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Getting the Salt Out
MATHEMATICS CLASSIFICATIONS:  

Calculus, Differential Equations

DISCIPLINARY CLASSIFICATIONS:  
Chemistry, Engineering

PREREQUISITE SKILLS:
1. Modeling with an ordinary differential equation with initial 

condition.
2. Sketching a solution to a differential equation on its direction

field.
3. Solving an ordinary differential equation by separation of vari-

ables.

PHYSICAL CONCEPTS EXAMINED:  
Osmotic pressure, permeability, desalination. 

COMPUTING REQUIREMENT:  
A program to plot direction fields. (A Mathematica program is 

available from the authors.)
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1. Setting the Scene
When two water (or other solvent) volumes are separated by a semi-permeable

membrane, water will flow from the side of low solute concentration to the side
of high solute concentration. This is known as osmosis (see Figure 1). The flow
of solvent across the membrane may be stopped, or even reversed, by applying
external pressure on the side of higher solute concentration. This process is
called reverse osmosis (see Figure 2).

Figure 1. Osmosis. Figure 2. Reverse osmosis.

We will use van’t Hoff’s equation to model osmosis. Jacobus Henricus
van’t Hoff (1852–1911) determined that the osmotic pressure Π is given by the
equation

Π = cRT,

where

c is the molar solute concentration,

R is the universal gas constant, and

T is the absolute temperature.

Notice that c = n/V , where n is the number of moles of solute and V is the
volume of solution. Although van’t Hoff’s equation looks like a restatement
of the ideal gas law, PV = nRT , it is special because it is being applied to a
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liquid rather than to a gas. This equation was a significant development; in
1901 van’t Hoff received the Nobel Prize in Chemistry “in recognition of the
extraordinary services he has rendered by the discovery of the laws of chemical
dynamics and osmotic pressure in solutions” [Nobel Foundation 2000].

Consider the case in Figure 2, where an external pressure, ∆P , is applied to
the side of the membrane with higher solute concentration. The resulting flux
through the membrane is proportional to the difference between the osmotic
pressure and the applied pressure. That is, if x represents the volume of water
that has been extracted from the solution, then

dx

dt
= φA(∆P − Π), (1)

where φ is the water permeability constant andA is the membrane area perpen-
dicular to the flow.

It is important to note that Π is not a constant here. If the initial volume of
solution is V , and if x units of water have been extracted from the solution at
time t, then

Π(t) =
n

V − x
RT.

Substituting this expression into (1), we get the desalination differential equa-
tion,

dx

dt
= φA

(
∆P − n

V − x
RT

)
= φA

(
∆P − cV RT

V − x

)
. (2)

2. Your Job
Clearwater, Inc., is planning to build a new, portable water purifier to re-

move salt from seawater. They have designed a machine, shown below in
Figure 3; but before they go to the expense of building a prototype, they want
you to perform a theoretical analysis of their design.

Your task is to analyze how the values of the design parameters for the
desalination machine will affect the performance of the machine. Keeping in
mind that the machine must be portable:

How should the membrane coefficient φ, the membrane size A, the volume V of
the desalination chamber, and the applied pressure ∆P be chosen to produce a
machine that is both efficient and economical?

Clearwater is counting on you to design a good product, so don’t let them
down!
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Figure 3. Clearwater’s desalination machine.

3. Part 1: Numerical and Graphical
Analyses

Requirement 1
Use direction fields and Euler’s method (of following along the directions

in a direction field) to sketch solutions of (2). Of course, to do that you will
need to assign values to the various constants and parameters in the equation.
For the physical constants in the problem, use the values

c = 0.103
moles

L
,

R = 0.082
L·bar

mole·◦K
,

T = 293◦ K.

For the design parameters, begin with

φ = 0.1
m3

m2·day·bar
,

A = 1.5 m2,

∆P = 15 bars,
V = 4 L.

Plot a direction field for the desalination differential equation where t (mea-
sured in days) goes from 0 to 5 and x (measured in L) goes from 0 to 4. Also,
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plot the solution curve for x that passes through the point (0, 0).
According to your direction field and solution, how much fresh water can

the machine extract from 4 L of sea water?
Approximately how long does it take to extract 2 L of fresh water?
As time goes by, what happens to the rate at which the machine produces

fresh water? Does this make sense to you? Can you think of a physical reason
why this would happen?

Requirement 2
Suppose that we change the capacity of the machine. For example, suppose

that the initial volume of brine is 6 L instead of 4. How much fresh water
can we extract? How long does it take to extract 2 L of fresh water? What
happens if we begin with 8 L of brine? How sensitive is the time required to
extract 2 L of fresh water to the initial volume of sea water in the machine?
What relationship seems to exist between the initial volume of sea water and
the total amount of fresh water that can be extracted from it? The graphs in
Figure 4 show examples of proportionality relationships that you might look
for in your investigations.

Figure 4. Three proportionality relationships: v ∝ u, v ∝ u2, and v ∝ 1/u.

Requirement 3
Now fix the value of V at 6 L and investigate how the performance of the

machine depends on the other design parameters. What effect does increasing
or decreasing A have on the amount of fresh water that we can extract from
a given volume of brine? On the time required to extract 2 L of fresh water?
Answer the same questions for φ and ∆P . Of the three variables, which one,
when varied, causes the greatest change in the amount of fresh water extracted?
On the time required to extract 2 L of fresh water?

Requirement 4
What is the equilibrium solution of (2)—that is, the solution when dx/dt =

0? Discuss how that solution depends on the design parameters and compare
your conclusions to the observations you made in the earlier parts above.
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4. Part 2: Let’s Get Explicit

Requirement 5
Use separation of variables to obtain the solution of (2) that satisfies the

initial condition that x = 0 when t = 0. Hint: Solve for t as a function of x.

Requirement 6
Use the solution of the differential equation to determine how the perfor-

mance of the Clearwater desalination machine depends on the values of the
parameters φ, A, and ∆P . Do your results agree with the conclusions that you
drew earlier using direction fields?

5. Part 3: What Do You Recommend?

Requirement 7
Prepare a report for the engineers working on the desalination project at

Clearwater, Inc. An important issue is how quickly the proposed machine will
be able to produce 2 L of fresh water. Your report should include an analysis
of how this time depends on each of the design parameters φ, A, and ∆P , and
on V .

Clearwater’s marketing people have reported that, if their machine is to
be competitive in the marketplace, it must be able to produce at least 2 L of
fresh water per day. If the machine is to be portable, it can handle at most
8 L of seawater at a time. Furthermore, because the walls of the pressure
vessel are quite thin, the upper limit on the applied pressure, ∆P , is 30 bars.
Filters for this machine are extremely expensive; consequently, the area of the
filter is to be no greater than 1.2 m2. Finally, the best filter available has a
permeability coefficient of φ = 0.08. Is it theoretically possible to build a reverse
osmosis desalination machine that meets all of these specifications? What is
the approximate size of the smallest filter that can be used in this machine to
meet the specifications?

To finish your report, give your recommendation for values of design pa-
rameters that yield the “best” machine. A “best” machine should be built
with some margin for error, so pick your parameter values with some room to
maneuver (is 5–10% possible?) if you can.

The engineers who will be reading your report are familiar with van’t Hoff’s
equation. Therefore, you do not need to derive or explain that equation. How-
ever, you do need to provide mathematical explanations and justifications for
all of the conclusions in your report. You should include all relevant graphs in
an orderly fashion.
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Title: Getting the Salt Out

Instructor’s Solution

Part 1: Numerical and Graphical Analyses

Requirements 1 and 2
With the given values of the physical constants and design parameters, the

direction field of (2) and the solution through (0, 0) are as shown in Figure S1.

Figure S1. Direction field for V = 4 L.

From this graph, it is apparent that limt→∞ x(t) ≈ 3.4 L. Furthermore, 2 L
of fresh water is obtained in approximately 1.1 days. Fresh water is extracted
at a decreasing rate because as fresh water is extracted, the concentration of
salt in the remaining brine solution increases. To maintain a constant rate of
extraction of fresh water, it would be necessary to increase the applied pressure.

With V = 6 L and the other design parameters unchanged, it is possible to
extract a little more than 5 L of fresh water from the solution, and the first 2 L of
fresh water can be extracted in just over 1 day. This is illustrated in Figure S2.

For V = 8 L, it is possible to extract 6.8 L of fresh water, but the time for 2 L
is almost unchanged from when the volume was 4 L or 6 L. With additional
experimentation, a student can observe that the total fresh water extractable
from a brine solution is proportional to the initial volume of the solution.

Requirement 3
Graphs such as those in Figure S3 suggest that changing the area of the

membrane has no effect on the amount of fresh water extractable from a brine
solution. Furthermore, the time for 2 L of fresh water is inversely proportional
to the area of the membrane. (In Figures S3–S5, the values of the parameters
are φ = 0.1, A = 1.5 m2, ∆P = 15 bars, and V = 4 L except as indicated.)
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Figure S2. Direction field for V = 6 L.

Figure S3. Effect of increasing the membrane size: A = 1.0, 1.5, 2.0 m2.

The graphs in Figure S4 lead to the same conclusions about the relationship
between the water permeability constant and the efficiency of the machine.

Figure S4. Effect of increasing the water permeability constant: φ = 0.04, 0.06, 0.08 m/day·bar.

The graphs in Figure S5 show that the total amount of fresh water that can
be extracted from a given volume of brine is a (slowly) increasing function of
the applied pressure ∆P . The time required to extract 2 L of fresh water from
a given solution seems to decrease a little faster than 1/∆P .

These analyses indicate that:

We can get more fresh water from the solution only by increasing either the
volume V or the applied pressure ∆P , and that we get much more for our efforts
by increasing V .

The time to extract 2 L of fresh water from a given volume of brine can be
reduced by increasing any of the parameters φ, A, and ∆P ; changing ∆P has
the greatest effect, but only marginally.
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Figure S5. Effect of increasing the applied pressure: ∆P = 10, 15, 20 bars.

Requirement 4
The equilibrium solution of (2) is

x = V − cV RT

∆P
= V

(
1 − cRT

∆P

)
.

Therefore, as we predicted, the total amount of fresh water that can be extracted
from a given volume of brine is proportional to the initial volume of the solution.
Notice that, as expected, the amount of water that can be extracted does not
depend on either A or φ. The equilibrium solution also shows that the amount
of fresh water we can extract increases (gradually) with increasing ∆P .

Part 2: Let’s Get Explicit

Requirement 5
We could solve

dx

dt
= φA

(
∆P − cV RT

V − x

)

with the initial condition x = 0 when t = 0 via a computer algebra system, but
in fact separation of variables and the integration can be done by hand:

V − x

∆P (V − x) − cV RT
dx = φA dt

∫ x

0

V − u

∆P (V − u) − cV RT
du =

∫ t

0

φA dt,

x

∆P
− cRT

(∆P )2
ln
(

1 +
∆Px

cV RT − V ∆P

)
= φAt,

t(x) =
1

φA∆P

[
x − cV RT

∆P
ln
(

1 +
∆Px

cV RT − V ∆P

)]
.
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Requirement 6
The solution of the initial value problem shows that t(x), the time required to

extract a specified volume of fresh water from a brine solution, is inversely pro-
portional to both φ and A. Furthermore, the solution shows that t(x) decreases
a little faster than 1/∆P , and that there is only a very weak relationship be-
tween t(x) and V . The argument of the logarithm approaches 0 as x approaches
V − cV RT/∆P . This is the equilibrium solution that we found before.

The graph of t(x) with φ = 0.1, A = 1.5, ∆P = 15, and V = 6 is given in
Figure S6; it is the reflection of the solution curve that we saw in Figure S1
about the line x = t. The explicit form of t(x) makes it possible to determine
exact solutions to the Requirements 1–4 posed in Part 1 of this project.

Figure S6. Graph of t(x) for φ = 0.1, A = 1.5, ∆P = 15, and V = 6.

Part 3: What Do You Recommend?

Requirement 7
It is easy to design a machine that meets the given specifications by using

the maximum allowed value of each parameter. Then the machine extracts 2 L
of fresh water from 8 L of brine in 18.4 h. The filter size can be reduced to an
area of 0.92 m2 and the machine will still satisfy the fresh water production
requirement. Table 1 gives examples of other results, from trial and error.

Table 1.

Various results.

φ A ∆P V Time (h) for 2 L
of fresh water

0.08 1.0 27 6 25.0
0.08 1.1 27 6 22.7
0.07 1.2 28 6 22.9

Students should discuss reasons for their choices of the parameters.
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Title: Getting the Salt Out

Notes for the Instructor

Background on Reverse Osmosis
While reverse osmosis is sometimes referred to as a filtration process, many

researchers and practitioners prefer not to use this term due to the unique
aspects of this membrane separation. The mechanism of the separation is the
subject of some debate. The most widely accepted theory is that the process
proceeds by a solution-diffusion mechanism [Cussler 1997]. The membrane
does not have physical holes in it but rather acts as a distinct phase. Both
the water and the solute (salt in our case) dissolve in the membrane the same
as they might in an adjacent immiscible liquid phase. The components then
diffuse through the membrane and finally dissolve into the outlet liquid phase.
This is a rate-based separation where the water is purified because it diffuses
more easily, and therefore more quickly, through the membrane than the salt
does. The flux of water through the membrane is proportional to the pressure
above osmotic. The flow of solute is proportional to the concentration difference
across the membrane.

The example discussed in this project is a “dead end” batch configuration
of the separation process where all the water is being pushed through the
membrane. In practice, almost all reverse osmosis systems are designed in a
continuous cross-flow arrangement where the flow of the liquid is tangential to
the surface of the membrane. In this arrangement, there are two outlet streams,
a purified stream of the water that has passed through the membrane and a
concentrated stream of the material that has been retained by the membrane.
Either of these streams may be the product depending on whether the goal is
to produce purified water or a concentrated product.

Water purification is the largest use of reverse osmosis. However, this pro-
cess is also used for concentrating various products, including orange juice
in the production of frozen concentrate and maple sap in the production of
maple syrup (where the approximately 3% solids sap must be raised to over
65% solids in the final syrup). In the cross-flow configuration, the temporal
problem of increasing salt concentration explored in this paper becomes a spa-
tial problem where the concentration is increasing as we move along the filter.
More background on this separation can be found in a short article by Eykamp
[1997] or in an article on the engineering project related to this problem [Moor
et al. 2004].

Van’t Hoff’s equation provides only an approximation of the osmotic pres-
sure, and the approximation is best for low concentrations of solute. In fact,
the equation overpredicts the osmotic pressure by 3–5% in the range of con-
centrations used in this project. Furthermore, our model neglects the fact that
a small amount of salt migrates through the filter along with the water. This is
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relatively inconsequential early in the extraction process. However, as water
is removed from the brine, the concentration of salt in the remaining solution
increases and, consequently, the difference between the applied pressure and
the osmotic pressure decreases. Eventually, while the rate at which water is
being extracted from the solution is decreasing, the rate of flow of salt through
the membrane actually goes up.

Notes on the Problem Solution
One can get a good idea of the nature of solutions of the desalination dif-

ferential equation,
dx

dt
= φA

(
∆P − cV RT

V − x

)
,

by examining its form. Initially, the rate of desalination is essentially directly
proportional to both φ and A. Furthermore, if the amount of fresh water that
has been removed from the salt water is small compared with the total volume
of salt water, then

∆P − cV RT

V − x
≈ ∆P − cRT = ∆P − Π.

Therefore, at the beginning of the desalination process, the rate at which fresh
water is being extracted is nearly constant. This is consistent with the solution
curves generated in the Sample Solution. As the value of x increases, V − x
decreases and ∆P − cV RT/(V − x) gets closer to zero. Therefore, as more and
more fresh water is extracted, the rate of extraction decreases.

The equilibrium solution of the differential equation, the constant value of x
for which dx/dt = 0, is of interest. Physically, equilibrium occurs when enough
fresh water has been removed from the solute so that the osmotic pressure
equals the applied pressure. Mathematically, equilibrium occurs when

x = V

(
1 − cRT

∆P

)
,

and this value represents the maximum amount of fresh water that can be
extracted from a solution of given volume using a given applied pressure ∆P .
The domain of the solution

t(x) =
1

φA∆P

(
x − cV RT

∆P
ln
(

1 +
∆Px

cV RT − V ∆P

))

is

0 ≤ x < V

(
1 − cRT

∆P

)
.

There is a more rigorous way to determine appropriate parameter values
for this project. Start by making a nonoptimal choice for two of the param-
eter values, say A = 1.1 and V = 7. Now substitute these values in the
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formula for t(x) and evaluate at x = 2. The resulting expression is a function
of two variables z(φ,∆P ). Graph z(φ,∆P ) and z = 1 together; the portion
of z(φ,∆P ) that lies below z = 1 contains permissible values for φ and ∆P .
For example, Figure S7 shows the permissible values of 0.04 ≤ φ ≤ 0.08 and
25 ≤ ∆P ≤ 30 when A = 1.1 and V = 7. Therefore, the values (A, V, φ,∆P ) =
(1.15, 7.5, 0.075, 29)± (0.05, 0.5, 0.005, 1) all result in an acceptable desalination
machine.

Figure S7. Determining permissible values for φ and ∆P .

Pedagogical Advice
The instructor has a number of options concerning the administration of

this project. The project can be assigned all at once. As an alternative, when
we gave this project to our students, we spread the objectives out over a week’s
time. We spent part of a class period deriving the desalination differential
equation, to ensure that our students were familiar with the meaning of each
parameter. We then assigned Part 2 of the project, the explicit solution of the
differential equation, to be handed in before the laboratory session in which the
students worked on Part 1. We supplied the correct solution to the differential
equation within the lab itself. In this way, an incorrect solution to the differential
equation did not hamper any student’s analysis of the problem.

This project was developed jointly by engineering faculty and mathematics
faculty at Lafayette College. During the course of the semester, first-year engi-
neering students built and tested the desalination pump shown in Figure S8.
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Figure S8. Desalination pump designed by first-year engineering students.

We designed the mathematical analysis to give students an idea of the types
of important questions they could answer using basic differential equations.
In the semester-end evaluations, a number of the calculus students specifically
mentioned that they appreciated seeing this application of the material. We note
that the parameter values we chose for this project were reasonably consistent
with the machine our students built, although the water permeability constant
is about 10 times actual value; the instructor should feel free to experiment with
other values as he or she chooses.

The graphs in the solution to this project were produced using Mathematica.
The slope field package that generated the graphs is freely available; contact
the authors for a copy.
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