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Introduction
Until very recently,mostßush toiletswere controlledbyamechanismwhose

workings were Þlledwith differential poetry. In the rear tank of the toilet was a
bulbousmetal ßoat, budding in hues of oxidation at the end of a gently curving
metal stem. As the tank Þlled with water after ßushing, the ßoat would gently
rise on the waterÕs roiling surface. Through the stem, the rising ßoat would
gradually close off the inßow valve on a vertical ball cock connected to the
water pipe.
Throughout this process, a high-pitched sound would emanate from the

tank. The pitch would rise, and rise, and riseÑinterminably, it seemedÑas
if reaching for some unattainable ultimate tone. Bounded, however, by what
could never be, themechanismwould Þnally cross over, in heroic gesture, to an
indeÞnite silence. Contemplation of this tragic aria was the closest that many
peoplewouldever come to the sublimeasymptotics of theboundedexponential
function.
Sadly, these marvelous mechanisms have become almost obsolete. They

have been replaced with plastic ßoats, climbing vertical slides in tedious linear
ascents, clicking off matter-of-factly as they reach the top. It is not, however,
too late to hear the exponentialÕs sad song. Suchmechanisms continue to func-
tion in the cold-water apartments, restaurants, and bars in the crumbling neon
districts of many cities. I regularly send my beginning differential equations
students out searching for them; for lessons in modeling, data analysis, and
autonomous differential equations, certainly; but also for a glimpse of the Òan-
cient heavenly connection to the starry dynamo in the machinery of nightÓ
[Ginsberg 1956].
My students are instructed as follows. Upon locating such a mechanism,

and securing the restroom door behind them, they are to play the role of a team
of experimental scientists. First of all, the porcelain cover on the rear tankmust
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be removed, revealing the magniÞcent workings within. A yardstick is then
submersed into the void. The toilet is ßushed, and as one of the teammembers
calls out Þve-second intervals on their watchÑÒNow! Now! Now!ÓÑanother
reads off the corresponding water levels on the yardstickÑÒ5, 6.5, 7.5, 8ÓÑ
while a third member (perhaps in a lab coat) tabulates the data on a clipboard.
Additional team members, should there be anyÑparticularly the large, Òless
meticulousÓ typesÑare usefully posted outside of the door. Anyonewishing to
use the restroom, or expressing concern about the cries of ÒNow! Now! Now!Ó
coming fromwithin, can usually be turned away with a few stern words about
a Health Department inspection.
After several trials have been averaged for accuracy, a typical plot of the

data looks something like Figure 1. This toilet1 had a ßoat that engaged about
30 seconds after ßushing.

Figure 1. Toilet data.

Upon returning to the well-lit classrooms on campus, I ask my students to
switch roles and assume the attitude (pipes instead of lab coats?) of a team
of theoretical scientists. Their goal is to construct a model of the toilet tank
based entirely on reasonable assumptions about its behavior. They already
have the advantage, of course, of having looked inside of the system that they
will be modelingÑan opportunity not afforded most theoretical scientistsÑ
and this makes the exercise a much more accessible introduction to modeling.
The height of the water in the tank, h(t), is usually identiÞed as the essential
state variable, and students write down something like this without much
prompting:

1WomenÕs restroom; Shelter Lounge; Tucson, AZ.
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dh

dt
= kQ, (1)

where k is a constant andQ(t) is the inßow rate in, e.g., gallons perminute. This
is a good point to start asking troublesome questions. What about the shape
of the tank: Does it matter if the sides are vertical or slanted ? What about
variations in water pressure? How can the model account for these? Should
it?
It takes students a bit longer to struggle with the idea that Q will have to

be deÞned piecewiseÑfor the times before and after the ßoat is engaged. A
typical model that emerges is:

Q(t) =

{
a, for h ≤ h1;

b(h2 − h), for h1 < h < h2,

where h1 is the height at which the ßoat is engaged, h2 is the cut-off height, and
a and b are constants. Combining with (1) leads to the initial value problem:

dh

dt
=

{
A, for h ≤ h1;

B(h2 − h), for h1 < h < h2,
(2)

with h(0) = h0. Students are now asked to investigate their Òtheoretical toilet.Ó
A slope Þeld for the differential equation ((which students must understand
as a Þrst step in developing a geometric understanding of problems like this)
is shown in Figure 2. Here A = 1, B = .05, and h2 = 45. Students will have
to experiment with these values to Þnd a theoretical toilet that looks like an
accurate model of their data.
I now nudge the students into a discussion of the apparently inÞnite family

of theoretical toilets that their model seems to have predicted. For different
initial water heights h0 > 0, the model predicts, respectively,

• toilets that Þll asymptotically toward the cut-off height, starting from empty
at some negative time before ßushing;

• toilets that never ßush but maintain the cut-off height for all time; and
• toilets that drain to the cut-off height from some inÞnite capacity.

I like to quote the physicist Paul Dirac, who predicted the existence of
positrons solely on the evidence of unexplained solutions to the Schr�dinger
equation. Hewrote that ÒIt ismore important to have beauty in oneÕs equations
than to have them Þt experimentÓ [Rothstein 1995, 151]. This usually brings
about tongue-in-cheek predictions of Òanti-toiletsÓ in more beautiful unseen
worlds. I am, of course, happy to have students thinking about beautiful
unseen worlds which only mathematics can reveal; but the lesson is also quite
practical: For the rest of the semester, I have little trouble getting them to
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Figure 2. The theoretical toilet.

actively consider the variety of qualitatively different solutions to a differential
equation.
The two pieces of the differential equation given in (2) are quite separable,

and so provide an elementary opportunity for students to compare the relative
merits of the holy (as students see it) analytic solution with the numerical
and graphical representations that they have obtained earlier. The particular
solution of the IVP in (2) is:

h(t) =

{
At+ h, for h ≤ h1;

h2 − Ce−Bt, for h1 < h < h2,

where C = (h2 − h1)eB and h(t1) = h1. The model predicts a linear rise in h,
followed by bounded exponential growth after the ßoat is engaged.
Values forA,B, and the cut-off height h2 can be obtained from the data, and

this provides some elementary lessons in data analysis. A linear regression on
the data for h < h1 gives a value for the slope A. Another regression, this time
on a linearized plot of ln(h2 − h) vs. t for the data with h > h1, gives a value
for the slope −B (see Figure 3).
Picking a value for the cut-off height h2 is slightly tricky: Using the actual

cut-off from the data leads to the unacceptable ln(0); and the regression is quite
sensitive to small perturbations of h2 above this value. In Figure 3, a value of
h2 that is 0.1 cm above the actual cut-off has been chosen. Once all of these
values are obtained, a plot of the analytic solution through the data gives a
good conÞrmation of the analysis. Of course, it must be noted here that the
theoretical toilet never actually shuts off.
The model can be modiÞed to reßect the discontinuous jump to the cut-off
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Figure 3. Re-expressed toilet data.

height, simply by adding a third height interval to (1). It is equally instructive,
however, tohavestudentsdiscuss theÒpracticalÓ solutionmanypeopleapply to
an inÞnitely running toilet: bending the ßoat stem. The effects of this stratagem
are summarized in Figure 4.

Figure 4. Bending the ßoat stem.

We see that bending the ßoat stem does nothing to quiet the toiletÕs high-
pitched explorations of the asymptoteÑit runs on just the same. Rather, the
effect is to shift the solution, both horizontally and vertically. The only practical
beneÞt comes from thewater thatwould be saved by the lowered cut-off height
in b.
By means of such a simple experiment and modeling exercise, students are

able to carry awaymemorable lessons that can be usefully referred to through-
out the semester. (There are also the less measurable lessons that come from
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making the Òancient heavenly connectionÓ to the world outside of the class-
room. One group of students, for example, received a sumptuous Japanese
meal, free of chargeÑso proud were the proprietors of the restaurant to have
Òsuch mathematicsÓ being carried out in their restroom. This cultural respect
for mathematics was less evident at a local DennyÕs, where another group of
students was asked to leave.) I have had students tell me, long after com-
pleting this project, that they cannot go to the bathroomwithout thinking about
differential equations. They are usually glaring atme, and I amusually smiling.

Acknowledgment
This article is reprinted and adapted, with permission of the author and of

the editor, from ÒHydraulics in an Unlikely Place,Ó C•ODE•E, Newsletter for
the Consortium for Ordinary Differential Equations Experiments (SpringÐSummer
1996): 8Ð10.

References
Ginsberg, Allen. 1956. Howl. New York: City Lights Books.

Rothstein, Edward. 1995. Emblems of Mind. New York: Times Books.

About the Author
William Mueller received his bachelorÕs degree in mathematics from MIT,

his masterÕs degree in mathematics from the University of Michigan, and his
Ph.D. in mathematics from Duke University. He has a long history of inter-
est in curriculum development and the use of technology in the mathematics
classroom. He is currentlyworking on a number of projects to bring interactive
mathematics lessons to the Web.


