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1. Setting the Scene

You are a physician in a hospital emergency room. A child has just been
brought to the emergency room by a frantic parent. The parent takes the asthma
medication theophylline in tablet form. Two hours before arriving at the hos-
pital, the child ingested eleven 100-mg theophylline tablets. Like most oral
drugs, theophylline is absorbed into the bloodstream at a rate proportional to
the amount present in the gastrointestinal tract (stomach and intestines) and is
eliminated from the bloodstream at a rate proportional to the amount present
in the bloodstream.

Your quick check of the Physician’s Desk Reference (PDR) [1999] reveals that
the brand of theophylline that the child took has an absorption half-life of 5
hours and an elimination half-life of 6 hours. The PDR also warns that a blood-
level concentration of 100 mg/L or more of the drug is seriously toxic and that
a concentration of 200 mg/L or more is fatal.!

You estimate that the child has 2L of blood. You also determine that because
of the 2-hour delay, the pills already have passed from the child’s stomach to
his intestines, so that it is too late to eliminate the drug by inducing vomiting.
Your task is to determine if the child is in danger, and, if so, to save his life.2

2. Building a Model

You are interested in the amount of theophylline in the child’s bloodstream
over time. (Actually, you are concerned about the concentration of theophylline
in the child’s bloodstream over time; but since the amount is slightly easier to

IThese values are the concentrations at which 50% of the patients exhibit these symptoms. In the
fatal case, the concentration of of 200 mg/L—the lethal concentration for 50% of the population—is
called the LCsq value.

2In reality, a physician in this situation would contact the local poison center, which would pro-
vide information about which symptoms to watch for as well as the appropriate medical treatment.
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Figure 1. Compartment model for theophylline.

calculate than the concentration and since you can convert easily from one to
the other, you decide to calculate the amount.)

To determine the amount over time, you also need to determine the amount
of theophylline still in the child’s gastrointestinal tract over time. You could
calculate also the amount of theophylline eliminated from the bloodstream;
however, since theophylline in this form is not dangerous, you decide not
to keep track of the eliminated drug. The compartment model in Figure 1
illustrates the progress of the drug through the child’s body.

Requirement 1: First, predict the general shape of the graph of G(¢), the amount
of theophylline in the child’s gastrointestinal tract (in mg) after ¢ (in hours),
and of the graph of B(t), the amount of theophylline in the child’s bloodstream
(in mg) after ¢ hours. Using time ¢ = 0 as the time at which the child first
ingested the theophylline, make separate rough sketches of the graphs of G(t)
and B(t). On each graph, label the point at ¢ = 0. (If t = 0 is the time when the
child first ingested the theophylline, what are the corresponding values for G
and B?) Remembering that the half-life for absorption of theophylline from the
gastrointestinal tract into the bloodstream is 5 hours, label the points at ¢t = 5
and ¢ = 10 on your graph of G(t). You need not label any other points on the
graphs or mark any other values along their axes—yet.

Requirement 2: Since you have more information about the rates of change of
G and B than about G and B themselves, you decide to model the quantities
G and B by writing equations for their rates of change (differential equations).
Begin with the differential equation for G. Theophylline is absorbed into the
bloodstream at a rate proportional to the amount present in the gastrointestinal
tract. This means that theophylline is leaving the gastrointestinal tract at a rate
proportional to the amount of the drug present there. Hence, taking k to be the
positive constant of proportionality, you have

% = —kG mg/h, G(0) = 1100 mg.
Use what you know about initial value problems of this form, along with the
fact that the absorption half-life of theophylline is 5 hours, to write a formula for
G(t), the amount of theophylline (in mg) in the gastrointestinal tract at time ¢.
(That is, solve the initial value problem for G(t), then solve for k. Record k
to four decimal places.) You now should have both a formula for G(t) and a
differential equation for G in which % has a numerical value.
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Requirement 3: Now write a differential equation for B. Since theophylline is
entering the bloodstream at one rate and leaving it at another rate, the differ-
ential equation for B is of the form

dB

i absorption rate — elimination rate,

with units of mg/h.

Consider the first term, the absorption rate. Recall that theophylline is ab-
sorbed into the bloodstream at a rate proportional to the amount present in the
gastrointestinal tract with an absorption half-life of 5 hours. This should sound
familiar; use your work from Requirement 2 above to write an expression for
the absorption rate.

Now consider the second term, the elimination rate. Remember that theo-
phylline is eliminated from the bloodstream at a rate proportional to the amount
present in the bloodstream with a half-life of 6 hours. In order to find the con-
stant of proportionality, assume that at some (future) time ¢; there is 20 mg of
theophylline in the bloodstream and that no additional theophylline is entering
the bloodstream—that is, assume for the moment that

dB

- = elimination rate, B (t) = 20 mg.

Under these assumptions, the amount of theophylline in the bloodstream is
decaying exponentially. Use what you know about exponential decay to write
an expression for the elimination rate. (Record the constant of proportionality
to four places after the decimal point.)

You now should have a differential equation for B involving the variables
G and B.

3. Using the Model

Now that you have differential equations for G and for B, you are ready to
use them to determine if the child is in danger and, if so, how to treat him.

Unlike for the differential equation for G, there is not a simple closed-form
solution for the differential equation for B. That is, you may not be able to
write an explicit formula for B(t¢) but instead may have to approximate values
of B(t) using Euler’s method or another numerical method for solving differ-
ential equations. Your instructor will specify the degree of accuracy (number
of significant figures) for your calculations.

Requirement 4: Determine the amount of theophylline in the child’s blood-
stream at the time of his admission to the hospital, ¢ = 2 hours. Recalling that
the child has 2 L of blood and that a blood-level concentration of 200 mg/L
or more of the drug is fatal, what amount of theophylline in his bloodstream,
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in mg, constitutes a lethal level for the child? Recalling that a blood-level con-
centration of 100 mg /L or more is seriously toxic, what amount constitutes a
seriously toxic level for the child? What is his status at the time of his admission
to the hospital? Does the amount of theophylline in his bloodstream pose any
danger to him at this time?

Determine the toxic and lethal amounts of theophylline in the bloodstream
for an adult with 6 L of blood.

Requirement 5: Determine the amount of theophylline in the child’s blood-
stream over several hours. Graph your results.

Does the amount of theophylline in his bloodstream ever reach a lethal level
for the child? If so, after how many hours? How many hours after the child’s
hospital admission does this occur? Mark the lethal level and the time at which
it occurs on your graph.

After how many hours does the amount of theophylline in the child’s blood
reach a seriously toxic level? How long before or after his hospital admission
does this occur?

Requirement 6: Determine the largest amount of theophylline the child ever
has in his bloodstream, and the time at which this maximum level occurs. How
much theophylline remains in his gastrointestinal tract at this time?

The largest value for B occurs when dB/dt = 0 (why?) or, equivalently,
when the absorption rate is equal to the elimination rate (why?). When you
substitute your largest value for B and your corresponding value for G into
your equation for dB/dt, do you get 0? Explain why you might not get 0.

Requirement 7: Determine the maximum number of theophylline tablets the
child could have taken in a short interval without reaching the lethal blood-
level concentration. Explain. How many could he have taken without reaching
the seriously toxic blood concentration? Explain.

4. Saving the Child

Your results from Requirements 5-7 should have shown that the child who
ingested the 11 theophylline tablets is in grave danger. What can be done?

Fortunately, charcoal absorbs theophylline quickly, so it can be used to in-
crease the rate at which theophylline is eliminated from the bloodstream. For
toxic levels of theophylline, the patient takes oral doses of charcoal, increasing
the theophylline elimination rate to approximately twice the normal rate.

For potentially fatal levels of theophylline, charcoal must be added to the
bloodstream extracorporeally (outside the body) in order to remove the theo-
phylline quickly enough. This procedure is risky but may increase the theo-
phylline elimination rate to six times the normal rate, according to the Physicians
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Desk Reference [1999].3

Requirement 8: In Requirement 3, you expressed the rate of change of B as
the difference between the absorption rate and the elimination rate. Since it
is too late to change the rate of absorption from the gastrointestinal tract, you
must change the elimination rate, which you have expressed as —c¢B mg/h.
Find the smallest value for the constant ¢ that ensures that the concentration
of theophylline in the child’s bloodstream remains below the lethal level. For
instance, would increasing ¢ to 0.1200 suffice? What about ¢ = 0.1300?

Warning: Since you have an opportunity to increase the value of ¢ only after
the child has been admitted to the hospital, be sure to begin your calculations
with larger values of ¢ at the time of admission.

To be safe, continue to increase c until you find the smallest value that causes
the amount of theophylline in the child’s bloodstream to decrease immediately
upon treatment. Assume that treatment is administered exactly at the time of
hospital admission. Sketch or print a graph of the amount of theophylline in
the child’s bloodstream from the time he ingests the pills to a few hours after
his hospital admission and treatment. Your graph should show the effect of
treatment on the child’s theophylline blood level.

Without any further computer work, you could have determined the small-
est value for ¢ that causes the amount of theophylline in the child’s bloodstream
to decrease immediately upon treatment. Explain how. (Hint: See Require-
ment 6, second paragraph.)

Recall that you could have doubled the theophylline elimination rate by
administering oral doses of charcoal. Would this treatment have been sufficient
to cause an immediate decrease in the child’s theophylline blood level? Explain.
Remember that you can increase the elimination rate to six times the normal
rate by filtering the blood through charcoal extracorporeally. Do you need to
increase the elimination rate this much in order to cause an immediate decrease
in the child’s theophylline blood level? Explain.
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Title: Saving a Drug Poisoning Victim

Sample Solution

Requirement 1: Although the graphs of G(t) and of B(¢) should be sketched by
hand on separate sets of axes, they should have essentially the shapes shown
in Figure S1. The points (0,1100), (5,550), and (10,275) should be labeled
on the graph of G(t); the point (0,0) should be marked on the graph of B(¢).
Students will have the opportunity to verify their predictions after they set up
differential equations for G and for B.

Drug Overdose (without treatment)

1200
1000 - G(t)
800 -

600 |
400 lethal -

200 seriously toxic

0 B(t) | |

0 4 8 12 16
time (hours)

theophylline (mg)

Figure S1. Graphs of G(t) and B(t).

Requirement 2: Students should recognize the differential equation for ex-
ponential decay and write G(t) = 1100e %" mg. They then should use that
G(5) = 550 mg to solve for k, obtaining k = (In2)/5 ~ 0.1386. The formula for
G(t) then is G(t) = 1100e %1386 mg_ The initial value problem for G(t) is

aG
dt

Requirement 3: The absorption rate is given by the expression 0.1386G mg/h
from Requirement 2. To find an expression for the elimination rate, we assume
that

= —0.1386G mg/h, G(0) = 1100 mg.

dB

o = —cBmg/h, B(t1) =20 mg,
yielding B(t) = 20e~“* mg. Students then should use B(t; + 6) = 10 mg to
solve for ¢, obtaining ¢ = (In2)/6 ~ 0.1155. The elimination rate then is given

by the expression —0.1155B mg/h, and the initial value problem for B(t) is

dB
o = 0.1386G — 0.1155B mg/h, B(0) = 0 mg.
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Students may conjecture a solution to this initial value problem of the form
B(t) — :F11006—0.1386t + B06—0.1155t

and should be encouraged to check to see that this is not a correct solution. A
correct solution, obtained by matrix methods, is

B(t) = —6600e~ "% 4+ 6600e 119",

Although this project could be modified to incorporate this analytic solution,
we assume that students will solve the differential equation(s) numerically.

Requirement 4: Answers are given to 4 significant figures. (Please see the note
on Accuracy of Solutions in the Notes for the Instructor.)

Applying Euler’s method with a step size of At = 0.0001 to the initial value
problem

% = —0.1386G mg/h, G(0) = 1100 mg,
dB
7 =0138%6G — 0.1155B mg/h,  B(0) =0mg

yields G(2) = 833.7 mg and B(2) = 236.5 mg. Computing G(2) using the
formula for G(t) yields G(2) = 833.7 mg. One also could use the formula for
G(t) to compute the values of G needed in the equation for dB/dt during the
Euler’s method computations.

The VALUE program listed in the Appendix is set up to approximate G(2)
and B(2) using Euler’s method with a step size of At = 0.1 (20 steps) and can
be modified to perform the calculation with A¢ = 0.0001 (20,000 steps).

Since the child has 2 L of blood, a lethal blood level of theophylline for him
would be 400 mg, well above his current 236.5-mg blood level. However, only
200 mg would constitute a seriously toxic blood level for him, and his current
236.5-mg blood level already is in the seriously toxic range.

For the adult with 6 L of blood, 600 mg would be seriously toxic, while
1200 mg would be fatal.

Requirement 5: By computing values of B from ¢ = 0 to approximately ¢t = 10,
students can see that the amount of theophylline in the bloodstream increases
and then decreases, and that it does eventually exceed the lethal level (Fig-
ure S1). The amount of theophylline in the bloodstream reaches B = 400.0 mg
after t = 4.866 h (2.866 h after the child’s admission to the hospital), and
B = 200.0 mg after t = 1.609 h (approximately 23 min, 28 sec before the child’s
hospital admission).

By Changing tfinal to 10 or more hours in the VALUE program, students
can see that B increases and then decreases, and that it does eventually exceed
400 mg. Running the PLOT program illustrates this behavior even more clearly.
To determine how many hours it takes for B to reach the lethal level of 400 mg,
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students may use the DOWHILE program. Running the DOWHILE program with
At = 0.0001 yields B = 400.0 mg after ¢ = 4.866 h, and B = 200.0 mg after
t = 1.609 h.

Requirement 6: A step size of At = 0.0001 yields G = 368.4 mg and B =
442.1 mg after t = 7.893 h. Note that B = 442.1 mg exceeds the child’s lethal
level of 400 mg.

Substituting G = 368.4 and B = 442.1 into the equation for dB/dt yields
dB/dt = 0.0023, indicating that our solution technique is approximate rather
than exact and/or that round-off error has occurred. Students may use the
formula for G(t) to obtain the value of G at the time at which the largest amount
of theophylline in the child’s bloodstream occurs or to check the accuracy of
their numerical approximations. Computing G(7.893) using the formula for
G(t) yields G = 368.4 mg.

Requirement 7: If the child had taken only 9 tablets (G(0) = 900 mg), the
largest amount of theophylline in his bloodstream would have been 361.7 mg
(At = 0.0001), which is below the lethal level. If he had taken only 4 tablets,
his highest blood level of the drug would have been 160.8 mg; 10 tablets and 5
tablets, respectively, would have resulted in maximum blood levels of just over
400 mg and 200 mg. These computations can be made by changing the initial
value for G in the DOWHILE program.

Requirement 8: Starting at the time of hospital admission (¢ = 2 h), stu-
dents should increase c¢. They may need to use that G(2) = 833.7 mg and
B(2) = 236.5 mg from Requirement 4. Students who did not record G(2) in
Requirement 4 can compute G(2) easily from their formula for G(¢).) Using
¢ = 0.1442 results in a maximum value for B of B = 399.9 mg, whereas using
¢ = 0.1441 results in a maximum value for B of B = 400.0 mg.

Using ¢ = 0.4833 results in a maximum value for B of B = 236.5 mg,
whereas using ¢ = 0.4832 results in amaximum value for B of B = 236.6 mg. Or
students may notice that using ¢ = 0.4886 results in the maximum value for B
of B = 236.5 mg occurring at time ¢t = 2.000 h, whereas using ¢ = 0.4885 results
in the maximum value for B occurring when ¢ = 2.001 h. These results can be
obtained by using a step size of At = 0.0001 and initial values of G = 833.7 mg
and B = 236.5 mg in the DOWHILE program.

A graph showing the effect of treatment on the child’s theophylline blood
level is shown in Figure S2.

Note that B decreases when dB/dt < 0, or, equivalently, when the elimina-
tion rate is greater than the absorption rate. If we set

dB

— =0.1386G —cB =0
dt

at time ¢t = 2, we obtain (0.1386)(833.7) — ¢(236.5) = 0, so that ¢ = 0.4886.
Since 2 x 0.1155 = 0.2310 < 0.4833, administering oral doses of charcoal
would not have been sufficient to cause the child’s theophylline blood level to
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decrease immediately. Since 6 x 0.1155 = 0.6930, we did not need to increase
the elimination rate by six times the normal rate in order to cause B to decrease
immediately. In fact, our value for c is approximately 4.2 x 0.1155.

Drug Overdose (with treatment)

1200
1000 G(t)
800
600

400
seriously toxic

200 - |
0 ) : : .

0 4 8 12 16
time (hours)

lethal

theophyiline (mg)

Figure S2. Effect of treatment on the theophylline blood level.
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Title: Saving a Drug Poisoning Victim

Notes for the Instructor

Suggested Course Use

This ILAP was designed for a calculus course in which students learn Eu-
ler’s method. It also would be appropriate for a differential equations course
or a mathematical modeling course and perhaps even for very ambitious pre-
calculus students. Briefly, the ILAP is a differential equations modeling project
in which students, posing as hospital emergency room physicians, save a child
who has accidentally overdosed on asthma medication. They begin by set-
ting up a system of linear first-order differential equations (DEs) describing the
medication’s absorption into and elimination from the child’s bloodstream. By
solving the differential equations numerically, students discover that the child
almost certainly will die if they, as physicians, do not intervene. They then
determine by how much they need to increase the drug’s elimination rate in
order to save the child.

The Model

Problems involving drug absorption and elimination appear in many cal-
culus texts, especially “reform” texts, among collections of mixing problems.
What distinguishes this problem from any that we have seen in a calculus text
is our assumption that the absorption rate is proportional to the amount yet to
be absorbed, rather than constant, as it is in standard mixing problems. Specif-
ically, our differential equation for the amount y of the drug in the bloodstream
is of the form

Y
— = azx — by,
dt Y
where a and b are constants and « is the amount yet to be absorbed, rather than
of the form

The latter DE has a closed-form solution, easily found by separating variables.
Assuming the DE for x(t) to be of the same form as that for y(¢), a closed-form
solution for the former DE can be found using matrix methods. Although
this project could be adapted to incorporate analytic rather than numerical
solutions, we assume that students will solve the differential equations numer-
ically.
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Computing Requirements

To complete the project, students need technology to implement Euler’s
method or another numerical method for solving systems of differential equa-
tions, such as a spreadsheet program, computer algebra system, differential
equations solver, or virtually any computer programming language, including
that available on a graphing calculator. The project also can be adapted for
use with a computer algebra system or other differential equations solver ca-
pable of providing analytic solutions to systems of linear first-order differential
equations.

One of the authors has her calculus students complete the project by mod-
ifying True BASIC programs set up to analyze a Lotka-Volterra predator-prey
population model using Euler’s method. True BASIC programs set up to ana-
lyze this ILAP’s drug uptake and elimination model using Euler’s method are
provided in the Appendix.

Accuracy of Solutions

The instructor should specify the number of significant digits to which stu-
dents are to work, based on such considerations as software speed. We assume
that the tablet weights and the absorption and elimination half-lives given in
Setting the Scene are exact—or at least are accurate to the number of significant
digits the instructor specifies. For instance, when we give answers in the Sam-
ple Solution accurate to 4 significant figures, we assume that the absorption
half-life is 5.000 hours.
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Appendix: True BASIC Computer Programs
'Program VALUE (True BASIC)

'Program uses Euler’s method to estimate values of G and B
'tfinal hours from start.

LET tinitial = 0

LET tfinal = 2

PRINT " t"," G"," B"

LET t = tinitial

LET G = 1100

LET B =0

PRINT t, G, B

LET Gprime = - 0.1386*G !Compute G’, B’ for t = 0.

LET Bprime = 0.1386*%G - 0.1155%B
LET numberofsteps = 20
LET deltat = (tfinal-tinitial)/numberofsteps
FOR k = 1 TO numberofsteps
LET deltaG = Gprime*deltat

LET deltaB = Bprimexdeltat
LET t = t + deltat
LET G = G + deltaG
LET B = B + deltaB

PRINT t, G, B
LET Gprime = -0.1386%G

LET Bprime = 0.1386*G - 0.1155%B
NEXT k
'PRINT t, G, B 'Use for larger numbers of steps.

END

!Program PLOT (True BASIC)

'Program uses Euler’s method to plot graphs of G and B together.
'Program also plots horizontals at 200 mg toxic
'and 400 mg lethal doses.

SET WINDOW O, 36, 0, 1100
LET tinitial = 0
LET tfinal = 36
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LET t = tinitial
LET G = 1100
LET B =0

LET numberofsteps = 3600
LET deltat = (tfinal-tinitial)/numberofsteps
FOR k = 1 TO numberofsteps
LET Gprime = -0.1386*G
LET Bprime = 0.1386*G - 0.1155%B
LET deltaG = Gprimexdeltat
LET deltaB = Bprime*deltat
PLOT t, G
PLOT t, B
PLOT t, 200
PLOT t, 400
LET t = t + deltat
LET G = G + deltaG
LET B = B + deltaB
NEXT k
END

IProgram DOWHILE (True BASIC)

!Determines when amount of drug in bloodstream reaches 400 mg,
'lor when amount of drug in bloodstream peaks.

'Plots both graphs up to point of interest.

!Uses Euler’s method.

SET WINDOW O, 20, 0, 1200
LET tinitial = 0

LET t = tinitial

LET G = 1100

LET B =0

LET Gprime = -0.1386%*G ICompute G’, B’ for t = 0.

LET Bprime = 0.1386*%G - 0.1155*B

LET deltat = 0.01

DO WHILE B < 400 IWe’1l stop when B = 400 (or when B > 400).

IDO WHILE Bprime > O !We’ll stop when B’ = 0 (or when B’ < 0).
!'This is the beginning of the DO-WHILE loop.
LET deltaG = Gprime*deltat

LET deltaB = Bprime*deltat
LET t = t + deltat
LET G = G + deltaG
LET B = B + deltaB

PLOT t, G ITo make program run faster,
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PLOT t, B lhide these PLOT commands.
LET Gprime = -0.1386%*G
LET Bprime = 0.1386*G - 0.1155%B

LOOP !'This is the end of the DO-WHILE loop. Just
'1ike NEXT k, it sends the computer back up
'to the top of the loop.

PRINT "t ="; t,"G ="; G,"B ="; B

END
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