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1. Introduction

Are you a scuba diver? Can you use the diving tables? Do you know the
mathematical basis for the diving tables? Could you construct your own diving
tables? The purpose of this module is to describe the physiological basis for
the diving tables and the mathematics used for the calculations.

2. A Brief History of Diving

Diving is an ancient pastime. Diving for profit—the collectinn of sponges,
shells, and pearls—and diving for food have been with us for some time, and
probably so has diving for pleasure. Divers were used for military purposes
by the Greeks and are still of strategic importance today.

Ancient diving was essentially free (or breath-hold) diving, although Alex-
ander the Great was reported to have used a primitive diving bell around
330 B.C. A diving bell is essentially a weighted inverted receptacle that retains
its air (or other gases) as it is lowered into the water, giving a source of oxygen
at depth to which the diver may return as needed or even be connected by a
flexible tube. The air in the bell deteriorates in quality as the dive progresses,
and various methods have been devised to replenish it.

In 1691, Sir Edmund Halley (of comet fame) built and patented what may
have been the first practical diving bell, with a volume of approximately 60
cubic feet. The air was replenished from barrels, and the fouled air was vented
out by means of a valve. (A 6-foot-high cylinder of diameter 33 ft has volume ~
56 ft3.) Nearly 100 years passed before a successful forcing pump was developed
to enable a supply of fresh air to be pumped to the bell from the surface. This
technique later developed into personal diving suits supplied from the surface
and then to self-contained underwater breathing aparatus (SCUBA).

As dives became deeper and longer, it became apparent that there were
various physiological risks involved. One such risk is decompression sickness,
or the “bends,” which was associated with a rapid return to the surface after a
long or deep dive.

In addition to diving, the nineteenth century saw the introduction of “cais-
sons,” large chambers equipped with an air lock and kept under high pres-
sure, which enabled tunnellers and bridge builders to work underground or
underwater without the chamber flooding. It soon became clear that special
procedures were needed so that the workers, who may have been working in
a high-pressure environment for several hours, did not suffer injuries or even
death when they returned to normal atmospheric pressure. The need for a
careful decompression sequence became obvious. In 1854, physicians B. Pol
and T.J.J. Wattelle stated in a report, “The danger does not lie in entering a shaft
containing compressed air; nor in remaining there a longer or shorter time;
decompression alone is dangerous” [Hills 1977].
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The decompression routines of this time were usually linear (i.e., a reduc-
tion in pressure at a fixed constant rate in atmospheres per minute) and were
generally devised by experience that involved much pain and some deaths
on the part of the experimental subjects. Of the approximately 600 men who
worked on the St. Louis bridge, 119 suffered serious neurological decompres-
sion sickness, and 14 died. The name “the bends” apparently originated from
the gait of these bridge workers, caused by pains in their joints. This resembled
the “Grecian bend” of fashionable ladies of the time, who walked voluntarily
in this manner.

In the early twentieth century, military needs led various navies to become
interested in decompression sickness, and more careful research was begun.
The most influential of this research was performed by the physiologist].S. Hal-
dane for the Royal Navy in 1906. Haldane’s diving tables (1908) were remark-
ably effective in almost eliminating decompression sickness as a diving hazard
and were used for some time. As more experience was gained, it became clear
that Haldane’s tables were somewhat conservative for short dives, so adjust-
ments were made. Then, as longer deeper dives were undertaken, it was found
that the tables were not conservative enough for such dives, and more refine-
ments were made. Many further refinements have taken place in more recent
times, but the tables are still essentially based on adaptations of Haldane’s
original ideas.

In the following sections, we examine these basicideas and the mathematics
behind them. To construct adequate universal tables is arithmetically intensive,
but we will use the ideas in simplified form to construct our own tables.

The tables that we construct are not to be used in any dive!
Use the tables that your scuba instructors give you.

3. Haldane’s Model

When Haldane began his experiments, it had been established that the major
cause of decompression sickness was the release of bubbles of nitrogen, an inert
gas in the air, into various tissues and into the arterial bloodstream. While a
diver is underwater, she is breathing air under high pressure and, as a result,
more nitrogen is forced into her blood. When she ascends, the air that she is
breathing returns to a lower pressure, and the nitrogen dissolved in her blood
forms bubbles. (Because oxygen in the air that is dissolved in the blood is
metabolized, it does not cause a problem.) The effect can be seen when the
lid of a pop bottle is unscrewed. The gas in the fluid is under pressure that is
suddenly reduced when the lid is unscrewed, and bubbles rapidly form.

Initially it was thought that there would be a critical drop in pressure
above which sickness would occur; but Haldane’s experiments, which were
performed on goats, led to a different conclusion. (Haldane had found that the
sensitivity of goats to decompression sickness was acceptably close to that of
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humans.) He found that no matter what the original pressure is, decompres-
sion sickness does not occur if the pressure is reduced by less than some fixed
fraction. That is, there is a value M for which a pressure P; can be reduced to
P, = M P; without the occurrence of “the bends.” Haldane suggested a value
M just slightly less than 1/2. We will use 1/2.15 ~ .465 in our calculations.

The subjects of these experiments were exposed to the higher pressure for
long periods, so the dissolved gases were brought to saturation levels. In dives,
this might not be the case. In addition, for long dives at an absolute pressure
of more than twice atmospheric pressure, the subject could not be brought to
atmospheric pressure without one or several intermediate stops. (An absolute
pressure of two atmospheres occurs at a depth of about 10 m ~ 33 ft of water.)

To determine an appropriate set of stops, a model of how gases are dissolved
in and released from body tissues is needed. First, it is known that the pressure
of inert gas in the pulmonary circuit is almost instantaneously equalized with
that in the lungs, which is the ambient external pressure. Thus, blood entering
the arterial system has gas pressure equal to the ambient pressure. A model
must now be made of the distribution of the gas to the various tissues in the
body.

The simple model that we use in this Module is based on the following
assumptions:

e The blood flows through a tissue at a constant volume rate v ml/sec.

e If the gas pressure in the blood and tissue is p, then the concentration of the
gas in the blood is s;p g/ml and in the tissue is sap g/ml, where s, s5 are
constants with different values of sy for different tissues.

The model is a simple compartment model (see Barnes [1987]). Gas en-
ters the pulmonary circuit from the lungs at pressure p., the ambient external
pressure. We assume that the gas pressure in the blood as it enters a tissue com-
partment is p.. The pressure in the tissue and the blood is quickly equalized to
the local pressure p, and the blood leaves the compartment at pressure p.

A balance of mass for the gas must hold:

The rate of increase of mass in the compartment =
Rate at which mass flows in — Rate at which mass flows out.

The mass of gas in the compartment at any time is V3 s1p + Vasap, where V4
and V3 are measured in ml and represent the respective volumes of blood and
tissue in the compartment. The rate of increase of mass is then

d
% [(VlSl + VQSQ)])] g/sec.

Gas enters the compartment at a rate vsip. g /sec and leaves at a rate of vs; P
g/sec. The balance of mass gives

dp _

d
[Vis1 + Vaso L I

0 k(pe — p),

=vsi(pe —p) or
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where k = vs1/(Vis1 + Vassy) is a constant for the tissue. A simple diagram for
this model is presented in Figure 1.

flow in Blood vol V3, Tissue vol V5 flow out
at rate solubility s, at rate
— Tissue pressure p —
VS1Pe Mass of gas vs1p

Figure 1. Diagram for the compartment model.

In Haldane’s time, this model was thought to be appropriate for both com-
pression (p. > p) and decompression (p > p.). It was known already that
various tissues in the body required different values of ss, V4, V5, and v, and
the same blood does not flow through all tissues. In devising his tables, Haldane
considered five different values for the constant & in the differential equation.
His calculations were based on solutions of the differential equation and on the
experimental result that the external absolute pressure could be reduced by the
factor M at any time without an attack of the bends occurring.

In the work that follows, we assume for simplicity that air is all nitrogen. It
can be shown that this in fact makes no significant difference to the results (see
Exercise 6).

4. Solution of the Differential Equation

The differential equation

P koo - p), (1)
where k and p. are known constants, can be solved to find the pressure p at any
time ¢, provided that the pressure p is known at one instant of time, usually
taken to be ¢ = 0 (we measure the elapsed time from the instant at which the
pressure is known), i.e., p(0) = po, a known constant. If you know enough
integral calculus, you can find the solution of the equation, as shown below,
by the method of separation of variables. If you do not know integral calculus,
the solution can be verified directly by substitution in (1).
To separate variables, we write (1) as

1
dp _
DPe — P dt

and integrate (antidifferentiate) both sides with respect to ¢. This gives

1 d 1
/ —pdt:/ dp:/k:dt.
Pe — D dt Pe — D

4
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Performing the integrations, we get
—Inlp. —p| =kt +c
where ¢ is an arbitrary constant. Taking exponentials of both sides gives

|pe _p| _ e—(kt—i—c) _ e—kte—c _ Ae—kt,
where A is an arbitrary constant, A = e~ ¢. Since we also require p(0) = py, it
follows that [p. — pg| = A, and we obtain the solution

p=pe — (pe — po)e . ()

Graphs of solutions for the case pg = 1 atm, p, = 3 atm with (a) k = 0.2 min~},
(b) k = 0.1 min~! are given in Figure 2. The curves represent the pressure p in
the tissues of a diver at time ¢ min after descending from the surface (p = 1 atm)
to a depth of about 66 ft (p = 3 atm). Similarly, graphs for the case py = 3 atm,
pe = 1 atm with (a) ¥ = 0.2 min™!, (b) K = 0.1 min~! are given in Figure 3.
Here the curves represent the pressure ¢ minutes after ascending to the surface
from a point where the tissue pressure is 3 atm.

5. pamos

2.51

157

0.5t

0 20 40 60 80 100 120

Figure 2. Solutions for the case pg = 1 atm, p. = 3 atm. The lower curve is for k = 0.2 min~!

and the upper curve is for k = 0.1 min—!. The curves give the pressure p in the tissues of a diver
at time ¢ min after descending from the surface (p = 1 atm) to a depth of about 66 ft (p = 3 atm).

The role of the constant k, which is measured in min~! if ¢ is measured in
min, is indicated in Figures 2 and 3. When p, and p, are held constant, it takes
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Figure 3. Solutions for the case pg = 3 atm, p. = 1 atm. The lower curve is for k = 0.2 min—!

and the upper curve is for k = 0.1 min—!. The curves give the pressure ¢ min after ascending to
the surface from a point where the tissue pressure is 3 atm.

twice as long to attain a given pressure when k£ = 0.1 as it does when k£ = 0.2.
We also see that for any positive k, p approaches the constant external pressure
Pe as t becomes large (¢t — co) no matter what the value of py. In other words,
the pressure equalizes over time, as expected.

5. The Half-Time

Because solutions of the exponential nature of (2) all have the same asymp-
tote p = p, for all positive values of k, they are often characterized by their
half-time, or half-life as it is called in the case of radioactive decay.

The half-time is the time required for the difference between p and the
external pressure p. to drop to exactly one half of its original value, that is, the
time at which (p — p.) = (po — pe)/2.

From (2), we see that if T is the half-time, then

1

Py (pO - pe)

—kT __
)6 - 2

P —Pe = (Po — Pe
and hence

1
e_kT=§:>ekT=2:>k:T:ln2. (3)
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From this equation we see that £ = In 2/7 no matter what the values of py and
Ppe are, and that the half-time 7" for a tissue completely determines the value of &
in (2). This makes the half-time extremely useful in characterizing the various
tissues in the body.

The relationships between bottom times and decompression programmes
differ for different half-times. The humanbody contains many different tissues,
as Haldane knew, and a safe decompression programme must make sure that
the bends do not occur in any of them. Haldane did not have exact values
for half-times, so to compile his tables he used five different values (5, 10, 20,
40, and 75 min) in the belief that this would cover any reasonable spectrum of
half-times. His tables were successful over the wide range of dives undertaken
at that time and for some considerable time thereafter.

Noting that

1 ¢ (t/T) n\T
ok — = okt _ ~KT(F) _ (e—kT) _ (5) ,

we rewrite (2) as

1

)T
P = Pe + (Po — De) (5) : ()

6. Scuba and No-Stop Dives

Most recreational divers usually dive to a given depth, remain at (or above)
that depth for a certain time, and then ascend directly to the surface. This is the
“no stop” or “no decompression” dive, as shown in Table 1 below. The time
allowed at the bottom depends on the depth of the dive. For example, the table
says that you may stay (“stay” includes descent and ascent) at 70 ft for 50 min.

Table 1.
Diving table (from Hammes and Zimos [1988]).

Depth (ft) 40 50 60 70 8 9 100 110 120 130

Time (min) | 200 100 60 50 40 30 25 20 15 10

A no-stop diving table can be produced from our model in the following
manner.

We wish to model a situation in which a diver starts with an initial gas tissue
pressure of 1 atm and wishes to stay at a depth d ft where the external pressure
is p. = 1+ d/33 (33 ft of water gives a pressure of 1 atm; the equation contains
a 1 because there is already a pressure of 1 atm at the surface d = 0). We use (2)
to tell us the tissue gas pressure after ¢ min, which will be

(k being known for the given tissue).
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Haldane’s decompression experiment says that the diver may ascend directly
to the surface where the pressure is 1 atm provided that the pressure p attained
in the tissues is less than 2.15 atm. Thus the diver has a limiting dive time ¢4
given by

d
215 =14 — (1 — e Fa),

33
d 115
33 1 —ekta’

This relation gives the time for the tissue as characterized by its value of k
(equivalently, by its half-time T" = In 2/k).

The allowable time t; becomes longer as k becomes less, that is, as the half-
time T'(= In2/k) becomes greater. To be safe for all tissues, ¢4 is limited by the
tissue with the shortest half-time, which is 5 min in Haldane’s scheme. This
would give the relation

38

d= .
1 —exp(—tq4In2/5)

Tables are usually written with ¢4 as a function of depth d, which our model
gives as

5In (%)
ty= — 7
d In 2

You will find that this relation gives qualitative agreement with published tables
(see Figure 4); but the quantitative agreement is not very good, because of the
conservative nature of Haldane’s value of M and his tissue half-time of 5 min
for short dives.

7. Dives with Decompression Stops

For dives that fall outside the no-stop dive range, a more complicated set
of conditions must be satisfied. Again we follow Haldane’s recipe.

The standard method to calculate a decompression routine is to consider a
series of stops at depths that are multiples of 10 ft. The first stop must be such
that the external pressure at that depth is not less than M times the pressure in
each of the tissues that has been reached during the stay at the diving depth. The
tissue pressures depend on the time spent at depth and on the tissue half-time.
The greatest tissue pressure will be in the tissue with the shortest half-time.
Consider the following three examples.

Example 1. Consider a one-hour dive at a depth of 66 ft, where the
pressure is approximately 3 atm. To save some calculations, we assume
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d d
Fi 4. No-stop dive. Graph of t4 = 5ln{ ——— ) /In2 and ¢4 = 201 In2,
igure o-stop dive. Graph of ¢4 n(d—38)/n and tg4 n(d—38)/n
compared with points from the diving table of Table 1.

that there are three tissues (as opposed to Haldane’s five) with half-times
10, 20, and 40 min. From (4), the pressure of a tissue at an external pressure

Pe 18
\Y/T
P = pe + (Po — Pe) (§> 7

where py is the initial tissue pressure, T the tissue half-time, and ¢ is the
length of time at depth (in minutes). The pressure py at the beginning of
the dive is 1 atm. After one hour at 66 ft (3 atm for 60 min, p, = 3 atm),
tissue pressures are

T = 10-mintissue: p=3-2(3)° ~297
T = 20-min tissue : p =3 — 2 (%)3 ~ 2.75
T = 40-min tissue : p=3-2(1)"? ~2.29.

It is safe to ascend to an external pressure of 2.97/2.15 = 1.35, or about
12.5 ft. To keep the ascent steps in multiples of 10 ft, the first ascent is
made to 20 ft (1.60 atm).

At this point, the diver makes a stop. We have to decide how long
this stop should be. To do this, we must decide the depth for the next
stop. We choose 10 ft or 1.30 atm. The diver must remain at 20 ft until
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all tissue pressures have declined to a value that will be safe when the
diver ascends to 1.30 atm—that is, until all tissue pressures are reduced
to 2.15 x 1.30 = 2.795 atm. The three tissue pressures at the beginning of
the 20-ft stop are 2.97, 2.75, 2.29. The pressures of the 20-min and 40-min
tissues are already low enough to ascend to 10 ft. For the 10-min tissue,
t min will result in pressures

t/10
10-min tissue: p=16+1.37 <§) .

(Again we are using (4), with p. = 1.6 and pg = 2.97 for T" = 10.) The
diver must remain at the 20-ft level until all tissue pressures are below the
pressure 2.795 atm that is safe at the 10-ft stop (1.3 atm). For the 10-min
tissue, this means ¢ must be greater than the solution of

t/10 137
2975 =1.6+1.37 (§> or t=10In (T%) /In2 ~ 1.971.

Suppose that we make a 2-min stop at 20 ft. We must calculate the tissue
pressures after 2 min at 20 ft:

10-min: p=1.6+1.37 (%)% =2.79
20-min: p=1.6+1.15()" =267
40-min: p=1.6+.69 (1) =227

These are the initial pressures at the 10-ft (1.3-atm) stop. The next ascent
will be to the surface (1 atm), where the safe pressure will be 2.15. The
stop at 10 ft (1.3 atm) must be long enough that all three pressures will
drop below 2.15. For a stop of ¢ min, the pressures will be

10-min:  p = 1.3 + 1.49 (1)"/*°

20-min: p =13+ 1.37(

;t/ZO
40-min: p =1.3+.97 (%)’

/40

b

—
~— |~ N

and t must be large enough that all three are less than 2.15. For the 10-
min tissue, this requires 7.62 min, for the 20-min tissue 13.77 min, and
for the 40-min tissue 8.09 min. The stop at 10 ft must be greater than
13.77 min—say 14 min. An appropriate decompression procedure for a
one-hour dive at 66 ft would feature stops of

2min at?20 ft
14 min at 10 ft.

The ascent would also be lengthened by the time to ascend the 66 ft, about
1.5 min.

10
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Example 2. We take an ascent as recommended in Haldane’s tables
[Hempleman 1982, 330]. For a dive of 130 min at 90 ft, Haldane’s ta-
bles recommend stops of

5min at 30 ft
25min at 20 ft
30 min at 10 ft.

In this calculation, we will use all five of Haldane’s half-times of 5, 10, 20,
40, and 75 min.

First, we calculate the saturation levels for a dive of 130 min at 90 ft
~ 3.73 atm. Then we calculate the pressures at the end of the period spent
at each stopping point. Finally, we note the safe pressure to ascend to the
next stop (see Table 2).

Table 2.

Analysis of ascent recommended by Haldane for a 130-min dive at 90 ft.

Tissue Pressure
half-time (min) | 90ft=3.73atm | 30ft=19atm | 20ft=1.6atm | 10 ft =1.3 atm

5 3.73 2.82 1.64 1.30
10 3.73 3.19 1.88 1.37
20 3.70 341 2.36 1.67
40 3.44 3.31 2.71 2.14
75 291 2.86 2.60 2.285

Safe pressure
at next stop 4.08 3.44 2.8 2.15

We see that at every stage except one, a safe pressure is attained in
each tissue to allow the diver to ascend to the next stop. The exception
is the last ascent to the surface for the 75-min tissue. Haldane allowed
2 min to move to and from the stops; if this time were included, the final
pressures would be slightly reduced. This example, however, shows a
problem with Haldane’s tables for long dives.

A much more recent U.S. Navy Table T-10 (reproduced in Hammes
and Zimos [1988]) gives for this dive stopping times of

5min at 30 ft
36 min at 20 ft
74min at 10 ft.

This decompression procedure allows for even larger half-times than
75 min.

Figure 5 shows graphs of the tissue pressures for half-times of 5, 10, 20,
40, and 75 min, using the decompression scheme from Haldane’s tables.
The piecewise “step” graph at the right indicates the safe pressure at the
stops.

11
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p amos

t mins

Figure 5. A 130-min dive to 90 ft followed by ascent with decompression stops as recommended
by Haldane’s tables. At left, from top to bottom, are tissue pressures at 90 ft for half-times of 5,
10, 20, 40, and 75 min. At right, from top to bottom, are the tissue pressures during ascent. The
piecewise “step” graph at far right indicates the safe pressures at the stops.

Example 3. We consider a dive to 80 ft = 3.43 atm for one hour. Haldane’s
tables give stops of

9min at 20 ft
18 min at 10 ft.

Again we give the pressures as the diver leaves each level to proceed to
the next (see Table 3).

In this case, a safe tissue pressure has been reached at all levels for
all tissues before proceeding. This decompression procedure, however, is
now considered to be rather conservative. The U.S. Navy table suggests
17 min at 10 ft as the only stop for this dive.

A procedure of this kind can be calculated with as many tissues as appro-
priate. (You might like to write a computer programme to carry out the steps.)

12
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Table 3.
Analysis of ascent recommended by Haldane for a 60-min dive at 80 ft.
Pressure
Tissue 80ft=343atm | 20ft=1.6atm | 10ft =13 atm
5 3.43 2.13 1.37
10 3.39 2.56 1.66
20 3.17 2.75 2.08
40 2.57 2.43 2.13
75 2.03 2.00 1.89
Safe pressure
at next stop 3.44 2.80 2.15

Exercises

In all exercises, assume that M = 1/2.15.

1. Find a decompression procedure for a dive of 40 min at 3.5 atm (80-85 ft)
with stops at 1.7 atm (23 ft) and 1.3 atm (10 ft). (Consider only 10- and
20-min tissues.)

2. Find a decompression procedure for a 2-hr dive at 4.0 atm (100 ft) with stops
at 1.9 atm (30 ft), 1.6 atm (20 ft), and 1.3 atm (10 ft). (Consider 10-, 20-, and
40-min tissues.)

3. Show that a slightly faster ascent for the dive of Exercise 2 could be made if
three stops of equal duration 77 are made, the first at 1.9 atm (30 ft) and the
second and third at depths to be determined. (As a first step, consider only
the 40-min tissue; then verify that the steps are appropriate for the 10-min
and 20-min tissues.)

4. Show that for asingle tissue half-time 7" and an n-stop decompression sched-
ule, the shortest total ascent time is achieved by using equal times at each
step and determining the depths of each step according to the time. (The
actual time at each step is determined by the number of steps.)

5. Show that for a single tissue, it is possible to have a continuous ascent in
which the tissue pressure at time ¢ is exactly 2.15 times the external pressure
that the diver is experiencing at that time. Find the diver’s depth at time ¢
(pressure = 1+d/33 atm, where d is in feet). Using such a scheme, find how
long it would take to ascend from a long dive at 4 atm. (Assume a single
tissue of half-time 40 min and an instantaneous ascent from 4 atm to 1.86 =
4/2.15 atm.)

6. If the nitrogen (partial) pressure in a tissue is 80% of the pressure, and the
safe nitrogen pressure for a no-stop dive is 2.15 times that of the nitrogen
partial pressure in the atmosphere (0.8 atm), show that the equation relating
time and depth for no-stop dives is unaltered.

13
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7. Check for safety the following recommendations from Haldane’s tables for
a dive of 45 min at 85 ft (3.58 atm). Stop 2 min at 30 ft, 7 min at 20 ft, 15 min
at 10 ft. (U.S. Navy Table T-10 [Hammes and Zimos 1988] gives one stop of
17 min at 10 ft for this dive.)

8. Repetitive Dives

A major portion of the scuba diving tables is devoted to repetitive diving.
The problem with repetitive diving is the fact that after one “no decompres-
sion” dive, the tissue pressure may be 2.15 times atmospheric pressure. An
immediate dive back to a depth greater than 37 ft (external pressure greater
than 2.15 atm) would raise the tissue pressure to above the limit that would
allow a safe ascent to the surface. A break at the surface between dives lessens
the pressure when the second dive is commenced, but it takes about twelve
hours to restore all tissue pressures to 1 atm. The tissue pressure remaining
after the first dive is known as the residual nitrogen pressure (RNP). We consider
only a 20-min tissue in making our calculations, to keep things simple.

Example 4. Dive (1): 15 min at 80 ft. Dive (2) is to be to a depth of 100 ft
after a one-hour break at the surface. We calculate the safe time for a “no
decompression” second dive (20-min tissue only).

Tissue pressure p after 15 min at 80 ft (p. ~ 3.4 atm):

1\ 3/4
p=34-24 (5) = 1.97.

Since this is less than 2.15, it is safe to ascend to the surface.
Tissue pressure p after one hour at the surface (p. = 1 atm):

1 3
p=1+.97 (5) = 1.12.

Descent to 100 ft (4 atm):

1 1/20
p:4—2.88(§) .

The diver may remain until p = 2.15, that is, until
t = 201n(2.88/1.85)/In2 = 12.77 min.

Figure 6 shows the pressure as a function of time for this example.

Actual scuba tables cover the large numbers of different calculations by
classifying the residual nitrogen pressures into groups A, B, C, etc. The group

14
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tmins

Figure 6. Repetitive dive.

is found after the first dive. The effect of remaining at the surface for a given
time period is to change the group; the new group determines the safe time for
the next dive. We give an example.

Example 5.

Dive 1: 100 ft for 15 min
Dive 2: 80 ft
Time at surface between dives: 1 hr

We consult Table 4. First look at the row for a dive to 100 ft. Note that the
no-stop time is 25 min. Our dive is for 15 min, so we go across the row
until we reach 15. We then move down the corresponding column and
find the repetitive group label “E”.

The stay at the surface is for 60 min. We continue along the column
until we come to the two numbers that bracket 60 min:

0:55
1:57.

We now proceed left acrooss this row until we find a new repetitive group
label “D”.

For the second dive, at depth 80 ft, we use the label D. We continue
across the row until we reach the column corresponding to 80 ft (at right).

15
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The entry contains the numbers 18 (RNT) and 22 (TR). This means that
because of the previous dive, it is as if we had already been at this depth
for 18 min, and our time remaining is 22 min. We must be back at the
surface within 22 min.

Exercises

Use (2) in the following exercises.

8. Consider the same sequence of dives as in Example 4 but include a 40-min
tissue. Does this make a difference for the second stop time?

9. Find the safe time for a second dive to 80 ft one hour after a first dive to
100 ft for 10 min. Consider tissue half-times of 20 min and 40 min.

9. ChangesinPressure During Descentand
Ascent

To this point, we have assumed that the passage from one level to another
is instantaneous. This is not possible; moreover, rapid motion is not recom-
mended. A steady ascent or descent rate of about 60 ft/ min is not unreason-
able, and we will now examine the effect on tissue pressure of ascending at
such a rate.

Our basic equation

d
Lk

pri (pe — p)

(where p. is the external pressure) still holds, but p. is no longer constant. For
a descent at a constant rate of 60 ft/ min, we have p. = 1 + 60¢/33 atm, and the
differential equation becomes

dp 60t dp 60t
o k( + 33 p) or dt+kp k( + 33> (5)

This is no longer a separable equation but a first-order linear equation, and it
must be solved in a different manner. Here we describe one possible method.

First we try to guess a solution. After examining the equation, we feel that
p = A+ Bt, where A and B must be selected, seems a possible guess. If we
substitute this into (5), we see that we get a solution if we can choose A, B so
that

t
B+I<:(A+Bt):k(1+%).

16
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The choice B = 60/33, with kA + B = k, hence A = 1—60/33k gives a solution

We call this a particular integral. If we then write

L 60, 1 |60, 60
u=mn-— — - — —pn—-1—= — -
P 33 k p 33" 7 33k

where p is any solution of the equation, it follows that

du dp 60 60t 60
au _ o B A O e =
g TRu= g TRP T 5y k( +33)+33 0

since p is a solution of (5).
If du/dt + ku = 0, then we can again use separation of variables to get

/ld_“dt:/kdt
u dt

which implies that —In |u| = kt + C, or u = Ae~**, where A is an arbitrary
constant. In this approach, v is usually called the complementary function. Thus,
if p is any solution of (5), it can be written as

60 1 60 1
:]_ R t— — :1 _ t— = A*k‘t.
p —1—33( k)—f—u +33( k)+e ;

that is, any solution is the sum of a particular integral and a complementary
function. The technique may be used on any first-order linear equation. To
satisfy an initial condition p(0) = py, we get

60 60
- 4 A= A=po—14 o
33k T4 TR0 O Po= 1+ 335
60t 60 60\ _u
P 33 33k+(p0 +33k)€ (6)
(/1)
60t 60 60 \ /1
S R I (e . 7
T3 Tk T (po - 33k) (2) @)

A similar solution could be obtained for an ascent from a given depth.

Example 6. Find the pressure in a 20-min tissue on arrival at a depth of
100 ft (4 atm) after a descent from the surface at a rate of 60 ft/ min.

The time to descend 100 ft at 60 ft/ min is 10/6 = 5/3 min.

The initial pressure is pg = 1, and k = In2/7T = .03466.

18
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Therefore,

60 5 60 60 1\ /12
— 14 — .2 — = 1.086.
p=1+33"3 33(.03466) + 33(0.3466) <2)

To do a complete dive, we would have to include these changes of pressure
in the complete diving schedule. We will not do this, although it is merely
tedious rather than difficult.

We note finally that if the descenthad been considered instantaneously,
the pressure after 5/3 min at a depth of 100 ft would be 1.17 atm.

Exercise

10. Find the tissue pressure for a 20-min tissue at the end of an ascent from
100 ft to 10 ft at a speed of 60 ft/min, assuming that the pressure at the
beginning of the ascent was 4 atm. Compare it with the pressure at 10 ft
after an instantaneous ascent.

10. Conclusion

In this Module, we have discussed a simple technique for derivation of
diving tables, which is based on a model proposed by Haldane. Although
modern diving tables cannot be devised by means of such simple techniques,
most of them have been developed by refinements to the simple model and
methods proposed by Haldane, as tempered by experience (see, for example,
Bornmann [1970]).

11. Solutions to the Exercises

All solutions use either (4) or its inverse:

T B
P = pe + (o — pe) (—) or t:Tln(pO pe)/1n2.
2 D — De

1. During the dive, p. = 3.5, t = 40 min, py = 1.
For T = 10, p = 3.344; for T = 20, p = 2.875. It is safe to ascend to
20 ft = 1.6 atm, because 2.15 x 1.6 = 3.44. The stop at 1.6 should be long
enough that an ascent to 1.3 will be safe. This requires that p be reduced to
2.15 x 1.3 = 2.795.

For T' = 10, this requires ¢ = 101n (
(o = 3.344, p. = 1.6).

3.344 — 1.6

SO T2 /n2 ~ 5.454 mi
2.795—1.6)/ n2 = 5454 min
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2.875—-1.6

For T' = 20, thi irest = 20In ( ————
or 0, this requires Oln <2.795 16
(po = 2.875, pe = 1.6).
Thus, a stop of 5.454 min is required. After 5.454 min, the pressure in
the T' = 20 tissue is 2.655, and that in the 7' = 10 tissue is 2.795.
The stop at 1.3 (10 ft) should be long enough that an ascent to the surface
(1 atm) is safe. This requires that p be reduced to 2.15.
2.795-1.3
For T' = 10, this requires ¢t = 10In [ ————— | /In2 ~ 8.146 min.
215-1.3
2.655 —1.3
For T' = 20, this requires ¢ = 201n (W) /In2 ~ 13.455 min.
A safe schedule is then a 5.454-min stop at 1.6 (20 ft) and a 13.455-min
stop at 10 ft. The total stopping time is 18.909 min.

)/ln2 ~ 1.870 min

2. By similar means as in Exercise 1, the pressures at the end of the dive where
Pe =4, p9 = 1,t =120 are: for T' = 10, p = 4; for T' = 20, p = 3.953; for
T = 40, p = 3.625.

Stop 1 at 1.9 atm: (This is safe since since 1.9x2.15 = 4.085.) Times to
reduce pressure to 1.6 x 2.15 = 3.44 are: for T = 10, 4.47 min; for 7' = 20,
8.296 min; for T' = 40, 6.547 min.

A stop of 8.296 min is required. After this stop, the T' = 10 tissue will
have a pressure below that of the 7' = 20 tissue, and this will remain true
for the rest of the dive. We need not consider the 7' = 10 tissue further.

After 8.296 min at 1.9, T = 20 has pressure 3.44 and T' = 40 has pressure
3.39.

Stop 2 at 1.6 atm: Times to reduce pressure to 2.15 x 1.3 = 2.795 are: for
T = 20, 12.5 min; for T' = 40, 23.4 min. From this point on we need only
consider the T' = 40 tissue. After stop 2, its pressure is 2.795.

Stop 3 at 1.3 atm: Time to reduce pressure to 2.15 is 32.584 min for the
T = 40 tissue.

The total time for all stops is 64.3 min.

3. The same dive as in Exercise 2. We consider the 40-min tissue only and
make three stops of equal time. The first stop is at 1.9, but the depth of the
remaining stops must be calculated from the condition of equal times.

After the dive, the pressure in the 7" = 40 tissue is 3.625. Ascent to 1.9 is
certainly safe.

Suppose that the second and third stops are at pressures p,, p3. Then
the diver must stay at 1.9 until p = 2.15p, must stay at p, until p = 2.15ps,
and must stay at p3 until p = 2.15. From the inverse of (4), the equalization

times are
40 3.625—-1.9 40 2.15ps — po
t1 In In

T2 \215ps—1.9) 2 \2.15p; — po
40 2.15p3 — p3

= ln .
In 2 2.15 — ps
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This gives
1.725 B 1.15 _ 1.15
_ o p3 o )
2.15p2 — 1.9 91582 _q 915 (i) 1
b2 P3

The last two equations give p3 /p2 = 1/ps, or p2 = p3. The first two then give
2.4725p3 —0.46p3 —3.70875 = 0. The only real positive solution is p3 = 1.199.
Thus, ps = p3 = 1.438 and ¢; = 21.438. The total stop time is 3t; = 64.314, a
very small improvement. We can verify that after the first stop, the 7' = 20
pressure is 2.877 and the 7' = 10 pressure is 2.375, both below the 3.092
(= 2.15 x 1.438) of the T = 40.

. We assume that the tissue pressure at the beginning of the ascent is py, which
is known. The three stops will be at pressures p1, ps, p3, where p1 = pg/2.15
and the pressures at the ends of the stops will be 2.15p,, 2.15ps, 2.15. The
times at each stop will then be

T Po — P1 T 1.15
t, = In = In| —————1,
In2 2.15p2 — ;1 In 2 915 P2 _4
P1
T 2.15p2 — po T 1.15
to = In = In| ————
In2 2.15p3 — p2 In2 2‘15@ -1
P2
T 2.15ps — p3 T 1.15
t3 = = In
In2 2.15 —p3

o 1
In2 2.15 (—) 1
p3

We wish to minimize ¢; + t2 + t3 by choosing ps and ps. This is equivalent
to maximizing

F(pa,ps) = In (p—Z—M) +ln <@—M) +ln (i—M),

D1 D2 D3
where M = 1/2.15 and p; is known. Using calculus, we find

OF 1 1 1 -
o () -
P2 (22 B M) p1 (@ B M) ps
b1 P2
OF 1 1 1 ~1
Ips (@ 3 M) p2 (i B M) p3
P2 p3
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This gives
D2 _ D3 _ 1
pa—Mpr  p3—Mps 1— Mps’

and hence p3 = p1ps, p2 = p3, and finally

1/3 2/3
D3 =p1/ ) P2 =p1/ .

R 1.15
= = = 1 .
T 2 g%

(For po = 3.625, wehave p; = 1.686, p = 1.417, p3 = 1.190, t; = 20.482 min,
and the total time 3t; = 61.447 min.)

This also gives

5. For a safe continuous ascent, the external pressure should be the tissue
pressure divided by 2.15. The differential equation for p(¢) then becomes

dp B P B 1.15 B
%_k(pe_p)_k<2.15 p)‘ FoqsP  k=W2/T

dp

— _ 535kp.
dt P

The solution of this equation is p = p(0)e~-53%*, where p(0) is the pressure

at time ¢ = 0. The diver’s depth at time ¢ is related to p.(¢)(= p(t)/2.15) by

d
Lt gy = pe(t) = p(0)e235%t /9 15,

For a long dive at 4 atm and 7" = 40, we have

1\ 535t/40
d=33x1.86 (5) - 33

1\ 0134
=33 [1.86 (5) — 1] .

The time to ascend to the surface is the value of ¢ at which d = 0, that is,

1 Inl.86

[ ~ 66.81.
t 0134 In2 06.8
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6. If the partial pressure of nitrogen is 0.8p, where p is the tissue pressure,
then the maximum safe pressure for the nitrogen is 0.8 x 2.15, so that the
condition p < 2.15 is retained. Moreover, if the external gas pressure is p.,
the external nitrogen pressure is 0.8p., and the equation for absorption of
nitrogen will be

& (89) = K(Sp. — 8p)

with initial nitrogen pressure .8py. Thus, the differential equation for the
pressure is the same and the criterion for safe ascent is the same.

7. Table 5 gives the pressures at the ends of the stops for the half-times 5, 10,
20, 40, and 75 min.

Table 5.
Pressures at the ends of the stops for the dive of Exercise 7.
Safe pressure
5 10 20 40 75 at next stop

45min at3.58 | 3.57 | 3.46 | 3.04 | 240 | 1.88 4.08
2min at 1.9 3.17 | 326 | 296 | 2.38 3.44

7 min at 1.6 262 | 267 | 2.29 2.795
15 minat 1.3 211 | 2.06 2.15

From the table, we see that a safe pressure has been reached to ascend
to the next stop in all cases. The blanks in the 75 column have not been
calculated, since they will all be less than 1.88. In the 5 column, the blanks
will be less than the corresponding entries in the 10 column, and the final
entry in the 10 column will be less than that in the 20 column.

8. First dive at 3.4 atm for 15 min. Pressures will be for T' = 20, 1.97; for
T = 40, p = 1.55.
After 60 min at the surface, p. = 1. For T = 20, p = 1.12; for T = 40,
Descent to 4 atm. Diver may remain until tissue pressure is 2.15. For
T = 20, this requires 12.77 min; for T' = 40, 24.12 min.
The diver must still return to the surface after 12.77 min.

9. First dive 4 atm for 10 min. Pressures: for 7' = 20, p = 1.88; for T' = 40,
p = 1.48.
After 60 min at 1 atm: for 7' =20, p = 1.11; for T' =40, p = 1.17.
Second dive to 3.4 atm until p = 2.15. For T" = 20, 17.47 min; for T' = 40,
33.40 min.
The diver must ascend after 17.47 min.
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10. We use (7). The time for ascent is 90/60 = 3/2 min, so we have

08 (s B () e
33 2 33(In2/20) 33(In2/20) / \ 2 T

A stop of 1.5 min at 10 ft (1.3 atm) reduces the pressure to 3.86 atm.
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