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Introduction

The United States space agency NASA is planning to send a robot vehicle
to Mars. The basic mission will be similar to the moon landings of the 1960s
and 1970s: The main spacecraft will orbit the planet, a Mars lander will be
sent to the surface to collect samples, the lander (or possibly a smaller return
vehicle carried by the lander) will return to the main spacecraft, and the main
spacecraft will return to Earth.

We consider a mathematical model inspired by this mission. Suppose that
we are asked to design a set of lander vehicles for collecting samples on Mars
and other heavenly bodies, such as one of Jupiter’s moons. For convenience,
we refer to the heavenly body of interest as a “planet.”

We consider a simple conceptual model that omits some specific details
that are likely to have only a minor impact on the design. We assume that
there are no forces other than gravity, that there are no fuel stages that must
be shed during the launch, and that the launch is successful if and only if the
launch protocol succeeds in giving the vehicle enough momentum to escape
the planet’s gravity. The goal of our investigation is to advise the engineers
designing the return vehicle on some of the design parameters.

We assume that the reader has some background in elementary differential
equations; the introduction to the subject that is now common in calculus books
should be sufficient. Other needed mathematical ideas, as well as the physics
necessary for the derivation of the models, are contained in this article.
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Basic Celestial Mechanics

Any investigation of space flight must certainly begin with the two basic
principles of celestial mechanics: Newton’s Second Law of Motion and the
Inverse Square Law of Gravitation.

Newton’s Second Law of Motion

Newton’s Second Law of Motion is generally considered to be the formula
F' = ma; however, this standard formula is actually a special case of the Second
Law that is not always valid for problems of space flight.

What Newton actually said was that the momentum acquired by an object is
equal to the impulse given to it. Suppose that we apply a constant force F' to an
object during a time interval At. The impulse given to the object is defined to
be the quantity F'At. The momentum of the object is defined by the quantity
muv, where m is the object’s mass and v is its velocity. Thus, the Second Law of
Motion, for a constant applied force, is

A(mv) = FAt.

If the force is changing with time, then this equation applies only in the
limit At — 0. Thus, the formula becomes

d(mv) = F dt. (1)

The familiar result F' = ma follows from the additional assumption that the
mass is constant, an assumption that is not always true in space flight.

The Inverse Square Law of Gravitation

The Inverse Square Law of Gravitation is used to determine the force exerted
on an object by a planet; this is the primary force responsible for momentum
changes of objects in space. This law is generally written as

_GMm

F =
g 7,2

Y

where M is the mass of the planet, 7 is the distance between the centers of mass
of the object and the planet, and G is the universal gravitation constant. In the
context of space flight, the mass of the object is so much smaller than that of the
planet that the planet can be considered to be unaffected by the gravitational
force. It is reasonable to consider the planet as a frame of reference, so we
replace r with z, the distance of the object from the center of the planet.

Now, suppose that the planet has radius R. Then the quantity

GM

9= R
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is defined to be the surface gravitational constant for the planet. Replacing r
by z and substituting g R* for GM, we obtain a convenient form for the inverse

square law:
R\ 2
F=—-—mg (—) . (2)
z
Note that this formula simplifies to the standard F' = —mg for the case where
z =~ R.

Motion Near a Planet

Consider a vehicle that moves away from a planet. The acceleration of the
vehicle is determined by (1), and we take the force to be strictly that of gravity
(2). Combining these laws results in a differential equation for the velocity.

dv_ R
dt — z(t)2

(3)

Now, suppose we are given values v, for the velocity and z, for the height
(measured from the center of the planet) at some time, which we can arbitrarily
call t = 0. Given also that velocity is the derivative of position, we have a pair
of initial value problems to describe the motion

dv gR?

2 0) =

it~ ()2 v(0) = vo,
dz

prialll 2(0) = 2p.

These equations can be combined to yield a nonlinear second-order equation
for the height, which we cannot solve. An alternative approach is to make
use of the lack of explicit dependence of the equations on ¢. Dividing the two
equations yields

v _ gk
dz  wvz?’
This equation is first-order and separable. We can therefore think of the problem
in separated form as the equation

gR?

vdv = —=—dz,
z

with the additional requirement that the solution curve must pass through the
point (2o, vo).
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The solution is then given by

vow KR @
290R 2z oz

This result is a family of height-velocity curves. Given planetary data R and
g and initial data (2o, vo), the curves indicate the height and velocity for ¢ > 0.
Of course, the height-velocity curves are only valid while z > R.

The Escape Curve

Of particular interest is the notion of escape from a planet’s gravitational
field. The idea is that given the planet parameters g and R and the initial
height 2y, there is a critical initial velocity v. for which the subsequent velocity
just vanishes as z — oo. We can calculate this velocity by considering the
height-velocity curves in the form

v R v§ R

2Rz 29R 2z

If the curve is to approach the point (oo, 0), then the initial conditions must be
related by
v2 R

c —_——

2gR 2z

Solving for v., we obtain the formula
v22g = 2gR? (5

for the escape curve. In particular, the escape velocity v, is defined to be the
critical initial velocity for an object whose flight begins at the surface of the
planet:

Ve = 1/ 29R.

The Dimensionless Height-Velocity Curves

In the form (4), the height-velocity curves are different for each planet. We
can improve the result considerably by replacing the original variables v and =
by appropriate dimensionless variables. We define these by

z Vo

V=", Z=2, V=2, Z=2

o 7 o =3 where v, =+/2gR. (6)

(Note that these variables are ratios of the corresponding dimensional variable
to arepresentative value of that variable. In space flight near a planet, we expect
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that velocities will be on the order of v. and distances will be on the order of
R.) In terms of these dimensionless variables, the height—velocity curves are
given as

1 1

2 2
VZ2_v2=_—- _ . 7
0 7 74 (7)

This equation does not depend explicitly on the planetary data, so we get the
same dimensionless height—velocity curves for any planet. In particular, the
escape curve takes the simple form

ZV?=1. 8)

These curves are illustrated in Figure 1. Note that the escape curve is the one
that passes through the point (1,1).

v 1¥

—0.5

-1-

Figure 1. The dimensionless height-velocity curves.

The Liftoff Model

So far, we have been following the course of a standard example that appears
in some ordinary differential equations texts. See, for example, Boyce and
DiPrima [1997, 76-78], who conclude their example with a note that in reality
the escape velocity is not achieved instantly but rather over a period of several
minutes. It is this extra detail that will occupy our attention now.

We consider the situation of a vehicle that begins on the surface of a planet
with zero velocity. The flight of the vehicle consists of a liftoff phase, during
which a propulsion system causes the velocity to increase, followed by a free-
fall phase, during which the velocity decreases because of the pull of gravity.
We have already studied the free-fall phase; the subsequent motion will escape
from the planet if the plot of the motion in the ZV -plane rises above the escape
curve. If ZV? > 1 at the end of the liftoff phase, then the launch will be
successful; if not, the gravitational force will pull the vehicle back to the surface.
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The differential equation describing the liftoff process is based on the dif-
ferential form of Newton’s Second Law of Motion (1). The use of the law is
complicated by the fact that the rocket is not a closed system. Fuel is burnt and
the exhaust is blown out of the rocket; hence, we have a closed system only
if we include both the rocket and the fuel. The left side of the equation must
include the momentum change of both the vehicle and the fuel, while the right
side must include both the gravitational force and any force due to combustion.

Momentum Change

Let M be the mass of the vehicle and payload and let P be the mass of fuel
initially carried by the vehicle. We assume that the fuel is burned at a rate ¢,
which could perhaps be a function of time or state (z,v). The fuel is either a
solid or a pressurized fluid, and the products of the burning of the fuel are gases
that are blown out of the vehicle at high speed. We assume that the velocity of
the exhaust, relative to the vehicle, is 3.

In a small amount of time d¢, both the mass and the velocity of the vehicle
change. The change in momentum for the vehicle is then given by

d(mv) = mdv + vdm,

where m is the time-dependent mass consisting of the vehicle and payload
and what remains of the fuel. Given that the vehicle and payload are of fixed
mass and the fuel burns at rate «, we have dm = —adt. Taken together, the
differential momentum change of the vehicle is

d(mv)|vehicle: mdv — v dt.

The calculation for the momentum change of the exhaust has a subtlety.
Each molecule of exhaust removes momentum from the vehicle only at the
moment it is emitted; thus, any subsequent changes in the molecule’s velocity
are irrelevant. Hence, we have

d(mv) = vdm.

The correct velocity to use in this calculation is the velocity of the exhaust
relative to the surface of the heavenly body, which is the sum of the velocity of
the vehicle relative to the heavenly body (v) and that of the exhaust relative to
the vehicle (—/3;). Thus,

d(mw) ‘exhaust: a(v—f)dt.

Combining the momentum changes of the vehicle and exhaust gives us the
total change in momentum:

d(mv) = mdv — af dt. 9
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Forces

The vehicle is certainly subject to a gravitational force. Additionally, we
assume that the burning of the fuel creates energy that in turn creates a force
propelling the vehicle upward. The mechanism by which the fuel burns is
unimportant; we assume that the force produced by burning is proportional to
the rate at which fuel is burnt, with proportionality constant ;. Thus, the total
force is

mgR?

F = Oéﬁg — (10)

2
The Differential Equation of Motion
Combining (9, 10) with (1) yields the equation

mgR?
2

mdv = (B + B2) dt — dt.

The differential equation of motion is obtained by dividing through by m dt:

dv af gR?

dt  m 22’
where we have defined = (1 + [s.

Note that there are actually two mechanisms that contribute to the acceler-
ation of the vehicle: the propulsive force caused by the energy of combustion,
and also the propulsion obtained by the downward momentum change of the
exhaust. Although these two mechanisms sound different, their mathematical
details are equivalent, and only the sum is needed. In effect, the energy created
by the combustion of the fuel simply increases the exhaust velocity that would
be obtained if there were no combustion.

The Full Model

The differential equation of motion is supplemented by the differential equa-
tions for height and mass. Including the initial conditions, we have

R2
G- (0)= R, 12
CZ_T ~ o, m(0) = M + P, (13)

These equations need to be supplemented by an equation that prescribes « in
terms of ¢, v, and /or z.
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Note also that the liftoff phase ends when the fuel is gone. Thus, the equation
m (t f ) =M

determines the time at the end of the liftoff phase. The launch is then successful
if and only if

Z(tp)V3(ty) > 1,

where we assume the same dimensionless variables for the full model that were
used for the free-fall model.

The Return Vehicle Design Problem

The full model (11-13) has 6 parameters, including 4 design parameters: «,
B, M, and P. (As noted above, the parameter o could actually be a function.)
There are also 2 parameters, g and R, that are characteristics of the planet. The
return vehicle design problem is the problem of determining, for any particular
planet, the suitable region in the 4-dimensional oM P-space for which the
escape curve is reached by the time the fuel supply is exhausted.

Figure 2 is a schematic diagram of the model for the return vehicle design
problem, which is conveniently viewed as a “black box” in which the parame-
ters are entered and the calculations inside the box yield a Boolean result with
possible outcomes “success” and “failure.” In this sense, the model can be
thought of as a function of its parameters. The parameters serve as constants
or independent variables, depending on the depth of one’s viewpoint. They
are constants in the model for vehicle flight, which is on the inside of the box,
but they are independent variables in the model for the return vehicle design
problem, which is outside of the box.

«, ﬁ7 M7 P7 g, RA vehicle “success” / ”faﬂure"‘
flight ]

Figure 2. A schematic diagram of the return vehicle design problem.

Simplification

We can simplify the problem with little loss of generality by assuming that
the fuel is burned at a constant rate during the liftoff phase. In reality, a given
amount of fuel will do more good if it is used as early in the launch as possible.

With this simplification, the initial value problem for the mass can be solved
immediately, with the result

m =M+ P — at. (14)
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The fuel is exhausted when m = M, or ty = P/c. The full model then reduces
to

O - 0)=0, 0<t< — 15
dt M+ P—at 227 v(0) ’ == (15)
dz p

— = 0)=R, 0<t<—. 16
a Y A0) =R, 0<t<— (16)

Having 4 design parameters makes for an unwieldy investigation. We con-
sider a simplified model in which there are only 3 design parameters.

Assume that we want to carry the maximum amount of fuel. This maximum
amount can be determined by considering the initial moment of the vehicle
liftoff. We can determine the initial acceleration by substituting the initial
conditions into the differential equation of motion:

dv af
V=3P 9

To achieve liftoff, the initial propulsive force must be at least sufficient to
overcome the gravitational force. It is therefore necessary to require

(M + P)g < af.
The maximum amount of fuel that can be carried is then given by
P=apg! - M, (17)

and we assume that this is the amount actually chosen. The problem is then

d 2

dv_ _Byg __gR, v(0) =0, ogtgé——,

dt  [f—gt 22 g «
M

e _ A0 =r o0<t<t M

dt g Q

Scaling

We saw in the discussion of the escape velocity curves that models can be
greatly simplified by nondimensionalization. It is particularly important to
nondimensionalize using dimensional reference quantities that represent the
order of magnitude of the variables (scales). The scales for height and velocity
are obviously R and v., as before. For time, we could choose the duration of
the liftoff phase; however, this is a rather complicated quantity. The simpler
quantity /g works just as well. This is what the duration of the liftoff would
be in the special case where the vehicle is small compared to the mass of fuel.
We therefore define the dimensionless variables

v z
V=— 7 = —
Ve R

, T==.
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Applying these changes to the velocity equation yields the result

ve dV 1 1 Mg
gdr  1-1 Z% (0)=0, =T=1708

Note that certain dimensionless groupings, such as v./3, appear in the
result. It is particularly interesting that the design parameters M and « are not
independent, so we have only two dimensionless design parameters, which
we define as

Ve Mg
= —, b= —, (18)
B af
to consider. The dimensionless model now takes its final form:
dV 1 1
- - - — <7r<1-—
“m = 1w g V0)=0, 0<7<1-D, (19)
dzZ
aﬁ:%/, Z(0) =1, 0<7<1-b. (20

The Return Vehicle Design Results

Given a pair of values (a,b), with b < 1, we now have a simple method to
determine whether or not the launch is successful. We simply solve the system
(19-20) numerically up to time 1 — b. If the graph of the solution rises above
the escape velocity curve in the ZV-plane (in other words, if at some point
ZV? > 1), then the launch is a success. In either case, the launch history after
the time 1 — b simply follows the appropriate height—velocity curve.

Figure 3 shows the launch histories for a successful launch and an unsuc-
cessful launch. Note that this model is still too simple to correctly describe the
details of the launch. There is a sharp cusp in the curves at the point where
the fuel is exhausted. This corresponds to an instantaneous velocity change (a
discontinuity in the acceleration) that we could expect to damage the vehicle.
A more sophisticated model could be written in which the burn rate gradually
changes from « to 0 over a time interval of a few seconds. However, this change
unnecessarily complicates an investigation whose purpose is to determine the
success or failure of a launch.

The system (19-20) is even more convenient than we could have anticipated.
Of the two remaining design parameters, the parameter b does not actually
appear in the differential equations or initial conditions. This means that, for
any fixed a, all values of b can be tested by solving the system numerically for
the given value of a.

Specifically, for a given value of a, we compute the solution of the differential
equations up to the time Ty for which ZV? = 1. Figure 4 shows the graph of
the launch up to time T for the case a = 1.
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Figure 3. A successful launch (top curve) and an unsuccessful launch (bottom curve).
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Figure 4. The launch curve for a = 1 up to the escape curve.

Note that a launch is successful if the value of b is small enough for the time
Ty to occur before the fuel runs out. Let

bp =1—"1Tp. (21)

The criterion for success is then b < by. We can repeat the calculations to find
the value of by corresponding to any value of a. By connecting such points
in the ab-plane, we obtain a curve that separates the parameter space into
regions of success and failure. This curve, which appears in Figure 5, shows
the vehicle design engineers what combinations of values of the dimensionless
design parameters a and b leads to success.

Of course the actual vehicle design must still take into account the param-
eters R and g that are planet-dependent, because these quantities appear in
the definitions of a and b. Given specific values for a and b, the vehicle design
curve provides a quick check on whether a given set of values for the design
parameters 3, M, and « is sufficient.
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Figure 5. The vehicle design curve.

In practice, the engineers would choose a point in Figure 5 that is not too
close to the curve, in order to provide a factor of safety (the mathematical model
approximates reality rather than describing it, so the model should not be used
to make fine distinctions). This principle must also be balanced by a desire to
avoid overdesigning the vehicle, which would make it more expensive than
necessary.
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