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Introduction

During the years 1939-49, the Soviet fisheries biologist Victor S.
Iviev conducted an influential study of the feeding patterns of fish,
which he recorded in journal articles and a book, translated into
English in 1961 [Ivlev 1961]. His work defined the discipline of
trophic ecology, which he called the scientific study of the “ecologi-
cal problems of the feeding of animals” [Iviev 1961, 3].

This research involves the study of the ration, or amount (weight)
of food eaten per animal per unit of time; thus we speak of daily,
monthly, annual rations, etc. Ivlev asks, as the fundamental ques-
tions of any study in trophic ecology, how this ration depends on: (1)
the amount of available food, (2) the distribution of this food in
patches in the feeding space, (3) the number of animals feeding
there, (4) the selecting that animals do among alternative foods. In
more detail, the ration eaten by the predator is the dependent
variable that is studied in terms of these independent variables:

(1) the intensity or concentration of available prey, ie., the
average amount of food available per unit of feeding space
(area on land, volume or area in water). From experience,
Iviev expects (hypothesizes) that the ration eaten will increase
as the concentration of prey increases, but will approach a
saturation amount, beyond which the animal’s ration will not
increase because feeding needs are satisfied. His research
using this independent variable alone is the subject of Section
3 below.

(2) the patchiness of the food supply, i.e., the extent to which the
food is gathered into concentrated piles instead of being
evenly spread across the feeding space. Ivlev hypothesizes
that a mobile animal will travel to the parts of the feeding
space where food is concentrated, will enjoy a higher avail-
ability of food there than the overall average concentration of
food would suggest, and will thus feed better when food is
concentrated in patches rather than being spread out evenly.
Ivlev’s choice of a measure of patchiness will be explained
and criticized below; it has mathematical shortcomings yet
vields effective results. In terms of his chosen measurements,
Ivlev shows that the beneficial effect of patchiness in the food
supply is more important than the average intensity of the
food supply in determining the ration of the fish studied by
him— patchiness is not a variable to be neglected. Section 4
and Appendix B are devoted to his study of the ration in

1
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terms of patchiness alone. In Section 5, separate mathemati-
cal models using concentration or patchiness of the food as an
individual variable are combined into a single more—reveal-
ing model.

(3) the number of animals feeding in a given space. When
animals compete with one another for the same food, the
average ration per animal tends to decrease.

(4) the way the animals select preferred foods from the variety
available. This depends on different stages of hunger, on the
size of the potential food item, and on its concealment. The
results are too complex to give in a sentence or two—the
interested reader is referred to [Ivlev 1961].

Ivlev’s studies using intensity and patchiness of the food supply
form a coherent body of knowledge and are discussed in this paper.
His extensive work with the other independent variables would take
us far afield and is excluded.

Two of the other papers produced at the workshop at Cornell
University where this paper was written contain an interesting
mathematical treatment of the question of how animals select among
alternative foods |[Roberts 1983; Roberts and Marcus-
Roberts 1983].

The Role of Experimentation
and the Effectiveness
of Mathematical Modeling

To get answers to his questions, Ivlev conducted carefuily con-
trolled experiments instead of studying fish in their natural habitat.
He defends this at some length [Ivlev 1961, 14-16], essentially
saying that laws of nature are much more likely o be discovered
when conditions are controlled by the scientist and one variable can
be allowed to change at a time. He also points out that such careful
control can only be approximated, even in an experimental setting,
because of the complexity and variety of biological systems. Because
truly reproducible experiments are not to be expected, he conducted
each experiment twice and retained only those experiments where
results of the two trials substantially agreed.

However, science depends vitally on reproducibility of results, by
the original investigator and by others. Ivlev’s results ought to be

2
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reproducible, and they must be if his work is to have scientific value.
His procedure at this point suffers from several defects. First, two
trials is very few. Second, he does not tell us his criterion for
“substantially agree.” Third, even with such a criterion, to discard
data in this manner is dangerous.

We will point out other specific defects in Ivlev’s work (estimat-
ing parameters subjectively, defining too loosely his measure of
aggregation, assuming tacitly no interaction between variables) and
pass over others not as relevant to our purpose (giving data to an
excessive number of “significant” figures, failing to specify whether
data values are single observations or averages). The reader should
be aware that least-squares procedures today have estimation and
hypothesis testing associated to them, but Ivlev does not use cur-
rently standard methods.

Despite the improprieties and “seat-of-the-pants” flavor that his
curve fitting displays, Ivlev’s modeling may be regarded as successful
in pragmatic terms: his curves fit his data.

Ivlev’s results, although gotten from experiments where condi-
tions were “unnaturally” controlled, have found practical appli-
cation. In a managed fish hatchery or farm, conditions of water
temperature and cleanliness, feeding population per unit feeding
space, etc., can be controlled almost as well as in the laboratory.
“Tvlev fish curves,” like the ones we will develop in this paper, are in
fact used to predict the ration from the food supplied. Growth rates
for fish are closely tied to the ration eaten (and other variables);
thus, Ivlev’s work permits managers to plan the amount, type, and
special distribution of the food supply so as to realize specified
harvests.

Indeed, Ivlev’s work is thought by ecologists to be of excellent
quality. Kenneth Watt says: “A distinguishing feature of Ivlev’s
mathematical models is that they have all been validated in experi-
mental studies with a variety of fish species: goldfish, catfish, sunfish,
carp, roach, perch, bleak, bream and tench.” He calls Ivlev’s book
“the most comprehensive and penetrating quantitative research on
the ecology of feeding and competition ... ” [Watt 1968, 311]. A. H.
Weatherly similarly mentions the “convincing” nature of Ivlev’s
work {Weatherly 1972, 189].

We will particularly look at Ivlev’s use of mathematical model-
ing. By finding mathematical equations that fit his experimental
data fairly well, Ivlev gains the two key advantages of the successful
mathematical modeler:

(1) The biological assumptions that lead Ivlev to specific types of
equation-candidates are strongly supported when the candi-

3
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“The final test
of any model is
its ability to
provide new
insights to the
subject, ... .”

“, .. by choosing
experimental
methods, Ivlev
gained both
mathematically
and practically.”

dates turn out to fit the data well. (Unfortunately, Iviev does
not explain what his assumptions are!)

{2) The equations, once obtained, provide predictions for situa-
tions where there is no experimental data.

Ivlev’s mathematics will receive attention and much criticism in the
pages that follow. The main points that the reader might keep in
mind are these:

(1) We will choose curves that pass near but not necessarily
precisely through the data gotten from experiments. This
permits us to use mathematical models that are much simpler
than would otherwise be needed, and it makes sense because
the experimental data inevitably contain some amount of
error. (We use the method of least squares.)

(2) We always want to have a sound biological rationale for the
type of mathematical model chosen, and we will have such a
rationale to some extent. But a model that fits the data well
can be useful although poorly backed up by theory. The final
test of any model, in the opinion of some investigators, is its
ability to provide new insights to the subject, not the solidity
of its original assumptions.

(3) There is a natural connection between the multivariable
chain rule and the methods of experimental science. Scientists
often do a series of experiments using several values of one
independent variable while keeping all other variables fixed.
We will see that Iviev does this with two separate variables
and uses the chain rule to knit the two sets of experimental
results into one model.

The classical criticism of laboratory experimentation by those
who favor observations in nature is that the lab results are done in so
artificial a setting that they do not transfer well to the natural
setting. Ivlev gives one of the classical answers to this criticism,
writing that research done in one natural setting does not necessarily
transfer to another.

The main point of this paper is that by choosing experimental
methods, Ivlev gained both mathematically and practically. The
chain rule usage outlined in (3) above is his major mathematical
gain. In practical terms, his experimental conditions do transfer well
to a technological setting such as a fish farm. They are also substan-
tially valid for many natural settings; we outline one example in
Section 5.

4
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3. Ration vs. Average
Intensity of Food Supply

Let us use this notation':

r = the average ration eaten, in weight (milligrams) of food per
fish per unit of time. (Standard time units are chosen for each
experiment.)

R = the average saturation ration, which the fish would eat if the
food supply were very large in comparison to its needs; the
maximal possible value of r. Units are the same as for 7. K is
a constant which will be found from experimentation.

I = the average intensity of the food supply, in mg of food per
unit area (or volume) of feeding space. The food is spread as
evenly as possible over the feeding space.

We wish to know how r depends on [. Patchiness and other vaniables
are excluded here. From experience and common sense, we make
these assumptions:

1. For I = 0 {no food at all), we have r = 0.

2. The ration eaten, (I}, will increase as / increases but will not
get arbitrarily large; instead, it will approach R asymptotically
as 1 — co. In practice, R will be approximately reached when
the food supply, indicated by 7, exceeds the amount that the
fish can usefully consume in the time allotted.

3. The rate of growth of the ration eaten will be largest when
food is most scarce (/ near zero) and will decrease as [
increases. Growth will be essentially zero for large 1.

4. We can regard r as a smooth function.

On the basis of these ideas, Ivlev [1961, 21] selects as his
mathematical model of 7 in terms of I the differential equation (or

'The letters used (but not the variables) have been changed from those in [Ivlev 1961
for convenience. The reader who wishes to read further in Ivlev’s 1961 baok will want
this conversion table:

My notation r R i r a A b o

Ivlev’s r R P ¢ £ k x p
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“Initial value problem™)

dr

7 =a(R - r); r(0)=0 (1)

where 2 is a positive constant to be found. This model does satisfy
the four requirements, because

1. The correct initial value is specified.

2,3. We have dr/dl = 0 because r < R is known on physical
grounds. Thus » = r(J) will be an increasing function; but as 1
gets larger, the slope dr/dl = a(R — r) decreases. Thus the
curve flattens out horizontally while still rising. As 7 = R, the

slope approaches zero and the desired horizontal asymptote is
achieved.

4. By picking so simple a differential equation model, we have
built in the smoothness.

There are many other models that have these properties. For
example, by the same reasoning,

dr
E=a(R—r}f{r,1); r(0) =0

satisfies the four requirements for any choice of a smooth function f
such that f(r, )} > 0 when I, r > 0 and decreases as / increases. Of
course eq. (1) is the simplest among such models; and we do prefer a
simple model (as long as it is correct). But why use a differential
equation at all? We might try to write down 7 = r({) directly.

Ivlev does not really explain why he starts with this differential
equation. He might have said that on biological grounds, 7 should
grow at a rate proportional to its remaining “growth space before
saturation” R — r, for that is what (1) actually says. Or he might
have believed that the rate of decrease in R — r should be propor-
tional to R — r, i.e,

d(R—r) (R )
T = —al(R—-7r),
which is equivalent to (1) (see Exercise 2). But he does not do se and
these rationales are purely speculative.
Having settled on eq. (1) as a tentative statement of the manner
in which 7 depends on I, what can we do with this model? First of
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all, we can solve the differential equation to obtain the curve
r = r(J). Then we can decide how well data from Ivlev’s experi-
ments fit this curve, picking an appropriate (“best”) value of the
constant a in the process. If the fit is fairly good, we have eq. (1) as
the “law of nature” satisfied by 7/ and », with the insight that the
rate of change dr/dl is proportional to the remaining possible ration
R — r. We also have a solution curve, which may be graphed,
differentiated, rearranged algebrzically (for example, we’ll be able to
solve for I in terms of r), etc. All of the calculus is available to help
us use and understand this function r( 7). Most importantly, we can
interpolate, ie., find r for values of [ between those we use in
experiments.

The solution of eq. (1) is easy, because it is a separable differen-
tial equation:

dr
7 =a(R —r),
dr
fR — = fadf,
~In|R—r|=al + ¢, (¢ an arbitrary constant)

In({R—r)= —af =, {we have used r < R)

— p—al-¢ . - al
R—r=¢° cﬁCea,

r=R— Ce
Upon placing r = 0 when / = 0, we obtain C = R; and the solution
of eq. (1) is
r=R(1 —¢ ). (2)

See Figure 1 for the graph.

Figure 1. r = R(1 — e .
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“Jolev connected
this mathematical
result to reality ... .”

Ivlev connected this mathematical result to reality by gathering
(I,7) data pairs for three types of fish fed on both living and
nonliving food. In each of a group of vats containing food at
intensities 7 = 1 to 10 mg/cm?, he placed five fish that had not been
fed for 18-20 hours heforehand. The weight of food eaten was
recorded by “direct observation” (Ivlev does not give further details)
during 1.5 to 2 hours and then confirmed by dissection of the fish’s
intestines. The three series of experiments were done with

1. carp fed a nonliving diet (denatured bream’ roe)
2. roach? fed on the larvae of Chironomidae®

3. bleak” fed on Daphnia pulex*, an actively moving prey, with

the results;
Table 1.
Reprinted by permission from Ivlev 1961, p. 21.
Rations in Rations in Rations in
Concentration Ist series of 2nd series of 3rd series of
of food objects experiments experiments experiments
I, mg/cm? 7, Mg 1, Mg 7, INY

1 96.8 758 35.1

2 150.0 121.4 472

3 203.1 143.7 64.4

4 2293 171.8 77.0

5 254.1 183.2 76.2

6 265.4 191.9 815

7 264.8 178.8 923

8 281.9 190.0 89.3

9 292.0 201.6 90.2

10 291.3 198.9 83.0

From the data of Table 1, Ivlev obtains values of R “by
inspection,” a technique that is undesirable because it is subjective.
Ivlev then uses least squares to estimate a for each Series. The
resulting procedure is a strange hybrid indeed. If Ivlev is going to
“guesstimate” one parameter, why doesn’t he “guesstimate” both?

2Roach, bleak, bream, and Vimba vimba arc all Eurapean varieties of minnows (small
carp), and are of commercial importance in the Baltic, Black, and Caspian Seas, thus
of real concern to Ivlev.

A tiny, non-biting harmless midge (similar in appearance to mosquitoes).

*A very common species of small crustacean (the 30,000 species of crustacean include
lobster, crab, crayfish, etc), in the same order {Cladocerae) as the water flea, found
everywhere in fresh water.
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Table 2.
Results of Ivlev’s calculations.
Average
weight of Constants
Series Subjects fish, mg R a A = a/In(10)
i Carp; nonliving food 1349 292.0 0.3887 0.1688
2 Roach; larvae 1326 198.0 0.4865 0.2113
3 Bieak; Daphnia 673 90.0 0.4414 0.1917

Much better, why doesn’t he use least squares to estimate both?
Appendix A discusses several least-squares approaches involving eq.
{(2). The Appendix shows the difficulties that Ivlev faced and indi-
cates why he may have selected his approximation. Ivlev’s results are
given in Table 2. Ivlev chose to convert his formulas from use of base
¢ to base 10 by introducing the constant A such that ¢ 2 = 1074,
(Equivalently, A = a/In(10) = alog, {(¢).) His salution curves are
therefore

r=R(1 - 10-%) (3)

and are sketched with the data points and horizontal asymptotes
shown in Figure 2.

We will judge the quality of the fit (the extent to which data do
obey the hypothesized mathematical model) qualitatively from this

300 —— — - P ——p—1 —— , .
250 I r=292(1 — 10~ 016887) _
200 - o = 2 ™
2 r=198(1 — 107021130y J
r 150’~ .
100 f 3 . . " a .
r = 90(] — 10‘0.19171
so ( )
0 'l 1 e y — L 1 ] —
6 1 2 3 4 5 6 7 8 § 10

Figure 2. Reprinted by permission from Iviev 1961, p. 22.
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“These experi-
ments support the
choice of the
mathematical
model....”

4.

“Ivlev discovered
experimentally
that the more
patchily a given
amount of food is
distributed over

a fived area, the
more rapidly it

is consumed.”

“The main
difficulty was
the choice of a
measurable
variable that
would indicate
the extent of
paichiness.”

picture. See also Exercise 3. In a more advanced course that includes
statistical methods associated to the least-squares process, we would
perform a “regression analysis” and “analysis of variance” to obtain
a mathematical measure of the goodness of fit.

These experiments support the choice of the mathematical model
eq. (1), because a consistently good fit is found for three different
types of fish and for living and nonliving, moving and motionless
foods.

On the basis of this study, Ivlev criticizes the work of Volterra
[1933; 1935], whose predation models involve unlimited growth in
the ration instead of a saturation value. Volterra was a pioneer in the
use of differential equations to model biological growth processes.
His work has inspired many followers to propose more realistic
models after his style; the interested reader might try Gause [1954]
or Smith [1974]. Volterra’s simplest models have been criticized by
many authors (for example, by Watt [1968, 295]) for being so
unrealistically simple that they fail to match natural data.

Effects of Patchiness
in the Food Supply

Ivlev discovered experimentally that the more patchily a given
amount of food is distributed over a fixed area, the more rapidly it is
consumed. This seems to happen because the fish travel to the
patches of highly concentrated food and thus enjoy a higher local
intensity of food supply at these patches than the overall average
intensity of food would indicate. The effects seemed so dramatic that
Ivlev set out to measure them in detail.

The main difficulty was the choice of a measurable variable that
would indicate the extent of patchiness. He wanted a variable that
would be zero when food was spread evenly and would increase as
the same amount of food was placed in more concentrated clumps in
the same space. Dependence of r on this variable would then be
studied.

" He finally settled on what he calls the index of aggregation. Since a
known total amount of food is to be spread unevenly over a known
space, the average intensity of food supply [ is known. Ivlev now
split the space into n smaller regions and allocates the food supply
among them with different local average intensities I, I, I3...., L,
The extent of patchiness is now indicated by the differences 1, —
LI -fI1;—1... .1 - 1, some of which are positive, while others
are negative. These are gathered into a measure of the patchiness,

10
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the ndex of aggregation

(4)

Thus, the differences 7, — I are squared to make them all positive
contributors to the measure, and these squared differences are aver-
aged. The square root corrects for the squaring done earlier, so that
# has units of mg of food per animal per unit of time, just as { does.
The reader who knows some elementary statistics should notice that
p is simply the standard deviation of the sample I, [,,..., I, of
local values of I.°

This measure of patchiness does have the desired prpperties. If
food is spread evenly, I, =/, = --- =1 =171 and p = 0. As the
food is piled into more and more locally concentrated clumps, the
values /; spread out and the squared differences (1, — / )* increase.
Then p also increases.

Ivlev models the dependence of r on p and publishes experimen-
tal results that confirm the general quality of the fit between data
and theoretical model. However, there are serious mathematical
questions about the definition of p. The main issue is that very
different values of p will be calculated for the same food distribution
if we choose the r subregions in different ways. Variable p depends
not only con the spatial distribution of the food and on n (as we
expect) but also on the shape and size of the subregions. As a
mathematical quantity, it is not well-defined.

Ivlev was aware of the difficulty to some extent, for he says that
the n subsections should have equal areas and should

correspond with the area covered by a single feed of the given
anmimals. If sections are taken with measurements less than those
of a single feed, the values obtained for the index of aggregation
will be higher than the true biological values, whereas in the
reverse instances the values of p will be correspondingly under-
stated.

This is the only insight Ivlev offers as to what he means by “true
biclogical value”; we must take it as synonymous with the value
obtained for # by making subregions correspond to the space ap-
propriate for a single feed.

In Appendix B, we will explore in more detail the difficulties
with the “index of aggregation.” Ivlev’s point that taking more

*The reader may be used to lormulas for the standard deviation of a sample sclected
randomly from a population of data, with a — 1 instead of n in the denominator: (4)
is the standard deviation formula used by statisticians when [, ..., [, form the whole
population, not just a sample. When n is large, the difference made by n vs. n — 1 is

very minor.

11
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“We adopt this
same model as
a tentative and
simple first
choice; we

shall be amazed

at fts successes.”

subregions of smaller size tends to increase the value of p will be
illustrated concretely. We will also show that the value of # depends
not just on the size of the subregions but also on their shape and
arrangement.

Since Ivlev does not explain how he split the feeding space into
subregions in his experiments, his description of them is fatally
incomplete. But he gets interesting results that are analogous to these
described above in Section 3. In this section, we will present Ivlev’s
research without dwelling further on the qualities of #.

Ivlev sought a mathematical model for the dependence of ron
p, when the average intensity of food supply 7 (and thus the total
amount of food in the feeding space) is kept fixed but is distributed
in various ways to achieve a range of values of . He reasoned that r
should equal some initial value p when p =0 (in fact, p = r(I),
since we have studied the case of evenly spread-out food above), and
that r should increase as p increases until R is approached asymp-
totically at saturation. Since he believed that increasing # amounts
to providing the fish with a higher (local) value of I, because the fish
will travel to the areas of high food intensity, he selected a near-copy
of model (1) for the dependence of  on p:

dr
” B(R—r1); r(0) = p. (5)

This choice is also open to criticism. A curve of the same general
shape as that found for 7 = r(/) in Section 3 is expected; however,
there is no apparent rationale (to this writer and others with whom
he has pursued the question) for adoption of the same model. We
adopt this same model as a tentative and simple first choice; we shall
be amazed at its successes.

Notice that in (5), r is treated as a function of p alone with [
held constant; we shall shortly treat dr/dp as the partial derivative
dr/dp that it really is.

We solve (5), regarding b, R and p as constants. The reader
should do this in detail (Exercise 4), getting this result:

r=(R-p)}l—¢")+p. (6)

To test this mathematical result against nature, Ivlev ran two
series of experiments similar to those of Section 3. In the first series,
carp were fed nonliving food (denatured roe); and in the second,
carp were fed chironomid larvae, To provide a range of values of p,
10 patterns of food distribution were designed to yield p ranging
roughly from 0 to 10. These patterns are exhibited and described n
Figure 3. This was done separately for the two series, because it is
difficult to obtain equal values of p for different types of food. The
resulting values of 7 in the table of Figure 3 are percentages of the

12
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Ist series | 2nd series
No. Type of aggregation b r b r
1 | Absolutely even distribution of food 0 488 (0 30.1
2 | One aggregation of moderate density with in-
distinct outlines 149 (719 ]1.32 | 65.7
3 | One aggregation of increased density with in-
distinct outlines 428 |91.0 | 411 ;933
4 | One aggregation of increased density with sharp
outlines 578 1996 [ 499 | 97.8
5 | One aggregation of high density with sharp
outlines 9.75 | 98.2 | 7.66 1 99.0
6 [ Three aggregations of moderate density with
indistinct outlines 263|854 (205|762
7 | Three aggregations of increased density with
sharp outlines 3.77 | 919 | 3.16 | 83.8
8 | Fifteen aggregations of increased density with
sharp outlines 254 | 64.2 [ 2.20 | 65.8
9 | Three aggregations of moderate density with
indistinct outlines and of different sizes 260 | 837 — —
10 | Zonal distribution of the food 250 1865 | — —

Reprinted by permission from Ivlev 1961, pp. 27-28.

Figure 3. The sketches show the 10 patterns of patchy food distribution used by Ivlev.
These 10 patterns are described in the table, which also contains the data for the two
series of experiments:

Series 1:  Carp fed nonliving food. Series 2. Carp fed larvae.

maximal (saturation) ration R that arose in each series; they are not
in milligrams as before. The first distribution pattern involves evenly
spread food and thus yields the value p. The constant R is obtained
by inspection of the rations r from each experimental series. The
same least squares procedure used in Section 3 to best calculate the
constant @ can be used here to find # (see Appendix A, Section 3).
The values obtained for p, R, and B are summarized in Table 3,
and the solution curves are sketched with the actual data poeints in
Figure 4.
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Table 3.
From Ivlev 1961, p. 29.
Avg. wt. | No. of
of fish fish in i R
Series Subjects grams |eachexp. [mg % |mg % &
1 Carp; nonliving food 1.02 10 104 48.8 | 213 100 | 0.465
2 Carp; larvae 4.36 5 249 30.1 | 826 100 | 0.5149

« .. Ivlev can thus
claim that the
effects of patchi-
ness are clearly
important and
can dominate

the effects of

the average
amount of

food, ... .”

The fit is nowhere near the quality obtained in Section 3; the
data points corresponding to pattern 8, shown in the dotted box on
the graph in Figure 4, are particularly off-curve. However, the
overall pattern is correct; and equations (3) and (6) serve as a
crudely adequate model of the phenomenon. Ivlev rejects the pat-
tern-8 data because the 15 small clumps of concentrated food involve
calculation of I,,..., I, over arcas that are much smaller than the
carp’s usual area of feeding; thus, values of p obtained were too
large, and the points in the dotted box really should be shifted
horizontally to the left (same r for smaller values of p) toward the
curves.

The coefficients b turn out to be slightly larger than the com-
parable values of a gotten in Section 3. This result might he due to

100 +
90 A
[ ]
80} ° -
0F .
!'5';]
bam
60 9 4
50 .
40 | .
30 hS .
(=]
201 —~ T 4
2
10 4
0 l i [ 1 1 L ] 3 1 L
1 2 3 4 5 6 7 8 9

Figure 4. Curves | and 2 correspond to Series 1 and 2. Reprinted from Ivlev 1961, p.
28, by permission.

14
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chance alone but the statistical tests that would tell us that cannot be
performed, due to the nonstandard way in which Ivlev has devel-
oped his model. Despite this drawback, and despite our concerns
about whether p is well-defined, Ivlev nonethelesss claims that the
effects of patchiness are clearly important and can dominate the
effects of the average amount of food, f. His analysis of 7 in terms of
# is an original and important contribution in his work; he says that
“the problem of the influence exerted on intensity of feeding by the
nature of the distribution of food matenal [thus] arises in ecology for
the first time” [Ivlev 1961, 30].

He also offers an example of “nature’s knowledge” of the effect
of patchiness on rations. Noting that fish spawn are the prey of many
enemies, Ivlev claims that “as a rule unprotected spawn is [sic]
scattered by the fish |parents] over a wide area and more or less
evenly,” so that values of both [ and p are low, while *“spawn
deposited in the form of dense conglomerations {as in the case of
salmon, sheatfish, sticklebacks, etc.), is [sic] concealed or protected
by the parents” [Ivlev 1961, 31]. Thus evolution has led to the
qualitative use of the laws of nature uncovered here. He also offers
the example of Vimba vimba®, which distributes spawn evenly when
predators are in the vicinity but in clumps when predators are
ahsent.5

Combining the Two Models

We have studied the dependence of r on  with p held constant
{in fact, with p = 0) and on p with 7 held constant. One important
advantage of having these mathematical results is that they can be
combined into a single model of r(/, p), showing the combined
effects of both variables. The experimental data by itself do not
permit such a larger picture.

Since one variable was held constant while the others varied in
Sections 3 and 4, we could reinterpret egs. (1) and (5) as statements
about the multivariable function r = (], p)

ar
5 =a(R —r),
(7)
dr
“@ = b(R - r).

®Madern biologists do not attribute intelligence and purpose to evolution, nor do they
personify nature.

15
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The initial values become
r(O, O) = (}

r(1,0)=r(I)=R(1—¢ ") for any particular 1. ®)
The multivariable chain rule now says that
ar dr
dr = FY; dl + 3; dp
=a(R—r)dl + b{(R —r)dp. (9)
We are lucky enough to achieve integration easily:
dr
R =adl + bdp,
~In(R—r)=al +bp+c  (forconstant ¢},
R—r=Cetalrtr)
r=R— Ce It
The initial value r(0,0) = 0 implies C = R, so we get
r(I,p) = R(1 — ¢ (eI7*), (10)

The first step may seem suspicious to readers who are not
experienced with multivariable integration, but eq. (10) is easy to get
by another method. Let’s argue that through:

Since dr/3I = a( R — r), integration gives

r=R—C(p)e ™ (11)

by the same reasoning used in Section 3; the constant of integration
there has become a function of p here because of the partial
derivative: each fixed value of p yields a constant of integration,
which might be different for different values of p. Now differentiate
eq. (11) with respect to p, holding / constant, and apply eq. (7) and
then eq. (11):

ar ciC_Mr o(R
w a PR

= bC(p)e .
Thus the equation satisfied by C(p) is

dC

o e

dp

C(p) = ke~ ",  where £ is a constant. (12)

16
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Figure 5. Reprinted by permission from Ivlev 1961, p. 34.

The notation dC/dp is correct, by the way, because ' is a
function of one variable. Putting eq. (12) into eq. (11) yields

r =R — fe(ad+0p)

and the initial value 7(0,0) = 0 gives us back eq. (10), as promised.

A completely different combination of the two models into one,
again yielding eq. (10) and using algebra without calculus, is covered
in Exercise 5,

It is important to note that the derivations we have followed
assume that there is no interaction effect between 7 and p, so that
dr/dp is independent of I and dr/d1 is independent of p. Ivlev
does not mention or justify this asumption. One reason to combine
the two models in the fashion he does can be to check for such
interaction: If the separate fits are good but the combined fit is not,
the neglected interaction may be the explanation.

Equation (10) makes sense for (7, p) in the first quadrant. As
either or both of 7, p move to oo in that quadrant, the ration values
r approach R. The surface represented by (10) is pictured in Figure
5 along with the plane r = R that is asymptotically approached.
(Actually, all data will now be given in terms of percentages of R, so
the asymptote is at height 100 above the plane. The actual function

17
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in the figure is
r=100[1 — ¢ (alvofy]

with @ and b from experimental Series 1, and is gotten by taking
r/R X 100 from eq. (10) to achieve percentages of R.) This surface is
in fact made up of straight line segments that are all parallel to the
(I, p) plane, as we learn from Exercise 6. The whole surface can
thus be traced by moving a straight line in space in the right way;
such a surface is called a rued surface by mathematicians. A
considerable theory of ruled surfaces is known.”

To test his mathematically constructed solution eq. (10) against
nature, Ivlev began by running two series of experiments similar to
those described earlier. In the first series, carp were fed denatured
roe, a nonliving food. For each value /= 10, 20, 30, 40, 50, 100
mg /100 cm?, Tvlev created vats with this intensity of food arranged
to give a variety of values of p ranging from p = 0 (food spread out
evenly) to a value of p between 7 and 10. For each value of 1, p was
taken large enough to produce near-saturation. Distribution patterns
of types 2 and 3 were used (see Figure 3); these involve piling the
food in a central pile that tapers off gradually and symmetrically as
we move away from the center. Ten fish were used per vat and all 31
experiments (see table below) were performed twice. The data, with
observed values of r expressed as a percentage of R, follow:

Table 4.
Observed values of r for Series 1: carp fed on nonliving food.
Reprinted by permission from Ivlev 1961, p. 34.

=10 20 30 40 50 100
plrty| o | r | o | LT T
226 |0 385 |0 55810 63910 6741|0923

090 | 462 |059 (562|094 (670095780 141 885 | — -
182| 676 148 1660 | 136|769 209|863 334 943 | - -
279 | 838 235822324900 |3.21 954|465 95.7 | - -
5.21 92.7 4350936533966 5.0 [958 6661000 - -
902 983 709|978 (896|999 |842(98.719.32] 989 - -

For I = 100 mg/100 cm®, saturation was so nearly achieved with
p = 0 that further experiments seemed unnecessary.

In the second series of experiments, conditions were the same,
except that larger carp were fed live food, chironomid larvae. This
time, 1 = 50, 100, 150, 200, 250, and 500 mg/cm? were used, each
with various values of #. Comparable data were obtained, as shown
in Table 5.

"Books on descriptive geometry contain an elementary discussion of rules surfaces,
perhaps under the headings ** warped surfaces” or * classification of surfaces.” The fact
that a surface is ruled helps us to visualize it.

18
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Table 5.
Series 2: carp fed larvae.

I=50 100 150 200 250 500
¥4 r b r 4 r r r t r P r
0 270 |0 479 |0 648 | 0 69.7 | 0 82901966
1.04 [58.7 (115|688 | 1.88 (859 |1.18{856 | 1551 91.7|-| -
258|756 (270|865 (3.08 (908 (2609053431 972 - -
521 | 919|448 |93.1 | 487|986 (378 958|471 | 960 - | -
916|979 |769|987|8.15(96.7 | 716|998 | 844 {1003 |- | -
Table 6.

Results of Ivlev’s calculations.

Average
wt. of R Coefficients
Series Subjects fish, g mg a b
1 Carp; nonliving food 1.98 3271 0.0249 | 0509
2 Carp; larvae 8.43 1205 | 0.00658 | 0.48

For each series of data, R was calculated “by inspection” and
values of r were recast into percentages of R as given here. A
least-squares procedure then gave “best” values of 4 and & for the
model (10). (See Appendix A.) The values cbtained by Ivlev are
given in Table 6.

Figures much like those of Sections 3 and 4 are presented in
Ivlev’s book (pp. 35-36) and show extremely good agreement be-
tween data and model. Statisticians would use analysis of variance
techniques to measure the quality of the fit, but we can get some idea
of it by calculating the model predictions for a few sample points of

each serjes®

Table 7.
Experimental values vs. model predictions.
I r Experimental Calculated
mg /cm® r{%) r(%)
Series 1 20 0.59 56.2 55.0
40 3.21 954 92.8
100 0 92.3 91.7
Series 2 50 2.58 75.6 79.1
200 0 69.7 73.2
250 1.55 91.7 90.8
SFor Series 1, r = 100(1 - |exp({—0.02491 — 0.509p))).

For Series 2, r = 100(1 — [exp{—0.006587 — 0.482)]).
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single multi-
dimensional one.”

Tools for Teaching 1986

The first two (I, p) pairs listed for Series 2 were visually picked as
the worst fits of data points to surface. Is a mathematical model
useful that gives values within about 5% of experimental data? The
answer depends on the purpose of the user. The model allows
calculation of any one of r, I, p when two of them are known. On a
fish farm, r might be known, because a specific growth rate for the
fish is wanted; and feeding methods might specify p. Then [ can be
predicted. When this (7, p) pair is used, actual fish rations are
“experimental” values of r and should be within about 5% of the
desired 7 value that was used to select f. The economic and
biological impact of that error must still be measured.

A second complete study of the model vs. data collected in a natural
setting was performed by Ivlev. In the Volga River delta, carp were
fattened on benthos® over a period of three weeks in a situation
where the number of carp grew steadily but benthos distribution
could be calculated per predator carp. The mathematical model
produces predictions again within 5% of experimental values. Details
are in Ivlev 1961, pp. 36-40.

In both the laboratory studies and the Volga River study, the
typical bp products are larger than the typical a/ multiplications;
the extent of patchiness or aggregation of the food is a more
important influence on feeding than is the overall level of food
supply. The Volga study shows a situation where the available food
supply decreases in total quantity but rations in fact increase,
because of an increase in the patchiness variable ¢ and the domi-
nance of p over I. Ivlev’s contention that both the spatial distribu-
tion of food and its quantity are important in an ecological study is
thus supported.

The relationship between experimental methods and the multi-
variable chain rule deserves a summary here. Scientists prefer to
vary one variable at a time in an experiment, so that the changes
that occur come from one cause, not more. (In practice this is an
ideal and other variables are kept only approximately unchanged.
The more creative, capable, and successful the scientific effort, the
more sound the control over cause vs. effect.) If the data gotten from
these one-dimensional experiments can be transformed into mathe-
matical equations for the appropriate partial derivatives, the chain
rule permits the accumulation of one-dimensional models into a
single multi-dimensional one. The combined model is based on the
assumption of no interaction effects among the variables; the quality
of its fit will help test that assumption.

Y Benthos is the mixture of animals and plants living on the buttom surface of a body of
water,
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Appendix A: Least-Squares Methods,

Good and Bad

Introduction

Al.

The sections that follow are intended to serve as an appendix to
the UMAP Module Least Squares, Fish Ecology, and the Chain Rule,
where the mathematical models are developed and discussed, and
also to stand alone as an introduction to the least-squares method.
Thus, brief summaries of the mathematical formulas from the paper
are included in Sections A3, A4, and A5 for the benefit of readers not
using the entire Module. Section A2 does not involve models from
the paper.

A typical problem to which the least-squares method might be
applied is this: We seek a mathematical formula for dependent y in
terms of independent x, y = f(x). Based on some theory, we believe
that we know the form of the model. For example we might assume
that the model is a straight line y = mx + &, or a parabola y = Ax?
+ Bx + C, or a sine wave y = Dsin{Ex + F), or an exponential
model y = G exp(Hx)where m, b, A, B, C, D, E, F, G, and H are
paramelers of the models. If it is the exponential model we start with,
our goal is to use experimental data (x,, 3.}, i = 1,2,..., N, from N
trials of an appropriate experiment, to choose the “best” parameters
G and H for the model. We move from the form of the model 10 a
specific formula where G, /f are replaced by numbers computed
from real data. To do this, we invoke a specific meaning of “best,”
as will be explained below.

The Basic Least-Squares Idea

Example 1: Suppose you believe or guess that B, the number of
animals born per year in a colony of animals, is a constant fraction
of the size P of the population of the colony: B = mP for some
constant m. You go out in the field and collect N data pairs (£, B,),
1=1,2,3,4,..., N, by direct ohservation of colonies of various sizes.
You know that the data (see hypothetical sketch below) do not fall
precisely on any of the straight lines through the origin (remember
y = mx?) of the (P, B) plane (if they did, any B,/ P, would yield the
needed value of m); but you also know that the data includes errors
and imprecision in measurement, as all data do. You also know that
B = mP is probably too simple a model for such a complex process,
but as a first crude model it is worthy of a look. In any case, you
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have decided on B = mP as your model and the task is to choose m
so that B = mP “best” fits the actual data (P, B,). The numbers
(P, B;) are known. The best line B = mP will drive through the
heart of the data, as in the sketch below.

B

P

Among the many theoretically sound methods known for select-
ing m, the “least squares” method is by far the most used. Fix any
particular constant number m in your mind. For each F,, we have
mP, as the model’s prediction of B and B, as actual comparable (i.c.,
related to the same P,) values of B. Thus mP, — B, is the error made
in using the model at P; we have N such errors and want to
combine them into a measurement of “how good a choice m was.”
The errors mP, — B; are a mixture of positive and negative numbers;

let’s square them, so they all contribute positively, and add:

N

S(m) = ¥ (mP, — B)".

i=1

Each choice of m yields an associated number S(m); the sum S is a
function of m, and a smooth one.

What does S(m) tell us about “how good a choice m was™? If we
choose a ridiculous value of m, the differences mP, — B, will be fairly
large in absolute value and S(m) will be large. A better choice of m
will lead to smaller S(m) and the choice of m that makes S(m) a
minimum will yield a line B = mP that drives nicely through the data.

B

B, - mP
1 ney {P:L. B|) B= m.P
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The choice of m that makes S(m) an absolute minimum for all
real m is defined to be the best value of m according to the method of least
squares. In practice, we regard m as a variable, and we seek to find
the specific value m = m, that makes the function §:m — S(m) a
minimum. Let’s do that here by setting 4S/dm to zero to seek a local
minimum; in the caleulation below, remember that the P, and B, are
known numbers and only m is a variable. We differentiate term by
term by the chain rule:

A id
—=Y2Amk -~ B) P =2mLP - 2L BP;
M e

then
as _ LBP
%=0g1vesm:m0: W’

where all the sums run from :=1 to N. That this is a local
minimum is confirmed by

d°s ,

ri(m) = 2 P> 0.

In Exercise Al, you are asked to show that it is also an absolute
minimum for all real m.

Summary: To fit B = mP to data pairs (P, B.), we set up the
sum of squares errors S(m) in terms of m and used differential
caleulus to find the m = m, that makes ${m) a minimum. (Hence
the name “least squares.”’} This m,, is the “best” value of m to use in
the model, according to this method.

Example 2: This time we decide to fit a general straight line
y =a+ bx* to known data (x, »), : = 1,2,3,..., N* For each
X;, we have a + bx, and y, as comparable values; the errors made in
replacing the data by the model are @ + bx, — y, for 1= 1,2,. .. N,
Thus we wish to pick ¢ = a2, and 5 = b, such that the sum of
squared errors

N
S(a,8) = ¥ (a+bx,— 3)°
=1
15 2 minimum.
This function of two variables can be minimized by setting
d5/3a =0 and 35/db = 0 as simultaneous equations. [In detail:

AA simple application: A taxi company wants a formula for its costs per day y» in
operating x cabs. There is a basic cost a of being in business (someone to answer the
telephone, office and garage space, ctc.) and there are costs b per taxicab, thus bx for
x cabs. Then y = a + bx is a first (very crude) model.
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any local minima, maxima, or saddle points will be among the points
(a, #) that make these partial derivatives simultaneously vanish. We
will still need to establish that we have a local minimum and an
absolute minimum.} As before, the chain rule gives:

‘N N
P =Y 2a+bx,—3)(1)=0
=1
and
a8

which we easily rearrange as

Na + (Ex,)bz Zy,, (Ai)

and

(Ex)a+ (X))o = Lxn

after we recall that Ya = Na. We thus have two simultaneous linear
equations to solve for the needed a and b, most fortunately. We solve
and get

oo (EUER) = (L))

° NE(x2) - (Lx)

Nny,)—( L)L)
NZ( :‘)_(in)

as the “best” values of a and 4, based on the data, for the model.
(Most authors call (Al) the normal equations for this least squares
derivation, but some refer to (A2) as the normal equations or normal
solutions.) By doing Exercise A2, you will show that this is a local
minimum. (It is tempting to think that for a smooth surface § =
S(a, b) having no other local minima, maxima, or saddle points, that
(aq, b;) being a local minimum is enough to make (a,, ;) the
absolute minimum as well. In fact, (a,, §,) is the absolute minimum,
but further reasoning is required, as the tempting generalization is
false [Smith et. al. 1985].)

We have again set up a sum of squared errors and used
differential calculus to minimize it to find the “best” parameter
values.

Exercises A3 and A4 extend the usefulness of Example 2 so that
the models y = a - ¢** and y = ax’ can be fit.

(A2)

24



A2,

“We will present
here four separate
approaches to
selecting the

‘best’ values of
R and a.”

Least Squares 223

Fitting the Model r = R(1 — ¢~ %)

In his book, Experimental Ecology of the Feeding of Fishes,
V. 8. Iviev develops this model as part of a study of how much food
fish eat in terms of the available food supply. Specifically, the
variables are

I = average concentration of food supply (prey) in weight of
food per unit area of feeding space. The food is spread
evenly over the feeding space.

r = the average ration eaten in weight (mg) of food per fish per
unit of time.

R = the saturation value of r; the average maximal ration a fish
would eat if the food supply were very much larger than its
needs.

In Section 3 of my paper, Least Squares, Fish Eeology, and the
Chain Rule, Ivlev’s research in relation to this model is discussed,
including the experiments that provided data pairs (1, r), j =
1,2,..., N. Ivlev wanted to select the “best” values of R and «a to fit
r=R(1 — ¢ %) to this data. We will present here four separate
approaches to selecting the “best” values of R and a. The first three
all fail because they lead to equations for R and/or a that are
impossible to solve algebraically and are ugly to solve approximately
by computer. (The fact that we had no worse than simple linear
equations to solve in Examples | and 2 above is a blessing having to
do with the linearity of the models y = mx and y = a + bx and does
not carry over to most other situations.) The fourth try will succeed
and is the method Ivlev used. The reader who simply wants the
successful method may skip the blind alleys that follow; however,
there’s a lot to be learned about what not to do in mathematics and
why, s0 you are invited to read straight through.

Failure #1: We do the obvious; regarding R and a both as
variables, we set up

S{R,a) = L [R(1 = e7*) = x|’

i=1

and attempt to solve simultaneously 48,/ = 0 and 48, /da = 0.
The equations are

i} = g‘_, Q[R(l —e ) — r][l —e ] =0
aR !

J=1
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and

2
% = Y2[R(1 — ¢ )~ | [RLe ] = 0,

and rearrangement gives

RY (1 —¢ h) = er(l —¢ )
and

Rz]}(l _ e._yfi)e-. af, __ zrje -[‘1’1;

to be solved simultaneously. It is easy to eliminate R between these
but the resulting equation for a in terms of the (/,r) data is
horrendous. Time to quit!!*?

Failure #2: Notice that a’s location as an exponent is the main
problem in Failure #1. Let’s bring a out in the open by using
logarithms and try again: the model can be rearranged as

r=R(1 -¢ ),

’
E=l—e s
r
e =1 —,
R
r
—a]:ln(l——).
R

The model now predicts In{1 — r./R) from I. The error of the fit for
(I, 1) is In(l — r,/R) — (—af;}and leads us to attempt to minimize

SR, a) = % [ln(l - %) + alir,

p=1

by setting two first-order partial derivatives for zero. We get

ﬁ—iz[m(l—ﬁ)mf_,] - =0
R

A2Ugly, horrendously nonlinear equations arise very frequently in mathematics and
there are many ways to calculate approximate solutions o them, usually by computer.
The interested reader should consult texts on numerical analysis. We quit without
trying such methods here because a practical way will be found that yields adequate
solutions more simply.
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and

o5, ):2[1 1 r’) 7 }1 0

-— = nll—=} +a|l.=0

da ( R KA

Both equations can easily be solved for a, which can thus be
climinated between them. The resulting equation for R, however, is a
nightmare of logarithms and reciprocals. Things are not working out
here!

Failure #3: Tt looks as though least-squares fitting of both R
and a is not practical (except by more advanced approximation
schemes, as mentioned earlier). Fortunately, we can experimentally
observe R as the saturation value that the r, approach.as /; in-
creases. Can we select the “best” value of & given this value of R?
Maybe so: we go back to the original model 7 = R(1 — ¢~ ') and
notice that R(1 — ¢~ "%) and r, are comparable results from the

7
model and data. Then we seek to minimize

Sy(a) = & [R(L = ety = 1],

which looks a lot like (K, 2) from above. However, we are now
thinking of R as known, so we have a function of a alone. We set

ds
EP’ = Z?[R(l — e *h) - (j]RIjef“lf =0,

S0
REL( = e=h)e oh= Trewehi,

This is still an unpleasant nonlinear equation for a, so I'm going to
try:

Successful calculation of a: Let’s start with R known and bring
a out in the open as in Failure #2. The model is again rewritten as

r
—a]=ln(1 ——),
R

so that this model and data {(Z;, 1) lead to comparable expressions
—al; and In(1 — r,/R). Thus we try to minimize

5,(a) = i [ln(l - }%) . alj]z

by setting
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A3.

50
r-
a 17=~-Y1 ln(l - Eﬂ)

and

~

Azljln(l —i)
X(z)

With R and the (/;,r,) known, this 2 can be calculated and we
succeed in selecting a “best” value of & for the model. Claim: 2 > 0
because each 7, In(1 — r,/R) is negative. Do you see why?

"

a=

Fitting the Model »r = (R — p)(1 — e ")+ p

Ivlev goes on to analyze the influence of patchiness in the food
supply on the ration eaten by his predator fish. He assumes that the
fish eat a ration p when a given amount of food is spread evenly over
the feeding space, and eat better as the same food is placed more and
more in isolated clumps or patches. This is true because the fish
travel to the patches of food and enjoy a larger supply per unit
feeding space there than would otherwise be the case, so they eat
more. The ration eaten is still r, and R is the saturation ration. The
“index of aggregation” p is developed by Ivlev as a measure of the
patchiness. In Section 4 of the Module, the equation in the title
above is developed (and heavily criticized) as a model for r in terms
of p. Ivlev’s experimental data is also presented in Section 4, and in
Chapter 3 of Ivlev’s book (pp. 24-31). The experiment yields (¢, 7;)
data pairs along with known values of £ and p. The task is to select
the best value of 5. We use some hard-won wisdom from Section A2
just above and rearrange the model to bring & down front at the
expense of hiding R, p, and r behind a natural logarithm:

r=(R-p)(1—e %) +p,

e =1—¢"t
R—-p
e7i =1 — —p’
R—p
r—op
wErp=ln(1— )
R—p

This suggests that

S(8) = Z[ln(l—;:z

=1

2

+ bp).
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should be minimized. We set

ds(b) r—p
T=E2[1n(1 f};*p) + b p; =0,
50
. r—p
and
=P
b Zp’ln(l_ ij—p)

5

This value of 4 can be calculated from the available (p;, 7,), R and
p. We do have a local minimum at least: you can easily show that
d*’S/db* > 0.

It is worth mentioning that, if  were available from an experi-
ment, both R and p could be easily chosen by the least squares
method. We would seek to minimize

S(R,p) = T[(& o)1 —¢™) +p—r]

and find that two simultaneous linear equations for R and p emerge
when we set 5/3R = d5/dp = 0. That’s no help to Ivlev, how-
ever. The secret is that we have a /inear expression in £ and p being
squared in each term above. The squaring and differentiation com-
bine to give linear equations for R, p.

Fitting the Combined Model
r(L,p) = R(1— e ")

In Section 5 of my paper, the models developed for ¢ in terms of
I and p separately are combined into the model in the title here.
The multivariable chain rule is the mathematical mechanism used.
Experiments to validate the combined model are presented there as
well. Ivlev obtained ([, p;, ;) data triples. An obvious first effort to
find parameters R, a, b by the least squares method would be to
minimize:

S(R,a,b)= Z[R(l —eeltn) - rj]z
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by setting dS,/dR, 3S,/da, and 38,/db to vanish simultaneously.
As you may expect from efforts in Section A3 with the special case
b = 0, this does not succeed. The three simultaneous equations are
too complicated to solve.

We opt again to obtain R from experimental observation and
seek a and b by least squares. It makes sense to reverse the model

r=R(1— ¢ ),

ot Z
R!
r
—(al+bp)=1Inl1 — —
(al + bp) n( R),
because

. 2
S(a, b) = E [ln(l —%) + al; + bpj]

looks as if it will yield workable partial derivatives. We get

as, r

_3:1_ = ZQ[]H(I - _}%] + aI}- + bp;]lj
and

as.

.
8—52 B ZQ[ln(l - Ej) +al; + bp}]pj,
and setting both to zero leads us to
e L IP+ b L= — ZI_:I“(I - }%)
and
i ¥
a1 p, + 82 p) =~ ):P,;‘l“(l - if)v
which may indeed be solved simultaneously. The solution is
r. . T
_ (Elpj)(Zp,ln(l - E’)) - ():pf)(‘,:] ln(l - Ej))
(r2)(zey) - (€1
EI NELL Ypln|l 5
i ( o(1-5)) - 1) ol —R))

T2 )(Lp?) - (xLp,)
30

3
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What criterion would you use to establish that this choice of a, b 1s a
local minimum, not a saddle point or maximum?

Appendix B: Properties of Ivlev’s “Index
of Aggregation” p as a
Measure of Patchiness
of the Food Supply

As we examined Ivlev’s work on the influence of the spatial
distribution of the food upon the amount eaten in Section 4, we
found two key criticisms of Ivlev’s choice of p as his measure of
patchiness. Recall that, to calculate p, we split the feeding space into
n non-overlapping subregions of equal area and find the average
intensities /,,..., I, of the food in them. Let / be the overall
average intensity for the whole feeding space (or, equivalently, Iis
the average of [, I,,..., {.). Then

The first criticism is that the value of p depends on the number
of subregions chosen (or, equivalently, on their size, since we regard
the total feeding space and the food distribution as fixed). Ivlev
understood this and established the “true biological value™ of p as
the value obtained when the subregions have areas that “correspond
with the area covered by a single feed of the given animals” [Ivlev
1961, 30]. We will see in Example | below that p does indeed
change as Ivlev predicted as we vary the size of the subareas.

In Example 2 we will see that p also depends on the shape of the
subregions even when they are of the same size. It also depends on
the arrangement of the subregions even when they have the same size
and shape. Ivlev makes no mention of this and does not give the
shape of the subregions used in his experiments.

Example 1: Let’s assume that the overall food intensity is I and
that the feeding space consists of just two equal areas that each
“correspond to a single feed”:

I =T+x L=1—x
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“The splitting
into more local
subareas does
cause p lo
increase, as
claimed.”

The two local food intensities must average out o I, so they will be
I+ x for some x > 0, as shown. For this situation, the differences
from [ are I, —[=x and I, — 1= —x; thus p={[x"+
(—x)*]/2)"/? = x. This is Ivlev’s “true biological value” of p for
this food distribution.

Next we leave the food distributed in exactly the same way but
we create four areas by splitting each of the earlier two in equal
halves. These four subareas are now smaller than the natural space
of one feed, and Ivlev claims that the value obtained for p will be
larger than the “true biological value” p = x from above. The
picture is:

I =I+x+y I,=T—-x+=z
L=1+x-y I,=1—x—2

The two left-hand areas must yield local intensities /| and [, that
average out to the [/ 4+ x used before for the same space; thus, these
intensities are [+ x + y for some » > 0. Similarly, in the two
right-hand areas, 7, and 7, must average to / — x and will thus be
I — x + z for some z > 0. The four differences from 7 are x + »,
x—y —x+zand —x — z and

(x+_y)2+(x—):)2-+-(fx+z)2-|—(—:c—z)2
r= 4

Jr2+2Ixy+y2+x:‘1—2.,7cy+y2 ‘
+x2 = 2xz+ 22 4+ x4+ 2x2 + 2°

4

‘/4,\12+2yz+22:2
4

,, rre
= 24+ T >
2

The quantity under the radical sign is greater than x*; thus, p > x
does follow. The splitting into more local subareas does cause p to
increase, as claimed.

The argument goes equally well the other way: if the four
regions happen to be the natural size for one feed, then the “true
biological value” of p is [x?+ (% + 2%)/2]"/% If we use the
two-area picture, thus picking areas that are too large, we get p = x,
a value that is unbiologically small, just as Ivlev claimed. This
completes Example 1.
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Example 2: A numerical example will let us see the effects of
using subregions of the same size but different shape. Let the total
feeding space be a square, 4 meters on a side, with an average food
intensity of 5 mg per square meter. Thus there is 5(16) = 80 mg of
food in all, which we arrange in this way in subregions of one square
meter each:

[l R I o R e ]
NG NG RN RN
hiSh| S &
| e o] ™

Let’s assume that the natural area for a single feed is 4 square
meters, so that the feeding space is to be split into four subregions,
Do it this way first:

2(4|6(8
2 618
______ l——b—+4 — |24 |6 |8
2(4|68
21468

The right-hand picture shows the subregional average intensities 7|,
1y, I, 1, which are 2, 4, 6, 8, respectively. (For example, the
left-most column of area 4 square meters contains 8 mg of food, or
I, =8/4 =2 mg/m’) Recall that the overall intensity is / = 5;
thus, differences I — 7 of -3, -1,1,3 lead to p = p,
=/O+1+1+9)/4=45.

Next, we choose four equal subregions of the same size but
different shape:

214]618
RN R
4618 317
t 1 —
214(6)8
e —— :___ 3 7
214|618

The local intensities are 3, 3, 7, and 7 as shown. For example, the
upper right-hand subregion contains 6 + 6 + 8 + 8 = 28 mg of
food, or 7 per square meter, Since [ isstill 5, the I, — [ are —2, — 2,
+2, +2and p=p, =+ 4+ 4+4)/4=yI=2
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The point is made: # depends on size and shape or arrangement of
the subregions. But it is interesting to do one more example:

T T T

21416 5
214168 5
1 -
214:6:8 5
2}L4i6:18 5

Each subregion contains 20 mg of food per 4 square meters of area,
so the local intensities are 5, 5, 5, and 5. Since / = 5, the gaps /, —
are all zeroand p = p, = 0.

If food were spread out evenly, any choice of subregions would
lead to p = 0. (Why?) When there is in fact substantial patchiness in
the food distribution, seme choices of subregions can still vield g = 0
and thus totally hide the factual patchiness!

Almost any uneven arrangement of the food leads to different g
as we change the size and /or shape of the subregions. For example,
the two splittings below of 60 mg of food spread over 12 square
meters of space involve subregions of the same shapes but different
arrangement. The values of p are different, as the reader should
verify.

T T T T T
2 | 4 6 | 8 2 . 4 | 6 | 8
_____ A S R 1 |
2 1 4 6 1 8 2 1 4 6 1 8

i i — - Saieiaie .
515|5:5 5 15 5 15

|
p=v8/3 p=2/3
The use of p is thus quite ticklish! We have to wonder how Iviev
in fact chose his subregions and whether his choice influenced the
mathematical models that emerged. Does the rather good fit of
Ivlev’s ( p;, ;) data (see Section 4) result from the model he chose or
from luck and /or genius in selecting subregions” We cannot tell.
Yet Ivlev does establish the importance of studying patchiness.
In a laboratory or fish-farm setting, he has shown that high patchi-
ness leads to saturation feeding with less actual food present (lower
values of I), a useful result. And in a natural setting, the effects of
patchiness are even more important, for food is naturally patchy! As
Ivlev says, the effects of patchiness “...are of very essential signifi-
cance for natural conditions, in which it is never possible to ohserve
an absolutely even distribution of food material for any animals
whatsoever” [Ivlev 1961, 24].
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The problem of patchiness in the food supply has been studied
by other researchers. See [Pielou 1969] for an example.
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Exercises

1. Sometimes we have experimental data and two or more potential models. The task
is to decide which model the data “belong to.” There are advanced methods for
doing this, but in this exercise we’ll point out elementary graphical methods. (The

more sophisticated methods give more certain decisions, however.}

a. The solution of dr/dl=a{R —r), r(0) =0 was given in Section 3 as

r = R(1 — exp(—al)). Algebraically equivalent

ln(! - E) — (E1)

Let’s examine a graphical method of deciding whether data fit this model.

First, pick specific values of 2 and R and obtain a table of half a dozen
(I,r) data pairs from r = R{1 — exp({—al)). That’s “data set 1.”

From data set 1, form data sets 2 and 3: set 2 has data pairs ({,In(1 — r/R}
and set 3 has pairs ([,1 — r/R). Graph set 2 on ordinary (Cartesian) graph
paper; graph set 3 on semilogarithmic graph paper.

In each case, the data should fall on a straight line through the origin.
This is true for set 2 because you have graphed (x, y) pairs that obey y = —ax,
as (E1) really says. As for set 3, the spacing of the lines on semilog graph paper
is such that, although you have labeled the axes with (x, ) values, you are
really graphing {x, log y) pairs. Thus, set 3 falls on the straight lines as clairmed.
The point: If experimental ([, r) data pairs lead to (I, 1 — »/R) data pairs that
very nearly fall on a straight line through the origin on semi-logarithmic graph
paper, the fit to r = R{1 — exp( —al)) is good.

b. The so-called logistic model will be our alternative to the model of Exercise la

above: it is
dr
}} = kr(R — r)

and has many applications. Use integration by partial fractions to show that the
solution 13

RBAF! RB
L+ BART T KR g

([)= (E2)

where B is the constant of integration. Show that r(f) = R as [ -+ oo: the
logistic model has the same asymptotic behavior as Ivlev’s model in Exercise 1a.

c. Algebraically rearrange (E2) into

R
ln(A — l) = ~I|n B — kRL
r

If we draw (/, r) data pairs from (E2) and form (/,In{ K/r — 1}) data pairs
from them, how will the latter graph on Cartesian graph paper? How can we
use semilog paper to decide whether experimental (/, r} data pairs obey the
logistic model?
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. a. Show that #r/df = a(R — r) and 4(R — r)/dl = —a{R — r) are equivalent
equations.

b. Let Z= R — 7. Show that the solution of dZ/dl = —aZ is Z = Be e,
classical exponential decay (B is the constant of integration). Deduce the
solution formula of &r/dl = a(R — 7}, r((}) = 0 from the formula for Z.

¢. If you are familiar with the notion of “hall-life” for the equation dy/dt = —ky,
whose solution is y = Be  interpret  half-life” for the function r{1) = R(1 —
P a!).

. Deduce eq. {6) as the solution of eq. ().

. A method of combining the models of r depending separately on [ and p into one
model without use of calculus: Recall that 7, in terms of the patchiness alone is,
from Section 4,

(B = (R p)(1 - ™) +p;

and that p, being the value of » when p = 0, is really p = R{l - ¢~*7) by Section
3. Substitute this p into r{ p} to get r{f, p) = R(1 - ¢ #I7*) the same model we
got from the multivariable chain rule. |The very special conditions here let us
avoid the chain rule, but it is still the fundamental method needed to combine
one-dimensional results and is usually the only available tool ]

. The level curves of the surface z = f{x, y} are the curves obtained by intersecting
planes parallel to the xp plane (z = const} with the surface. We can calculate them
by putting z = £, a constant, and sulving for y in terms of x to get the points that
are graphed at height & For example, putting z = 4 in the equation of a sphere
centered at (0, 0,0),

x? +.y2 + 2% = 16,
yields

2+ ¥ =16 - ? = constant,
which is a circle (the level curve) when 1| < 4, but is the null set for |£| > 4. These
level curves are the parallels of latitude if the z-axis passes through the north pole

and the equator is in the xy piane.
Your problem: show that the level curves of our solution surface

r=r{f,p)=R(l — e~ nf-tey

are straight lines.

The differential equation dp/df = k(K — y), which we have used in Sections
3 and 4, has many other applications. We will mention two:

. If ¢ represents time, y is the temperature of an object in degrees, and K is the
temperature of the surrounding room (considered to be constant), then Newton's
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Law of Cooling s
&
— =k(K-3),
2 KK -3)

where k is a constant of proportionality that depends on the object. Your problem:

A cake is taken from a 350°F oven at 2 P.M. and is allowed to cool in a 70°
room, At 2:30 P.M., its temperature is 130°F. It can be sampled when its
temperature reaches 95°. When do we ear?

- During osmosis, nutrients dissolved in the surrounding fluid bath move through the

wall of a cell. If the surrounding fluid contains a concentration ol K parts per
million nutrients, considered to be constant, and p{!{) is the concentration inside
the cell as a function of time, then Fick's Law of Osmosis is dy/dt = k(K — y),
where & is again a constant of proportionality. Problem: Suppose 3 = K/2 when
¢t = (0 and use £ = 1. At what times will (1) = :K? ;K? :E;K? Extrapolate based
on the pattern that has appeared.

K ppm

()

cell wall

Exercises Al through A8 require an understanding of the least-squares material

in Appendix A.

Al

A2,

. The least squares fit of B = mP in Fxample 1 of Appendix A involves S(m) =

E(mP, — B ).
a. Show that S(m) = m?LP? - 2mLP B, + LB

b. What sort of function is §: m — S{m)? Notice that EP,g, LFB, and TRB? are
simply cunstants.

¢. Calculate 4S/dm from the form of S(m) in (a), and the point m, where
dS/dm = 0. (For this simple case, this is an easier way to get m,,.)

d. Establish carefully that the local minimum (mg, ${m,)} is an absolute mini-
mum for all real m.

In Example 2 of Appendix A, Section 2, we showed that

S(a,b) = Z(n bobx, _%)2

has only one critical point among all (a, #) in the plane. Show that this point
must be a local minimum, {for which the criterion is

e a0 GE G T e

as  as EEA RIS PR
: - > 0.
da ab da”
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a. Algebraically show that y = ae®* e In y = Ina + hx. This says that vari-
ables x and y will obey the cxponential model if and only if x and In p have
a straight [ine refationship.

b. You are given (x,, 3} data, 1 = 1,2,..., N that fit 3 = ae®" roughly and you
want a, b If we convert the (x,, Y data into (x,, z;} = {x,,In ) how can we
proceed 1o select @ and £ You want to exploit the straight-line relationship of
x and z by use of Example 2, Appendix A, Section 2.

a Show that y=ax" e ln p=Inaz+ blnx This says that » and y arc
power-function related il and only ii In x and In y are straight-line-related.

b. Given data {(x,, 3,) that follow y = ax®, how can we exploit (a) to select the
“best” values of a, &7

a. We want to sefect 4, b, and ¢ by the least squares method to fit a quadratic
(parabola) ¥ = ¢ + bx + ox” to given data (x,, »). What function 8(a, b, ¢)
should we seek to minimize? What three linear equations does this lead us to
simultaneously solve?

b. Your answer to (a) should be a natura] extension of the two tinear equations
we finally reached in Example 2, Appendix A, Section 2. What do you
suppose the four equations will be that fit y=a + bx + x? + & o (x,, 3)
data? Caleulate with 8(a, b, ¢, 4) to confirm your conjecture.

a. How can we select @ and & to fit y = asin x + & cos x to data (x,, y)?

b. How will the results of (2} allow you to fit 3 = asin(x + &} to data {x,, »?
[We can similarly fit y = a cos(x + b))

We have data triples (x, », 2z} and wish 1o choose parameters, a, b, ¢ by the
method of [east squares to fit the model

2= ary

to the data. Set up S(q, b, ¢) as the appropriate sum of squares that will lead to
linear equations fur a, 6, . Hint: Take logs on both sides of the formula for =.
This model has applications. For example, Schoener [1969] uses the formula to
model z =*time used by a predator in eating its prey” in terms of x ="body
size of prey” and y =“bady size of predator.”

We have data pairs (x, y) and wish to choose parameters a4, b, ¢ by the method
of least squares to fit the model

3= gt b cx?
to the data. Set up $(a, b, ¢) so that hnear equations for a, 6, ¢ result. (Hint:
Compare problems A5 and A7) An application: Newling [1969] uses this
formula to successfully model y =*residential population density (in people per
unit area)” in terms of x ="distance putward from the center of the city.”

Solutions to the Exercises

le

A straight line of slope —&R and intercept — In{ B) should appear on Cartesian
paper. Data pairs (f, R /7 — 1) yield the same straight line on semilog paper.

39



238

Tools for Teaching 1986

2b. From Z = Bexp( al)and Z= R - 7 itfollows that r = R — Bexp( - af). Use

of the initial value completes the problem.

. v+ — r = Rexp( —al ) has the half-life phenomenon of being cut in haif each time [

grows by In(2)/a. Thus, the gap between r and its asymptote decays with the
hali-life pattern.

. The solution of dr/dp = b(R — r)is r = R — Cexp( - bp), as dene in Section 3.

The initial value r(0) = p leads to = R — p, thus

-

=R~ (R - plesp(—bp)
=p+ (R~ p)~ (R~ p)exp(—tp)
=p+ (R —p)(1 —exp(—6p)).

. The algebra is straightlorward.

. From & = R{1 — exp{—al — 6p)) we get —al — bp = In(1  k/R) = constant,

which is a family of straight lines in the {/, #) plane.

. Givern: (1) dy/dt = k(K — »), K=1T0

and (2) p=350att=2and p~= 150 at =25

Wanted: ¢ such that y = 95, From (1) deduce y = 70 - Cexp(—4t) for some
constants C, &. Fram (2) next get £ = 2.5 and € = — 42000 (not many significant
digits should be kept). Now from y = 70 + 42000 exp(—2.5¢} and y = 95 get
{ = 2.97; in hours, minutes, and seconds, this 1s 2:58:12 P.M.

. The reader should discover the half-life pattern of this differential equation by

exploration here. The conditions dy/dl = k(K — y), & =1, and p(0) = K/2 lead
W p=K - JKexp(-1). Then y(t) = 3K/4, 7K/8 and 15K/16 occur at { =
In(2), 21n(2), and 3 In(2) respectively. Extrapolation leads to the half-iife pattern
for X - (), which may also be derived analytically.

Al

A2

b. A parabola, opening upward.

d. If m = m, were another candidate for the minimum, then we wouid have some
closed interval containing both m, and m, in its interior. A standard calculus
theorem (stating that the absolute min must occur at a horizontal tangent,
endpoint, or point where the derivative fails to exist, when the domain is a
closed interval and the function is continuous) may then be applied.

The criterion for a local min requires that we show

(Ex)’ < NI(+*).

{We abbreviate a typical x, as x here) Both sums run ¢ = 1,2,..., N. From
0 < {x, - x;)" [and we get the < case if x; # x, | we can deduce that

. 2 2 . .
2%, € &) + xi, with <if x, # x,.
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Summing, we get the desired result with < as long as any two of the x, are
different,

A3b. From data pairs (x, y), form a new data set {x, z} = x,In{ y)). Fit the (x, z})
data to a straight line, getting 4 and B such that ln( ») = 4 + Bx is the model.
Equivalently, y = exp(A)exp( Bx) = a exp(bx) is the exponential model for the
original (x, ») data, where 2 = exp(4) and B = b should be used.

A4b. From (x, y) data pairs form (In{x),In{ )} pairs. Do a straight-line fit on the
latter set of data, getting 4 and B such that In( 3) = 4 + Bln(x). Then the
model for the original (x, y) data is y = exp(A)exp(B In(x)) = ax where
a = exp{A) and b = B are the correct parameters.

Aba. S(a, b, c) = L{a + bx, + cx? — )" leads to these linear equations:

N Lx (x| a Ty
e 5 () || s] =1 v
L(x*) E(«") LG /[« Tx'y

Here Lx means Lx,, Y x’y means Lx2y;, etc., with all sums ¢ = 1,2,..., V.

b. S(a, b,c,d) = E(a + bx, + ex? + ds? -~ 3)? leads to these equations, given in
matrix form:

N Zx E(x*) Z(«N ) |a Ly
Lx (") Z(«) Z(M) || _ Lay
(=) I(*) E(+Y) L) |« Zaty
(") Z(«")y L(z*) Z(«*)] \d Txly

Aba. Use S{e, b) = Z(asin{x;) + bcos(x;) — };)2; these linear equations result:

Lsin*(x,) Lsin(x; )cos(x,)) ( a) _ ( ¥ ysin{x,) )
¥ sin{ x, Jeos(x,) ¥ cos?(x;) b ¥ ycos(x,)

b. y = asin(x + b) = a(sin{x)cos(b) + cos(x)sin(b))
= [a cos(#)]sin{x} + [ a sin{b)|cos(x)

Perform the least squares method of Exercise ABa on the (x, y) data, getting
A = acos(d) and B = asin{b). The needed a, & are then

a= \/ZE:TB-E and b = arctan{B/4).

A7. z = ac®™y = In(2) = In(a) + bx + cIn( y).
From (x, 3, z) data triples, form new data triples (X, ¥, Z) = (x,In( »),In(2))
and fit the model Z = 4 + BX + CY to that new data. This may be done via
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S(A, B, Cy=X(A+ BX + (Y - Z ¥, which leads us to get 4, B, € from:

N X Y )\ (4 74
Tx E(x) av || s)-|EXZ
Ty, Txy ey le LY,Z,

The parameters for Schoener's model are then a = exp(A), b = B, and ¢ =

AB. y = exp(a + bx — a?y e In(p) =a + bx — ex’
From the {x, ¥) data pairs, form (x,In{ »)) pairs and do the quadratic fit of
Exercise A3 1o the new data. The parameters that emerge are the needed values
of a, b, —c for Newling’s model.

.‘\ I\"NI
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