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The Lotka-Volterra Model

Introduction

In the 1920s A.]. Lotka developed a mathematical model for the
interaction between two species | Lotka 1925]. This model was worked
out independently and in more detail a short time later by the
mathematician Vito Volterra. Lotka and Volterra wished to under-
stand the population dynamics involved in a simple system that
involves only a single predator species and a single prey species. By
ignoring such things as the variability of individuals of each species,
variation in the environment over time, and the effects of other
species, they hoped to discover some of the essential properties of the
interaction between the two species and to understand the mecha-
nisms involved in the cyclical behavior of their population levels.
While it is still an open question as to whether they achieved their
goals, the mathematical approach that they took stimulated many
investigators and has changed the way that ecological systems are
studied.

In this module we shall examine the assumptions and conclu-
sions of a slightly modilied version of the Lotka-Volterra model. A
subsequent related module contains a model that describes the
dynamics of competing species.

Before reading on, take a few minutes to jot down some ideas
and questions you have about a predator-prey model. For example,
you might make a preliminary decision about what variables should
be included; you might decide on what you hope the model would
accomplish; and you might ask why one would try to form such a
model.

Examples and Notation

Some examples of predator-prey systems that might be described
by the Lotka-Volterra model include the hawk-sparrow, lynx-hare,
wolf-caribou, pitcher plant-fly, and squirrel-acorn systems. The
variety of examples to be described by a single mathematical model
indicates how ambitious that medel is. To make the ideas a little
more concrete, we shall assume that the prey is a population of hare
and the predators are Canadian lynx. A wealth of data has been
collected, primarily from the pelt counts of human predation, which
could provide a way of validating the Lotka-Volterra model |Elton
and Nicholson 1942].

Out of the complexity of the population dynamics of the real
predator-prey system, the model abstracts in an explicit way only
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1.3

four variable quantities: the number of predators, the number of
prey, and the percentage growth rates of each. We use the following
notation.

Prey (hare): population size = A
percentage growth rage = 7y
Predator (lynx): population size = L

percentage growth rage = r,

There is another variable quantity that enters the model im-
plicitly: time. The model assumes that time is independent of the
population sizes and rates and that it “flows along” in a continuous
way. The preceding four explicitly labeled quantities represent vari-
ables that are assumed to change over time, and hence describe how
the population sizes change with time. It is assumed that each can be
specified at each point in time and thus is dependent {although in an
implicit way) on time. Section 1.5 contains a bit more discussion of
this point.

How does this choice of quantities compare with your ideas
about a predator-prey system? Many different approaches to a
model are possible, so don’t be discouraged if your ideas seem
radically different from those presented here.

Description of Growth Rates

The growth of populations can be deseribed in several ways. For
example, one reads that the world population in the mid-1960s was
growing at an absolute rate of 180,000 people per day, or that world
population grew by 1.7% per year from 1950 to 1960. The latter way
of describing a rate of growth differs from the former not only in the
unit of time used (day in the former case and year in the latter), but
more fundamentally, in the use of a percentage rate rather than an
absolute rate.

Question: 1f a certain population grows at a rate of 1.7% per year for
a year, how many additional mouths are there to feed at the end of
the year?

The idea that a population is growing at 1.7% per ycar cannot
alone determine the additional number of people each year. To
determine that additional number requires the use of a base popula-
tion figure. Thus a population of 1,000 will grow to 1,017 in a year’s

2
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time, while a population of 2,000 will grow to 2,034- —each at a rate
of 1.7% per annum. Percentage rates of growth are used for popula-
tions because they have generally been more stable figures than
absolute rates of growth. A constant, positive percentage rate de-
scribes a changing (increasing) absolute rate of growth, Even per-
centage rates change —it is estimated that up to 1750, world popula-
tion grew at 0.1% per year, from 1750 to 1900 at 0.5% per year, from
1900 to 1950 at 1.0% per year, and from 1950 to 1960 at 1.7% per
year [Young 1968]. The corresponding absolute rates changed even
more dramatically.

Assumptions of the Model

We first consider the situation of the hare without any lynx to
prey on them. We assume that the hare population, in the absence of
lynx, will grow with a constant, positive percentage rate. Symboli-
cally, r, = a, where a is a positive constant (this is termed the
“intrinsic”’ percentage rate—it applies only in the absence of lynx).
More specifically, r;; = 0.05 means that the intrinsic growth rate 1s
5% per year. Rather than choosing a spectfic number to represent the
growth rate, the constant « is used so that the model can be more
widely applied, and also so that general conclusions may be drawn
which are independent of the particular value thar 2 may have.

We also assume that the lynx will have the effect of decreasing
the intrinsic percentage growth rate in direct proportion to the lynx
population size, Combining the intrinsic growth rate with the effect
of the predation of the lynx population, we assume that

rp=a— bhxl, (1)

where a and & are positive constants. {The symbol “ +” is used to
denote multiplication.) The symbol & represents the constant of
proportionality involved in the lynx’s effect on the growth rate of the
hare population. More precisely, & is the percentage kill rate of hare
per lynx, and 4 « L is the percentage kill rate of hare. It should be
noted that the more effective the lynx are in killing the hare, the
larger the value of & is. If we knew more about the rate at which
lynx killed hare, we would be able to replace 4 by some specific
number. On the other hand, the model has more generality by using
the unknown but fixed constant 6.

In a parallel way, we assume that the lynx will die out in the
absence of hare in such a way that their percentage growth rate is a
negative constant: specifically, r, = —¢, where ¢ 15 a positive con-
stant (the “intrinsic” percentage death rate—it applies only in the
absence of the lynx’ food source, the hare).

3
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The presence of hare, however, will increase the intrinsic per-
centage growth rate, it is assumed, in direct proportion to their
population size, so that

= —¢c+d*H,

(2)

where ¢ and 4 are positive constants. Just as & represents how
effectively the lynx kill the hare, 4 represents how effective the lynx’
predation is in increasing the lynx population size.

Equations (1) and (2) describe our assumptions about the lynx-
hare system in a precise mathematical way. The symbols L, H, 7,
and 7, all represent variables which change over time, while the
symbols a, b, ¢, and 4 represent constants, numbers that are fixed
but unknown. These constants are called the parameters of the
model. Just as the variables describe the population sizes and rates of
growth, which vary with time, the parameters describe certain char-
acteristics of the populations, which vary from one predator-prey
system to another. Thus, for example, the greater the intrinsic
percentage growth rate of a prey population, the greater the value of
the parameter 2. How does the intrinsic death rate of lynx vary with
the values of the parameter ¢?

Conclusions of the Model

We have tried to make a case for the plausibility of the
assumptions made in the previous section. Perhaps you have some
difficulties with them. Well, you're not alone! Nearly everyone would
agree that those simple assumptions capture only a small part of a
complex world. As a measure of how far off those assumptions might
be, we shall now examine some mathematical conclusions that can
be drawn from them.

What are these conclusions? Keep in mind that we are not
asking the question of what happens to actual populations of hare
and lynx, but, rather, about the theoretical population sizes sym-
bolized by H and L. What are the long-term tendencies for the
“hare” and “lynx” populations? To answer these questions it is
critical to know when the percentage growth rates are positive and
when they are negative, for this will determine whether the popula-
tions are increasing or decreasing.

Rather than considering the model in complete generality, let us
first look at a specific case. This will help us to see the general
pattern. Suppose that the predator-prey system is governed by the
equations: r,; = 0.05 — 0.001* [; r, = —0.03 + 0.0002 * H.

In addition, let us suppose that at a certain point in time there
are 40 lynx and 250 hare. Then r,; = 0.05 — 0.001 x40 = 0.01; and
r, = —0.03 + 0.0002*250 = 0.02.

4
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What is most important to note is that both r, and 7 are
positive at these population levels. Also note that the percentage
growth rate for lynx is double that for hare. We will try to guess
what happens to each population over time. Since they both have
positive rates of growth, both populations tend to increase in size.
Since both populations are increasing in size, let us suppose, hypo-
thetically, that they happen to grow to a point where there are 45
lynx and 265 hare. Then r,, = 0.05 — 0.001 ¥45 = 0.005; and r, =
—0.03 + 0.0002=* 265 = 0.023.

We see that at these population levels the growth rates are still
positive for each population, with the hare population growth slow-
ing and the lynx increasing even faster. Let us try to trace what may
happen a little further. Suppose, again hypothetically, that the lynx
population reaches size 50 and the hare population reaches a size of
275. Then 1, = 0.05 — 0.001*50 = 0.00; and 7 = —0.03 +
0.0002 %275 = 0.025.

At these population levels the percentage growth rate of the hare
population reaches zero, while the lynx population still has a positive
growth rate, It is the {ynx population reaching a size of 50 that forces
the hare growth rate to zero. Since the lynx population still has a
positive growth rate, let us suppose that there are 51 lynx {and 275
hare). Checking the basic equations (1) and (2) again, we see that
;= —0.001 and r, = 0.025. Thus any time the lynx population
exceeds 50, the hare population is forced to decline in number.

Rather than continue to play this “numbers” game, consider the
whole process from a geomeiric point of view. There are three
variables: the number of hare H, the number of lynx L, and time.
We shall use a two-dimensional rectangular coordinate system, with
L plotted on the horizontal axis and H plotted on the vertical axis.
The variation over time will be shown by movement in this coordi-
nate plane. What is critical to determine is where each of the two
populations reaches a zero growth rate. We have already seen that
the hare population reaches zero growth when the lynx number 50.
When will the lynx population have a zero growth rate?

By solving the equation —0.03 + 0.0002% H = 0 for H, it can
be seen that when there are 150 hare, the lynx growth rate is zero.
These two pieces of information are noted by drawing two dashed
lines: the vertical one to represent £ = 50 and the horizontal one to
represent H = 150, The coordinate plane is divided into four re-
gions:

In Figure 1 the coordinate system appears, along with the
critical lines; while in Figure 2 the scenario that was just described in
words is depicted geometrically. Each single point plotted represents
a possible combination of lynx-hare population levels, and the arrow
attached to each point indicates the growth tendency at those
population levels. (Up is positive growth for hare and right is

5
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hare I. =150
450 — I
— Region 2 | Region |
300 | I
150 | o e l — e 1= 150
Region 3 | Region 4
L l L ! | ! L hyrx
L0 30 50 70

Figure 1.

positive growth for lynx.) Each of the four regions of the coordinate
plane can be checked numerically to see what growth tendency is
present. For example, in Region 4, where L > 50 and H < 150, we
have r,, < 0.00 and r, < 0.00; hence in Region 4 both populations
are on the decline. Some typical growth tendencies are depicted in
Figure 3.

Imagine now what may happen over time. A population pair
starting at the point A4 pictured in Figure 3 will tend to move
upward and to the right. As it moves in this direction, the hare rate
of growth tends to decrease (though it is still positive), and the lynx
rate of growth tends to increase, which makes it seem likely that the
population pair will eventually hit the line L = 30. If the pair
reaches the vertical line L = 50, it then begins to move downward
and to the right. During this period of time the hare population
increased until the lynx population hit 50 and then decreased, while
the lynx population was steadily increasing. The population pair
continues to move downward and to the right until the hare popula-

hare

- |
l
- /’lt‘

Figure 2.
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Figure 3.

tion reaches a size of 150, when it begins to move back to the left
(corresponding to the now decreasing lynx population) while con-
tinuing down.

How long will the two populations continue to decrease in
number? Although this question can’t be answered in terms of time,
it can be answered in the following way: the downward and leftward
movement will continue until the lynx pepulation size reaches 50
again {or until the hare population reaches zero-—if the hare popula-
tion ever reaches zero, the lynx population will also die out, since for
H =0, r, = —0,03), at which time the motion changes to one of
upward (increasing numbers of hare) and to the left. It is easy to
guess what happens beyond this point; such a growth tendency
persists until the hare population size reaches 150 once again (or
until the lynx population reaches zero—see Exercise 8), at which
point the situation is similar to that at point A, and the “cycle” is
repeated. This wordy description of population dynamics is depicted
very simply in Figure 4.

hare
— Region 2 Region |
’_
- |
Region 3 Region 4
N R NS W A T SN N SN BN lynx
Figure 4.
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The curve drawn in Figure 4 illustrates the behavior resulting
from the self-regulatory nature of the predator-prey relation mod-
eled by the Lotka-Volterra equations. In “good” times for both
species, both their numbers are increasing (Region 2). Eventually
there are so many lynx that the hare population begins to decline
(Region 1). For a while there are still enough hare left for the lynx
population to continue to grow, but eventually there are few enough
hare so that the lynx population begins to decline as well (Region 4).
In time the lynx population becomes small enough so that once
again the hare population begins to increase (Region 3), and eventu-
ally this increase in hare is enough to enable the lynx population to
increase again (Region 2 again).

Let us return to the general situation. We have:

=a— b*L (l’)
and
n=—c+td*H, (2)

rather than the very specific

r,, = 0.05 — 0.001 » L (1)
and
r, = —0.03 + 0.0002% /. (2)

Thus where before the hare population growth rate was positive
for 1. < 50 (and negative for L > 50), now 7, is positive for L < a/b.
This new, and more general, inequality is obtained by solving the
inequality a — b * I, > 0 for L. In the special case, the lynx popula-
tion growth rate r, was positive for H > 150, while in the general
case 7, is positive when H is greater than the quantity ¢/d. (Solve
w¢+d*H>0 for H) We proceed as before with a rectangular
coordinate system, this time drawing the dashed vertical line L = a/b
and the dashed horizontal line H = ¢/d. (Of course we don't actu-
ally assign specific values to the parameters a, b, ¢, and &, so our
placement of these critical lines is rather arbitrary. No matter—the
value of the pictures is of a gualitative rather than quantitative
nature.) See Figure 5.

The geometric analysis of the general case is also easy, now that
the four critical regions of the plane have been identified. The
population pair moves upward and to the right in Region 2, down-
ward and to the right in Region 1, downward and to the left in
Region 4, and upward and to the left in Region 3. The only thing
different about the general case is the precise position of the critical

8
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hare
Region 2 Region
——— ———— —_ v —— [} = o /d
Region 3 l Region 4
I lynx
a/b
Figure 5.

1.6

dashed lines that divide up the plane. The qualitative nature of both
is the same. The curve traced out over time by the population pair is
called the population trajectory.

One of the subtle points about the model described here con-
cerns the use of the term “percentage growth rate.” Volterra and
Lotka meant by this term an instantaneous rate, one that changes
from instant to instant, rather than a rate that is obtained by
averaging the changes in population levels over time. Such an
instantaneous rate is modeled mathematically by the concept of
derivative of a function, which may be studied in a calculus course.
Using the “instantaneous” meaning of percentage growth rate and
methods of differential calculus, Lotka and Volterra showed that the
kind of smooth trajectory described above actually does result from
the more sophisticated assumptions of their model. What is more
striking is that they also showed that the trajectory is a closed curve in
the plane. What this means is that the curve doesn’t spiral around,
but comes back around to itself, and then repeats. Thus the model
results in a cyclical kind of behavior for each species which closely
matches some natural predator-prey systermns.

Concluding Remarks

In mathematical terms, the (modified) Lotka-Volterra model
presented in this module illustrates the fruitful interaction of alge-
braic and geometric methods. The form of the model’s assumptions is
algebraic; and the description of zero, positive, and negative per-
centage growth is also algebraic, being in the form of an algebraic

9
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2.

|

equation or inequality. When these equations and inequalities are
considered geometrically, and the pair of populations is looked at as
a point in the plane, a powerful tool develops—for then we “see”
how the populations must vary over time if they are to satisfy the
assumptions of the model, Such variation over time is seen in the
form of a curve being traced out in a coordinate plane.

In ecological terms, the model provides a beginning for a
quantitative analysis of natural systems. Such a simple model might
best be considered as a basis for deeper understanding. Its value lies
in whatever questions, ideas, and experiments it may stimulate and
in the simple picture that we may carry around in our mind to
remind us of our ideas about a system of interacting species. The
interested reader can find many variations on the theme of the
Lotka-Volterra model in [May 1976; Pielou 1969; and Wilson and
Bossert 1971].

Exercises

1. What features are oritted from the Lotka-Volterra model that
you think might be important? What quantities do you think
might be included to make the model closer to the reality of a
natural system involving a predator species and its prey species?
Why do vou think Lotka and Volterra failed to include such
quantities?

2. Consider the predator-prey system 7, = 0.08 — 0.002+« L; r, =

—0.04 + 00002+ H.

a. Determine the number of lynx for which the percentage
growth rate of hare is zero.

b. Determine the number of hare for which the percentage
growth rate of lynx is zero.

¢. On the graph below, draw the critical lines that divide the
lynx-hare plane into critical regions such as those described in
the module.

T

rr11

| 1 i i lynx [ | I I i i lynx

Graph for Exercise 2 Graph for Exercise 3

10
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d. Plot the point in the plane corresponding to 35 lynx and 150
hare. Is the hare population growing or declining at that
point? Is the lynx population growing or declining at that
point?

3. Repeat Exercise 2 for the system 7, = 0.05 — 0.002% L; 7, =
—0.03 + 0.0001 * H.

4. The two graphs below plot a prey species /{ against time and a
predator species I. against time. Draw a rough graph of the
corresponding population trajectory of prey against predator.

time

21 24

| | ] | i ] | | time
1 [ G 12 10 18 21 24
hare
350
250
150 — +
= {20, 150)
| ] I i | | ] | | b olynx
20 40 60 80 100
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5. Repeat Exercise 4 for the two time graphs drawn below.

hare

450 —

350

250

150

50 -

H 1 | | i | | | time

lynx

80 |—

] | | | | | 1 ] time
1 2 3 4 5 6 7 8
hare
450
b
350 —
250
150 |—
50
1 | 1 1 | ] ] | | | lynx
20 40 60 B0 100
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6. The figure below gives a possible population trajectory corre-
sponding to the system of Exercise 2.

hare
450 —
350 = P2
250 — Pl

150 |— 3

A0 — P4
T N U I N NN NN

1 200 30 40 300 60 70 8O

Draw a rough graph of the number of lynx against time.
(Assume that the population pair is at point P1 at time ¢ =0
and that it takes the same amount of time for the pair to travel
from P1 to P2 as from P2 to P3, as from P3 to P4, as from P4
te Pl.)

lynx

80 =

40 —

20

| | | | | | | | tirme

7. Repeat Exercise 6 for the population trajectory that follows.

8. What happens to the hare population if the lynx population size
ever reaches zero?

9, Put yourself in the place of a wildlife manager. Try to determine
whether it is possible, according to the Lotka-Volterra model, to

13
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hare

550 T—
450 -
350 — -——— —
250 —
150 [~

50—

| 1 | | | ] l | | | lynx
W 20 30 40 50 60 70 80 90 100

lynx

100 +—

80—

60

40 -

I | 1 1 I I I time

attain each of the management objectives listed below, consid-
ered separately, by removing lynx:

a. to increase the maximum size of the hare population.

b. to increase the minimum size of the hare population.

¢. to decrease the maximum size of the lynx population.

10. Describe what it might mean for the value of the parameter b to
increase. First consider the effect mathematically, then what the
mathematical effect might stem from in terms of hare and lynx
population characteristics.

14
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11. Suppose there is a predator-prey system in which each of the
populations grows by fairly distinct generations, most of the
population change occurring in a short span of time. Then we
might want to restrict our model to just the discrete points in
time: an initial point in time, the time when the first generation
is born, the time when the second generation is born, and so on.
To make things as simple as possible we could assume that both
populations have their new generations born at the same time, so
that we could let F/(0) and L(0) represent the initial popula-
tions; H(1) and L(1) represent the population sizes when the
first generation is born; and, more generally, H(n) and L(n)
represent the population sizes when the nth generation is born,
a. Use the above notation to express the actual increase in the two

population sizes as they go from their initial population size to
the population size when the first generation is born.

b. Use the above notation to express the actual increase in the two
population sizes as they go from the time when the nth
generation is born to the time when the (n + 1)th generation is
born.

c. Use the above notation to express the percentage increase in the
two population sizes as they go from their initial population size
to the population size when the firs{ generation is born.

d. Use the above notation to express the percentage increase in the
two population sizes as they go from the time when the nth
generation is born to the time when the (n + 1)th generation is
born.

e. Propose equations (a model) that describe how percentage
increases in each population might be related to the actual
population sizes.

f. Write a computer program to test the equations you wrote in
part e. above. You will need to use specific values for any
parameters you introduced into the equation in part e.

3. Solutions to Selected Exercises

1. In addition to the variability of individuals, variation uver time, and the effect of
other species mentioned in the first paragraph of the module, one might try 1o take
into account the distribution of species in space, variation in the behavior of
individuals, food available (other than hare!), and the different age groups within a
population. Without trying to change the essential characteristics of the model wo
much, I might try to include the variables time and amount of food available to
the hare as a specific function of time. What is unfortunate is that the more realistic
the number of factors considered and the more realistic the hypotheses are, the
more difficult it is to draw any conclusions at all mathematically. This is the sort of
trade-off that [tka and Volterra faced {and that anyone trying to make a
mathematical model faces). The mathematical difficulty introduced by the inclu-
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sion of additional variables may account for Lotka and Volterra's failure to include
such quantities as those listed here.

2. a. Set the growth rate for hare, 1, equal to zero; i.e., consider 0.08 — 0.002% [, = 0.
Solving for L yields 1. = 40. Thus the hare growth rate is zero when there are

40 lynx.
b. Similarly to part a., one sets —0.04 + 0.0002+% A = 0, and solves for {f to get
H = 200. When there are 200 hare, the growth rate of the lynx population is

zero.
[
hare
350 L=40
250 '—~ |
.—-—-———-—l-———-—— —_—— =200

150 |~ I

5 - '

(it 4 1t ! l lynx
20 40 B() B0

d. For L = 35, n, =008 - (OG2 # 35 = 0L.01, so the number of hare is increasing.
For If = 150, lynx growth = (.04 + 0.0002% 150 = - 0.01, so the number of
lynx is decreasing.

harc
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—
350 — I
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4. A beginning t the solution is given in the statement of the exercise: the point
(20,150}, which describes the population pair when ¢ = {, has been plotted.
Reading the lynx and hare populations from the two graphs at times ¢ = 35, 6, %,
and 12, we get the points (60,250), (80,150), (60,50), and (20,150), respectively.
Filling in with a “smooth” curve, we get the picture as follows:

i6
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6. Since we are concerned with only the lynx we shall read off only the first
coordinates of the points Pl, P2, P3, and P4 (those that correspond te the lynx in
the (L, If) pair). We get 20, 40, 70, and 40 for PL, P22, P53, and P4, respectively,
which correspond 1o the times =0, 1, 2, and 3, respeetively. Since the first
cvordinate of the population pair represents the number of lynx, we read only the

lynx
120 |~

100 —

80 —

40

2}

| ] | | | l | time
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first coordinate of the points P1, P2, 3, and 4 as those corresponding to times
t =10, 1, 2 and 3 (with some time unit attached). We then fill in with a curve
ruotivated by the results of the Lotka-Volterra model.
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