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Zitle: SOME APPLICATIONS OF EXPONENTIAL AND
LOGARITHMIC FUNCTIONS

duthor: W. Thurmon Whitley
Department of Mathematics
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West Haven, CT

Beview Stage/Date: 1IIT 7/28/81
Llassification: APPL CALC/ARCH, MED, POP GROWTH

laxget Audiepgce: Second and third semester calculus courses.

Abstract: This unit contains five examples of expomential and
logarithmic functions being used to study the behavior of real-world
phenomena. The examples study the technique of dating very old
objects by using the radioactive element of carbom-14, the infusion of
glucose into a patient'sa body, and increage and decrease in the sizes
of populstions of organisms in the cases in which the organisms
compete among themselves, and in which they compete with other
species, Students reinforce differentiation and integration
techniques from elementary calculus which invelve either expomential
or logarithmic functions, observe techniques from elementary calculus
being used to study the behavior of real-world phenomena, are able to
construct mathematical models of some simple real-world sitvations,
and understand assumptions and refinements needed in the cotstruction
of mathematical models,

Frerequisites: Understand differentiation and integration of
exponectial and logarithmic Functions, infinite limits, L'Hopital's
Rule, and integration by partial fractions.



1.  INTRODUCTION

In this unit, we discuss some applications of two
¢losely related types of functions-exponential functions
and leogarithmic functions, These functions occur frequent-
ly in the study of phenomena in which the rate of growth or
decay of some substance is closely related to the amount of
the substance present at each instant of time,

Throughout this module, In x, where x > 0, will denote
the natural logarithm of x, and e will denote the base of
the natural logarithm. Recall that e is an irrational num-
ber whose decimal value is between 2.71828 and 2,71829.

2. RADIOCARBON DATING

2.1  Yow Rapdiocarbon Dating Works

One of the most important breakthroughs in modern
archaelogical study was the discovery in 1947 of the tech-
nique of radiocarbon dating to determine ages of once-
living organisms. This technique was discovered by W. F.
Libby, an American chemist, who won the Wobel Prize in
Chemistry in 1960 for his work.

Here is how the technique works. All livin?ztissue
contains carbon, mostly in the form carbon-12, C° %,
However, while the tissue iz alive, it also absorbs carbon-~
14, s from the atmosphere. (Carbon-14 is a radioactive
isotope produced by cosmic rays.) While the tissue is
alive, it contains 15.3 atoms of C disintegrating every
minute for each gram of C in the tissue._ When the tissue
dies, it is no longer able to absorb the €7, go the in
the tissue begins to decay.

Scientists assume, on the basis of substantial
evidence, that the half-life of C14 is about 5730 years.
{That is, at the end of any period of 5730 years, the
amount of C remaining is half of what it was at the
beginning of the pericd.)

Let us assume that we wish to determine the age of
some very cold object. A small sample (about one cunce) is
carefully cleaned to remove any younger or older carbon-.
containing material such as tree roots or crude oil. The
material is then burned to form carbon dioxide. This
carbon dioxide, after purification, is either measured
directly in a Geiger counter, or first converted to ele-
mentary carbon black and then measured in a Geiger count-
er, to determine the amount of C still present. Since
the amount of ¢ 4 in living tissue is known, the age of the
object can then be estimated using Egquation (2.6) below.

For objects up to about 50,000 years old, this tech-
nigue works reasonably well. Many of its findings have



been confirmed by a recently developed dating technigque
called thermoluminescence dating., Other techniques have
been developed in recent years to determine the ages of
objects more than 50,000 years old. See the references for
this section,

uation 4 Dec

Now let us look at the mathematics of radiocarbon
dating. Let y{t) denote the number of grams of cl4 present
in a once-living organism t years after its death. Tt is
reasonable to assume that y is a continuous function of t.
Further, based on experimental observation, scientists feel
that it is reasonable to assume. that

(2.1) X2 ky, k <0,
where k is constant. That is, the rate of decay is
propertional to the amount present at time t,

T m 4 a

Eguation (2.1} has a unigue solution for y, the number
of grams of cl4 present in a sample, in terms of t, namely

(2.2 y{t) = cekt,

where C is a constant. (In Exercise 1 you will be asked to
verify that this function is indeed a solution of Equation
(2.1). You will see how to derive this solution in Section
3.2.) By substituting 0 for t in Equation (2.2}, we see
that C = y(0), the amount of cl4 present when the organism
dies.

Since clé has a half-life of 5730 years, we obtain

L yto) = yroyek 5730
1 _ 5730k
(2.3) 5 = €
1n % = 5730k
) - _in2
5730°

Hence, Eguation (2.2) becomes

(2.4) y{t) = y(pye {1n 2/5730)¢

Alternatively, using the fact that 2 = el? 2, we could
write Equation (2.2) as

(2.5) y(t) = y(o) 27t/5730,
See Figure 2-1 for the graph of y{t).
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Figure 2-1. The carbon-14 decay function, y(t) = y(ﬂ)z‘t/5730.

2.4 How 0ld is the Object?

Let us carry Equation (2.4) (or Eguation (2.5} if you
prefer) one step further. Since we are interested in
values of t for specific values of y, we Equation {2.5) for
t, we obtain

(2.6) t = -[fllfl-lg]m [}%—E—gﬂ )

Equation (2.6) can be used to calculate the age of the
cbject, (See Exercises 2 and 4.}

Exezcises
). (a) Verify that the function y(t) in Equation (2.2} is a selutiom
of Equation (2.1} by direct substitution.

(b) Solve Equation {2.4) (or Equatiom {2.5)} for t, and thus
derive Equation (2.6).

2. (a) A fossilized bone of a man found in Western Pemnsylvania
contained approximately 17 per cent of its original cl4,
Estimate the year the men died. (Assume that the discovery
was made in the year 2000 A.D.)

(b) Do part (8) under the assumption that the bone contained 18
per cent of its original cl4,

{c}) Do part (a) under the assumption that the bone contained 16
per cent of its original clé. po you see the effects on the
age estimate caused by 2 relatively small error in the
estimate of the amount of cl present?



3. Fetimate the percentage of cl4 present in the body of an organigm
2000 yeare after ite death,

4. A bone uncovered in Kenya was found to contain only 10 per cent of
its original cl4, Approximately how long ago did death occur?

3. INTRAVENOUS FEEDING OF GLUCOSE
3.1 An outli f the Probl

An important medical process is the infusion of glu-
cose into the bloocdstream of an ill person. Let us assume
a physician decides to give glucoke to a patient at a rate
of ¢ grams per hour. At the same time the glucose is being
infused into the blcodstream, the body is converting the
glucose and removing it from the bloodstream at a rate ap-
proximately proportional te the amount present at each
instant of time. The physician needs to know much glucose
is actuvally in the bloodstream at any given time, The phy-
sician also needs to know how long is regquired to raise the
glucose level in the body to a given level.

3.2 A Diff tial Equati ) 1t ]
Glucose Problem

The "glucose problem” involves a differential equa-
tion, that is, an equation involving derivatives of a
function. We digress briefly to derive the solution of
this equaticen, .

The differential equation we wish to consider is
(3.1) Liagw) =b
where a and b are constants, a # 0, and f is a differ-
entiable function of t. (Eguation (2.1) is a special case
of (3.1), with b =0, a = =k, and £ = y.)

Multiplying both sides of Equation (3.1) by e3%, we
obtain

(3.2) et gf + ae?t £(r) = pedt.

Now from the product rule for derivatives, we see that the
left side of Equation (3.2) is the derivative

23 (eereaty.

Thus, Eguation (3.2) becomes
(3.3) =3 (£(1re?h) = pe®t.

Integrating both sides of Equation (3.3) with respect
to t, we obtain



(3.4) f(t)edt =

g eat + k, k constant.

If we set t = 0 in Equation (3.4), we see that
= _b
k = £(0) a

Substituting this expression for k into Equation (3.4) and
multiplying both sides of the resulting equation by e"at,
we obtain

{3.5) £ = Ry o(fio) - By e

Equation (3.5) is the general solution to Eguation (3.1).

Exercise
5. Show, by direct substitution that the function given by Equation
(3.5) satisfies Equation (3.1).

3.3 The Amount of Glucose Present at Time &

Now let us return to the "glucose problem”™ of Section
3.1. The glucose is being infused into the bloodstream at
a constant rate of ¢ grams per hour. Further, let us as-
sume that the glucose is simultaneously being converted and
removed from the bloodstream at a rate of r grams per hour
per gram of glucose.

: This latter statement means that for each gram of glu-
cose in the bloodstream, r grams of gluccse will be removed
from the blocdstream in one hour, Thus, for example, if
there are 10 grams of glucose in the blocdstream at some
point, 10r grams will be removed during the next hour.

Now let G{t) denote the number of grams of glucose
present in the bloodstream at time t. Since the rate at
which G{t) is changing is the rate at which glucose is
being added minus the rate at which it is being removed, we
have the equation

46 . ¢ - roany,

or equivalently,

(3.6) g% +r Gt} = c.

Observe that since r and ¢ are constants, {3.6) is in
the form of Equation (3.1). Then from Equation (3.5), with
the substjtutions f = G, a = ¢, and b = ¢, we find that the
amount of glucose present in the bloodstream at time t is

(3.7 6tr) = £+ (6(0) - P e rE,



Note that to determine G(t) specifically for a given value
of t, the physician must know not only the infusion rate ¢
but also the conversjion rate r and the amount G{0) of
glucose initially in the bloodstream. These latter two
constants are determined by clinical measurements. (See
the answer to Exercise 8 for a grapbh of Egquation (3.7).)

3.4 Equilibrium Poi

Equation (3.7) can give us an additicnal piece of
important information. If G(t} is given by Egquation (3.7),
we see that

(3.8) lim G(t) = %

t 4o
The number c¢/r is called the equilibirum point. If
the infusion were continued for a long pericd of time, the

number of grams of glucose in the bloodstream would ap-
proach c/r.

Exezcises
6. Assume the physician orders an infusion of 10 grams of glucose per
hour for g certain patient. Laboratory technicians determine that
the patient has 2 grams of glucose in his bloodstream just prior
to the start of the infusion, and that the patient's body will
remove the glucose from the bloodstream at a rate of 3 grams per
hour per gram of glucese.
(a) How much glucose will be in the patient's bloodstream t hours
after the infusion is started?
(b) How much glucose will be in the patient's bloodstream after 2
hours?
(¢) How long will it take for the glucose level in the blood-
stream of the patient to reach 3 grams?
(d) Find the equilibrium amount of glucose in the bloodstream.

7. Suppose the bloodstream of a patient has 2 grams of glucose. Her
physician wishes to bring this amount up to 3.5 grams in 3 hours.
It is determined that the patient's system removes glucose from
her bloodstream at a rate of 4 grams per hour per gram of glucose.
How fast should the physician order the glucose to be infused into
the patient's body? :
8. (a) Using the first derivative, show that if G{(t) is given by
Equation (3.7), G(0) < e/r, and r > O, then G(t) is an in-
¢reasing function. (This will show that the glucose level is
always increasing toward the equilibrium level of ¢/r, rather
than sometimes being above ¢/r and sometimes below it.)
(b) Under the assumptions of 7(a), show that G"(t} < 0 for all t.
{c} Sketch the graph of Equatiom (3,7) for t > 0, aseuming that
r >0 and G(D) < ¢/r.




4. POQPULATION GROWTH - A COMPETITION MODEL
4.1__The Basic Problem
In this section, we will study populations in which
members of the group compete among themselves for food,.

water, etc, This competition will, in all likelihcod,
retard the growth rate of the group.

4,2 The Fundamental Assumptions of the Model

Let A(t) denote the size of our populatjon at time t,
with initial population size A{0) = R. If our population
were to grow without restriction, a reasonable model of its
growth would be

g% =r A, r > 0.
That is, the rate of growth would be proportional to the
size of the population,

However, let us assume that competition between indi-
viduals tends to slow the growth rate. Suppose that two
members of the group compete for resources (food, water,
etc.) until one of the twe succeeds in taking over the
resources of the other. The loser then competes with one
other member of the group to obtain a new supply of food
and water. Such a situation might occur when 2 population
controls a large territory, with each individual in the
group controlling a smaller subterritory. One example
might be a swarm of insects in a tomato patch, one bug to a
leaf. At any given time there are A(A-1)/2 possible pairs
of individuals which may be engaged in such competition.
It then seems reasonable to assume that the rate of
population growth is retarded by an amount proportional to
A(A-1}/2.

From our assumptions in Section 4.2, we have

g{ = r A-cA(A-1) , r >0, c>0

{4.1) k A - cal , k=1 +¢

A (k - cA).

For simplicity, let M = k/¢. Then Equation (4.1) becomes
(4.2} g% = ¢ A(M-2)

.or equivalently,



1. dA
4.3 A(M-A) dt ~

4.4 The Si f the P lati i
Using partial fractions, we see that

l__11l,.1,
A{M-R) M A M-A" "

C.

Hence, integqrating Equation (4.3) with respect to t, under
the assumption that ¥ - A(t) > 0 for t > 0, yields

(4.4) h (ln A - 1n(M-A)] = ct + ¢, ¢ constant,

or equivalently,

(4.5 wbe = e,e™t, e, = M.

Note that in obtaining Equation (4.4}, we agsumed that
M - A(t) > 0. This is equivalent to assuming that k - ¢ A
> 0, In light of Equation (4.1), if the population is to
be increasing in size, this latter assumption is not unrea-
sonable, However, as we shall see below, all we actually
need is that either 1M -~ A(t) > 0 or M - A{t) < 0. (See
Exercise 10.)

Now solving Equation {4.5) for A, we obtain

Mc
(4.6) A(t) = ——2 |
c, +e
2
Using the fact that A(0) = N, we have
- M_N
(4.7} A(t) = Wt -

N + (H-N)e ©

Recall that in obtaining Equation {(4.4) we assumed
that M - A(t) > 0. However, it can be shown by direct sub-
stitution, that, so long as N + (M-N)e €Mt is not zero,
Equation (4.7) is a solution to Equation {4.1). Hence, the
requirement that M - A(t) > 0 is not necessary.

Note that if M > N, then N + (M-n)e ®Mt will always be
positive. )

3 ] lati T

Let us see what we can learn about our population from
Bquation (4.7).

First if we assume that M > N, manipulation with some
inequalities shows that N £ A(t) < M for all t > 0. Now
recall that M = (r + c)/ec = {r/c) + 1, and that r is a
-"growth" constant and ¢ is a "competition™ constant. Then
we see that if r is sufficiently bigger than ¢ (so that



{r/c} +1 > N}, the population size never gets below the
initial size N, and never gets above M.
Further, observe that

lim A(t) = M.

t e
Thus, M is the least upper bound for the population size.
4.6 _The Maxi F £ a f lati si
If we compute the second derivative A" (t) of A(t} from
Equation (4.7), we see that A{t} has an inflection point

= - -1 N
Y = T R -

Further, we see that the graph of A(t) is concave up for
0Lt < t; and concave down for t > ty. (See Figure 4.1).

AlL)

M

l
i
1
1
t

Figure 4-1. Graph of A(t), the population size at time t.

1 t

Thus, dA/dt, the rate of increase of the population
size attains a maximum at t;. By direct calculation, we
see that A(tl) = M/2. Hence, the rate of growth increases
until the population reaches half its maximum size; from
that point on, the rate of growth decreases. ({See Figure
4.1}

m is ic

Equations of the form of Equation (4.1) were first
introduced about 1840 by the Belgian sociologist P. F.

- Verhurst. Verhurst used such equations, now called
logistic or saturation curves, in studies dealing with the
increase in human populations.

Logistic equations were rediscovered in the 1920's by
American biclogists R, Pearl and L., J. Read. They are now
used to study such diverse problems as population growth of-
fruit flies in biology, and learning rates in psychology,
(See, for example, Problem 3 on the Model Examination.)



Exercises
9. In Equation (4.56) find an expressiom for cy in terms of M and K.

{Hint: Use the fact that A(0) = N.)

10. Derive an equation for A(t) under the assumption that M - A{t} <
0 for all t. Use Equation (4.3)., (Hint: The equation

KIE{ET ge = ¢ is equivalent to the equation ;II%E? gﬁ = - .}

11. Suppose M = 200, N = 50, ¢ = 1

2
(a} Find t such that A{t) = 100.
(b) Find t such that A(t) = 150,
{c) Find t such that A(t) = 190.

2. WOLVES VERSUS RABBITS

5,1 A Battle For Survival

Now we will study a model of population growth in
which one species is the principal source of food for an-
other.

Suppose some wolves and some rabbits live in a certain
forest, Of course, the wolves eat the rabbits. In fact,
wve shall assume that the rabbits are the principal food
source for the wolves. However, if the wolves eat too many
rabbits, so that few rabbits are left, the food scurce for
the wolves will be greatly diminished. The wolves will be-
gin to die off or leave the forest. As the wolf population
decreases, the rabbit population will begin to increase,
since not as many rabbits are being eaten. With the
increase of the rabbit population, more food will become
available for the wolves, so the wolf population will again
begin to grow.

In this section, we want to look at a model for this
"wolf-rabbit" competition. Our model was first described
about 1925, independently, by A. J. Lotka, an Amerjican
biophysicist, and Vvito Volterra, an Italian mathematician.
(See references for this section.) 1In his work, Lotka was
studying the effects of certain parasites feeding off, and
thus killing, most insects. Volterra was studying the
Italian fishing industry just prior to and during World War
I. The "wolves" in Volterra's study were sharks, and the
"rabbits" were edible fish. The model we will disucss very
closely approximated the observed situations in both
Lotka's "parasite™ study and Volterra's "fishing™ study.
Since the original work of Lotka and Volterra, their model
and its refinements have been used to study predator-prey

10



teraciunsnlps DETWeeN Species 1N a wlae variety oL
situvations., See, for example, Huffaker, Leslie and Gower,
and Pielou in the references for this section.

5.2 The Underlying 2 e { the pasi
Equatione

Let x(t) denote the number of rabbits present at time
t, and let y(t) denote the number of wolves present at time
t. Our first task will be to write dx/dt and dy/dt as
functions of time t.

First, consider the rabbits. If the rabbits were per-
mitted to grow without restraint, i.e. without being eaten
by wolves, the size of the population would grow very
rapidly. Then a reasonable model of the rabbit growth rate
would be

dx

at - X

where r is a positive constant. This equation is the usual
Malthusian exponential growth equation. 1In fact, however,
the rabbits are being restrained (eaten}, so that their
growth rate is diminished. We assume that this "diminish-
ing™ is proportional to the number of possible pairs of
wolves and rabbits since the two species normally interact
in pairs. (One wolf eats one rabbit.) Thus, a reasonable
assumption for the rate of growth of the rabbit population
is

(5.1) gf = X - axy

where r and a are positive constants.

Using similar reasoning, we obtain as a model for the
rate of growth of the wolf populaticn
(5.2) g{ = -sy + bxy
where b and s are positive constants.

Note that b is assumed to be positive since, with lots
of rabbits available, the wolf population will increase.
1f few rabbits are available, the wolf population will
decrease. Thus, we also assume that s is positive,

Equations (5.1) and (5.2) are called the Lotka-
Volterra equations,

5.3 An Equati lati he lati .

Since the number of wclves will depend upon the number
of rabbits available for food, we assume that y is a
function of x. Then from the chain rule for derivatives,
we have

11



dy _ dv dx
dat dx dt°
Equivalently,
(5-3) Sl_‘l = Mit .Lb.K;E.L!

dx = dx/dt - (r - ay)x °
Rewriting Equation (5.3), we obtain

(5.4) (E-a) Few-5.

Integrating Equation (5.4) with respect to x, we obtain
{5.5) r Iny - ay = hx. - & 1n.x + k,. k constant,

or,

(5.6} r lny + s lnx ~ ay ~ bx = k.

Using properties of the natural logarithm function and
the exponential function, we obtain an equivalent form of
Equation (5,.6) te be

r s
(5.7} - A c, ¢ constant.
ay _bx
e e
Equation {5.7), which we shall call the "wolf-rabbit"
equation, is the basic equation we shall use to investigate
the "wolves versus rabbits" survival situation described in
Section 5.1.

Exercise
12. Derive Equation (5.7) from Equation (5.6).

5.4 Soluti to the Wolf-Rabbit E .
Now let us assume that y is a fixed number. We want
to determine how many corresponding values of x there are.
That is, for a given number y of wolves in the forest,
could there be more than one size x for the corresponding
rabbit population?
Equation (5.7) can be rewritten as

LI,
ebx y[

Now let £{x) = x5/ePX, Using the first derivative test
(see Exercise 13), we see that f({x) has a unigque relative
maximum when x = s/b and no relative minima. Further, £(0)
= 0, and by use of L'Hépital's Rule, we see that

lim £(x) = 0.

X »

12



Thus, f(x} assumes each positive value less than f(s/b)
exactly twice, and it assumes the values f{s/b) and 0

exactly once each. The graph of f{(x) is sketched in Figure
5-1.

£(x)

1
s/b X
- s, bx
Figure 5-1. The graph of f(x} = x /e .

From our analysis above, we can conclude that if the
wolf population size y, is such that

s
oy &
c e 5 _ Ab
< £(7) =
r b 5
Y e
then there are exactly two corresponding sizes for the
rabbit population; if

a
e e _ g

then there is exactly one size for the rabbit population,
namely x = s/b; if

ay
=30 il &
y[ > f(b)l

no solution for x is possible.

A similar analysis holds if we assume the rabbit
population is fixed and try to determine the number of
corresponding values for y.

Maxj injmum 31 of t
Sizes

Next, let us see if there are bounds on the population
sizes of the two species.

From Eguation (5.1}, we see that if x has maximum or
minimum values, such values must occur when y = r/a. Let
us suppose that exactly two values of x, say ¥; and x,,
exist such that (x,, r/a) and (x4, r/a) satisfy Equatien
(5.7). [(Recall our results on the number of solutions to
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Equation (5.7) from Section 5.4. Also see Exercise 13(a}).)
Computing dzx/dt2 from Equation {5.1), we see that a member
of the set {%;,x3} less than s/b yields a minimum for x,
vhile a member of the set {x;,x;} greater than s/b yields a
maximum for x. (See Exercise 13.}

Similarly, we can use Equation (5.2) to show that
maximum and minimum values for y occur only if x = s/b. If
the constants are such that there are two values of y, say
y, and Yar such that (s/b, Yl) and (s/b, Yo) satisfy
Equation {5.7) (see Exercise 14), then the maximum for y
will be the member of the set {y;.,y,] that is greater than
r/a, and the minimum will be the value of y which is less
than r/a. Again, see Exercise 13.

We have shown that for most values of y, there are
either exactly twe or zero corresponding values of x
satisfying Egquaticn (5,7), Similarly, we have shown that
for most values of x, there are either exactly two or zero
corresponding values of y satisfying Equatioen (5.7). These
results suggest that the graph of the Wolf-Rabbit equation
may be somewhat like an ellipse or an oval.

B

s/b
Figure 5-2. Graphs of the Wolf-Rabbit Equationm.

We give several possibilities for the graph of
Equation (5.7) in Figure 5-2. The outer paths correspond
to smaller values of c.

One further point is worth noting here, From Equation
{5.1), we see that dx/dt > 0 if ¥y < r/a and dx/dt < 0 if y
> r/a. Thus, x is increasing if ¥ < r/a and x is decreas-
ing if y > r/a., This tells us that the motion around each
path in Fiqure 5-2 is counterclockwise.

5.7 The Average Population Sizes
If z = h{u) is a continuous function of u on a closed

interval a"< u £ b, the average value of h{u}, Z, is de-
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fined to be
7= 1 [b h{u} du.

" b-~ala
Using this definition, we are able to calculate the
average number of wolves and the average number of rabbits
Present at any givenh time.
Let T denote the time necessary to complete one cycle
of Figure 5-2. Then since the functions x(t) and y(t) are
cyclic, we have

y=1% F yt) at, ¥ =1 IT x(t) dt.
0 0

From Eguation (5.2) we have

1 dy _ -
y at = bx s
so that
=1 L dy
X = (s + v dt).
Therefore,

*

T
= i 1 1 dy
== I; b (s + y dt) dt

T

E% {st + 1n y(t) 0

1
br ST

B
b *

Note that in the preceding equation, we need the fact
that y(T}) = y(0}) > 0. Thus, the average number of rabbits
present at any given time is s/b. (Be sure to carry out
the details).

Similarly, using Equation (5.1), we find that the
average number of wolves present at any given time is r/a.
(5ee Exercise 15.)

5.8 Limi . £ 1) 1e]
You should be aware that several factors have not been
taken into account in this model. First, we bhave assumed
that the only cause of diminution of the wolf population is
a lack of rabbits for food. We have not taken into account
such factors as hunters, forest fires, other food sources,
Can you think of some other factors we have neglected?
(See Exercise 17.)
Similarly, we have assumed that the only cause of

15



diminution of the rabbit population is predation by wolves,
We have ignored such factors as hunters, other predators,
and food supply. What other factors could affect the size
of the rabbit population? (See Exercise 17.)

In spite of the omissions just mentioned, studies have
shown that our model gives good approximations to the
interaction between certain species in many "predator-prey"”
situations. (See the references for this section.}

Exercises
B
13. Let f£(x) = —f;. § >0, b>0,x >0, Using the first
e

derivative test, show that f(x) has a unique relative maximum
when x = a/b, and that f(x) has no relative minime.

&z

14, (a) From Equation (5.1) compute 2
dt

(B) Let (x;, r/e) be 2 solution of Equation (5.7). (See the.
discussion in Sectionm 5.5). By substitution in d2x/del,
show that if x; < s/b, then x{t) is a minimum, and if %) >
s/b, then x(t} is a maximum. (Hint: From Equation (5.2},
dy/dt = -sy + bxy.)

(¢) From Equation (5.2}, compute dzyldtz.

(d) Let (s/bs y;) be a solution of Equation (5.7). (See the
discussion in Section 5.5.) By substitution in dzy/dtz.
show that if y, > r/a, then y(t) is a maximum, and if ¥1 ¢
rfa, then y(t} is a minimum. (Bint: From Equation (5.1).
dx/dt = rx - axy.)

15. (a2} Using methods similar to those in Section 5.7 show that ¥ =
rfa.
() 1f a=2,b=3,1=120, and s = 450, find the average
number of wolves present, and the average number of rabbits
present at any given time.

16. (a) Assume that values for a, b, r, and s are given. Show that
in order for there to be two values of x, say x) and x4, for
which (x}, r/a) and (xy. r/a) satisfy Equation (5.7), it
must be true that

(5.8) c ¢ Db

(Hint: Recall Section 5.4.)

(b) Compute the right side of the inequality in (5.8) for r = &,
a=2,8=3,and b =1, to two decimal places. (You will
probably need a calculator for thie exercise.) This will
give the least upper bound for values of c.

16



17.

(a) List some factors. other than those given in Section 5.8,
which could affect tha size of the wolf population.

(b) List some factors, other than those given in Section 5.8,
which could affect the size of the rabbit population.

6. MODEL EXAMINATION

Find the percentage of the original amount of cl? in
the remains of an organism 50,000 years after the death
of the organism.

Newton's Law of Cooling states that the rate at which a
body cools is proportional to the difference between
its temperature and the temperature of the surrounding
medium, Suppose an object is placed in air whose
temperature is 30°C. Let y(t) be the temperature of
the object at time t, (t measured in hours) and let K
be the constant of proportionality.

{a}) write a differential equation for the rate of
change of the temperature of the cbject.

(b} TIf the initial temperature of the object is 1209,
and its temperature one hour later is 60°C, find
an expression for y(t) as a function of t. (Hint:
The technique developed in Section 3.2 may help to
solve your eguatien in part (a).)

(c) How long does it take for the object to cool to a
temperature of 40°cC?

A learning psychologist is trying to teach a group of
monkeys to do a certain trick. He works with each
monkey over a period of time. The monkey is rewarded
each time it performs the trick correctly. It is hoped
that this increases the chances that the monkey will
perform the trick correctly at future times,

Let p(t)} denote the probability that the monkey
will perform the trick correctly t minutes after the
start of the experiment. The psychologist deduces that
a reasonable expression for the rate of change of p(t)
is

%f = kp laf{l-p) - bp]

where k, a, and b are constants, a > 0, b > 0, and
[a(d-p) - b p] > 0.

{a) Derive an expression for p(t) in terms of k, a, b,
and p(0). (Hint: Pirst group "like terms" in the
brackets portien of the above equation. Then use
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6.

7.

8.

techniques similar to those used in Section 4 to
solve the equation for p(t).

{b) Find lim p{t)}.
t-kﬂ

Remark. The model discussed in the problem above
was developed by Robert Bush and Frederick
Mosteller, two pioneers in the field of learning
psychology. {See the references for Section 6.}

l4__lﬂﬂﬂiEB§_IQ_ElEB§1§ES
(a) y'(t) = ky(0)ekt = ky(t).
(b) Take the natural logarithm of both sides of the equation.

(2) About 12648 B.C. {about 14643 years ago.)
(b} About 12176 B.C. (About 14176 years ago.)
(c) About 13149 B.C. (About 15149 years ago.)

78.5%
About 19035 years ago.

First of all, we differentiate

£(t) = ': + [f(u) - E]e'“

to obtain

daf
dt

0-a F(u) - f ]e'“t

- af{0) e 4t + pedt

when we add this latter expressiom tc
a €(t) = b + & £(0) "8t - peat

we get Equatiom (3.1):

4f -
gt e f(t) = b.

(a) ©(r) = 10/3 - (&4/3) e73%,

(b} 3.33 grams.

(c) 0.46 hours or between 27 and 28 minutes.
(d) 3 1/3 grame.

About 14 grems per hour.

{a} G'(t) = - {G(O)} - /) e Tt > 0,
{b) e"(e) = {G(0) - e/r) r? eEE < 0,
(e) 6{r).

18



“ie

G(t)

G(0)
t

Figure 7-1. Graph of G(t) = e/t + (G(O)-(c/1))e rt'

.
LA TR VeI
_ . MN
10, Afe) = .
Ne(M-F) e OF
11. (a} 0.011.
(v) ¢.022,
(c) ©0.040.

12. riny+ s lnx-ay - bx =k
Iny* + 1n x® =z ay + bx + k

1n y¥x® = ay + bx + k

y¥x® = By +bxtk
= 3V, ePX, oK
8

EAls = gF
ayf| bx *

e e

In Equation (5.7) the constant e¥ is denoted by the letter c.
L,sld .y
1 3 -
13. £'(x) = bx

£'(x) > 0 for x < /b and £'{x} < 0 for x > s/b.

2
da°x _ _ gz _ _ds _ _ d¥
14, (a) NERT e YT g

(b) From Equation (5.1}, if y = r/a, them dx/dt = 0. Then if x

= x; and y = r/a, we have

s, dx
dtz 1 de

-ax; {(-sy + bx;y)
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= -axyy (-5 + bx)

= -rx; (-8 + by ).

Then

s dx

7°0 ifx <2 aa R <o if x; > /b,
dt at?

2
dy _ __dy dx dy
(=) 4l fac " Par ¥TEX 4

(d) From Equation (5.2), if x = s/b, then dy/dt = 0. Then if x
= 8fb, ¥ = ¥ s we: have

dy ., &
2 71 de
dt
= by, (rx - axy,)
= by;x (r - sy;)
= 8y) (r - ay;).
a’y £ g 3
Therefore, >0 if y, <« * and <0 ify > L,
dt2 1 =a d 2 1 a
t
=4 T -4 (Tsa _ldx - £
15. (a) ¥ = T JO y{t) dt = T I a (r - dt) dt = a
0
(b) Average number of wolves: 60

Average number of rabbits: 150

s

ay jil

16, (a) Since s_g;_ < g v we must have
y e

E:
b

¢ < ,

eﬂy es

1f y = r/fa, we have

(b) 0.39.

17. (a) Severe weather such as draught, and snowstorms; disease.
(b) Severe weather; disease.
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B. _ANSWERS TO MODEL EXAMINATION
1. !13%%%%l = 0024, i.e. about .24 per cent.

2. (&) dyfdt = k(y(t) - 30}. y(t) the temperature at time t, k
constant.

(b) y(t) = 90 &kt + 30
y(t) = 90 (1/1)% + 30, or y(t) = 90 (37%) + 30 ox
gt) = 90 e t1m3 4+ 30,

(e} 2 hours.

akt

~ _ o ploy
3. (a) plt) = 1R (2 K = a(a+b)p(0)

: N :
(b) :immp(t) = 2 b
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