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Abstract: Vsarious assumptions about the grovwth in isolation of a
single species are modeled and analyzed both graphically and
analytically., Scenarios involving two species competing for the same
resources are modeled resulting in a system of differential equations.
The equilabrivm points of the resulting system are analyzed
graphically to determine the stability. The module concludes by
emphasizing the limitations of a graphical analysis. Students learn:
1) to combine various assumptions about single species growth to model
the growth of competing species; and 2} to snalyze the stability of
the resulting system graphically and appreciate the limitations of
such an analysis.

Prerequisites: An understanding of the derivative,



1. INTRODUCTION

The study of the dynamics of population growth of
various plants and animals is an important ecological ap-
plication of mathematics, Different species interact in a
variety of ways. One animal may serve as the primary food
source for another. We refer to such relationships as
"predator-prey” behavior, Two species may depend upon one .
another for mutual support such as when a bees uses a
plant’s pollen as a food source while providing an essen-
tial service for that plant. Such relationships are refer-
red to as "mutualisms.” Another possibility is that two or
more species compete against one another for a common food
Bsource or even compete for survival as is the case in a
military confrontation between two armies. 1In this module
we will develop some elementary models to explain such
competitive situations. These models are generally called
"compeatitive hunter”™ models,

Our interest in modeling competitive situations ie to
answer some questions about the species being studied.

Will one speciea sventually dominate the other and drive it
to extinction? Will the species coexist? 1If so, will the
populations reach equilibrium levels or will they vary in
some predictable fashion? Additionally, we are interested
in how sensitive the answers to the above questions are to
the initial population levels and the sensitivity of the
answers to external perturbations such as natural disas-
ters, development of new weapons, etc,

Since we are modeling the rates of change of popula-
tions with respect to time, our models will inevitably
involve differentizl equations, or in a discrete analysis,
difference equations, Kven with the simplest assumptions
these equations are often nonlinéar and generally cannot be
s0lved ahalytically. Nevertheless qualitative information
about the behavior of the populations sufficient to answer
the above questions can often be obtained by simple graph-
ical analysis, requiring only a basic understanding of the
derivative, We will demonstrate how graphical analysis can
be used to answer qualitatively questions such as:

1. 1Is coexistence of the two species posaible?
2. How sensitive are the solutions to initial population
levels and external perturbations?

We will also point out limitations of such an analy-
sie, and the conditions which require a mathematically more
sophisticated analysis.



Exercises:
1.1. Describe two situations in which one or more species serve as

the food source for another species.

1.2. Describe two situstions in which two or more species compete for
the same food source.

2. SINGLE SPECIES GROWTH

Before addressing the more difficult situation of two
species competing in some fashion, let us first examine
several ways in which the population of a single species
might grow. We will analyze our single species model in a
graphical manner analogous to that to be used for a two
species model, Let ug assume that we are modeling animals
which depend upon their environment for their fcod source
ana that:

1. All animals are identical, i.e., no need to conasider
females and males separately. In addition, age i8 not
relevant.

2. Responges to the environment are instantaneous, i.e.,
no time lags,

3. No immigration or emigration, i.e., changes are due to
birth and death only.

4. The environment can support unlimited quantities of the
animal in question.

Let us define the following quantities:
N(t): population level at time t,
At: unit of time.

b: fraction of animals which reproduce per unit
time aAt.

d: fraction of animals which die per unit time at.

Under our simplifying assumptions the population at
some time t + At depends upon the population at time t plus
births minus deaths. That is

R{t + At) = N(t) + bN({t)at - dN(t)at.
which is a difference equation. Rearrangement yields:

Big + AL) - Nit)
At = (b - A)N({t}) = rN{t)



where r = b -~ 4 ie called the jptrinsic dgrowth rate. WwWe
will approximate the solution to the difference equation

with the differential equation:

{1) Li.w’. n dn

Ab+0 . At de = rN

with
H(t = 0) = Ry,

Noting that dN/dt is a linear function of N, we can

readily graph dN/dt versus N for positive N as a straight
line with positive slope r.

dN
oL |

& N

Figure 1. Graph of dN/dt versus N.

We now ask curselves what happens to N as t increases
when the initial population size, Ng:, 15 given, 1t is
important to note that our independent variable is now t.
For any starting value N > 0 we see that the initial slope
is positive, Under assumption 2 this will cause N to in-
crease immediately ylielding a larger slope. The graph is
shown by the solid curve in Figure 2, which indicates N
grows without bound.

—t

Figure 2. Graph of N(t).



We are also interested to see what effect a different
initial population level has on our graph., IFf N > Ny is
the initjal value, then for r > 0 we have IN) > Ny, 8o the
graph of N in this case increases more rapidly at the out-
set {see the dashed curve in Figure 2).

While assumption 4 is realistic for a number of situa-
tions such as bacteria growth, it must be refined to more
realistically model animal growth. Let us assume that as N
increases there is competition within the species for re-
sources. At some point in time, this will cause the in-
trinsic growth rate to decrease as N increases. In this
case r is now & function of N.  For example, we may decide
that there is some populatjon limit, ¥ = K above which the
environment can no longer support growth in the population.
Thus the growth rate will become negative. One expression
for r that will cause it to become negative when N exceeds
K is:

£ = rgll - N/K) for K > 0 and g > 0,

Growth under this Formulation is generally called logistic
growth. For this case our model becomes

(2} dn/dt = rg(1 - N/K)N with N{t = 0) = Ng

which is known as the legistic equatijon. Differentiating
both sides of this eguation with respect to N will help us
graph its solution.

To graph the family of solutions of the logistic
equation, i.e., N versus t, we must analyze what happens
for various initial values of N. For 0 < By < K/2, dN/at
is positive and increasing (positive portion of graph in
Figure 3). After N = K/2 growth continues but at a de-
creaking rate (negative portion of graph in Figure 3).

d [dN
FL)

r,

0

N

Fighre 3. Graph of d—dﬁ[‘&d%] * 1ol - 2N/K).
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Figure 4. Graph of %%.

As N approaches N = K, dN/d: approaches 0 {see the dashed
curve in Figure 5). For Ny > K, an/dt is initially nega-
tive causing N to decrease. As N decreases dAN/dt becomes
less negative, approaching zero as N approaches X,
Finally, if Ny = 0 or if Ng = K, we have zero growth, or
equilibrium. Sketching ¥ versus t for representative ini-
tial population levels we have:

Ng = K/2

NO =0

- -3 ¢

Pigure 5. Family of solutions for logistic equation,

In this case we see that for Ng > 0, W approaches K
regardless of the initial value of N. The values N = 0 and
N = K are "equilibrium® values in that our model predicts
Zero growth at these values. Note also that N = K is a
stable equilibrium point in the: sense that for any initial
value near N = K our population will approach K = K as ¢
becomes large. Conversely, N = 0 is unstable in the sense
that any initial population, however small, will cause N to
move away from 0 and approach K for large t,

In this treatment of single Bpecies growth, we have
Presented only those aspects necessary for an elementary



unuecstanding of competitive models. Por a more general
discussion of the assumptions in single species growth, see

the UMAP Monograph Introduction to Papulation Modelipg by

James C, Prauenthal (2].

Exexcises:

2,1. Analyze Equation 1 graphically for r < O,

2.2, Solve Zquation 1 anslyricaily,

2.3. Show anslytically that the solution to Equation 2 is:
¥g

‘-rot . !g 1 - e-rot

3.4. What does the solution predict about N as t becomes larget!

.. _COMPETITIVE HUNTER MODEL

Now that we have seen two ways of modeling single spe~-
cies growth, let us turn our attention to how two different
species might compete for common resources. Suppose we
have a small pond which is mature enough to support wild-
life and we would like to stock the pond with game fish.

We will use trout and bass and denote the population of
each by x(t} and y(t) respectively, We would like to know
if coexistence is possible and how sensitive the final so-
lution is to the initial stockage levels and external per-
turbations.

The level of the trout depends on many varjables, such
as ilnitial level, Xgr of the trout population, the ability
of the environment to support trout, level of competition
for resources, existence of predators, etc., As an initial
assumption let us assume that the environment can support
an unlimited number of trout, i,e., in isolation

(3) dx/dt = ax for a > 0.

Since the above assumption is unrealistic for many
situations, we will now refine this assumption, Assume
that the effect of the bass population is to decrease the
growth rate of the trout population, since both populations
compete for the same food and living space. The decrease
in the growth rate of the trout is roughly proportional to
the number of possible interactions between the two 8spe-
cies, i.e,, in proportion to the product of x and Y. This
is modeled by the equation



(4) dx/dt = ax - bxy = (a - by}x.

The intrinsic growth rate r = a - by decreases as the
level of the basas population increases, The constants a
and b indicate the degrees of "self-regulation"™ and "compe-
tition" respectively, These coefficients must be deter-
mined experimentally or by analyzing historical data. 1In
practice, they are difficult to estimate,

If we analyze the situation for the bass in a similar
manner, we have the following model:

dx/dt = (a - by)x

(s dy/dt = (m - nx)y

where x(0) = Xgs ¥(0) = ¥y, and a, b, m, an@ n > 0. Thus.
we have a gystem of two differential equations which we can
use to study the growth patterns of species exhibiting com-
petitave behavior,

Exsxcises:

3.1. List three important considerations that are ignored in the
development of the competitive hunter model.

3.2. Develop a model for the growth of trout and bass assuming that
in isolation trout demonstrate exponential decay. (i.e., in
Equation 3, a < 0) and that in isolation the bass population
grows logistically with a populatior limit, K.

4. GRAPHICAL ANALYSIS

One of the questions we are interested in answering is
whether or not the population levels of the bass and trout
reach equilibrium levels, The only way such a state can be
achieved is that neither population is growing, i.e., dx/dt
= dy/dt = 0. We will call these points of zero growth
equilibrium pojints. Using graphical analysis we can deter-
mine the equilibrium peint(s) and analyze their stability
in a manner roughly similar to our analysis of the logis-
tics equation’s equilibrium points, N = 0 and N = K,

For Equations 5, the equilibrium points are x = y = 0
and x = m/n, v = a/b. If one graphs the population level
of bass, y, versus the population level of trout, x, we can
depict the portions of the graph where dx/dt = 0, dy/dt =
0, and where both growth rates are simultaneously egqual to
zero (Figure 6). Thus if our initial stockage levels were
precisely at these points there would be no growth.

=
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Figure 6. Determining equilibrium points graphically.

Congidering the approximations necessary in any model,
it is inconceivable that we would estimate the values of
the parameters a, b, m, and n precisely. Also, the popula-
tion count lxo.yo) would be subject to large measurement
errors., Thus a far more interesting question is what hap-
pens in the vicinity of these points. Do we approach the
points or not?

To investigate this question graphically, we must an-
alyze the motion of any pair of population levels, (x,y).
Recall that we graphically determined the equilibrium
points by suggesting a graph of y versus x. The slope of
any particular curve is dy/dx. This slope can be deter-
mined by using the following equation.

dy/dx = ax/at °
This equation is an application of the chain rule.

Since we only need to estimate dy/dx, it will general-
ly suffice to know the direction of dx/dt and dy/dt in the
firset quadrant of the plane. In our example, the line x =
m/n divides the xy plane into two regions. In the left re-
gion dy/dt is positive, and in the right it is negative as
illustrated in Pigure 7,

Tl
if

x=g
Figure 7. Direction of g%.
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Similarly, the line y = a/b determines the region where
dx/dt is positive or negative.

Figure 8. Direction of %%.

Another useful bit of information is that along the
line y = a/b, dx/dt = 0. Theraefore this line must be
crossed vertically. Similarly, along the line x = n/n,
dy/dt = 0 which implies that this line must be crossed
horizontally, Finally, aleng the y axis motion must be
vertical and along the x axis motion must be horizontal.
Illustrating, we have

\f

a [ ) adl
Y=g
: -’
T - x-g X

Figure 9. Motion when one derivative equals zero.

Putting our information together on a single graph, we
see that we have four distinct regions (A,B,C,D) for the
possible directions of dy/dt (Figure 10).

Analyzing the motion in the vicinity of (0,0), we see
that all motion is away from that point. In the vicinity
of (m/n,a/h) we see that only two paths exist (one from
Region B and the other from Region C)} which lead to the
equilibrium point, but that on all other paths motion will
be awsy from the point (Pigure 11).

Our graphical analysis thua far leads us to the pre-
liminary conclusion that, under the assumptions of our
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Figure 10. Composite graphical analysis.

$

a 2R

(o.o)gé’ c 5 n ™ x

Figure 11. Motion near equilibrium points.

model, reaching equilibrium levels of both species is
highly unlikely, Purthermore, the initial conditions are
important and perturbations may change the outcome of the
competition,

Exercise

4.1. Recall the model you developed in Exercise 3.2. Analyze graph-
icaily the motion in the vicinity of the equilibrivm points of
your model. Ts coexistence posasible?

3. _THR XX PLANE

Up to this point the purpose of the graphical analysis
has been to determine the direction of motion in the vi-
cinity of equilibrium points. It is tempting to analyze

-10-



the behavior of our system for any starting point in the
first quadrant of the xy plane, Given some starting point
(xg,¥g)» the locus of points traced by the motion as t in-
creases is called the path or trajectory. Wwhile we will
not in general be able to completely determine all paths,
there are sone properties of the type of systems of differ-
ential equations that we are studying that will enable us
to increase our understanding of the behavior our model
predicts.

Given the system:

dx/dt = ax - b xy
_ dy/dt = my - n xy
we note that the derivative

ay
dx (ax - b xy)

at any point (x,y) is a function of the position (x,y) only
and is jndepspdent of the time t of arrival at the posi-
tion, Further, when given values for a, b, m, and n, we
see that dy/dx has a unigue value for each (x,y). Systems
of differential equations in which the independent vari-
able, in this case t, does not appear explicitly are called
autonomous Aystemg and possess certajn properties which we
offer without proof:

1. Through any point (x45.yy) in the xy plane there is at
most one path of the system.

2. A path which pagges through at least one point that is
not an equilibrium point cannot cross itself unless it
is a closed curve.

3. An equilibrium point cannot be reached in finite time
from a starting peint that is not an equilibrium point.

Properties 1 and 2 follow intuitively from an examina-
tion of dy/dx, In our example we see that as we approach
the equilibrivm point {(m/n,a/b) the derivative dx/dt and
dy/dt approaches zero demonstrating property 3.

The implications of these three properties are that
from a starting point that is not an equilibrium point, the
resulting motion:

1. Will move along the same path regardlese of the
starting time.

2. Cannot return to the starting point unless the motion
is periodic,

~-11-



3. <an never cross another path.
4. Can only approach an equilibrium point.

Thus the resulting motion will either:

1. Approach an equilibrium point.
2. Move on or approach a closed path.
3. Go to infinity.

Applying the above propertijes to the previously devel-
oped information about our system, we can sketch paths for
some typical starting points in Figure 12. The dashed line
represents the ynigue trajectory for a particular starting
point, (Xg.¥g).

X

Figure 12. Family of trajectories for Competitive
Hunter Model.

Exsrciae!

5.1. B8hketch typical paths for motion in the xy plane for your solu-
tions to Exercise 4.1,

6. MODEL INTERPRETATICN

Although ocur graphical analysis was straight-forward,
we have gained some useful qualitative information, First,
under our assumptions, mutual cosxistence of competing spe-
cles 1s highly improbable., This phenomenon is known as the
Principle of Competitive Exclusion or Gause's Principle,.
Secondly, the initial conditions completely determine the
outcome. In our example, we can portray this result as
follows:

~12=



Figure 13. (ualitative results of analysis.

Thus the initial conditions would determine the out-
come, Further any perturbation which would cause a switch
from one region of the above graph to the other would
change the outcome.

Exsxcisgn:

6.1, Eow might the modsl developed in the module be validated?
Include a discussion of how the varicus parsseters {a, b, m, and
o) would be estimated.

6.2. How could state conservation authorities use this model to
insure the survival of both species?

l1. LIMITATIONS OF GRAPHICAL ANALYSIS

The purpose of this module was to fintrcduce the phe-
nomenon of competitive hunter models without solving ana-
lytically the differential equations involved. Graphical
analyais is a powsrful tool for accomplishing this and it
should be attempted to obtain a qualitative understanding
of the behavior the model predicts. At this point one may
wish to refine the model or obtain more precise informa-
tion about the predictione of the given model using more
sophisticated mathematical techniques.

We should be aware of the limitations of a graphical
analysis. The information provided by the analysis is re-
stricted, PFor example, we did not precisely determine the
curve that divides those starting points in which the bass
win from those in which the trout win., We may very well
wish to do this if we are happy with our model.

We will not always be able to determine the nature of
the motion even close to an equilibrium point using only a
graphical analysis. In the discussion that follows, we

=13~



will analyze an equilibrium point at (0,0). The point
{0,0) may be the result of a simple translation from a
point in the first quadrant. Consider as an example an
equilibrium peint at (0,0) and the following graph:

Yt_.
Tj "

Figure 14. Translated equilibrium point.

The above information would not be sufficient to
distinguish among the following three cases:

Y Y Y
(xo.yo) (xop)'o) (xO'yO)
X X X
a. b. c.

Figure 15. Limitation of graphical stability
analysis. o

Note that each of the above possible graphs yields radi-
cally different conclusions about the nature of the given
equilibrium point, At this point we must attempt other
methods to determine the nature of the equilibrium peint,
These include solving the system of differential equations
if possible, performing & linearized stability analysis 1if
the system satisfies certain conditions, and using
Liapounov's Direct Method which requires some skill in
determining an appropriate Liapounov function. For an
excellent general discussion of the stability of systems of
differential equations, see Boyce and DiPrima ([1].

Another limitation of the graphical method concerns
predicting the behavior away from the equilibrium point.
In the above example we might use additional information to
conclude that the motion near the equilibrium peint was

-1 4-



away from the equilibrium point as in Figure 15c, and be
tempted to draw the following graph:

Figure 16. Limitation of graphical
trajectory analysis,

This might lead us to conclude that the populations
would grow without bound. However, in the following
example

ax/at = y + x - x(x% + y2)
dy/dt = «x + y - y(x3 + y?3)

even though (0,0) is the only possible equilibrium point,
at x% + yg = 1 the motion becomes dy/dx = -x/y which
describes a circle. The correct graph for the system
described by Equations 6 ia:

(6)

Figure 17. Limit cycle behavior.

where x? + yz = 1 is called a limit cycle. If you start
*inside” or "outside” x2 + y2 = 1 {aexcept for the origin)
you approach x2 + y2 = 1. If you start on %2 + y2 = 1 you
never leave this trajectory and your resulting population
behavior is periodic,

Pinally cur assumptions about the growth of the popu-
lations have been intentionally quite restrictive, For an

"l



excellent discussion of population modeling in a more gen-
eral context, see Frauenthal [2].

(1]

(21
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1.1,
1.2.
2.1,
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8. MODEL EXAM

Develcp a model for the growth of trout and bass assuming that in
isolation each spacies would demonstrate logistic growth with
population limits K; and Ey respectively.

Is coexistence possible?! Assume coafficients for your model such
that an equilibrium point exists inside the 1%t quadraae, Analyte
sraphically the motion in the vicianity of the equilibrium points
of your model.

Sketch typical paths for motion in the xy plane for your model.

10. ANSWNERS TO EXERCISES

Predator-fox, Prey-radbits; predator~lion, prey-zebra.

Trout, bass; squirrels, chipmunks.

N
r>0

Tr<Q

—t

With r > 0 we have axponential growth, with r < 0 we hava
exponential decay.

_16_



2,2, In. = | dt - Ra cl.rt‘

initisl conditions = W= loc“.
2.3, Partial fraction decomposition =»
W | S V) &) .
lu - WN " Iu -t F: ® [fo“ -
-Lo(l - M/R) +LaN =rpt + C =
—S

_l—-eerot-vl= .
1 - N/X 1 -r°t+f_1,
. ¢

Using initial condition N(t = 0) = Ny =

€
::"—1'—--.cl=

< %
1+ i

L)

Finslly, substitute ¢, into squation for M and algebraically
masnipulate the aguation to get it in required form.

Tt
2.4, limed =0 = N(t) >k,
oo
3.1. Seascnal variations, nonconformity of epviromment, effacts of
other interactions, unexpacted disasters, etc.

3.2. This model assumes the number of interactions is proportional to
the producet of x sud y.

dx
dt

gf=-(1-:)y-nxy=y(n~:y-u).

s (a - by)x, aco

4.1.

0,K)

-17-



ﬂ:-oanOuGy=:(t“bcr‘<0)

b
dy - kn
gt *0aty =Dandy =K pog

= squilibriwa points st (0,0) and (0,X).

(0,0)

=+ Cosxistence is not possible because evantually trout die out
and bass reach their peopulstion limit.

5.1.
Y

0.K) /

(0,0) -l — & X

6.1. First, the coefficients a, b, m, and u need to be determined by
sampling or by analyzing historical data. Therefore, more spe-
cific graphical predictions can be wade. These predictions
would then have to be compared to sctual population growth pat-
terns. If the predictions match actual results, we have par-

~18-



6.2,

2.

tislly validated our model. If necessary, wore tests could be
rub, However, it should be remembered that the primary purpose
of a graphical snalysis is to analyxze the behavior gualitative-
ly.

With referencec to Figure 11, attempt to wmaintain the fish popu-
lations in Region B through stocking and regulation {(open and
¢losed seasons). For example, should Regions A or D be en-
tered. restocking the appropriste species can cause a return to
Region B,

il‘._ANHHEBE_ID_IDDEL_BXA!
2 (l - )3 - b xy.
g " M T gy 4

dy

ae = =l -:;)y - n xy.

gf 0vhem x =0 oxr y = : - ;:; X.
K,n
‘&flﬂvhcnyiﬂor,llz-'ﬁ'x.

Picking a/b » Ky and a/n > Ky ve insure an equilibrium point
exists inside the 1*% quadrant.

Graphical anslysis implies 4 equilibrium points exist. They are
(0,K3) (0,0}, (K;,0), and the point of intarsection of the two
boundsries ia tha 1°% quadrant. All thase equilibrium pointe are
unstable but the point of intersection. The possibility of co-
existence is predicted by this model.

NOTE: If you aesumed Ky > a/b and K; > m/n graphical analysia
inplies the smme & equilibrium pointe exist, but in this case

w]Qw



‘.

(0.K2) and (K;.0) are stable and the remsining tvo points are un-
stable. Coexistence is not predicted with this wodel, Similarly,
coexistence is not predicted if you assumed no intersection point

in the first qusdrant.

i

(0,K,) /
N

(0,0)® -
(K;.0)

=-20=



