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Students in a differential equations or modeling course.

A difference equation model describing the dynamics of
a salmon population was developed by W.E. Ricker in
1954. This unit derives the model, shows how it can be
modified, and introduces the concept of maximum sus-
tainable vield. It also shows how difference equations
may lead to periodic and chaotic behavior, and a com-
puter program enables one to explore the periods and
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iroduced to show how to maximize the income from
fishing over a finite period.
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1. Introduction

In the Pacific Northwest, the economic survival of many
people hinges on the success of the salmon fisheries, which in turn
depends upon the survival of the salmon (who wouldn't mind sur-
viving, either). The fishermen would like to maximize their profits
by catching as many salmon as possible, but excessive fishing could
cause the salmon population to drop so low that the future of the
industry would be jeopardized.

Mathematical models have been used to help determine fishing
policy. If a model accurately describes the biclogical situation, it
can provide us with information otherwise difficult to obtain, as
well as confirm observations already made. Further, it can suggest
new areas for biological observation.

One of the most widely used mathematical models for salmon
fisheries was developed by W.E. Ricker in 1954 [11]. In this unit,
we will derive the Ricker model, using a derivation simpler than
that of Ricker. We will then salmon up our calculus skills to study
some properties of the model and make some conclusions. Next, we
will exsalmon how this rather simple model exhibits some very
complex and chaotic behavior under certain circumstances. Finally,
we will introduce a technique known as dynamic programming to
derive additional information from the model.

The Life of a Salmon

We start this story in the middle of the salmon’s career, when
they are swimming in the ocean, growing in size and strength. After
a few years of the good life, the salmon start an arduous journey
upstream to their birthplace. Guided by some unknown
mechanism, they swim hundreds of miles against the current, mak-
ing heroic leaps over rocks and waterfalls. When they finally reach
their spawning place, the female salmon lay their eggs, which are
then fertilized by the male salmon. At this point, the salmon have
lost a quarter of their body weight, having fasted during their long
journey. They soon die in the same water in which they were born.

A few months later the eggs hatch, and the baby salmon
emerge. They are vulnerable at this stage to predatory birds and
fish, which would love nothing better than to gobble them up.
When the survivors become large enough, they begin their journey
back to the ocean, where the life cycle begins all over again,
repeating the odyssey of the previous generation.
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3. Derivation of the Model

Since one generation of salmon dies before the next appears,
we will use a difference equation to express the population of any
generation in terms of the previous one. In contrast, many popula-
tion models assume a continuous change in population, and so use
a ditferential equation.

Qur model requires six assumptions. We begin with two: first,
the number of eggs laid is proportional to the number of adult
salmon; and second, the population of the next generation is pro-
portional to the number of eggs laid. These assumptions seem fairly
reasonable, and when we put them together we get

Nyjqp o Ny, (1)

where N is the population in year t and N, 4 is the population in
year t+1. As we shall later see, this relationship is not your usual
proportion, because the “constant” of proportionality varies with
Ni. :

If this were the whole story, the salmon population would in-
crease exponentially; that is, we would have N, = Nykt, where k is
the constant of proportionality.

Exercise 1. Prove this last statement.

But this unbridled growth is limited by the birds and other fish
who prey upon the young salmon. Our third assumption is that,
until they reach a certain size, salmon are eaten at rates propor-
tional to their number. If we let R be the population of the new
generation, known as recruits, then

dR

_ 2}
dt R, (

where ¢ is a constant or proportionality. Notice that we use a dif-
ferential equation here, since R is large and the predation is going
on continuously over a period of time. Solving Eq. (2), we get

R =Rpe-ct, (3)

where Ry is the initial recruit population.

Exercise 2. Derive Eq. (3}).
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Our fourth assumption is that after a time T, the young
salmon become too big for most predators to swallow, and so their
population stops decreasing. Our fifth assumption is that T is pro-
portional to the number of eggs laid, which we already assumed to
be proportioned to N,, the adult population. The rationale here is
that if there are twice as many baby salmon, and they have the
same amount of food to go around, it will take twice as long for
them to reach that critical size at which they can no longer be eaten
easily. This assumption may seem less plausible than the others,
but it is not too far-fetched, and a more reasonable assumption
may make our model too complex to analyze. 50 we will assume

T = KN, , (4)

where K is another constant of proportionality. Putting T in for ¢ in
Eq. (3} yields

R = Rye “KN: (5)

Finally, we assume that the number of adults in the next
generation is propertional to the number of recruits, as given in Eq.
{(5). Putting this together with Eq. (1}, we have

Nipq o Ny e~ CKNy {6)

since, for Ny41 to be proportional to two quantities, it must be
proportional to their product. We will let the constant of propor-
tionality be e7, so that (6} can be rewritten as

Niyq = Nyere CKNe = N o1 =(CK/MNG (7)

Notice that if N, = r/CK, then N;,1 = N,, and hence all
subsequent populations also equal r/CK. This is a special value of
the population known as the equilibrium population, and we will
denote this value by P. If the population ever exactly equals P, our
model predicts that it will stay there forever. We will assume that r
is positive; otherwise the equilibrium population will not exist,
and, in fact, the population will get smaller as time passes. We can
then simplify (7} as

Nf+'l _ Nter(l—N,/P). (8)
This is the form of the Ricker model we will usually work with.

Sometimes, rather than measuring the population N, directly,
we will look at the fraction of the equilibrium population by
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denoting X; = N{/P. Then, when the population is at equilibrium,
X; = 1. Eq. (8) becomes

X,p1 = X, et 1—Xy) (9)

Since our model is based on six assumptions, it is only as valid
as those assumptions; a model is only a model and should not be
confused with the real thing. Nevertheless, it is a first step toward a
quantitative understanding of salmon population. When treated
with caution, the results can be helpful.

4. Properties of the Model

Let us see what we can learn from the model. Denote Ny 1 =
f(N;), where

f(N) = N gr(l—Nz’P)_

Exercises 3. Show that f'(N) = (1—r N/P) er{1=N/P},

4. Show that lim f(N) = 0.

N—w

Looking at the result of Exercise 3, we see that when N < P/r,
f'(N) > 0, so f is increasing. Also, f is decreasing when N >P/r.
Thus, the population of the next generation is greatest when
N = P/r. This value of N is known as the maximum recruitment
level. At this point we have f(P/r) = (P/r) er—1. Coupling this
fact with the result of Exercise 4 and the fact that f{0) = 0, we can
graph f roughly as shown in Fig. 1.

In Fig. 1 we have also drawn a 45° line. Where it crosses the
graph of f, N = f{N) = P. We have also drawn P to the right of
P/r, indicating r > 1. It is also possible to have r < 1 and P/r to
the right of P. The salmon population will grow if f(N} > N (the
part of the curve above the 45° line). Or we can catch all of the
surplus population, f(N} — N, and be left with a population iden-
tical in size to the last generation. The fishing industry is interested
in the population that will give it the maximum harvest of this type,
so it can continue to harvest this same maximum harvest year after
year. This is known as the level of maximum sustainable yield.
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Figure 1, The graph ot F(N} {population of the next generation) vs. N
{population of this generation).

Exercise 5. Show that the maximum sustainable yield occurs when
FIN) = 1.

We can call the value found in the last exercise N*. We cannot
determine N * analytically, but we can use a numerical scheme such
as Newton's method if we already have values for r and P. Once we
know N7, it is not hard to find the harvest.

Exercise 6. Show that the maximum sustainable yield is

o 1
1-—-rN™/P

N

5. Do the Data
Really Fit the Model?

That's a good question. Fig. 2 shows some of the data from
[12].

We must admit, albeit with some disappointment, that we
could fit almost any curve with equal success (or lack thereof)
through this motley group of points in Fig. 2.

5
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Figure 2. The plot of N, , vs. N, for data taken from [12].

Part of the problem is that our model is deterministic: the size of
each generation is completely determined by the size of the
previous generation. In reality, there are other factors, such as
climate and food supply, which, as far as our model is concerned,
are random variables. Some have suggested that a random factor

be added to the model:
Ni+1 = N, ot I =N/ P} + oy ) (1m

where ¢4 is a normal random variable.

Another problem is that the model may need modification.
Thomas et al. [13] found that data for fruit flies (which are not
closely related to the salmon, although the salmon might make a
nice snack out of them), fit the # — Ricker model:

8
Nyyi = N, o= (Ng/ PV (11}

If § = 1, Eq. {11) reduces to the regular Ricker model in Eq. 8. It
can be derived in a manner analogous to the derivation of the
regular Ricker model by assuming that the time for the recruits to
reach a less vulnerable size is proportional to the number of eggs
laid, raised to the 8 power. This is highly reasonable if ¢ < 1, for it
says that if the number of eggs laid is doubled, the rate that the
young fruit flies (or salmon) grow should not be reduced by a full
factor of two, due to a saturation effect. In the data from Thomas
et al., § is less than 1 in 52 out of 58 times. But then, these are not

o



Sabwon Muodel 183

salmon anyway, and before using this madel to study fruit flies, we
should see whether our original six assumptions are valid for fruit
flies. (Ricker's original derivation used a different set of assump-
tions to arrive at the same model.)

The process of modifying a model, checking it against the
data, and then modifying it again is typical in mathematical model-
ing, and the cycle can go on indefinitely. Each time through the
cycle the model usually becomes more complex and difficult to
analyze, while doing a better job of reflecting reality. But we will
stop the cycle right now by staying with the coriginal Ricker model
through the rest of this unit.

A commonly used procedure to tind » and P, when presented
with a series of populations Ny, N1, ..., N,,, is to introduce a new
variable y, = In{N,;,1/N;) and plot v, vs. 5,. If the original data
fit the Ricker model {Eq. 8), then the plot of points (N,, y,) should
lie along a straight line.

Exercise 7. Find the equation of the line relating v, to Ny.

6.

A technique known as the method of least squares can then
estimate r and P. For more information on this method, see [1].

Chaotic Behavior

Suppose the salmon population at some time is close to, but
not equal to, the equilibrium population P. It would be nice if the
population gradually got closer to P, or at least didn't slip any fur-
ther away. If, instead, the population does not approach its
equilibrium value, we would like to know what it does instead.
Depending on the value of r, the population may fluctuate random-
ly, with no apparent pattern. Furthermore, it turns out that this is
true for any model Ny, 1 = f(N,) whose graph f has a hump in it,
as in Fig, 1.

For simplicity, let us use Eq. (9} rather than Eq. (8) for our
model. Denote X, , | = F(X,). Then the equilibrium point is P = 1.
The equilibrium population P is said to be locally stable it, when a
value X, is close to P, the next value X; 1 is no further away.

o,

v "‘g‘;‘;ﬂ:"?f
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Mathematically, this says

| X¢ 41 — Pl = Xy = P (12)
or
| X¢p1 = Pl
T =
| Xt — P

But X,,1 = F(X;) and P = F(P), so we have

F(X) — F(P) _ (13)
X{ - P B

If we take the limit {(as X; approaches P) of the left hand side of
this last inequality, we get | F'(P) |. If we require that | F'(P) | < 1,
then the equality in (13) will be true for X, close enough to P, so we
have local stability at P.

Exercise 8. Use this result to show that the equilibrium point in our model

is stable if r < 2.

Actually, the equilibrium point is globally stable for r < 2.
That is, X; approaches 1 as  approaches infinity even if it doesn't
start close to 1. (For a proof of this, see [3].) Some pictures may
help explain this behavior. In Fig. 3, | F'(1)| < 1and X; gradually
moves toward 1. In Fig. 4, | F(1)| > 1 and X, gets further from 1.

Notice in Figs. 3 and 4 how we start with X; on the x-axis,
move vertically to find F(X,} = X+ on the graph, and then move
horizontally to the line y = x to find the corresponding point on
the x-axis.

If we were to continue the process started in Fig. 4, we would
find that X, does not continue to get further from 1. To see what is
going on, let us look at what happens over two generations by ex-
amining F(F(X;)) = X, ;2. If we plot X4 vs. X; for values of r
slightly larger than 2, we will see something like Fig. 5, which uses
r = 2.3. Let us call this new relation F(2)(X).




185

Sadmon Muodel

Figure 3. The population graph for |F(1}} < 1.

Figure 4. The population graph for [F'{1)] > 1.
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X, +2

1.4

1.2

0.8

0.6

0.4

0.2

Exercises

s

| T T 1 T

0 0.5 1 1.5 2 2.5 3

Figure 5. The graph of X, _, vs. X,.

9. Show that
F)ix) = x er(fo—xer('l—.r))_

10. Show that an equilibrium of period 2 occurs, that is, a point
where F2)(x) = x, if

2—x—xerl—x) = Q. (14)

11. Find one selution to Eq. (14) by inspection. {If you think about
what we have shown so far, you should be able to guess the

answer.)

The other two solutions of Eq. (14) may be found by numerical
methods. Using Newton's Method for example, you will find that
with r = 2.3, the other two solutions are x; = .4078 and x, =
1.592. These two solutions, known as periodic points of period 2,
are important because they truly have period 2, whereas x = 1 has
period 1.

10
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Using the result of Exercise 3, we find that F'{x1) = .242 and
F'{x3) = —.682 {using x in place of N and letting P = 1). Since
both of these are smaller in magnitude than 1, both points are
stable. Together they form what is called a limit cycle. But as r gets
bigger, x1 and x; eventually succumb to the same fate as the
original periodic point of period 1. When r becomes greater than
2.52, x1 and x; become unstable and give rise to four stable
periodic points of period 4.

The process, known as bifurcation, continues as r gets larger.
The four periodic points of period 4 become unstable and bifurcate
into eight periodic points of period 8, which become unstable and
bifurcate into sixteen periodic points of period 16, and so forth. As
r approaches a limiting value r,, the bifurcations come faster and
faster until finally, when r > r., the process becomes chaotic. In
this region, there are an infinite number of periodic points, but
these are usually unstable. It is important to realize that an unstable
period will never be observed, since, it the population deviates
even slightly from one of the periodic points, it will gradually drift
farther away.

Computer Simulation

We can simulate the pattern of behavior described in the last
section on a computer. The following BASIC program shows the
change in population for any r over an arbitrary number of years:

10 INPUT “ENTER R, X, ANDN: "; R, X, N
20FOR1=1TON

30 PRINT I, X

40 X = X * EXP (R*{1—X))

50 NEXT |

60 END

When you run this program, the computer will ask you to in-
put values of R {the parameter of r), X (the initial population), and
N (the number of years you want to observe}.

If you are using a computer with a monitor rather than a
printer, you will want to know how to stop and restart the com-
putations. Otherwise, if N is large, you will see a blur of numbers
disappear off the top of the screen. (On an Apple microcomputer,
the printing may be stopped and restarted by holding the CON-
TROL key down and pressing S.)

11
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Exercises 12. Run the program with a value of R between 2.0 and 2.5. Let the

Exercise

Exercise

Exercise

initial population be any number between 0 and 3. You should
see the population approach a limit cycle of period 2 within 20
years.

13. Try the program with the same R as in Exercise 12 but a dif-
ferent initial population. What happens? Can you explain this?

14. Run the program with R = 2.55. You should see a limit cycle
with period 4.

15. Run the program with R = 2.7, Do you see any limit cycle? If
you think you have found one, try making N really large (try
200} and see whether the pattern continues.

As you should have found in Exercise 14 and 15, r. is
somewhere between 2.5 and 2.7. The correct value, up to four
decimal places, is 2.6924. {To see how this may be calculated, see
the article by May and Oster [8].)

16. Run the program with R = 3.12 and N = 40. You should
observe a limit cycle with period 3.

The cycle of period 3 you observed in Exercise 16 arises when r
is large encugh for there to be solutions of the equation F(F(F(x)))
= x other than x = 1.

17. Show that this last equation holds if

3 — x[l+erll—x 4 er(Z—x(]+e"(1_1)))] = Q. (15}

In Fig. 6, we see the graph of the function found in Exercise 17
for r = 3.1024. This is the smallest value of ¥ for which Eq. (15) has
a solution other than x = 1. Once r becomes large enough, this cy-
cle of period 3 also becomes unstable.

18. Verify this last statement by running the program with
R = 3.5.

Tien-Yien Li and James A. Yorke [7] have shown that if a
model in Eq. (9) has a cycle of period 3, then it has cycles of period
k for any positive integer k. Even if these cycles were stable, we
would not be able to observe those with large periods unless we
watched the population for a great number of years. In other
words, a cycle that repeats every 1000 years is indistinguishable

12
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from a random sequence of numbers if we observe the population
for only 50 years.

AN

T T T
0 0.5 1 1.5 2 2.5

Figure 6. The graph of the left-hand side of Eg. (15)
as a function of x for r = 3.1024.

The amazing thing is that such a simple model as Eq. (9) can
exhibit such bizarre behavior. If you observed the data from Exer-
cise 18 without knowing where it came from, you would be unlike-
ly to guess the correct model. Perhaps even more amazing is that
this behavior occurs for any model that has a hump-shaped graph
as in Figure 1. You may wish to see the articles by Li and Yorke and
by May and Oster for a more detailed explanation.

Dynamic Programming

For a variety of reasons, the strategy of catching the maximum
sustainable yield is not necessarily best. Putting ourselves in the
fishermen’s waders, why do we want to keep the catch constant for
all eternity if we won't be around long enough to fish it? Further-
more, might we be better off in the long run if we allow the catch to
vary from one year to the next?

To pursue answers to those questions, imagine that we have a
generation of salmon swimming around us, which we will

13
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designate generation 0. One action we can take is to catch none of
them and let them spawn, hoping we will get a larger population
next year. The opposite extreme is to catch them all right now. Or
we can choose the intermediate action of catching a fraction of the
population. Cur goal is to maximize the total catch from genera-
tion O through generation n, when n is some positive integer
{perhaps the number of years we expect to be in business).

One way to tackle this problem is to use the technique of
dynamic programming. Despite the formidable name, the reason-
ing behind dynamic programming is fairly simple. Suppose we
have generation { in front of us, where 0 < i = n and we decide to
catch the fraction u; of X;, where 0 < u; 5 1. Such a u;is called the
exploitation rate. After the catch, we only have

Si = X;(1—-uy), (17)

the so-called spawning population, left to give birth to the next
generation. Consequently, instead of Eq. (9), we now have

X,'+1 = Sief(l—si). (18)

For any u; chosen between 0 and 1, the catch is u; X; (relative to the
equilibrium population), and the next generation is X; 4 1, as given
by Eq. (18).

If we let g(X;) denote the maximum total catch from genera-
tions i through N, given a generation i population of X;, we will get
a maximum of u;X; + g(X; 41} from generation i through N if we
choose the exploitation rate u; right now. We therefore choose the
u; that maximizes the quantity u;X; + g(X;+1). In other words,

g(X;) = max fu; X; + g(X;41)1), {19}

O<u;=<1

with X; ;1 given by Egs. (17) and (18).

The trick of dynamic programming is to use Egs. (17), (18),
and {19) to work backwards from the last generation to the current
generation. If we are aiready at generation n, what is the best
strategy? Making the assumption that we cannot profit from any
fish left behind after this year, then we want to catch all the fish
available, so g(X,;) = X,,. (Good for us, bad for any future genera-
tions of salmon lovers or fishermen.) For generation n—1, using
Egs. (17}, (18), and (19),

14
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gXy—1) = max  wu,_1 Xu-1 + g2(X,)

O0=<u,_1=1

=max u, 1X,-1+ X,
O=u, 1=1
(20)
= max up-1Xp-1 4+ 5,1 erfl—-5,-1)
O=u,_1=1

=max Uy 1Xp-1 4 X,_1{l—uy_ 1) erll-Xp—10-uy 1))
O=u,_1=<1

The usual way of getting u,, _ 1 from Eq. (20) is the discretiza-
tion technique. Instead of regarding u and X as continuous
variables, we regard them as discrete variables, taking on only a
finite number of discrete values. For each possible X, _;, we
choose the u,,_; which maximizes Eq. (20), using a computer to
perform the calculations. Then we consider all the possible values
of X, _5. For each value, we choose u, _; to maximize Eq. (19)
withi = n~1.

We continue working our way backwards in this manner until
we reach X;. We know what X; is, and from the previous work we
know what ug should be for this value of Xy. Then Egs. (17) and
(18) tell us X;, and from the previous work we find the correspon-
ding value of u;. We continue to work forward until we reach
generation n. To go into the details is beyond the scope of this unit,
but interested readers may wish to investigate [14] and [15]. Let’s
just say that dynamic programming is an elegant and efficient (ef-
fish-ient?) way to solve the problem.

Exercise 19. Suppose fishing regulations do not allow us to catch all the
salmon in generation n, but instead require us to leave at least
L salmon behind, or, if X, is less than L, to leave behind all of
X,,. Write a corresponding expression for g(X,,)}.

Qften next year’s catch is more important to the fishing in-
dustry than the catch, say, ten years from now. For one thing, the
distant future is too unpredictable. Another reason is that, if we
catch more fish in the short term, the money we make from fishing
could be invested elsewhere (perhaps in a Swiss bank account} to
further increase our earnings. Thus, some biologists introduce a
discount factor, v, into the catches, where 0 < ©» < 1. The assump-
tion is usually made that each year's catch is valued at a constant
fraction v of the previous year's catch. Then, instead of trying to

15
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maximize the total catch

u; X;

.

I 1=

i=0

we try to maximize the total discounted catch

viu,-Xi.

=

i=0

Exercises 20. If 0 < v < 1, prove that the sum

Uiul‘x,'

=

0

;
puts more weight on the near future than the distant future.

21. Modify the dynamic programming formulation, Eq. (19), to
maximize the total discounted catch.

0. Other Models

The Ricker model is not the only model used to study salmon.
For example, another one developed by Beverton and Holt [2]
yields the equation

1
NH—] = ' (21)

The articles by May and Oster [8] and by Lamberson and Biles [6]
list related models.
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10. References

In addition to the books and articles referred to in the text, we

have included a few other references [4, 5, 9, 10] that may be of
interest.

1.

Alexander, John W., Curve Fitting via the Criterion of Least
Squares, UMAP Unit 321.

Beverton, R. J. H. and Holt, S. ]., “"On the dynamics of ex-
ploited fish populations,” Fishery Investigation of the Ministry
of Agriculture Fisheries and Food (Great Britain}, Series II,
Vol. 19 (1957), pp. 1-533.

. Fisher, M. E., Goh, B. S. and Vincent, T. L., “Some stability

conditions for discrete-time single species models.” Bulletin of
Mathematical Biology, Vol. 41 (1979}, pp. 861-875.

. Greenwell, Raymond N., “Whales and krill: a Mathematical

model.” The UMAP Journal, Vol. 3 (1982), pp. 165-183. Also
published as UMAP Unit 610. This module develops a
mathematical model for another ecological process and makes
additional references to books and articles on mathematical
ecoclogy.

Jones, 1. W., The Salmon, Harper and Brothers, 1959. This
book, [9], and [10] provide a great deal of information on the
life and times of salmon.

. Lamberson, Roland, and Biles, Charles, “Polynomial models of

biological growth,” The UMAP Journal, Vol. 2, No. 2 (1981),
pp. 9-25.

. Li, Tien-Yien and Yorke, James A., “Period Three Implies

Chaos,” American Mathematical Monthly, Vol. 82 (1975), pp.
985-992.

. May, Robert M. and Oster, George F.. "Bifurcations and

dynamic complexity in simple ecological models,” The
American Naturalist, Vol. 110 (1976), pp. 573-599.

. Mills, Derek, Salmon and Trout: a Resource, its Ecology, Con-

servation and Management, St. Martin's Press, 1971.

17



194

Tonks for Teacking

10

11.

12.

13.

14.

15.

. Netboy, Anthony, The Salmon: Their Fight for Survival,
Houghton Mifflin Company, 1974.

Ricker, W.E., “Stock and Recruitment,” Journal of the
Fisheries Research Board of Canada, Vol. 11 (1957), pp.
559-623.

Shepard, M. P. and Withler, F. C., “Spawning stock size and
resultant production for Skeena sockeye,” Journal of the
Fisheries Research Board of Canada, Vol. 15 (1958), pp.
1007-1025.

Thomas, William P., Pomerantz, Mark ]. and Gilpin, Michael
E., "Chaos, asymmetric growth and group selection for
dynamic stability,” Ecology, Vol. 61 (1980}, pp. 1312-1320.

Walters, Carl J., “Optimal harvest strategies for salmon in rela-
tion to environmental variability and uncertain production
parameters,” Journal of the Fisheries Research Board of
Canada, Vol. 32 (1975), pp. 1777-1784.

Walters, Carl J., “"Optimum escapements in the face of alter-
native recruitment hypotheses,” Canadian Journal of Fisheries
and Aquatic Sciences, Vol. 36 (1981), pp. 678-689.

11. Answers to Exercises

Nt+1 = th, S0 N] = kNQ, N"_) = kNI = kzNg, N3 = sz
= k3Np, and, in general, N; = Npkt. Mathematical induc-
tion could be used to make this more rigorous.

dR
dt

= —-CR.

Separating variables and integrating both sides, we have

dR
dt

= —Cdt, nR= —-Ct + K, R=¢e-Ctek,

Whent = 0, R = ¢K, so we denote eK by Ry. Thus
R = Rye-Ct.
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fAN) = er{1-N/P) + Nerll=N/P)(—r/P) = (1—r N/P)
pr(1-N/P).

lim Ner(1=N/P) = lim erN
N—ow N—oo erN/P

Since the numerator and denominator approach o, we in-
voke L'Hopital's rule, yielding

. v
lim S A =

N—o eerP-(r/};) B

. To maximize F(N} — N, set the derivative equal to 0:
fIN) —1=0o0rf(N)=1.

Since F'{N*) = 1, the answer to Exercise 3 tells us that
(1—rN*/P)erl1=N"/P) = ],
er{l=N"/P) = 1/(]_--1—N*/P)_

The maximum sustainable yield is

1
fIN*) —=N* = N*ert1 =N*"/P} — N* = N*(—-----. 1

1—-rN*/P
Nt+1/Nt = Er“_Nt'IP),
so yr = In(N;11/Np)
= r(l—Nt/P)
= r_NtT/P,

which is the equation of a line with slope —r/P and
y-intercept r.

F(X) = {1—rN)er(1-N), Since P = 1,
|[F(P)] <1l |1—-r|<10<r<2

We have already assumed r > 0, so we only need » < 2,

FQNX) = F(F(X))

= F(X) er(1-FX))

= yer(l—x)pr(l—Xer(l—xh
= xgr(l—x+1—xe'(]_x))
= xer(2—x—xer(1—xly,

19
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10.

11.

12,

13.

14,

15.

16.

17.

18.

19.

20.

21.

If x = F)(x) = xer2—x—xe"1=%)) then
er(2—x—xerll=x}) — 1, s02—x—xer(l-x) = 0.

x = 1is a solution.

The limit cycle depends on the value of r chosen. It r = 2.2, a
limit cycle consisting of the two points .49706 and 1.50294 is
seen by the time N = 20.

Since the periodic points are globally stable, we should see the
same limit cycle regardless of the starting point.

The cycle consists of the four points 22037, 1.60900, .34050,
1.83012.

There is no stable limit cycle. Any one that seems to appear
will drift if N gets large enough.

The limit cycle consists of the three points .01458, .3155, and
2.670.

Using the result of Exercise 10,

F(3)(I) = F(F(Z){x)) — F(z)(x) er(1~F(33(x))
= xer(z_'r—xer(l_I))e?’(l—xerfzx—xgr(l—l)))

= yer(z—x—xeril—x +lfxer(2*1_-‘?r(l—x)))

= Ier(?nfxfxe"(l‘ﬂ—xe’(z‘x'”r(l"t”)_

This is equal to x if 3—x—xeril—x) — yeri2—x—xe1-1)) =
0, or 3—x(1+er(lﬁx)+er(2—x—xe’““*x))) = Q.

There is no stable limit cycle. The points appear to be random.
g(X,) = max { X, ~L,0}.
If m < n, thenvm > vrsince 0 < v < 1.

g{X;) = max [u; X; + vg(Xi+1}}.

O=<u; =<1

i
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