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1. Introduction
There is a common perception of mathematics as a finished product invented

by dead geniuses. In an effort to dispel this notion and convey the excitement of
mathematics as a living, breathing, and growing body of knowledge, created by
human beings very much like ourselves, I have turned to original sources. This
Module has grown over time as I integrated material from the three original
papers into courses in differential equations, modeling, and even introductory
calculus:

• The first paper is an oft-cited classic by Pearl and Reed [1920], who are
usually credited with being the first to use the logistic equation to describe
the growth of the population of the United States.

• The next paper is the text of a presidential address to the Royal Statistical
Society in England, by G. Udny Yule [1925], which contains an excellent
critical history of the logistic model and summarizes the work of Pearl and
Reed, as well as that of Verhulst.

• From Yule, I learned that Pierre-François Verhulst, a Belgian sociologist and
mathematician, was actually the first to propose and publish a formula for
the law of growth for a population confined to a specified area [Verhulst
1845].

Yule states, “[p]robably owing to the fact that Verhulst was greatly in ad-
vance of his time, and that the then existing data were quite inadequate to form
any effective test of his views, his memoirs fell into oblivion” [Yule 1925, 4].
Apparently, some 80 years later, Pearl and Reed had arrived independently at
the same result. Verhulst’s work did eventually come to their attention; in fact,
Yule acknowledges [Yule 1925, 5] that he is indebted to Pearl’s book [Pearl 1922]
for the references to Verhulst. Verhulst wrote in French; but with dictionary
in hand, and a rudimentary high-school background in the language (like my
own), the text is quite comprehensible.

This Module uses original data, diagrams, and text from these three original
sources. The numbering of equations and figures follows that in the original, so
it is not consistent throughout the Module. Also, one should be alert to changes
in notation (population is represented as p or y, time as t or x, respectively).
Some of the notation may also be confusing if the text is not read carefully; for
example, p′ and y′ represent particular values of p and y, not derivatives. It
is assumed that the audience understands and can work with geometric and
arithmetic progressions and has had a basic introduction to differential equa-
tions. Quotations from original sources in English are either placed between
quotation marks or else set off as displays with indented margins. Sources in
French are rendered in split-page format, with the original French on the left
and my translation on the right.

The exercises are designed to stimulate thought and inculcate the habit of
reading mathematics with a pencil in hand, always ready to verify and check
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all claims made, and work out the equations for oneself.
This Module is intended to illustrate how mathematical knowledge grows—

by fits and starts, rather than in a simple “linear” progression (as it is often
presented in textbooks). Reading original sources, one notices that ideas are
rediscovered and how later researchers borrow from and reinterpret the work
of earlier mathematicians. Thus, in this Module, the same equations sometimes
appear in slightly different forms, as they are reworked by various authors. The
reader is encouraged to use these examples of what may at first appear to be
redundancies in the text, as opportunities to compare and contrast different
points of view, which can lead to further insights into the mathematics as well
as its historical development.

2. The Logistic Equation
The logistic equation is used to model natural systems, involving growth

with limited resources. This simple function, along with the differential equa-
tion that it satisfies and its familiar S-shaped curve, is ubiquitous and familiar
to mathematicians and natural and social scientists alike. In the excerpts that
follow, one can trace the early history of this model and gain insight into the
assumptions on which it is based.

2.1 Yule’s Summary of Malthus’s Argument
We begin with Yule’s summary of the history of attempts to model popula-

tions.

Malthus, as will be well remembered by anyone who has ever read the
Essay on the Principle of Population, reaches his conclusions by a reductio ad
absurdum argument—the argument, to put it briefly, that if the population
of a confined area increases without limit in geometric progression there
will soon be millions without any food. [Yule 1925, 2]

Exercises

1. Look up Malthus’s essay [1798], which has often been reprinted. Write a
short summary of the key points.

2. Explain what is meant by a reductio ad absurdum argument.

And Malthus seems almost to enjoy the depicting of horrors (or horrours,
if one may use the earlier spelling, which in some odd way seems to add
enormously to the effect) . . . . Malthus assumes that the population will
double every 25 years, while the produce will be doubled in the first 25

2
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years, but after that will only continue to increase in arithmetic progres-
sions (Essay (1798) pp. 56-8). “And at the conclusion of the first century
the population would be 112 millions, and the means of subsistence only
equal to the support of 35 millions, which would leave a population of
77 millions totally unprovided for.” It is a shocking picture, and it leaves
our feelings so harrowed as to be capable of little further sympathy with
the plight of the world, in which “in two centuries and a quarter the pop-
ulation would be to the means of subsistence as 512 to 10.”

[Yule 1925, 3]

Exercises

3. If a population doubles every 25 years, and is 112 million at the end of one
hundred years, what was the initial population?

4. Given the initial population above, with the same doubling time of 25 years,
what will the population be in 225 years?

5. Using the fact that “the population is to the means of subsistence as 512 to
10,” calculate how many millions can be supported after 225 years.

6. If the means of subsistence grows arithmetically, how many more people
can be supported every 25 years? (Hint: use your knowledge of how many
people can be supported after 225 years, and the fact that 35 million people
are supported at the end of one hundred years. Also recall that the produce
doubled in the first 25 years.)

7. Suppose two bacteria are placed in a Petri dish with a fixed amount of space.
At the end of one minute, the number of bacteria has doubled (that is, there
are now four bacteria in the dish). If there is exactly enough space in the
dish for 1024 bacteria, how long before the space runs out, if
a) the number of bacteria increases in a geometric progression (this is called

exponential growth);
b) the number of bacteria increases in an arithmetic progression (this is

called linear growth)?

But there is another and more serious disadvantage attaching to such a
mode of argument; it tells us very little. The only conclusion that can be
drawn is that a population, confined to a specified area, does not increase
in geometric progression. As to the true form of the law of increase, the
argument gives us no information. [Yule 1925, 3]

3
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2.2 Verhulst’s Argument
Verhulst, a Belgian, published his papers in French. Below is the original

text, and a rough translation, of some of his memoir. Yule refers to this memoir
later in his address.

Au nombre des causes qui ex-
ercent une action constante sur
l’accroissement de la population,
nous placerons la fécondité propre
a l’espèce humaine, la salubrité du
pays, les mœurs de la nation que
l’on considère, ses lois civiles et re-
ligieuses. Quant aux causes vari-
able que l’on ne peut pas regarder
comme les accidentelles, elles se ré-
sument généralement dans la diffi-
culté de plus en plus grande que la
population éprouve à se procurer des
subsistances, lorsqu’elle est devenue
assez nombreuse pour que toutes les
bonnes terres se trouvent occupées.

Quand on ne tient pas compte de
la difficulté dont nous venons de par-
ler, il faut admettre qu’en vertu des
causes constantes, la population doit
croître en progression géométrique.
En effet, si 1000 âmes sont devenue
2000 au bout de 25 ans, par exemple,
il n’ya pas de raison pour que ces 2000
ne deviennent pas 4000 au bout de 25
années suivantes. [Verhulst 1845, 4]

The causes that exert a constant ef-
fect on the growth of population are:
fertility, the wealth of the country,
the death rate, and the nation’s civil
and religious laws. As for vari-
able causes that aren’t accidental, we
must consider the difficulty in finding
resources when the population be-
comes too numerous and all the good
land is occupied.

If we consider only the constant
causes, the population must grow in
a geometric progression. In other
words, if 1000 people become 2000 in
25 years, for example, there is no rea-
son that 2000 should not become 4000
in the following 25 years.

Exercise

8. Does Verhulst’s argument make sense to you? His is the first attempt to
model population growth quantitatively. He tries to capture our common-
sense notion of how populations grow, when such factors as birth and death
rate are constant. Think about rabbits. If you start with 10 and the popula-
tion doubles in 25 days, does it seem reasonable that if you started with 20,
you would have 40 rabbits in 25 days? In what situations would this not be
a reasonable assumption?

4
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Les États Unis nous offrent un
exemple de cette grande vitesse
d’accroissement de la population. On
y comptait, d’après le recensements
officiels, [Verhulst 1845, 4]

The United States [in the late eigh-
teenth and early nineteenth cen-
turies] offers just such an example of
a rapidly growing population that is
expanding as if it had unlimited re-
sources. A list of the official census
figures follows.

En 1790 .............................. 3,929,827 âmes [souls]
1800 .............................. 5,305,925
1810 .............................. 7,239,814
1820 .............................. 9,638,151
1830 .............................. 12,866,020
1840 .............................. 17,062,566

[Verhulst 1845, 4]

Si l’on prend pour la population de
1795 le chiffre 4,617,876, moyen entre
celui de 1790 et celui de 1800, et qu’on
fasse de même pour les années 1805,
1815, 1825 and 1835, on pourra éval-
uer approximativement les progrès
de la population de 5 en 5 ans. C’est
ainsi que nous avons formé le tableau
suivant, dans lequel nous avons ar-
rondi les chiffres et désigné par r le
rapport de chaque population à celle
qui la précède de 25 ans:

[Verhulst 1845, 5]

In the following table, we take these
official census figures for decades,
and approximate the population in
inter-censal years using the arith-
metic mean. The third column lists
the ratio, r, of each population to that
of the preceding 25 years. The num-
bers are rounded.

This table (on the next page) illustrates a defining characteristic of exponen-
tial growth: for equal increments of time (in this case, 25-year intervals), the
ratio between succeeding populations is constant (in this case about 2.1).

5
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[Verhulst 1845, 5]

Nous n’insisterons pas davantage
sur l’hypothèse de la progression
géométrique, attendu qu’elle ne se
réalise que dans des circonstances
tout à fait exceptionnelles; par ex-
emple, quand un territoire fertile et
d’une étendue en quelque sorte il-
limitée, se trouve habité par un pe-
uple d’une civilisation très-avancé,
comme celle des premiers colons des
États-Unis. [Verhulst 1845, 6]

[Unlike Malthus,] We readily ad-
mit that the hypothesis that popula-
tions increase in geometric progres-
sion is valid only in exceptional cir-
cumstances, as for example when a
fertile and vast territory is inhabited
by a technologically advanced peo-
ple, like the early colonists in the
United States.

2.3 Pearl and Reed’s Data and Methods
Here is the opening paragraph of Pearl and Reed’s paper.

It is obviously possible in any country or community of reasonable
size to determine an empirical equation, by ordinary methods of curve
fitting, which will describe the normal rate of population growth. Such
a determination will not necessarily give any inkling whatever as to the
underlying organic laws of population growth in a particular commu-
nity. It will simply give a rather exact empirical statement of the nature of
the changes which have occurred in the past. No process of empirically
graduating raw data with a curve can in and of itself demonstrate the
fundamental law which causes the occurring change. In spite of the fact

6
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that such mathematical expressions of population growth are purely em-
pirical, they have a distinct and considerable usefulness. This usefulness
arises out of the fact that actual counts of population by census meth-
ods are made at only relatively infrequent intervals, usually 10 years and
practically never oftener than 5 years. For many statistical purposes, it
is necessary to have as accurate an estimate as possible of the population
in inter-censal years. This applies not only to the years following that on
which the last census was taken, but also to the inter-censal years lying
between prior censuses. For purposes of practical statistics it is highly
important to have these inter-censal estimates of population as accurate
as possible, particularly for the use of the vital statistician, who must have
these figures for the calculation of annual death rates, birth rates and the
like. [Pearl and Reed 1920, 275]

Table 1 from Pearl and Reed [1920, 277].

Exercise

9. Consider the data from Pearl and Reed’s Table 1. After rounding up or
down to the nearest thousand, estimate the population for the inter-censal
years, assuming that the population is increasing from 1790 to 1910 in
a) a geometric progression;
b) an arithmetic progression.
Which estimate do you think is better? Why? How might you improve
your estimate?

7
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The usual method followed by census offices in determining the pop-
ulation in inter-censal years is one or the other of two sorts, namely, by
arithmetic progression or geometric progression. These methods assume
that for any given short period of time the population is increasing either
in arithmetic or geometric ratio. Neither of these assumptions is ever
absolutely accurate even for short intervals of time, and both are grossly
inaccurate for the United States, at least, for any considerable period of
time. What actually happens is that following any census estimates are
made by one of another of these methods of the population for each year
up to the next census, on the basis of data given by the last two censuses
only. When that next census has been made, the previous estimates of
the inter-censal years are corrected and adjusted on the basis of the facts
brought out at that census period. [Pearl and Reed 1920, 275–276]

Exercises

10. Given the data in Table 1, how would you determine an empirical equation
that fits the data? Do not actually find such an equation, just explain how
you would go about it.

11. What is the difference between finding an equation of “best fit” for a given
set of data, and determining a “fundamental law” that “causes the occurring
change”?1

We continue the quotation from Pearl and Reed’s paper:

It would be the height of presumption to attempt to predict accurately
the population a thousand years hence. But any real law of population
growth ought to give some general and approximate indication of the
number of people who would be living at that time within the present area
of the United States, provided no cataclysmic alteration of circumstances
has in the meantime intervened.

It has seemed worth while to attempt to develop such a law, first by for-
mulating a hypothesis which rigorously meets the logical requirements,
and then by seeing whether in fact the hypothesis fits the known facts.
The general biological hypothesis which we shall here test embodies as
an essential feature the idea that the rate of population increase in a lim-
ited area at any instant of time is proportional (a) to the magnitude of the

1Instructors may want to discuss the work of Brahe, Kepler, and Newton in this context, or
ask students to research this. Brahe was an observer who collected the most accurate data of his
time on the motions of the planets. Kepler discerned patterns in the data and derived equations
to describe the paths planets followed (ellipses) and relationships between a planet’s period of
revolution and its distance from the sun. Newton explained the observations through a general
law (of gravitation) that implied Kepler’s equations and much more. Kepler used simple induction
to express a regularity of nature, while Newton may be said to have discovered a fundamental
causal relationship. See, for example, Kuhn [1970, 209–219] and Abers and Kennel [1977, 105–132].

8
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population existing at that instant (amount of increase already attained)
and (b) to the still unutilized potentialities of population support existing
in the limited area. [Pearl and Reed 1920, 281]

Exercise

12. Let y represent the population at time x. Write an equation for the relation-
ship between dy/dx (the rate of population increase) and the population
that models the above hypotheses.

The following conditions should be fulfilled by any equation which is
to describe adequately the growth of population in an area of fixed limits.

1. Asymptotic to a line y = k when x = +∞.

2. Asymptotic to a line y = 0 when x = −∞.

3. A point of inflection at some point x = α and y = β.

4. Concave upwards to left of x = α and concave downward to right of
x = α.

5. No horizontal slope except at x = ±∞.

6. Values of y varying continuously from 0 to k as x varies from −∞ to
+∞.

In these expressions y denotes population, and x denotes time. [Pearl
and Reed 1920, 281]

Exercise

13. Give reasons why “any equation which is to describe adequately the growth
of a population in an area of fixed limits” should satisfy each of the six
conditions listed.
a) Draw a graph that illustrates each of the conditions separately.
b) Draw one graph that meets all of the conditions simultaneously.

An equation which fulfills these requirements is

y =
beax

1 + ceax
(ix)

when a, b and c have positive values. [Pearl and Reed 1920, 281]

9
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Exercise

14. Verify that equation (ix) of Pearl and Reed meets each of the conditions
(1–6).

In this equation the following relations hold:

x = +∞ y = b/c (x)
x = −∞ y = 0 (xi)

Relations (x) and (xi) define the asymptotes. The point of inflection is
given by 1− ceax = 0, or

x = −(1/a) log c y = b/2c (xii)

The slope at the point of inflection is ab/4c.
[Pearl and Reed 1920, 281–282]

Exercise

15. Verify the relations in (x), (xi), and (xii).

Expressing the first derivative of (ix) in terms of y, we have

dy

dx
=
ay(b− cy)

b
(xiii)

[Pearl and Reed 1920, 282]

Exercise

16. Compare this equation with the one that you came up with above, in Exer-
cise 12, to model Pearl and Reed’s hypotheses. Show that if one letsL = b/c,
then the equation above can be written in terms of only two constants, a and
L. The third constant in (ix) arises as a constant of integration and depends
on initial conditions.

The general form of the curve (ix) is shown in figure 2.
Putting the equation in this form shows at once that it is identical with

that describing an autocatalyzed chemical reaction, a point to which we
shall return later. [Pearl and Reed 1920, 282]

10
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Figure 2 from Pearl and Reed [1920, 282].

Exercise

17. Look up the definition of autocatalysis. In what ways is this process similar
to population growth in an area of limited resources?

There is much that appeals to the reason in the hypothesis that growth
of population is fundamentally a phenomenon like autocatalysis. In a
new and thinly populated country the population already existing there,
being impressed with the apparently boundless opportunities, tends to
reproduce freely, to urge friends to come from older countries, and by
the example of their well-being, actual or potential, to induce strangers
to immigrate. As the population becomes more dense and passes into
a phase where the still unutilized potentialties of subsistence, measured
in terms of population, are measurably smaller than those which have
already been utilized, all of these forces tending to the increase of popu-
lation will become reduced. [Pearl and Reed 1920, 287]

11
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2.4 Continuation of Yule’s Account
We now return to Yule’s historical account.

Verhulst, Professor of Mathematics at the École Militaire, . . . states [in
a memoir from 1838] that he had long since attempted to determine the
probable form of the law of population, but had abandoned the investi-
gation on account of the inadequacy of the data. But, as the course he
had followed would, as it seemed to him, necessarily lead to the true law
when sufficient data were available, and as the results at which he had
arrived were of some interest, he had consented to M. Quetelet’s invita-
tion to publish them. Let p denote the population, t the time; then if the
population is increasing in geometric progression

dp/dt = mp.
[Yule 1925, 43]

Exercise

18. What is the solution to this differential equation? Does this clarify the
connection between “growing exponentially” and “growing in a geometric
progression”? Explain.

But since the rate of growth of the population is retarded by the in-
creased number of the inhabitants, we must subtract from mp some un-
known function of p, so that the differential equation to be integrated
takes the form

dp/dt = mp− ϕ(p).

The simplest assumption that can be made as to the form of ϕ(p) is to
suppose ϕ(p) = np2, which gives as the solution

p =
mp′emt

np′emt +m− np′ . (*)

where p′ is the population at zero time, and the limiting population when
t is infinite is m/n. [Yule 1925, 43]

Exercises

19. Verify that the function given for p above in (*) does satisfy the differential
equation dp/dt = mp− np2. Then show that as t→∞, p→ m/n.

20. Explain how ϕ(p) = np2 is the “simplest” assumption that can be made
about the form of ϕ(p).

12
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Verhulst returns to the subject in a much longer memoir a few years
later. [This is the memoir quoted in this Module.] The argument is here
developed on slightly different and simpler lines. The freely-expanding
population, it is admitted, must increase in geometric progression, the
data for the U.S.A. 1790–1840 being used to illustrate the point. But sup-
pose that the population has expanded up to the point when “the difficulty
of finding good land has begun to make itself felt.” Let the population at
this epoch, which will be taken as zero time, be b: b is termed by Verhulst
the “normal population.” The “retarding function” now comes into play,
and the differential equation may be written

1

p

dp

dt
= l − f(p− b).

(The retarding function is now, more naturally, taken as a retarding func-
tion for the logarithmic differential instead of dp/dt.)

[Yule 1925, 43–44]

Exercises

21. What is a logarithmic differential?

22. Explain, in your own words, the role of the “retarding function” in this
model of population growth.

Only two conditions are necessary for the retarding function in its
new form: it must increase indefinitely with the population, and it must
vanish when p = b. [Yule 1925, 44]

Exercise

23. Justify and explain why these two conditions are necessary for the “retard-
ing” function.

The simplest form to assume is n(p− b): we then have: – –

1

p

dp

dt
= l − n(p− b),

or, writing for brevity m = l + nb,

1

p

dp

dt
= m− np.

Verhulst now christens the curve a “logistic.” He develops the principal
properties, pointing out that the curve is symmetrical with respect to the
point of inflection, and that the ordinate at the point of inflection is half
the limiting ordinate. [Yule 1925, 44]

13
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2.5 Return to Verhulst’s Original Account
Here is the relevant passage from Verhulst.

Désignons par p la population, par
t le temps, et par k et l des con-
stantes indéterminées: si la popula-
tion croît en progression géométrique
pendant que le temps croît en pro-
gression arithmétique, on aura entre
ces deux quantités la relation,

Let p be the population and t stand
for time, with k and l undetermined
constants. If the population grows in
a geometric progression, while time
grows in arithmetic progression, the
two quantities will be related in the
following way:

p = k · 10lt.

[Verhulst 1845, 5]

Exercise

24. Compare this to the solution that you got in Exercise 18 above.

Soit p′ une population correspon-
dante à un temps t′: il viendra

If p′ is the population corresponding
to time t′, then this becomes

p = p′ · 10l(t−t
′),

et si l’on appelle π la population exis-
tante au moment d’où l’on commence
à compter le temps, l’équation précé-
dente devient

and if one lets π be the population
at the time one starts counting, the
preceding equation becomes

p = π · 10lt. (1)

. . . La période malthusienne de 25
ans suppose que p devient 2p quant t
devient t+25, l’année étant prise pour
unité de temps: on a donc le équation
( . . . ):

The “malthusian period” of 25 years
assumes that p becomes 2pwhen t be-
comes t+ 25, the year being taken as
the unit of time. One then finds that

l = (1/25) log 2 = .012041200.

[Verhulst 1845, 5–6]

14



Using Original Sources to Teach the Logistic Equation 181

Exercise

25. Verify each of the above equations. (Note that here log 2 denotes a logarithm
to the base 10. We will use ln 2 to denote natural logarithms.)

La différentiation de l’équation (1)
donne

Differentiating equation (1) gives

M

p

dp

dt
= l, (2)

. . . et en désignant par M le module
par lequel il faut multiplier les loga-
rithmes népériens pour les convertir
en logarithmes vulgaires.

[Verhulst 1845, 6]

where M = log e.

Exercise

26. Show that if M lnx = log x, then M = log e, for any real number x.

Cette quantité étant constante, on
peut la prendre pour mesure de
l’énergie avec laquelle la population
tend à se développer, lorsqu’elle n’est
point retenue par la crainte de man-
quer de subsistances. On a aussi, avec
une exactitude d’autant plus grande
que ∆p et ∆t sont plus petits,

The ratio of the rate of change of the
population to the population itself is
thus constant, and one can take this
constant to be a measure of the en-
ergy with which the population tends
to grow, when not constrained by
limited resources. In fact, for small
changes in p and t (∆p and ∆t), we
may say

M∆p = lp∆t;

et, si l’on prend pour ∆t l’intervalle
d’une année,

and if one takes ∆t to be one year, we
arrive at

∆p

p
=

l

M
,

15
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c’est-à-dire que, dans le cas de la
progression géométrique, l’excès an-
nuel des naissances sur les décès,
divisé par la population qui l’a
fourni, donne un quotient constant
. . . . C’est un fait d’observation que,
dans toute l’Europe, le rapport de
l’excès annuel des naissances sure les
décès à la population qui l’a fourni,
et par conséquent le coefficient l/M ,
va sans cesse en s’affaiblissant: de
manière que l’accroissement annuel,
dont la valeur absolue augmente con-
tinuellement lorsqu’il y a progression
géométrique, paraît suivre un pro-
gression tout au plus arithmétique.
Cette remarque confirme le célèbre
aphorisme de Malthus, que la pop-
ulation tend à croître en progression
géométrique, tandis que la production des
subsistances suit une progression tout au
plus arithmétique. [Verhulst 1845, 7]

which is to say that in the case of
the population growing in geomet-
ric progression, the excess of annual
births over deaths, divided by the
population, is a constant ratio. How-
ever, throughout Europe, it is ob-
served that this ratio, l/M , in fact de-
creases. This observation confirms
the celebrated aphorism of Malthus,
that the population tends to grow in ge-
ometric progression while the production
of food follows a more or less arithmetic
progression.

As you read Verhulst’s original derivation below of the logarithmic differen-
tial equation, compare it to Yule’s treatment above (on p. 13, following Exercise
23).

On peut faire un infinité d’hypo-
thèses sur la loi d’affaiblissement
du coefficient l/M . La plus simple
consiste à regarder cet affaiblisse-
ment comme proportionnel à
l’accroissement de la population,
depuis le moment où la difficulté
de trouver de bonnes terres a
commencé à se faire sentir. Nous
appellerons population normale, et
nous désignerons par b, celle qui
correspond à cette époque remar-
quable, à partir de laquelle nous
compterons le temps: puis, ayant
dénoté par n un coefficient indéter-
miné, nous remplacerons l’équation
différentielle

One could make an infinite number of
hypotheses about the law of decrease
of the coefficient l/M . The simplest
is to consider the decrease to be pro-
portional to the growth of the popu-
lation, from the time when the diffi-
culty of finding good land begins to
be felt. We will begin counting from
this time, and call the population at
this time the normal population, desig-
nated by b. Then, letting n denote an
undetermined coefficient, we replace
the differential equation

16
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M

p

dp

dt
= l,

relative à la progression géométrique,
par

by

M

p

dp

dt
= l − n(p− b),

d’où, en posant, pour abréger,
m = l + nb,

and substituting m = l + nb,

M

p

dp

dt
= m− np,

et and

dt =
M dp

mp− np2
.

Cette équation étant intégrée donne,
en observant que t = 0 répond à p =
b,

We integrate this equation, noticing
that t = 0 corresponds to p = b,

t =
1

m
log

p(m− nb)
b(m− np) .

Nous donnerons le nom de logistique
à la courbe caractérisée par l’équation
précédente. [Verhulst 1845, 8–9]

and give the name logistic to the curve
characterized by the previous equa-
tion.

How exciting! Here is where Verhulst first “christens” the equation a logis-
tic. Why? In its modern incarnation, the logistic equation is usually written
with population expressed as a function of time (population as the dependent
variable). This perhaps more familiar form of the equation involves an ex-
ponential. Verhulst wrote the relationship here with time as the dependent
variable. Since the log function is the inverse of the exponential, his equation
has t (time) equal to a (somewhat complicated) logarithmic function of p (pop-
ulation). Thus “logistic” is meant to convey the curve’s “log-like” quality. For
further discussion of this point, see Shulman [1997].

Exercises

27. Perform the integration indicated, and verify the equation for t. Why
doesn’t tM appear in the expression for t? (Recall that M = log e.)

28. Graph t as a function of p.

17
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29. Recall Yule’s statement: “Verhulst now christens the curve a ‘logistic.’ He
develops the principal properties, pointing out that the curve is symmetrical
with respect to the point of inflection, and that the ordinate at the point of
inflection is half the limiting ordinate.” Verify that the curve is symmetrical
with respect to the point of inflection, and that the ordinate at the point of
inflection is half the limiting ordinate.

30. Express p as a function of t. Do you expect this curve to have the same
properties? Graph p as a function of t.

2.6 Further History and Yule’s Own Development
Yule continues his story.

But the work of Verhulst, as I have said, was forgotten. Only some
four years ago, Professors Pearl and Reed of the Johns Hopkins Univer-
sity, Baltimore, working on interpolation formulae for population with
especial reference to the United States, arrived independently at precisely
the same result. After trying sundry purely empirical formulae, they
point out that no such formula can be regarded as a general law of popu-
lation growth, however good it may prove for practical purposes over a
limited period. General considerations suggest something as to the form
of the rational law. As there must be some limit to the population on
the given area, the curve of growth must, sooner or later, turn over (i.e.,
in mathematical terms pass through a point of inflection) and gradually
approach that limit. If we assume that the absolute rate of growth of the
population (i.e., the numbers added to the population per unit of time,
not the percentage rate of increase) is proportional to (1) the magnitude
of the population existing at that instant, (2) “the still unutilized reserves
of population-support existing” in the confined area, or in other words
the differences between the existing and the limiting population, we ar-
rive at precisely the form of law suggested by general considerations, and
the formula is that given by Verhulst. Pearl and Reed’s discovery was,
however, quite independent, and their work on this subject seems to me
of the highest importance and interest for the theory of population . . . .

I prefer to write Verhulst’s formula for the law of growth in the form

y =
L

1 + e(β−t)/α . (1)

where y is the population, t the time and L the limiting value of the
population, which is only approached as t becomes indefinitely great.

[Yule 1925, 4–5]
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Exercise

31. Compare this with the equation that you obtained in Exercise 29 above.

There are two other constants in addition to L, viz., α and β. Of these,
α determines the horizontal scale of the curve—the greater α the more the
curve spreads out—and I propose to call it the standard interval: β is the
time from the zero of the time-scale to the point of inflection. Not to make
the text of my Address too technical, I have relegated to Appendix II some
discussion of the mathematics of the curve, which, following Verhulst, we
may term a “logistic.” Here it is only necessary to direct attention to some
of its principal properties. If we choose the point of inflection as zero time,
the standard interval as our unit of time, and the limiting population L as
the unit of population, the formula (1) takes its simplest form

y′ =
1

1 + e−τ
.

Fig. 1 [on the following page] shows the curve drawn from this for-
mula. It starts rising very slowly and near the base line, gradually turns
up more and more steeply till it reaches the point of inflection, and then
gets flatter and flatter as it approaches the limit. It is symmetrical round
the point of inflection, in the sense that if y′ and y′′ are ordinates of the
curve equidistant from the point of inflection to left and right

y′ = 1− y′′.
This is clearly a limitation on the generality of the curve, but only expe-

rience can tell us how far the symmetrical form is likely to be valid: both
Verhulst and Pearl and Reed discuss more general forms. The propor-
tional rate of increase at any instant of time, in the curve drawn as in fig.
1, is given by the complement of the ordinate, i.e., the intercept between
the curve and the horizontal line representing the limiting population. It
is obvious from the figure that at first, when the population is still very
small, the proportional rate of increase only changes very slowly, so that
the growth of the population can hardly be distinguished from growth in
geometric progression; but as time goes on it falls more and more rapidly
until the point of inflection is passed. It is important to note that in such
a curve the proportional (or percentage) rate of increase of the popula-
tion falls continuously from the start; if the percentage rate of increase of
a population is steadily rising (mere disturbances excluded) it cannot be
regarded as following a simple logistic cycle. It may be that such a pop-
ulation is passing from a cycle with a longer standard-interval to a cycle
with a shorter standard-interval, e.g., when an agricultural country starts
developing industries: or it may be that the population should be re-
garded as a mixture or association of two distinct populations following
separate cycles.
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Figure 1 from Yule [1925, 6]. c©Royal Statistical Society. Reproduced with permission.
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From the scale of percentiles at the top of fig. 1 it will be seen that
the population stands at only 1 per cent of its limiting values at −4.6τ
and reaches 99 percent of the limiting value at +4.6τ . It therefore passes
through the great bulk of the cycle in 9 or 10 standard intervals. The
quartile and decile points lie at 1.1 and 2.2 respectively, very nearly indeed.
The central 80 per cent of the range from 0 to L is therefore covered in
roundly 4.4 standard intervals, and the central half in only 2.2 intervals.

[Yule 1925, 5–7]

2.7 Yule’s Appendix

APPENDIX II. – – Some notes on the mathematics of the logistic curve and
methods of fitting2. Let the differential equation be written: – –

(1/y)dy/dt = (1/α)(1− (y/L)) (1)

In this form of the equationL is evidently the limiting population, since
dy/dt is zero when y = L, and the constant α must be of the dimensions
of a time. I shall term it the “standard interval,” by analogy with the
“standard deviation.” The solution of the differential equation is

y =
L

1 + e(β−t)/α .

where β is a constant of integration, and is evidently also a time. When t
is infinite y = L: when t = β, y = L/2. But, differentiating (1) again,

d2y/dt2 = (1/α)(1− (2y/L)),

and hence y = L/2, t = β, gives the point of inflection. Further,

yβ+h = L/(1 + e−h/a) = L− L/(1 + eh/a)

= L− yβ+h.

Hence the curve is symmetrical about the point of inflection.
The smaller y is compared withL the more nearly does the differential

equation approach the simple form

(1/y)(dy/dt) = 1/α.

But the solution of this is a logarithmic [we would say exponential] curve

y = Aet/α.

That is to say, the early stages of the logistic are sensibly the same as a
logarithmic [exponential] curve, or the curve of a geometric progression.

2For a more modern approach, see, e.g., Cavallini [1993].
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We would then, in any case, expect the early stages of the growth of a
population to be appreciably geometric; there does not seem to be any
necessity for Verhulst’s conception of an initial stage in which the growth
is strictly geometric, passing abruptly into the logistic when the “normal
population” is reached.

If we measure time with the standard interval as unit, denoting the
time so measured by τ , take the point of inflection as the origin for time,
and measure population with the limiting population L as unit, writing
y′ for y/L, we have

y′ =
1

1 + e−τ
. (2)

This is the simplest form of the equation to the logistic, and its differential
equation is

(1/y′)(dy′/dt) = 1− y′.
Evidently we could draw such a logistic once and for all and fit the data for
any actual population thereto by (1) replacing the actual populations by
their ratios to the limiting population, (2) making the points of inflection
coincide, (3) taking the standard time as the unit of our time-scale.

[Yule 1925, 46–47]

Exercise

32. Take three sets of data on various populations, “normalize” them as Yule
suggests above, and then fit them to the normalized curve (2).

3. Moral
The moral of this story3 is:

The fundamental property of the logistic is that the instantaneous percent-
age rate of increase is a linear function of the population (equation (1)).

[Yule 1925, 48]

3But the story does not end here. The logistic model continues to yield new and exciting
mathematics. For instance, the discrete-time version of the logistic population model can lead to
chaotic dynamics. See, e.g., Schroeder [1991, 268ff].
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4. Solutions to Selected Exercises

3.

Year 0 25 50 75 100 . . . 25n
Population P0 2P0 4P0 8P0 16P0 . . . 2nP0

Since 16P0 = 112, P0 = 7 million.

4. In 225 years, the population doubles nine times; 7× 29 = 3,584 million.

5. Let x be the number of millions supported. Then, since

7× 29

x
=

512

10
=

29

10
,

we have x = 70; so the answer is 70 million.

6.

Year . . . 100 125 . . . 225
People supported . . . 35 35 + x . . . 35 + 5x

We have 35 + 5x = 70, so x = 7. So the answer is 7 million every 25 years.
Alternatively, consider that we start by supporting P0 = 7 million peo-

ple. The number doubles in 25 years, so we have 14 = 7 + x, or x = 7; and
we get the same answer as before, 7 million every 25 years.

7. a)

Minute 0 1 2 3 . . . n
Number of bacteria 2 4 8 16 . . . 2n+1

We have 2n+1 = 210, hence n+ 1 = 10 and n = 9 min.
b)

Minute 0 1 2 3 . . . n
Number of bacteria 2 4 6 8 . . . 2(n+ 1)

We have 2(n+ 1) = 210, hence n+ 1 = 29 and n = 29 − 1 = 511 min.

9. a) The population grows by a factor of
(

91,972

3,929

)1/12

= 1.3005 each decade,

or by a factor of (1.3005)1/10 = 1.0266 each year.
b) (91, 972− 3, 929)/120 = 734 thousand/year.

12. dy/dx = ay(b− y).
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18. p = Kemt.

30. p =
mbemt/M

m− nb+ nbemt/M
.
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