperature T ,

Flux Out = σT 4.

Here σ is the Stefan–Boltzmann constant,

σ = 5.67× 10−8 W/m2K4. (1)

The Stefan–Boltzmann Law forms the basis for our first, very crude, estimate
of the Earth’s temperature. A planet’s effective temperature [Goody and Walker
1972, 46–49], denoted by Te, is the temperature the planet would have if

1. it were at uniform temperature;

2. it were in radiative equilibrium with solar radiation (i.e., the power emitted
by the planet equaled the solar power absorbed by the planet; and

3. it emitted power at the same rate that a blackbody would at the same tem-
perature.

From these conditions, we can derive a formula for the effective temperature.
The radiative equilibrium condition (2) can be written Flux In = Flux Out.
We’ve already seen that Flux In = aΩ/4. By conditions (1) and (3), Flux Out =
σT 4. Thus,

aΩ/4 = σT 4
e , (2)

so that

Te = (aΩ/4σ)1/4. (3)

For the Earth, this last formula gives

Te =

(
0.7× 1372 W/m2

4× 5.67× 10−8 W/m2K4

)1/4

= 255 K = −1◦ F.

In the case of a planet that has no atmosphere, a heuristic argument can be
given that suggests that the effective temperature should equal (or at least be
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close to) its surface temperature. The amount of solar energy absorbed by a
planet varies from location to location and from season to season and between
day and night, but we argued in Section 2 that the average solar flux absorbed
per square meter of a planet’s surface is aΩ/4. The amount of radiation that the
planet emits into space varies also. But observations show that, if these fluxes
are averaged over a planet’s surface, and over the course of a few years, then the
averages are approximately equal and show little variation over time. Thus,
as a first approximation, planets in the solar system are in radiative equilib-
rium. Now, a planet’s surface is certainly not a blackbody—it reflects much of
the shortwave radiation that intercepts it—but the materials that make up the
surface behave approximately like blackbodies in the longwave range. Most
of the radiation emitted by the surface is in that range (see Figure 3), so, if we
imagine the surface to have uniform temperature T , then it seems reasonable
to assume that the flux emitted by the surface is σT 4.

Figure 3. Blackbody curves. A blackbody having the Sun’s temperature would emit flux per unit
wavelength shown by the curve on the left; a blackbody having the Earth’s temperature would
emit flux per unit wavelength shown by the curve on the right. The Earth and the Sun are not
blackbodies, but the curves give a sense of the wavelength ranges in which the two objects do
most of their emission. The two graphs intersect at approximately λ = 4 × 10−6 m: nearly
all solar radiation is emitted in the shortwave range, and nearly all terrestrial emission in the
longwave range. For legibility, the wavelength scale is distorted and the terrestrial curve’s height
is exaggerated.

Thus, the surface temperature T satisfies aΩ/4 = σT 4, which is simply (2) with
the effective temperature Te replaced by the surface temperature T .

Do airless planets really have surface temperatures close to their effective
temperatures? Mars, whose atmosphere is very thin, has effective temperature
216.9 K (Exercise 10) and average surface temperature 218 K [Schneider 1996,
582], an excellent agreement. Mercury, which has virtually no atmosphere,
has effective temperature 441.6 K (Exercise 10) and surface temperature 395 K
[Schneider 1996, 582], not such a good agreement. A possible source of the dis-
agreement is simply uncertainty in the observed surface temperature. Another

11
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book [Lang 1992, 50] gives the value 440 K for Mercury’s surface tempera-
ture, while [Houghton 1986, 1] gives a Martian surface temperature of 240 K.
Another source of the disagreement may be an overly simplistic aspect of the
argument. We assumed that the planet radiates from all parts of its surface; on
a slowly rotating planet like Mercury, it may be more appropriate to assume
that it only radiates from its sunlit hemisphere [Henderson-Sellers 1983, 31–32,
87–88]. When we examine Martian daily temperature changes in Sections 5
and 7, we’ll cheerfully assume that the equilibrium surface temperature equals
the effective temperature.

Although the heuristic argument pertained to an airless planet, the same
reasoning suggests that the effective temperature is a first approximation to the
temperature that the Earth’s surface would have if it absorbed as much radiation
as the surface and atmosphere together do now (namely, aΩ/4). Since the Earth
has effective temperature 255 K and average surface temperature 290 K (62◦ F)
[Harte 1988, 164], the Earth can loosely be said to be 35 K warmer than it would
be without its atmosphere. That statement is an oversimplification, because
without its atmosphere the system would have a different albedo and would
therefore absorb shortwave radiation at a different rate. But the concept of
effective temperature is useful in that it isolates the role that the atmosphere
plays in warming the surface simply by virtue of being an absorber and emitter
of longwave radiation.

We’ll explore that role in detail when we build a more sophisticated model,
in Section 8, which includes the surface and atmosphere as separate entities.
Before doing that, though, we’ll analyze, in Sections 5–7, a model of planets
that have no atmosphere.

Exercises

10. Verify the values given in the text for the effective temperatures of Mars and
Mercury.

11. Two spherical blackbodies, one having three times the radius of the other,
are at the same temperature. Calculate the ratio of the power emitted by
the larger sphere to that emitted by the smaller sphere.

12. Planet X has no atmosphere, and its axis of rotation is perpendicular to the
plane of its orbit. Also, its day has the same length as its year. Thus only one
hemisphere ever receives sunlight. Derive a formula for the temperature of
that hemisphere. State clearly any assumptions that you have to make.

13. Calculate the flux emitted by a blackbody that has the Earth’s average sur-
face temperature. Compare your answer to the observed terrestrial surface
emission of 398 W/m2 [Grotjahn 1993, 44].

12
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5. Temperatures on an Airless Planet
The heuristic argument in the last section leads us to consider a model planet

that is atmosphere-free and whose surface is at temperature T , constant over
the whole planet, and whose surface absorbs flux aΩ/4 from the Sun and emits
flux σT 4. Denote by T̂ the planet’s equilibrium surface temperature, the one
for which Flux In = Flux Out. Then aΩ/4 = σT̂ 4, so that T̂ = (aΩ/4σ)1/4. In
other words, by (3), the equilibrium surface temperature is simply the effective
temperature: T̂ = Te. Since the two temperatures are equal, we’ll use the
notation Te for both. (That will change in Sections 8–9, when we introduce an
atmosphere into our model; the equilibrium surface temperature then will no
longer equal the effective temperature.)

For the planet just described, let’s consider three questions:

1. How does the equilibrium surface temperature respond to changes in the
solar constant?

2. If the solar constant suddenly jumps to a new value, how long does Te take
to reach its new equilibrium value?

3. How large is the diurnal temperature range?

In this section, we’ll answer Question 1, and make progress toward answering
Questions 2 and 3 by deriving differential equations for the time-dependent
non-equilibrium temperatures. We’ll solve the equations in Section 6 and re-
turn to Questions 2 and 3 in Section 7.

5.1 How Much Will the Temperature Rise?
By the definition of derivative and (3),

∆Te ≈ dTe
dΩ

∆Ω =
( a

1024σΩ3

)1/4

∆Ω.

For Mars, this formula, along with the answer to Exercise 7, gives, for a 1%
increase in the (Martian) solar constant,

∆Te ≈

 .85

1024
(

5.67× 10−8 W/m2K4
)(

591.0 W/m2
)3


1/4

(.01)(591.0 W/m2)

= 0.54 K.

In the model, then, the Martian equilibrium surface temperature would rise by
about half a degree Kelvin.
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5.2 How Long Until the Surface Reaches
Equilibrium?

Before the solar constant increased, the surface temperature was at its old
equilibrium of 216.9 K. [This is the effective temperature of Mars (Exercise 10),
which we’re assuming to be equal to the equilibrium surface temperature.] If
the solar constant now suddenly increases to a new constant value, the sur-
face will be absorbing more power than it’s emitting and will no longer be in
equilibrium. Its net energy will rise and so will its temperature T . As T rises,
the rate of emission will rise, too, thus slowing down the temperature rise as
T approaches its new equilibrium value. The temperature graph levels off fast
enough, as we’ll see later, that the new equilibrium value will never be reached.
So the answer to Question 2 is, “Forever.” A more fruitful question is, “How
long will the temperature take to come 95% closer to its new equilibrium than
it was at the moment the solar constant changed?” Even that question is diffi-
cult to answer satisfactorily using our model, but the attempt which we now
begin will give us physical insight that will be helpful when we study the daily
temperature cycle.

First we derive a differential equation for T , valid whether or not Flux In =
aΩ/4 and Flux Out = σT 4. Recall from Section 4 that flux is the power absorbed
or emitted per unit area. During a short time interval [t, t + ∆t], the planet’s
surface will absorb energy given approximately by

(Power In)∆t, (4)

where Power In is the power at time t, the beginning of the interval. Because
the power may change during the interval, (4) is only an approximation to the
energy absorbed during the time interval. But for ∆t small, the power has little
time to change, so the approximation is a good one and gets better as ∆t gets
smaller.

Similarly, the amount of energy lost due to emission during the interval is
(Power Out)∆t. Thus the net change in energy is (Power In− Power Out)∆t.

On the other hand, if we assume that all the energy gained by the surface
goes into increasing its temperature (and not into, say, stirring up winds and
ocean currents), then the net change in energy is alsoC ·∆T , whereC is the sur-
face’s heat capacity. ThusC∆T ≈ (Power In−Power Out)∆t, which becomes,
after we divide by ∆t and allow ∆t to approach 0,

C
dT

dt
= Power In− Power Out; (5)

this is our differential equation for T . The left-hand side is a heat storage term:
it represents the amount of energy added to the surface per unit time.

Specifically, in the case Flux In = aΩ/4 and Flux Out = σT 4,

cS
dT

dt
=
SaΩ

4
− SσT 4,

14
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where S is the planet’s surface area and c ≡ C/S is the heat capacity per square
meter of the planet’s surface. Thus, by (2),

c
dT

dt
= σT 4

e − σT 4, (6)

a nonlinear equation that has a messy solution (see Exercise 17 for a simple
special case). To get a nice solution, we linearize the T 4 in the equation about
the equilibrium value of T : We first set

u = T − Te;

that is, we let u be the displacement of surface temperature from its equilibrium
value: the distance from the T to Te, with a negative sign if T < Te. Then, after
replacing T by Te + u in (6), expanding the (Te + u)4, and throwing away the
resulting terms that involve powers of u higher than the first power, we obtain
(Exercise 14) a new differential equation in the unknown u:

c
du

dt
= −4σT 3

e u. (7)

This is a homogeneous linear differential equation whose solution should be
close to the displacement of surface temperature from its equilibrium value Te,
as long as that displacement isn’t too large. We’ll solve the equation in Section 6
and interpret the solution physically in the Section 7.

5.3 How Large Is the Diurnal Temperature Range?
We now visualize our planet as a flat piece of land (scientific progress at its

best) that alternately experiences day and night. That isn’t quite as crazy as it
sounds: the “planet” is simply a large patch of land, a hemisphere, perhaps,
on a rotating planet. Since there are no oceans and no atmosphere, energy can
only be transported from that hemisphere to the other via conduction through
the soil and rock that make up the surface, which happens extremely slowly.
Thus we can think of our hemisphere as effectively isolated from the other
hemisphere—a planet in its own right. We denote the planet’s rotation period
by P , and, in order to simplify the calculations that occur later, we assume that
day and night last equal amounts of time, P/2.

As before, we assume that the surface emits flux σT 4. It no longer absorbs
flux aΩ/4, though: the flux varies depending on the time of day. Instead we
assume that the flux absorbed has mean value aΩ/4 over the course of a day,
i.e., over a time of length P . By definition, the mean of a piecewise continuous
function f over an interval [a, b] is (b− a)−1

∫ b
a
f(x) dx, so we define

Flux In = σT 4
e

[
1 + ψ

(
2t

P

)]
, (8)
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where ψ is a piecewise continuous function, periodic of period 2, such that∫ 2

0

ψ(s) ds = 0. (9)

Then Flux In is periodic with period P (Exercise 19). By (9) and (2), its mean
value over the interval [0, P ] is

P−1

∫ P

0

σT 4
e

[
1 + ψ

(
2t

P

)]
dt = 2−1σT 4

e

∫ 2

0

[1 + ψ (s)] ds =
aΩ

4
,

as desired.
Now we multiply the fluxes from the last paragraph by S and put the

products into (5), which gives

c
dT

dt
= σT 4

e

[
1 + ψ

(
2t

P

)]
− σT 4. (10)

After linearizing (10) in the same way that we did (6), we obtain (Exercise 15)

c
du

dt
+ 4σT 3

e u = σT 4
e ψ

(
2t

P

)
. (11)

This is a nonhomogeneous linear differential equation whose solution u = u(t)
should be close to the displacement of surface temperature from Te, as long as
that displacement isn’t too large.

What formula should we use for ψ? Probably the best choice would be the
period-two extension of

ψ(s) =

{
π sin(πs)− 1, if 0 ≤ s ≤ 1;

−1, if 1 ≤ s ≤ 2.
(12)

The Flux In would then be zero at night, and would, during the day, gradually
rise to a maximum and gradually fall back to zero (see the top pair of graphs in
Figure 4). With that choice, unfortunately, there’s no closed-form expression
for the diurnal temperature range. An exercise in Section 7 leads you through
a computer analysis.

A much more tractable function is

ψ(s) = H sin(πs), (13)

where H is a constant, 0 ≤ H ≤ 1 (see the middle pair of graphs in Figure 4).
With thisψ, the Sun never sets (hence suitable for modeling the British Empire);
it will be useful in Section 9, in exercises on the annual temperature cycle.

In most of our work, however, we’ll use a square wave, namely, the period-2
extension of
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Figure 4. Solar fluxes. Left column, top to bottom, shows the functions ψ given by (12, 13, 14),
respectively. On the right are the corresponding Flux In functions (8), with the effective temperature
Te = 216.9 K (appropriate to Mars).

ψ(s) =

{
1, if 0 ≤ s ≤ 1;

−1, if 1 ≤ s ≤ 2,
(14)

a function that isn’t much harder to analyze than (13) and which, though it
doesn’t allow the solar intensity to change during the day, does provide both
night and day (see the bottom pair of graphs in Figure 4). And it leads to a
reasonable mean value, namely aΩ/2, for Flux In during the day.

Exercises.

14. Derive the linearized differential equation (7).

15. Derive the linearized differential equation (11).
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16. Suppose that the same extraterrestrial beings that put up the screen in Fig-
ure 2 decide to pull Mars 1% farther from the Sun than it now is. Assuming
that its albedo remains constant, by how much will Mars’s equilibrium
surface temperature fall?

17. A airless planet is revolving around a star that, at time t = 0, suddenly
vanishes. The planet is now emitting radiation but not absorbing it, so
the surface temperature T satisfies the (nonlinear) differential equation
c dT/dt = −σT 4.
a) Show that the solution of the differential equation (as it stands; i.e.,

without linearizing) is

T (t) =

{
3σt

c
+

1

[T (0)]3

}−1/3

.

b) Derive a formula for the amount of time τ that it takes for the surface
temperature to descend to half of its original value.

c) Check your formula from part (b) to make sure that τ is a decreasing
function of T (0): hotter planets cool off relatively faster. Explain physi-
cally why that makes sense.

18. Suppose that Power In > Power Out. Does (5) imply that the surface tem-
perature will increase, decrease, or remain constant? Give an answer based
simply on the equation, not the physics. Does your answer agree with your
physical intuition?

19. Verify that ψ in (8) has period P .

20. Check that each of the functions ψ in (12–14) satisfies (9).

21. The formulas for Flux In in this section attempt to model the daily variation
in influx of solar radiation under “average” conditions. They don’t take into
account seasonal variations, which affect the daily temperature cycle. (On
land on the Earth, the diurnal temperature range tends to be larger in the
summer than in the winter [Cao et al. 1992, 923]). Draw a graph of Flux In
that takes into account both seasonal and diurnal variations, i.e., such that
the planet receives less radiation during the day in the winter than it does
in the summer.
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6. A Mathematical Interlude
Equations (7) and (11) can be rewritten, respectively, as

du

dt
+ ku = 0 (15)

and

du

dt
+ ku = Aψ

(
2t

P

)
, (16)

where ψ is a piecewise-continuous function periodic of period 2 and satisfying
(9), and where

k =
4σT 3

e

c
and A =

σT 4
e

c
. (17)

We now solve (15) and (16) in general, for k and A positive constants not
necessarily given by (17). We need a solution general enough to cover a number
of cases, so we won’t specify a formula for ψ at this point.

6.1 Solution of the Homogeneous Equation
You may recall from calculus that (15) can be solved by separation of vari-

ables, leading to the general solution u = Ce−kt, , where C is an arbitrary
constant. By letting t = 0 in this last equation, we find that C = u(0), so that

u = u(0)e−kt. (18)

Notice that as t→∞, the function u(t) approaches zero (its equilibrium value)
but never reaches it. Now, (15) and (18) are the same equations that arise in
studying the decay of radioactive substances, so we could measure how quickly
u approaches equilibrium by using the idea of half-life. It’s more convenient,
though, to use the related idea of e-folding time: the amount of time required
for the value of u to diminish by a factor of e. To derive a formula for the
e-folding time, denoted by τ , we note from (18) and the definition of τ that
e−1 = u(t+ τ)/u(t) = e−kt; thus

τ =
1

k
. (19)

After time 3τ has elapsed, u has been reduced by a factor of e3 ≈ 20; thus, the
value of u is reduced by about 95% after three e-folding times have passed.

6.2 Solution of the Inhomogeneous Equation
To solve (16), we first make a change of independent variables, defining

s =
2t

P
, (20)
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so that, by the chain rule,

du

dt
=
du

ds
· ds
dt

=
du

ds
· 2

P
.

In terms of the new variable s, (16) takes the form

du

ds
+ ωu = Bψ(s), (21)

where

ω =
kP

2
=

P

2τ
and B =

AP

2
. (22)

By changing variables in this way, we’re measuring time in units of half a
period; this makes our calculations later more manageable.

To solve (21), where ω andB are positive constants not necessarily given by
(22), we multiply both sides by the integrating factor eωs, which gives

d

ds
[eωsu(s)] = eωsBψ(s).

Then, after replacing s by x and integrating both sides from 0 to s, we have

eωsu(s)− u(0) = B

∫ s

0

eωxψ(x) dx,

so that the general solution1 of (21) is

u(s) = e−ωs
[
u(0) +B

∫ s

0

eωxψ(x) dx

]
. (23)

Since the right-hand side of (21) is periodic, it’s reasonable to guess that (21)
has a periodic solution u. (That equation ultimately came from the differential
equation (11), in which ψ is related to the periodic daily changes in incom-
ing solar flux, which induce periodic daily changes in the displacement u of
temperature from its equilibrium value.) We’ll show that there is exactly one
periodic function, of period 2, of the form (23). To find it, note that such a
function u must satisfy u(2) = u(0). Putting s = 2 in (23) thus gives

u(0) = e−2ω

[
u(0) +B

∫ 2

0

eωxψ(x) dx

]
;

solving this last equation for u(0) and plugging the result into (23) yields (Ex-
ercise 22)

u(s) = Be−ωs
[

1

e2ω − 1

∫ 2

0

eωxψ(x) dx+

∫ s

0

eωxψ(x) dx

]
. (24)

1More precisely, (23) gives all functions u that are continuous for all reals and satisfy (21) on all
intervals on which ψ is continuous. I’ll use “solution” in that sense throughout the paper.
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The condition u(2) = u(0) is necessary for periodicity; by doing Exercise 25,
you can show that it’s also sufficient, i.e., that u(s + 2) = u(s) for all s, not
just for s = 0. Thus, the u given by (24) is the unique periodic solution of (21).
Furthermore, becauseω > 0, all solutions of (21) approach the periodic solution
when s→∞ (Exercise 26).

Let’s see what (24) looks like, for 0 ≤ s ≤ 2, when ψ has the form (14). By
Exercise 23, ∫ s

0

eωxψ(x) dx =

{
(eωs − 1) /ω, if 0 ≤ s ≤ 1;
(2eω − eωs − 1) /ω if 1 ≤ s ≤ 2.

(25)

Thus,

1

e2ω − 1

∫ 2

0

eωxψ(x) dx =

2eω − 2e2ω + e2ω − 1

ω (e2ω − 1)
=

1

ω

[ −2eω (1− eω)

(1− eω) (1 + eω)
+ 1

]
,

i.e.,

(
e2ω − 1

)−1
∫ 2

0

eωxψ(x) dx =
1

ω

[
1− 2eω

1 + eω

]
. (26)

Now we plug (25) and (26) into (24): When s ≤ 1, we have

u(s) =
B

ω
e−ωs

[
1− 2eω

1 + eω
+ eωs − 1

]
=
B

ω

[
1− 2eωe−ωx

1 + eω

]
. (27)

Similarly (Exercise 24), when s ≥ 1,

u(s) =
B

ω

[
−1 +

2e2ωe−ωx

1 + eω

]
. (28)

We could now use the definition (20) of s in terms of t to cast (27) and (28)
in terms of t, thus solving the differential equation (16), but that isn’t necessary.
The motivation for deriving these expressions for u was to find the diurnal
temperature range in the case of an atmosphere-free planet, and this can be
done using (27) and (28) as they stand. Convince yourself that u is increasing
for 0 ≤ s ≤ 1 and decreasing for 1 ≤ s ≤ 2 (see if you can do this without
taking derivatives). Thus, by (27), the diurnal temperature range is

umax − umin = u(1)− u(0) =
2B

ω

[
1− 2

1 + eω

]
. (29)

In the next section, we’ll explore this formula’s physical significance.
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Exercises

22. Derive the formula (24) for u(s).

23. Derive the expression (25) for
∫ s

0
eωxψ(x) dx, where ψ is given by (14).

24. Derive the expression (28) for u(s) in the case s ≥ 1.

25. To show that the function u given by (24) is periodic, do the following.
a) Show that

u(s+ 2) = Be−ωse−2ω ×[(
e2ω − 1

)−1
∫ 2

0

eωxψ(x) dx+

∫ 2

0

eωxψ(x) dx+

∫ s+2

2

eωxψ(x) dx

]
.

b) Make the substitution y = x− 2 in the third integral in part a); then use
the periodicity of ψ and some algebra to show that u(s+ 2) = u(s).

26. Show that whenω > 0, every solution of (21) approaches its unique periodic
solution. Hint: The general solution u satisfies (23). The unique periodic
solution u satisfies (24); for the purposes of this exercise, denote it by uP .
Show that for each u of the form (23), we have [u(s)−uP (s)]→ 0 as s→∞.

7. Temperatures on an Airless Planet,
Continued

In Section 5, we used our model of an atmosphere-free planet to estimate
that, if the solar constant were to suddenly rise by 1%, Mars’s equilibrium
surface temperature would jump by about half a degree Kelvin, from 216.9 K
to 217.4 K.

Now we’ll try to answer Question 2 of that section: Compute how quickly
the surface temperature would approach its new equilibrium value.

To do this, we imagine that the change in the solar constant occurred at
time t = 0; then T (0) = 216.9 K, and for t > 0, the effective temperature is
Te = 217.4 K. For t > 0, we define u(t) = T (t) − Te = T (t) − 217.4 K; that is,
u(t) is the displacement of the surface temperature from its new equilibrium
value. Then u satisfies the differential equation (7), i.e., du/dt + ku = 0 with
k = 4σT 3

e /c. So, by (19), u has e-folding time

τ =
c

4σT 3
e

. (30)

To compute a numerical value for τ , we need one for c. Here we encounter
a difficulty. Let’s get a crude estimate of c, for the Earth, and hope that a similar
value might pertain to Mars. Wallace and Hobbs give the following facts for the
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Earth. The materials—soil, rock, sand, and clay—that make up land conduct
heat very slowly, so that, during the course of a day, the solar energy absorbed
by the land surface penetrates to a depth of less than a meter. Let’s take the
penetration depth during the day to be 1 m. (Martian and terrestrial days have
about the same length—Mars’s is 24.6 hours [Beatty and Chaikin 1990, 289]—
so it seems reasonable to guess that the penetration depth might be similar
on Mars.) Furthermore, the specific heat of those materials is only about one-
quarter of that of water [Wallace and Hobbs 1977, 338–339]. Also, we can
estimate [Peixoto and Oort 1992, 221] that land and water have about the same
density. Recall that c is the surface’s heat capacity per square meter of surface.
Thus,

c ≈ (.25 · specific heat of water)(land density)(volume of land 1 m deep)

area of land
= (1,046 J/kg K)(1,000 kg/m3)(1 m) ≈ 106 J/m2K, (31)

and so, by (30) and (31), the e-folding time is

τ =
106 J/m2K

4
(

5.67× 10−8 W/m2K4
)

(217.4 K)3
= 4.3× 105 s ≈ 5 days.

It might appear, then, that, 15 days after the solar output jumped to its new
value, the surface temperature would have come within 95% of its new equi-
librium value. In fact, though, there’s a flaw in the reasoning (besides the
obvious one that the calculation really applies to the Earth, not to Mars) that
shows up a problem with our model. We assumed a penetration depth of 1 m
based on a time scale of one day. If, however, we had used another time scale,
we would have gotten a different answer. According to Wallace and Hobbs,
the solar energy absorbed by a land surface on Earth is conducted, during the
course of a year, to a depth of a few meters. Let’s say “a few” means “five.”
Then the e-folding time becomes 25 days instead of 5. The problem is that the
value of c depends on the penetration depth, which in turn depends on the
time scale, which depends on c. The “surface” isn’t really a single entity, but,
rather, a collection of layers. A more refined model would take into account
the rate at which energy moves from the top layer down to lower levels. Our
model doesn’t allow us to say how quickly the temperature approaches its new
equilibrium.

7.1 The Diurnal Temperature Range
We now turn to Question 3 of Section 5, the problem of determining the

diurnal temperature range (DTR). Here the time scale is unambiguous; we have
to use a value of c appropriate to the surface layer that the Sun warms during
one day.

At the Martian equator, daytime highs are “about 300◦ K, not very different
from temperatures in the Earth’s tropics”; but at night the temperature ”drops
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to a frigid 160◦ K, much colder than any place on the surface of the Earth.”
[Goody and Walker 1972, 66] This results in a DTR of 140 K. Now by (17) and
(22),

B

ω
=
Te
4
. (32)

Thus, if ψ is as in (14), then (29) shows that the diurnal temperature range is

DTR =
Te
2

[
1− 2

1 + eω

]
. (33)

Figure 5 is a graph of (33) with Te = 216.9 K.

Figure 5. Mars’s DTR as a function of ω.

From (33), we can see that for fixed Te, the DTR is an increasing function of ω
such that limω→∞DTR(ω) = Te/2. Thus, the model temperatures can’t exhibit
DTR’s larger than half the effective temperature—108 K in the case of Mars.
This is smaller than the Goody-Walker value of 140 K, but at least it’s the right
order of magnitude. (Allowing the solar intensity to vary during the day allows
for a realistic DTR; see Exercise 29.) The model achieves DTR’s close to 108 K
when ω is large. Recall from (22) that

ω =
P

2τ
. (34)

By (34) and (30),

ω =
2σT 3

e P

c
, (35)

so that large ωs correspond to small cs, and, indeed:
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The thermal conductivity of the Martian surface is believed to be small,
with only a thin layer taking part in the diurnal oscillations. Since a thin
layer of dry surface material can hold very little heat, large temperature
changes result from the diurnal cycle of heating and cooling. (We can
observe this phenomenon on Earth, where diurnal surface temperature
changes are much larger in dry desert areas a long way from the sea
than they are on or near the oceans or on land covered with vegetation.
Observations on Mars indicate that the surface does indeed resemble light,
dry desert sand. [Goody and Walker 1977, 66].

It makes physical sense that the DTR should be an increasing function of ω.
By (34), ω is proportional to the ratio of the planetary rotation period P to the
e-folding time τ .

• If ω is large, then the surface gains and loses heat quickly in comparison
to the rotation period, so that there’s plenty of time during the day for the
surface to heat up and plenty of time at night for the surface to cool off. Thus,
we expect a large DTR.

• If ω is small, the days and nights don’t provide adequate time for large
temperature changes, and the DTR should be small.

From (33), we see that for fixedω, the DTR is also an increasing function ofTe,
and this, too, makes physical sense. A hot planet, i.e., one with a large Te, emits
longwave radiation at a high rate and thus cools off quickly at night when the
Sun is down. Such a planet warms up quickly during the day, because it absorbs
solar energy at a high rate; if it didn’t, the effective temperature wouldn’t be
large (see (2)). Conversely, a cool planet experiences less rapid temperature
changes over the course of a rotation period.

Next we graph the temperature as a function of time when ψ is as in (14):
Using (32), we rewrite (27) and (28) as

u(s) =


Te
4

[
1− 2eωe−ωs

1 + eω

]
, if 0 ≤ s ≤ 1;

Te
4

[
−1 +

2e2ωe−ωs

1 + eω

]
, if 1 ≤ s ≤ 2.

(36)

Recall that u(s) is the displacement of temperature from its equilibrium
value as a function of time, where time is measured in units of half a period.
Figure 6 is a graph of one day’s worth of u(s), for Te = 216.9 K and ω = 4.
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Figure 6. Temperature as a function of time during a Martian day.

The displacement u is increasing and concave down for 0 < s < 1. Physi-
cally, u is increasing because the surface is warming up during the day. Here’s
why u is concave down. At dawn, the planet is cool and therefore is radiating
away energy at a slow rate; in the meantime, it’s absorbing energy rapidly from
the Sun. The surface’s net gain in energy thus occurs rapidly, so the tempera-
ture graph rises sharply. Later in the day, the surface is absorbing energy at the
same rate as earlier (recall that Flux In is constant in this model), but, because
the surface is hotter, it radiates energy away more quickly than before. Thus
the temperature graph is still rising, but at a lower rate than before.

A similar argument (Exercise 27) explains why u is decreasing and concave
up for 1 < s < 2. The discontinuity in our square-wave function ψ is reflected
in the nonsmoothness (nondifferentiability) of u at s = 1 (and, if we continue
u periodically, also at s = 2 and all integral values of s).

In the Introduction, I stated that, during the last few decades, the DTR
over the Earth’s land surfaces has decreased at about the same rate that the
average temperature has increased. On an airless planet, what happens to
the DTR when, in response to an increase in the solar constant, the effective
temperature goes up? The DTR must increase, because the DTR (33) is an
increasing function of Te and ω, while, by (35), ω is an increasing function of
Te. Furthermore (Exercise 28), we have

d

dTe
DTR =

1

2

[
1− 2

1 + eω
+

6ωeω

(1 + eω)
2

]
, (37)

and thus the rate of change of the DTR depends only on ω. The graph of the
right-hand side of (37) shown in Figure 7 suggests that for large ω, the DTR on
Mars would rise by about a half a degree per one-degree rise in Te.
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Figure 7. The derivative of the diurnal temperature range with respect to Te as a function of ω for
an airless planet.

Exercises

27. Explain physically why u given by (36) is decreasing and concave up for
1 < s < 2.

28. a) Show that Te · dω/dTe = 3ω.
b) Derive the formula (37) for (d/dTe)DTR.

29. We’re going to study a more realistic model of Mars in which sunlight is
more intense in the middle of the day than in the morning and the evening.
Suppose throughout this exercise that ψ has the form (12). For such ψ, it
can be shown that the unique periodic solution of (21) is

u(s) =



B

{
− 1

ω
+

sin
(
πs− tan−1(π/ω)

)
[1 + (ω/π)2]

1/2

+
e−ωs

[1 + (ω/π)2] (1− e−ω)

}
, if 0 ≤ s ≤ 1;

B

{−1

ω
+

eωe−ωs

[1 + (ω/π)2] (1− e−ω)

}
, if 1 ≤ s ≤ 2,

(38)

where B satisfies (22). In particular, if u is the periodic solution of the
differential equation (11) that we derived for an atmosphere-free planet,
then, by (32), we have B = Teω/4. Do the following with electronic help.
a) Plotu(s) given by (38), using this last expression forB, withTe = 216.9 K.

Do this for several values of ω. Is the DTR a decreasing function of ω?
As ω increases, the value of s for which the temperature is maximum
moves to the left, getting closer and closer to 0.5. Explain physically
why this should be so.

27



64 The UMAP Journal 19.1 (1998)

b) Find a value of ω that allows the model to match well the true Mar-
tian DTR. For that value, at about what time of day will the maximum
temperature be achieved?

c) Use (35) to determine the heat capacity c for the value of ω that you
found in part b); how does it compare to the c in (31)? Watch your units;
the figure (1) for σ involves measuring time in seconds—why?

d) Suppose that the solar constant increases. For the value of ω that you
found in part b), estimate the increase in DTR per degree increase in the
equilibrium surface temperature.

e) Graph u(s) (as in part a)) for a very large value of ω. The graph is nearly
horizontal for 1 ≤ s ≤ 2. Does that make physical sense?

8. Equilibrium Temperatures on a Planet
with an Atmosphere

In Section 4, we saw that the Earth’s average surface temperature, 290 K, is
35 K warmer than its effective temperature of 255 K. The difference is produced
by the atmosphere, which absorbs longwave radiation emitted by the surface,
and is thus kept warm; being warm, the atmosphere also emits longwave radi-
ation, some of which the surface absorbs, in addition to the shortwave radiation
it’s already absorbing from the Sun. The surface is thus hotter than it would be
if no atmosphere overlay it.

To quantify the exchange of radiation, we assume as before that every point
on the surface is at the same (time-dependent) temperature T0 = T0(t). Simi-
larly, we assume that every point of the atmosphere is at the same temperature
T1 = T1(t). We have to account for three types of power:

• shortwave power,

• longwave power, and

• power not due to radiation.

8.1 Shortwave Power
We still assume that the Earth/atmosphere system absorbs flux aΩ/4 from

the Sun, but now a portion of the flux is absorbed by the surface and a portion
by the atmosphere. The details of the apportionment are rather complicated.

Of the flux Ω/4 that reaches the top of the atmosphere, before any absorption,
part is reflected back into space, part is absorbed by the atmosphere, and part
reaches the surface. Part of the flux that reaches the surface is reflected back
to the atmosphere, and part of that is reflected back to the surface. Some of
the latter is absorbed by the surface. Thus, the total shortwave flux absorbed
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by the surface is the result of multiple reflections of sunlight between surface
and atmosphere, and similarly for the total shortwave flux absorbed by the
atmosphere.

Now, the surface and atmosphere together absorb shortwave flux aΩ/4.
Let’s denote by q the fraction of that flux absorbed by the surface, after the
multiple bounces; then the total flux absorbed by the surface is qaΩ/4. The rest
of the aΩ/4 is absorbed by the atmosphere (again after multiple bounces), so
the total shortwave flux absorbed by the atmosphere is (1− q)aΩ/4.

This notation conveniently allows us to avoid dealing with the complexities
of the multiple reflections, but we have to use it with care. The parameter
q is a function of several other quantities, including the fraction of sunlight
absorbed by the surface on the first bounce and the reflectivities of the surface
and atmosphere. In other words, q depends on the albedo, so that, if we wanted
to use our model to predict the effect of changing the albedo, we would have to
find out how the value of q is affected. That would lead to an elegant application
of geometric series [Harte 1988, 89–94].

We have now shown, in view of (2),

shortwave power absorbed by surface = SqσT 4
e , (39)

shortwave power absorbed by atmosphere = S(1− q)σT 4
e ,

where S is the Earth’s surface area.

8.2 Longwave Power
Recall that a blackbody, by definition, absorbs all the radiation it intercepts

in all wavelengths, and emits radiation from its boundary at the maximum
possible rate in each wavelength. We noted in Sections 4 and 5 that the Earth’s
surface behaves like a blackbody, to a good approximation, in the longwave
range, and that, at the temperatures typical of the surface (and atmosphere),
nearly all of the radiation is emitted in the longwave range. That led us to
assume that our model surface emits flux σT 4

0 , all in the longwave range. If
the atmosphere were a blackbody, it would emit flux σT 4

1 , nearly all of it in the
longwave range.

In fact, the atmosphere does not behave like a blackbody, even in the long-
wave range; it doesn’t absorb all the longwave radiation incident on it, nor
does it emit with maximal efficiency.

Let’s suppose that the atmosphere absorbs a fraction A, where 0 ≤ A ≤ 1,
of the flux σT 4

0 that it receives from the surface, and emits flux εσT 4
1 , where

0 ≤ ε ≤ 1. Then A and ε are the atmosphere’s absorptivity and emissivity,
respectively.

Now, a physical principle called Kirchoff’s law [Wallace and Hobbs 1977,
291–292], which is valid in most of the atmosphere, states that the efficiency
of a body at absorbing radiation at a given wavelength equals its efficiency at
emitting radiation at that wavelength. Suppose, for example, that an object
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absorbs 10% of all the flux of red light incident on it, and 20% of all the flux
of blue light incident on it. Then it will emit flux, in the form of red light, at
10% of the rate that a blackbody at its temperature would; and it will emit flux,
in the form of red light, at 20% of the rate that a blackbody at its temperature
would.

Inspired by Kirchoff’s law, we’ll assume that

A = ε

—the atmosphere’s emissivity equals its absorptivity—so that the flux that
the model atmosphere absorbs from the surface is approximately εσT 4

0 . This
lumping together of all the different wavelengths of longwave wavelengths in
Kirchoff’s law makes for a rather crude approximation, but perhaps no cruder
than our assumption that the surface behaves like a blackbody in the longwave
range. (See Appendix I for a more complete discussion of this.)

The flux is the power emitted per square meter of the atmosphere’s bound-
ary, which, in our model, consists of two spheres: one contiguous with the
planet’s surface, and the other exposed to space, each having surface area S.
The atmosphere emits from both spheres, but only absorbs through the bottom
sphere since the only longwave radiation available to be absorbed is what’s
being emitted by the planet’s surface. Similarly, the surface absorbs all the
longwave power emitted by the bottom sphere. We therefore have

longwave power absorbed by surface = SεσT 4
1 ,

longwave power emitted by surface = SσT 4
0 ,

(40)
longwave power absorbed by atmosphere = SεσT 4

0 ,

longwave power emitted by atmosphere = 2SεσT 4
1 .

8.3 Nonradiative Power
On the real Earth, there are two nonradiative means by which energy is

transferred from the surface to the atmosphere.

• First, heat moves, by conduction, from the surface to the bottom layer of the
atmosphere, and from there, by turbulence and convection, to higher levels.

• Second, some of the surface’s energy is expended in evaporating water.
When the water vapor that results from the evaporation reaches a high
enough altitude to condense, it releases that energy into the atmosphere.

Rather than deal with the physical details of those processes, which we’ll group
collectively under the title of “mechanical heat transfer,” we’ll simply assume
that the transfer of energy obeys Newton’s law of cooling, that is, that energy
is transferred at a rate proportional to the difference between the surface and
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atmospheric temperatures:

power leaving surface by mechanical means = Sγ(T0 − T1),
(41)

power entering atmosphere by mechanical means = Sγ(T0 − T1);

where γ is a positive constant. In most of our work, we’ll neglect this term,
since including it seems not to make much of a difference in the model we’re
studying.

Figure 8 shows all of the elements in the exchange of energy among the
surface, the atmosphere, and space.

Figure 8. Exchange of energy. The Earth/atmosphere system absorbs solar power SσT 4
e , some

(A) at the surface, and the rest (B) in the atmosphere. Meanwhile the surface is emitting power (C),
some of which (D) the atmosphere absorbs, the rest of which (E) goes out into space. Power is also
transmitted from surface to atmosphere via mechanical heat transfer (F). Finally, the atmosphere
emits power from its bottom boundary [(G), all absorbed by the surface] and its top boundary [(H),
lost in space].

Now we’ll concentrate on the equilibrium temperatures, denoted by T̂0 and
T̂1. For each of the surface and atmosphere, respectively, we equate the sum of
the Powers In (39–41) to the sum of the Powers Out; the result, after dividing by
the Earth’s surface area S, is a pair of equations of the form Flux In = Flux Out
satisfied by T̂0 and T̂1:

qσT 4
e + εσT̂ 4

1 = σT̂ 4
0 + γ

(
T̂0 − T̂1

)
; (Surface Balance)

(42)

(1− q)σT 4
e + εσT̂ 4

0 + γ
(
T̂0 − T̂1

)
= 2εσT̂ 4

1 . (Atmospheric Balance)

(43)
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In our model of an atmosphere-free planet, the equilibrium surface temperature
equaled the effective temperature. Now that we have an atmosphere that’s no
longer the case; in fact (Exercise 33), T̂0 > Te for the numerical values of ε and
q that we’ll shortly be using.

I mentioned in the Introduction that the amount of atmospheric CO2 is
likely to become double its 1850 value at some time in the next 50 to 150 years.
The energy balance equations (42–43) allow us to give an answer to a standard
question in climate modeling, namely, what effect would that have on the global
average surface temperature? First, by adding (42) to (43) and rearranging,

σT 4
e = (1− ε)σT̂ 4

0 + εσT̂ 4
1 , (44)

so that

ε =
T̂ 4

0 − T 4
e

T̂ 4
0 − T̂ 4

1

.

Currently2, for the Earth,

Te = 255 K, T̂0 = 290 K, and T̂1 = 250 K,

so

ε = .8983. (45)

Next, solving (42) for q and γ gives

q =
T̂ 4

0 − εT̂ 4
1 + γσ−1

(
T̂0 − T̂1

)
T 4
e

and γ =
σ
(
qT 4

e + εT̂ 4
1 − T̂ 4

0

)
T̂0 − T̂1

(46)

We’ll assume that γ = 0, thus neglecting mechanical heat transfer, an as-
sumption that simplifies our computations and makes virtually no difference to
our conclusion (see Exercise 32). Eliminating T̂1 from (42) and (43) and solving
for T̂0 gives (Exercise 31)

T̂0 = TeG(ε, q), where G(ε, q) =

(
1 + q

2− ε
)1/4

, if γ = 0. (47)

The presence of an atmosphere increases the surface temperature by a factor of
G(ε, q). (The factor can be less than one; see Exercise 33). We’ll call the function
G the greenhouse function. From (45), the first half of (46), and our assumption
that γ = 0, we find that

q = .8428 if γ = 0. (48)

2The figure for bT1 comes about by taking a density-weighted mean of the altitude-dependent
temperatures given in Holton [1992, 487].

32



Climate Change and the Daily Temperature Cycle 69

Recall from Section 3 that the real Earth’s surface absorbs about two-thirds of
the total solar radiation absorbed by the Earth/atmosphere system. The model
overestimates that fraction.

Because carbon dioxide is a greenhouse gas, a doubling of the concentration
of atmospheric carbon dioxide would make the atmosphere more efficient at
absorbing and emitting longwave radiation. The greater efficiency corresponds
to a bigger ε. Let’s estimate the new ε; we’ll then use (47) to determine the future
surface temperature. Similarly, we’ll estimate the surface temperature prior to
the industrial revolution. The total warming will be the difference between the
future and old surface temperatures. All three values of ε are independent of
γ and q, and thus are also applicable to the case γ > 0, q = 1 considered in
Exercise 32.

Prior to the Industrial Revolution, the concentration of carbon dioxide in
the atmosphere was about 280 ppm(v), where “ppm(v)” stands for “parts per
million by volume”; i.e., of every one million air molecules, 280 were carbon
dioxide. Twice that concentration would be 560 ppm(v). In 1992, the concentra-
tion was about 350 ppm(v) [Peixoto and Oort 1992, 434]3; so we need to know
the value of ε that would result from increasing the current concentration of
CO2 by a factor of 560/350 = 1.6.

The principal greenhouse gases are water vapor and carbon dioxide; we’ll
neglect the others. We’ll assume that the abilities of the two gases to absorb long-
wave radiation can be separated, so that ε = εw+εc, where εw and εc are the frac-
tions of surface-emitted longwave radiation absorbed by atmospheric water va-
por and by atmospheric carbon dioxide. We’ll also assume that the effectiveness
of water vapor at absorbing incoming longwave radiation is proportional to the
concentration of water vapor: εw = β × (concentration of water vapor), where
β is a constant. We assume similarly for carbon dioxide; but, to a very crude first
approximation, a molecule of carbon dioxide is only about one-quarter as effec-
tive as a molecule of water vapor at absorbing longwave radiation [Harte 1988,
184, Exercise 4], so that εc = β(concentration of CO2)/4. Also, the calculation
in Harte [1988, 179] shows that there are currently 14.6 times as many water
vapor molecules as carbon dioxide molecules in the atmosphere, and thus the
concentration of water vapor is currently 14.6 × 350 ppm(v) = 5,110 ppm(v).
Thus, assuming that the concentration of water vapor remains constant over
time, the ratio of the “future epsilon” (after doubling of carbon dioxide) to the
“current epsilon” (the present-day value in (45)] is

future ε
current ε

=
β[(current water vapor) + 0.25(future CO2)]

β[(current water vapor) + 0.25(current CO2)]

=
5110 ppm(v) + 0.25[560 ppm(v)]
5110 ppm(v) + 0.25[350 ppm(v)]

= 1.0101

3Monthly or more frequent readings at various locations from 1979 on are available from the
Climate Monitoring Diagnostic Lab of the National Oceanic and Atmospheric Administration,
at http://www.cmdl.noaa.gov/ccg/co2/GLOBALVIEW . The data files are updated annually in
August. By 1997, the mean concentration was about 360 ppm(v).
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and thus, by (45),

future ε = 1.0101(current ε) = 1.0101(.8983) = .9074.

Then, assuming the value of q is unchanged, we find from (47) that the future
equilibrium surface temperature will be 290.6 K.

Similarly,

old ε
current ε

=
β[(current water vapor) + 0.25(old CO2)]

β[(current water vapor) + 0.25(current CO2)]

=
5110 ppm(v) + 0.25[280 ppm(v)]
5110 ppm(v) + 0.25[350 ppm(v)]

= 0.9966,

and old ε = 0.9966(.8983) = .8953, leading to an old surface temperature of
289.8 K and

a total predicted rise of 0.8 K.

This increase is small compared to those predicted by the Global Climate Models,
which average about 3 K [Peixoto and Oort 1992, 477]. Those models incorpo-
rate the physics in a more realistic way than we have and take into account
many factors we’ve neglected. In particular, our analysis neglected feedback
effects, processes whereby an initial change in a variable affects the values of
other variables in such a way as to induce further changes in the first variable.
An important such process that operates in the atmosphere is the water vapor
feedback effect: An initial rise in atmospheric carbon dioxide makes the Earth’s
surface temperature rise, which in turn increases the evaporation rate and thus
the amount of water vapor in the atmosphere. But because water vapor is a
greenhouse gas, the result is a further rise in surface temperature, hence an
even higher evaporation rate, and so forth—a process that converges (we hope
that it converges!) to a higher temperature than the initial rise in carbon dioxide
would suggest.

Exercises

30. The left-hand side of (44) is, by (2), the flux of energy into the Earth/atmos-
phere system. Show that the right-hand side is the flux out; to do this, give
a physical interpretation of each of its terms.

31. Derive the formula (47) for T̂0.

32. By following the steps outlined below, redo the calculation of temperature
rise due to CO2-doubling, this time neglecting atmospheric absorption of
shortwave radiation but including mechanical heat transfer.
a) Show that, when q = 1 and γ > 0, the surface temperature is a zero of

the function

f(x) = 2σT 4
e − (2− ε)σx4 − γ

[
x−

(
T 4
e − (1− ε)x4

ε

)1/4
]
.

34



Climate Change and the Daily Temperature Cycle 71

Hint: Solve (44) for T̂1 and substitute into (43) (with q = 1).
b) Show that the function f in part a) has only one root. Hint: Prove that f is

a decreasing function, which isn’t hard to do if you avoid the temptation
to compute f ′.

c) Determine a numerical value of γ using (46). Then use a computer or
graphing calculator to determine the root of f for the “future” and “old”
εs; the change in surface temperature is the difference between the two.

33. a) Verify the following facts about the greenhouse function G(ε, q) and in-
terpret each fact physically:

1. G(ε, q) > 1 if and only if ε+ q > 1;
2. G is an increasing function of ε;
3. G is an increasing function of q.

b) Use part a) to verify that T̂0 > Te when γ = 0 and ε and q satisfy (45) and
(48). (Of course, we already know that T̂0 > Te: We chose those values
of ε and q in order to match the observed temperatures.)

34. a) Derive a formula, in terms of Te, for the maximum possible surface tem-
perature of our model planet. (Assume that γ = 0.)

b) Venus has surface temperature 730 K [Beatty and Chaikin 1990, 93]. Use
part a) to show that our model doesn’t apply to Venus. (Venus can be
modeled by dividing the atmosphere into several concentric spherical
shells, each at uniform temperature; a single shell, as in our model,
doesn’t provide a big enough greenhouse effect.)

35. In the middle of the Cretaceous Period, about 100 million years ago, the
Earth’s climate was considerably warmer than it is now—so warm that
Antarctica was probably free of permanent ice, and alligators lived near the
Arctic Circle. “Geochemical models suggest that the atmosphere then may
have contained between 5 and 10 times more carbon dioxide than it does
now” [Schneider 1987, 76–77]. Use the model of this section (with γ = 0)
to estimate the temperature at that time. (Keep it mind, though, that the
model is likely to underestimate the real temperature.)

36. “Changes of several tenths of one percent in the Sun’s brightness . . . could
cause temperature changes of 0.5◦ C on Earth” [Baliunas and Soon 96, 41].
Use the model of this section to evaluate that claim. (The authors argue that
variations in the solar constant must be thoroughly understood in order to
evaluate the effect of carbon dioxide on global temperature changes. They
are examining Sun-like stars in order to gain insight into solar variations.)
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9. Daily Temperature Cycle on a Planet with
an Atmosphere

To model the daily temperature cycle on a planets that have atmospheres,
we convert the equations (42–43) for the equilibrium temperatures into a pair
of differential equations for the time-dependent temperatures, in the same way
that we went from (2) to (10) in our study of atmosphere-free planets. Here and
throughout this section we’ll assume that γ = 0. The result is

c0
dT0

dt
= qσT 4

e

[
1 + ψ

(
2t

P

)]
+ εσT 4

1 − σT 4
0 ; (49)

c1
dT1

dt
= (1− q)σT 4

e

[
1 + ψ

(
2t

P

)]
+ εσT 4

0 − 2εσT 4
1 , (50)

where ψ is a piecewise-continuous function, periodic of period 2, such that∫ 2

0
ψ(s) ds = 0, and where c0 and c1 are the heat capacities, per unit area of

the planet’s surface, of the surface and atmosphere. As in the atmosphere-free
case, we’re assuming that the land-mass that we’re studying is isolated from
the rest of the planet and can therefore be thought of as a “planet” in its own
right. This assumption is reasonable on the Earth as long as our land-mass
is large enough—a continent, say —because typical Earthly wind speeds are
about 5 m/s, i.e., about 400 km/day. Thus, temperatures on other parts of
the globe will not have time, during the course of one day, to affect the inland
regions that make up the vast majority of the continent.

Next we assume that T1 is constant, i.e., T1(t) = T̂1 for all t. The justification
for this is that

• it simplifies the mathematics considerably (always hard to argue with), and

• the atmosphere’s diurnal temperature fluctuations are small compared to
those of land.

In fact, “At the earth’s surface, over land, the diurnal temperature range is on
the order of 10 [Kelvin] at most locations, but it reaches values of more than
20 [Kelvin] over high-altitude desert locations.” [Wallace and Hobbs 1977, 27].
In contrast, the atmosphere’s heat capacity is high enough that temperatures
there vary by about 0.68% [Goody and Walker 1972, 89], which, using our value
of T̂1 = 250 K, is 1.7 K. Thus, our assumption that T1 is constant amounts to
the statement that the atmosphere has infinite heat capacity.

So we replace T1 by T̂1 in (49). We then define the displacement u of surface
temperature from its equilibrium value T̂0 by u = T0 − T̂0; then we linearize
with the aid of (42) and change to the new independent variable s = 2t/P
defined by (20). By Exercise 37, the resulting equation is

du

ds
+ ωu = Bψ(s),
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where

ω =
2PσT̂ 3

0

c0
and B =

PqσT 4
e

2c0
. (51)

These are a different ω and B from the ones in Sections 6 and 7. This last
differential equation is just (21), and it has a unique periodic solution given by
(24). Now, suppose that ψ has the form (14). Then the periodic solution takes
the form (27–28), and the diurnal temperature range is (29):

DTR =
2B

ω
f(ω), where f(ω) = 1− 2

1 + eω
. (52)

We can get a number of physical insights from (52). First, we can see what
effect the presence of an atmosphere has on the DTR. In reality an atmosphere
probably affects the DTR in many ways, by modifying the planet’s albedo, for
example, but here let’s isolate the role played by ε. That is, let’s compare two
planets that have the same rotation period, effective temperature, and heat
capacity, one planet atmosphere-free, and the other having an atmosphere.
Which has the larger DTR?

For the atmosphere-free planet: We have ε = 0, q = 1. Denote by ω0 the ω
for that planet given by (51). Then ω0 = 2PσT 3

e /c0.
For the planet with atmosphere: Equations (51) and (47) give

ω = 2PσT̂ 3
0 /c0 = [G(ε, q)]3ω0.

So, by (52),

DTR of planet with atmosphere
DTR of atmosphere-free planet

= [G(ε, q)]−3F (ω0), (53)

where F (x) = f
(
[G(ε, q)]3x

)
/f(x). Now suppose that ε + q > 1. Then F has

the following properties (Exercise 38):

F (x)→ [G(ε, q)]3 as x→ 0+; (54a)

F is a decreasing function; (54b)

F (x)→ 1 as x→∞. (54c)

It follows from (53) and (54ab) that when ε+ q > 1, introducing an atmosphere
compresses the DTR. This is a second way—besides raising the average surface
temperature—in which the presence of an atmosphere moderates a planet’s
climate when ε+q > 1. By (53) and (54bc), the cube of the greenhouse function
gives the maximum possible compression. For the Earth,

[G(ε, q)]3 = [G(.8983, .8428)]3 = 1.47.

Thus, since the current Earth’s land surfaces have DTR’s of about 10 K, a fic-
titious Earthlike planet that had no atmosphere but that had the real Earth’s
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rotation period, effective temperature, and heat capacity, would have a DTR of
at most 15 K.

Since an atmosphere compresses the DTR, more atmosphere should com-
press it more. Let’s check whether it does. If we fix

• the albedo α,

• the solar constant Ω (hence the effective temperature Te),

• the surface heat capacity c0,

• the fraction of solar radiation q absorbed by the surface, and

• the rotation period P ,

will a rise in ε lead to a fall in the DTR? Yes: In (53), ω0 will remain constant
while [G(ε, q)]−3 decreases.

Now we’ll compute the rate of change of the DTR with respect to the equi-
librium surface temperature. Again fix a, c0, q, and P . We’ll analyze two
cases:

(I) Ω (hence Te) remains constant while ε varies; and

(II) ε remains constant while Ω (hence Te) varies.

Case I. By (52), (51), and (47),

d

dT̂0

DTR

∣∣∣∣∣
ε varying, Ω fixed

= 2B

[−f(ω)

ω2
+
f ′(ω)

ω

]
dω

dT̂0

=
PqσT 4

e

c0

[−f(ω)

ω2
+
f ′(ω)

ω

]
3ω

T̂0

= 1.5qω2

(
Te

T̂0

)4 [−f(ω)

ω2
+
f ′(ω)

ω

]
=

q

[G(ε, q)]4
· 1.5 [−f(ω) + ωf ′(ω)] .

Thus,

d

dT̂0

DTR

∣∣∣∣∣
ε varying, Ω fixed

=
q

[G(ε, q)]4
·Hmore gas(ω), (55)

where

Hmore gas(ω) = 3

[
−1

2
+

1

1 + eω
+

ωeω

(1 + eω)
2

]
.
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Case II. Again by (52), (51), and (47),

DTR =
qT̂0f(ω)

2[G(ε, q)]4
. (56)

Now, dω/dT̂0 = 3ω by (51), so, by (52),

d

dT̂0

DTR

∣∣∣∣∣
Ω varying, ε fixed

=
f(ω) + T̂0f

′(ω) · 3ω
2[G(ε, q)]4

.

Thus,

d

dT̂0

DTR

∣∣∣∣∣
Ω varying, ε fixed

=
q

[G(ε, q)]4
·Hhotter sun(ω), (57)

where
Hhotter sun(ω) =

1

2
− 1

1 + eω
+

3ωeω

(1 + eω)
2 .

Figure 9 shows the graphs of Hmore gas and Hhotter sun. The model has the
interesting property that enhanced greenhouse warming decreases the DTR,
whereas enhanced solar warming increases it.

Figure 9. Hmore gas (lower curve) and Hhotter sun (upper curve).

Using the values for the Earth that we computed in Section 8, we have
q[G(ε, q)]−4 = .8428 · [G(.8983, .8428)]−4 = 0.5, so our model Earth can exhibit
significant rates of change of the DTR if ω is large enough. From (56), we can
estimate (Exercise 39) that for the Earth, .2 ≤ ω ≤ .7, roughly. For ω in that
range, (d/dT̂0)DTR is between about −0.0005 and −0.02 when the emissivity
is allowed to vary. When instead Ω is allowed to vary, (d/dT̂0)DTR is between
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about 0.1 and 0.3. In that range, then, our model DTR is quite insensitive
to changes in the emissivity, but somewhat sensitive to changes in the solar
constant.

Since the model’s DTRs don’t fall significantly, what is causing the observed
decrease on the real Earth? Here are two possibilities (for these and others, see
Beardsley [1992], Cao et al. [1992], Easterling et al. [1997], and Karl et al. [1993]):

• Increases in sulfate aerosols—microscopic particles produced by burning of
fossil fuels—could be increasing the amount of sunlight reflected back into
space during the day, thus slowing down the warming produced by the
increase in greenhouse gases. No such slowing would occur at night.

• The water vapor feedback effect (Section 8) could be increasing the concen-
tration of atmospheric water vapor. Since water vapor absorbs some of the
shortwave radiation it intercepts, the atmosphere would become more effi-
cient than before at absorbing the solar energy during the day, thus denying
some of that energy to the surface. Again, the greenhouse-induced rise in
surface temperature would be slowed down during the day only.

Our model’s insensitivity to changes in atmospheric emissivity is shared
by a more sophisticated model analyzed by Cao et al. [1992, 926–927], who
performed computer experiments on a one-dimensional radiative model (i.e.,
a model that, like ours, considers only radiative, not mechanical, transfer of
energy, but which allows temperature to depend on altitude and takes into
account wavelength-dependent properties of gases’ absorption and emission).
They found that when atmospheric carbon dioxide is doubled, the DTR is
reduced by 0.05 K. That reduction, though small, is larger than what we found,
probably because their model took into account absorption of solar radiation by
carbon dioxide. When they added a water vapor feedback to their model, the
DTR decreased by 0.4 K. They also performed experiments on a global climate
model and found increases in some regions and decreases in others, with a
slight global mean decrease that they attributed to the water vapor feedback
and related processes [Cao et al. 1992, 929].

Exercises

37. Verify that when T1(t) = T̂1 for all t, the linearized version of (49) can be
put in the form du/ds+ ωu = Bψ(s), where (51) holds.

38. Suppose that ε + q > 1, let the function f be defined by (52), and let F be
defined following (53).
a) Prove (54ac).
b) Use a computer or graphing calculator to confirm (54b).
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39. a) Use (56) to verify that 0.2 < ω < 0.7, approximately, when 7 ≤ DTR ≤ 25.
(That’s roughly the range of values for the DTR in the passage from
Wallace and Hobbs in the text of this section.)

b) Calculate the corresponding values of the surface heat capacity c0. Are
they consistent with (31)?

40. In formulas (55) and (57), (d/dT̂0)DTR = 0 when q = 0. Give a physical
explanation of why this happens.

41. Relative changes in the DTR are probably more important than absolute
changes; Martians, with their 140 K DTR would find a one-degree change
in the DTR less disconcerting than we Earthlings would with our 10 K DTR.
Explore the size of the relative rate of change by plotting DTR−1·(d/dT̂0)DTR
as a function of ω.

42. Let’s explore the annual temperature range (ATR): the average difference be-
tween highest summer temperatures and the lowest winter temperatures.
On this time scale, we can no longer think of a continent as an isolated body,
so we have to consider either the Northern or the Southern Hemisphere as
our “planet”. The surface is then dominated by the oceans. It’s no longer
appropriate to assume that the atmosphere has infinite heat capacity; in fact,
the oceans’ mixed layer (see Section 2), has heat capacity perhaps 20 times
as large as that of the atmosphere (Exercise 9), and the annual variation in
temperatures of the atmosphere and the Earth’s surface are roughly compa-
rable, about 5–10 K [Grotjahn 1993, 63, Figure 3.14]. (This variation is rather
small because of the oceans’ large heat capacity. Land regions experience
much larger variation.) So we’ll take the atmosphere’s heat capacity to be
zero.
a) Taking γ = 0 and c1 = 0, solve (50) for εσT 4

1 . Substitute the result
into (49) and linearize the resulting first-order differential equation in
T0 about T̂0. Show that this leads to an equation of the form (21), where
u = T0 − T̂0, s = 2t/P , ω = P (2− ε)σT̂ 3

0 /c0, and B = P (1 + q)σT 4
e /4c0.

b) Let ψ(s) = H sinπs and show that the unique periodic solution of (21)

is u(s) = BH
(
ω2 + π2

)−1/2
sinπ(s − φ), where φ = π−1 tan−1(π/ω).

Deduce that the annual temperature range is

ATR =
2BH

ω

[
1 +

(π
ω

)2
]1/2

.

c) Show that ATR = 1
2 T̂0H

(
1 + (π/ω)2

)−1/2.
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d) Show that

d

dT̂0

ATR

∣∣∣∣∣
Ω varying, ε fixed

=

H

[
1 + 4

(π
ω

)2
]

2

[
1 +

(π
ω

)2
]3/2

.

e) For the Earth, H ≈ 0.4. Determine a reasonable range of values of ω for
the Earth and find

d

dT̂0

ATR

∣∣∣∣∣
Ω varying, ε fixed

for those values.
f) In the model, how much time passes between the moment of maximum

influx of solar radiation and the moment of highest surface temperature?
(On the real Earth, the lag is about 6 weeks [Wallace and Hobbs 1977,
347].)

43. Let’s revisit the annual temperature range (see Exercise 42). By solving
linearized versions of (49–50), with c0 and c1 both positive and with ψ(s) =
H sinπs, it can be shown that the annual temperature range is

ATR = 2

√
Q2

1 +Q2
2

L2 +M2

where

L = k1k4 − k2k3 − π2, M = π(k1 + k4),

Q1 = H(k2B1 + k4B0), Q2 = πHB0,

B0 =
PqσT 4

e

2c0
, B1 =

P (1− q)σT 4
e

2c1
,

k1 =
2PσT̂ 3

0

c0
, k2 =

2PεσT̂ 3
1

c0
,

k3 =
2PεσT̂ 3

0

c1
, k4 =

4PεσT̂ 3
1

c1
.

Substitute the usual Earthly values of ε, q, Te, T̂0, and T̂1 into these formulas,
along withH = 0.4 andP = 1 year = 365×24×60×60 s = 3.15×107 s, and
use a computer to plot the ATR as a function of c0 and c1. Determine ranges
of values of c0 and c1 for which the ATR has reasonable values, about 5–10 K.
For those values, make plots to estimate the rate of change of the ATR in
the two cases “ε varies, Ω stays constant” and “Ω varies, ε stays constant.”
One way to estimate the rate of change in the first case is to recompute the
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ATR with a new value of ε and corresponding new values of T̂0 and T̂1. The
difference between the ATRs with the new and old values, divided by the
difference in the new and old surface temperatures, is an approximation to
(d/dT̂0)ATR. You might consider repeating the exercise with P = 1 day to
get a feeling for whether our simplifying assumption that the atmosphere
has infinite heat capacity was realistic.

Appendix I. Kirchoff’s Law
In Section 8, I stated that, as a crude approximation, the atmosphere’s ab-

sorptivityA equals its emissivity ε. To see why the approximation is plausible,
we need the Planck function,

B(λ, T ) =
c1

λ5
(
ec2/λT − 1

) ,
where c1 and c2 are positive constants [Wallace and Hobbs 1977, 287]. The flux
emitted by a blackbody at temperature T in the wavelength range λ1 < λ < λ2

is gotten by integrating the Planck function from λ1 to λ2. In particular, it can
be shown that

∫∞
0
B(λ, T ) dλ = σT 4. From Figure A.1, it appears that most of

the emission at the Earth’s and its atmosphere’s temperatures is in the range
λL ≤ λ ≤ λU , where (rather arbitrarily) λL = 7 × 10−6 and λU = 17 × 10−6,
and it appears that for λ in that range, B(λ, 290) ≈ 2B(λ, 250).

Figure A.1. Planck function for T = 290 K (upper curve) and T = 250 K (lower curve).

Denote by ε(λ), where 0 ≤ ε(λ) ≤ 1, the model atmosphere’s efficiency at
emitting radiation at wavelengthλ; that is, for ∆λ small, the atmosphere emits a
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flux in the wavelength range [λ, λ+∆λ] approximately equal to ε(λ)B(λ, T1)∆λ.
Then the total flux emitted by the atmosphere over all wavelengths is∫ ∞

0

ε(λ)B(λ, 250) dλ ≈
∫ λU

λL

ε(λ)B(λ, 250) dλ.

Similarly, let A(λ), where 0 ≤ A(λ) ≤ 1, denote the model atmosphere’s
efficiency at absorbing surface-emitted flux of wavelength λ. The surface emits
like a blackbody in the range λL ≤ λ ≤ λU , where it does most of its emitting,
so the total flux from the surface absorbed by the atmosphere is approximately∫ λU
λL

ε(λ)B(λ, 290) dλ.
The overall efficiency ε of the atmosphere at emitting radiation (the emis-

sivity) is the ratio of the flux it actually emits to the flux that a blackbody at the
same temperature would emit. Using Kirchoff’s law, we therefore have

ε =

∫∞
0
ε(λ)B(λ, 250) dλ

σ · 2504
≈ 1

2

(
290

250

)4
∫ λU
λL

ε(λ)B(λ, 290) dλ

σ · 2904
≈ 0.9A,

i.e., A ≈ ε as claimed!
The approximation is pretty rough—so is the reasoning—but probably no

worse than lumping together all parts of the atmosphere and pretending they’re
at the same temperature, or than assuming that the surface is a blackbody.
(Approximate emissivities for various components of the surface are [Peixoto
and Oort 1992, 105]: .82 for land, .98 for vegetation, and .96 for water, none as
close to 1 as might be hoped.)

Appendix II. Physical Constants and
Conversions
From Resnick and Halliday [1977]:

1 m = 1 meter ≈ 39.4 in = 3.28 ft
1 km = 1000 m ≈ 0.6214 mi
1 kg = 1 kilogram = 1000 g ≈ 2.21 lb (mass)

Density of dry air at 20◦ C and 14.70 lb/in2 (i.e., at roughly average atmo-
spheric conditions near the Earth’s surface): 1.29 kg/m3

Density of water: 1.00× 103 kg/m3

TF = 32 + 9TC/5 and TC = T − 273.15,
where TF , TC , and T are temperatures in Fahrenheit, Celsius, and Kelvin
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From Harte [1988, 229–263]:

Specific heat of water: 4,184 J/kg K
Specific heat of air at constant volume: 719.6 J/kg K
Specific heat of air at constant pressure: 1,004.2 J/kgK
World energy consumption circa 1980: 1013 W
Mass of Earth’s atmosphere: 5.14× 1018 kg
Earth’s surface area: 5.10× 1014 m2

From Houghton [1986, 2]:

Earth’s global albedo: .3
Mars’s global albedo: .15
Venus’s global albedo: .77

From Goody and Walker [1972, 47]:

Mercury’s global albedo: .058

From Beatty and Chaikin [1990, 289]:

Mean distance from the Earth to the Sun: 149.60× 106 km
Mean distance from Venus to the Sun: 108.20× 106 km
Mean distance from Mars to the Sun: 227.94× 106 km
Mean distance from Mercury to the Sun: 57.91× 106 km

Appendix III. Glossary
Absorptivity Fraction of incident energy flux that is absorbed.

ATR (annual temperature range) The difference between highest summer tem-
perature and lowest winter temperature.

Albedo Fraction not absorbed of sunlight incident on a planet.

Blackbody A hypothetical object, at uniform temperature, that absorbs all the
radiation that it intercepts (hence reflects none) in all wavelengths, and that
emits radiation at the maximum possible rate in each wavelength. Such an
object emits flux from its boundary surface at a rate given by the Stefan–
Boltzmann Law.

Co-albedo Fraction absorbed of sunlight incident on a surface.

e-folding time Time that it takes for a quantity to diminish by a factor of e.
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Effective temperature The temperature that an object would have if if it were
at uniform temperature, in radiative equilibrium (i.e., the power emitted
equaled power absorbed), and emitted power at the rate that a blackbody
would at the same temperature.

Emissivity Fraction of incident energy flux that is emitted relative to a black-
body at the same temperature.

Equilibrium temperature Temperature that a body tends toward with increas-
ing time.

Feedback effect Process whereby an initial change in a variable affects the
values of other variables in such a way as to induce further changes in the
first variable.

Flux Rate of flow of energy.

Greenhouse function The factor by which the presence of an atmosphere in-
creases the surface temperature of a planet.

Greenhouse gas A gas that make the atmosphere more efficient at absorbing
and emitting longwave radiation, thereby leading to a higher surface tem-
perature. The principal greenhouse gases, in terms of total effect, are water
vapor and carbon dioxide, because such large quantities are present.

Half-life Time that it takes for a quantity to diminish to half its previous size.

Heat capacity Energy required to raise the temperature of an object by one
Kelvin.

Kinetic energy The energy associated with an object’s motion.

Kirchoff’s law The efficiency of a body at absorbing radiation at a given wave-
length equals its efficiency at emitting radiation at that wavelength.

Longwave radiation Electromagnetic radiation with wavelength greater than
4×10−6 m.

Power Rate at which energy is generated or consumed per unit time.

Radiant energy The energy carried by all wavelengths of the electromagnetic
spectrum.

Shortwave radiation Electromagnetic radiation of wavelength smaller than
4×10−6 m.

Solar constant For a point at a fixed distance from the Sun, the rate per unit
area at which solar energy passes through the point; the farther from the
Sun, the smaller the solar constant.
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Specific heat Energy required to raise the temperature of a unit mass of a sub-
stance by one kelvin.

Stefan–Boltzmann law A blackbody at temperature T emits radiation at rate
σT 4, where σ is the Stefan–Boltzmann constant.

Sulfate aerosols Microscopic sulfur-containing particles in the atmosphere,
produced by burning of fossil fuels.

Water vapor feedback effect An initial rise in atmospheric carbon dioxide
makes the Earth’s surface temperature rise, which in turn increases the evap-
oration rate and thus the amount of water vapor in the atmosphere. But be-
cause water vapor is a greenhouse gas, the result is a further rise in surface
temperature, hence an even higher evaporation rate, and so forth—a process
that results in a higher temperature than the initial rise in carbon dioxide
would suggest. (And the effect would work in reverse for an initial dip in
atmospheric carbon dioxide.)

Answers and Solutions to Selected Exercises

1. 0◦ C, 17.8◦ C, 32.2◦ C; 273.2 K, 290.9 K, 305.4 K.

2. 18.1 kg.

3. 1290 kg.

4. Denote byH the compressed shell’s thickness. The compressed shell’s den-
sity would be (atmosphere’s mass)/ (H · (Earth’s surface area)); the com-
pressed shell’s density would also be that of water. Equating the two gives
10.1 m.

5. 120 J.

6. Multiply the mass of air in the house (from Exercise 3) by the specific heat of
air at constant volume (the house is air-tight). This gives the heat capacity
of the house (i.e., the amount of energy it takes to raise the temperature by
1 K). Then multiply the heat capacity by the change in temperature:

(1290 kg)

(
719.6

J
kg K

)(
4

1.8
K
)

= 2.1× 106 J.

7. 591.0 W/m2.

8. Total power absorbed is 8.16× 1016 W.

9. 107 J/m2K; the atmosphere’s heat capacity is one-twentieth that of the mixed
layer.
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11. 9.

12. The temperature is (aΩ/2σ)1/4, assuming that the dark hemisphere is too
cold to emit radiation, that the sunlit hemisphere is in radiative equilibrium,
and that temperature, absorption, and emission are uniform over the sunlit
hemisphere.

13. σT 4 = (5.67× 10−8 W/m2K4)(290 K)4 = 401 W/m2.

16. 1.09 K.

29. a) Yes, the DTR is a decreasing function of ω.
b) ω = 4; about 2:30 P.M.

c) 25,000 J/m2K.
d) About 1.25 K.

30. Look at Figure 8.

32. c) Temperature rise is 0.8 K.

34. a) 21/4Te.

35. 294 K for a five-fold increase in CO2; model isn’t applicable to a ten-fold
increase.

39. b) Yes.

42. f) 12 weeks.
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