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1. INTRODUCTION

Why do wars occur? A question as broad as this necessarily
has a variety of possible answers. But one answer that many
agree upon is that the existence of weapons--military arsenals--
increases the likelihood of violent conflict. Without weapons,
it is argued, men would be forced to settle their differences
by other means. This is the basic¢ assumption behind the long
history of negotiations that have sought to limit the military
capabilities of major powers.

It was also the assumption that led Lewis Fry Richardson
to begin his study of arms races. Richardson was a Quaker by
conviction and deeply troubled by the two major wars. His
scientific training (physicist) led him to believe that wars
were phenomena that could be studied, explained, and thus
ultimately controlled., Towards this end he collected considerable
data on wars and performed numerous statistical tests (Statistics

of Deadly Quarrels, 1960a). But his most famous undertaking

was the construction of a model to represent an arms race

(Arms and Insecurity, 1960b}.

Richardson believed that arms races were often, but not
always, preludes to war. Hence, if he could obtain a reasonable
representation of how and why nations increase or decrease
their arms expenditures for defense, a study of the dynanics of
this process might expose the conditions under which wars would
be likely. 1If hostile nations were pumping greater and greater
amounts of money into their defenge budgets at an accelerating
rate then perhaps a small spark (like the assassination of

an Archduke) would start a major conflagration. On the other



hand, if two hestile natlons were decreasing their defense
expenditures, small incidents might be less iikely to lead
to violence.

This unit contains five parts. In the next section
we will show how Richardsen used the mathematics of coupled
linear difference equations to represent an arms race
between two nations. Following this presentation we will
demonstrate that the arms race model can be written in two
alternate and sometimes more convenient forms. Then, having
constructed the model, we will explere three of its properties.
Like Richardson, we will be interested in considering the
equilibrium point of the system. This analysis will not
only highlight one of the properties of the model but will
also illustrate the usefulness of one of the alternate
representations of the model, namely its matrix formulation.
The second analysis will also follow the work of Richardson.
Here we will be interested in the "stability"™ properties
of the model., Runaway arms races, arms races which are
continually accelerating, are in effect “unstable" reaction
systems, If, ag Richardson thought, these might be settings
within which wars could occur, then it is important to find
the set of conditions under which the arms race model can
be said to be "stable™ or "unstable." OQur analysis of the
stability properties of the arms race model will differ from
that given by Richardson, but the results are the same.

OQur last set of analyses consider the importance of
the parameters of the model. When Richardson developed
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and analyzes. his arms race model, "sensitivity" analysis,

as it is now called, was relatively new and unknown. Thus
this last analysis has no parallel in the work of Richardson
but demonstrates yet another property of the model that can

be analyzed. A sensitivity analysis‘shows which parameters

of the model, when changed slightly, will have the greatest
impact on the dynamics of the process. If an arms race can
be shown to be stable and it is known that slight adjustments
in a particular parameter can have a major impact on the
dynamics, then to guarantee stability, decision makers should

not tamper with this parameter.

2. THE ARMS RACE MODEL

Since it would be difficult te improve on Richardson's
presentation of his arms race model, we will let him provide
the steps in the modeling process. Richardson's formulation,
however, was in terms of linear differential equations; our
presentation takes the form of linear difference equations.
The mathematics of the twe formulations are similar so
this slight alteration in nec way affects Richardson's
argument or analysis. The use of difference equations,

however, does require that we specify
x{n} = the armament of nation X at t = n

where t is time, and that the change In armament level for X

from t = n-1 to t = n be represented by:

Ax(n) = x(n) - x(n-1). (2.1)



Similarly, for another nation Y we note:
Ay{n) = y(n) - y(n-1). (z2.2)

We will now follow Richardsen's discussion (1960b, p. 14):

"Permit me to discuss a generalized public
speech, fictitious bur rypical of the year 1937.
The Defense Minister of Jedesland, when introducing
his estimates, said:

"'The intentions of our country are
entively pacific. We have given ample evidence
of this by the trearies which we have recently
concluded with our neighbors., Yet, when we
censider the state of unrest in the world at
large and the menaces by which we are surrounded,
we should be failing in our duty as a govermment
if we did not take adequate steps to increase
the defenses of our beloved land.'
. . .the simplest representation of what that
gseneralized defense minister said is this:"

Ax(n) = ﬁly(n—l) (2.3)

“where [n]. . . is time, x represents his own
defenses, y represents the menaces by which he
is surrounded, and [51] is a positive constant,

which will be named a 'defense coefficient.'
Let us for simplicity assume that what he
euphemistically called 'surroundings' is, in
fact, a single natien. Its defense minister
asserts similarly that"

Ay(n} = sz(n—l). {2.4)

But, continues Richardson (p. 15):

"Surely the cost of armaments exercises some
restraine. Leading statesmen have expressed this
opinion. Thus Mr. Winston Churchill, (1923, p. 29)
records that on November 3, 1909, while he was
President of the Board of Trade, he began a minute
to the Cabinet with these words:
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“Believing that there are practically
no checks upon German naval expansion except
‘those imposed by the increasing difficulties
of getting money, ! have had the enclosed
report prepared with a view to showing how
far those limitations are becoming effecrive.
It is clear that they are becoming terribly
effective.

.50 let the equations be improved.

Ax(n) = Gly(n—l) - alx(n-l) (2.5)
Ay(n) = 62x(n-1) - azy(n-l) _ (2.6)
"where . . .Iml and uzl are positive constants

representing the fatigue and expense of keeping
defenses. M

But Richardson is still not satrisfied and he quotes Mr.
L. S. Amery, M.P. in the House of Commons om July 20, 1936,

in a discussion of World War I causes (p. 16):
" -The armaments were only the symptoms
of the conflict of ambitions and ideals, of those
nationalist forces, which created the war. The
War was brought about because Serbia, Italy, and
Rumania passionately desired the incorporatien
in their States of territories which at that
time belonged to the Austrian Fmpire and which
the Austrian Government were not prepared to
abandon without a struggle. France was prepared
if the opportunity ever came to make an effort
to recover Alsace-Lorraine, It was in those
facts, in those insoluble conflicts of ambitions
and not in the armaments themselves that the
cause of the War lay."

And so Richardson proposes (p. 16):

"Mr. Amery's objections should, I think,
be met. . .by inserting addicvional terms,
namely g and h, to represent grievances and
ambitions, provisionally regarded as constants,
so that the equations become”

Ax(n)} = Bly(n-l) - agx(n-1) + g (2.7

dy(n) = 52x(n—1) - uzy(n-l) + h. (2.8)



As we have seen, in Richardson's construction of the
model the parameters 61, ai, € and h had very special
meanings which suggested that these constants be pogitive.
However, it has since been argued (Zinnes, Gillespie and
Rubison, 1976) that negative parameters can have equally
relevant interpretations and that both mathematically
and substantively it makes more sense to congider a general
model in which parameters are not constrained. We therefore

rewrite (2.7) and (2.8) in a more standard form:

Ax{(n) = ulx(n-l) + Gly(n-l) +g (2.9)

Ay(n) = azy(n-l) + sz(n-l) +h (2.10)
and using (2.1) and (2.2) obtain

x{n) = (““1"‘(“‘1) * Gly(n-l) +g (2.11)

y{n) = dzx(n~1) + (1 + a,)y{a~1) + h. (2.12)
If we define

!+ al =B

m

v 1+ 0 B

we can write

x(n) = B x(n-1) + dly(n-l) +g
(2.13)
y{n) = 52X(n—1) + Bzy(n-l) + h.

The pair of equations in (2.13) are éougled first order

difference equations, representing a discrere interpretation
of Richardson's arms race model for two nations.
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In the following sections we explore two alternate
but equivalent representations of the arms race model
given by (2.13). 1In section 3 we show how the coupled
equations of (2.13) can be decoupled so that the armament
of X (and similarly of Y) can be rewritten solely in terms
of X's (or Y's) past behavior. In so rewriting these

equations we obtain second order difference equations.

Furthermore, alse it will be shown that in the absence
of "grievances” X's armament process, rewritten solely
in terms of its own past behavior, will be identical to
Y's armament process, similarly rewritten only in terms
of ¥'s past behavior. .

In section 4 we provide vet a third representation
of the arms race model using matrix algebra. Richardson's
initial model considered only two interacting natioms.
However, in later chapters of his volume he suggests a
more complex formulation involving n nations. To represent
and subsequently analyze n interacting nations using the
form given fn (2.13) is exceedingly cumbersome. Hence to
consider a more general model it is necessary to find a
compact representation. Such a compact form can be obtained
using matrix algebra. Although the analyses to be presented
here will not involve n nations, it is useful to show how a
two nation model can be represented in matrix form and how
such a representation can aid the analysis. Thus following
a discussion of matrix algebra, provided for those ynfamiliar
with basic definitions and operations, we will consider

the equilibrium properties of the model.



3. RICHARDSON'S COUPLED EQUATIONS AS A SINGLE EQUATION

The equations (2.13) represent the pehavior of the twe
nations such that the armament of the nation X depends upon
the armament of the nation Y. These can be rewritten in a
form such that the arms of a nation depend only on the arms
of the same nation atr previous times. In other words, we
want to rewrite (2.13) which are coupled equations in an
uncoupled form, To do so, we will rewrite the second equation
of {2.13) by considering y(n-1} and thus changing n to n-1,

and n-1 to n-2:

yln-1) = 8 x(n-2) + B,y(n-2) + h . 3.1)
Substitute (3.1) into the first equation of (2.13):
x(n) = le(n-l) + Gllézx(n-z) + Byy(n-2) + h] + g
- le(nfl) + Glézx(n-Z) + 6182y(n-2) +
élh +g. (3.2)
Rewriting the first equation of (2.13) in terms of y{n-1) we have
1
y(n-1) = i [x{n} - le(n-l) -8l (3.3)
1

If we now let n be (n-1) and {n-1) be (n-2) we can rewrite

(3.3) as
y(n-2) = + [x(n-1) - 8,;x(a-2) - g]
1

which can then be substituted into (3.2). With this

substitution, seme simplification and rearrangement we obtain:



x(a) = (8, + 8, 1x(n=1) + {6,8, - BB, ]x(n-2) +
(6,0 + g - gB,]. (3.4)
In an analogous fashion we obtain:
y(m) = [8) + B,ly(a-1) + 8,6, - 3,6,]y(a-2) +
[6,8 + h - hB ] (3.5)

Examining equations (3.4) and (3.5) we observe the
following significant points. First, we have obtained an
expression for x (and similarly for y) that reflects how
X will arm as a function of X's previous armament behavior.
Y's behavior is no longer reflected in X's equation (and
vice versa for Y). Second, equation (3.4) in contrast to
the first equation of (2.13), represents X's behavior at
time n in terms of the previous two time points, (n-1) ana
(n-2). Thus equation (3.4) {and similarly 3.5) is a
second order difference equation. Third, if we compare
equations (3.4) and (3.5) we observe that if g = h = 0 the
equations are completely parallel. Thus, in the absence
of grievance and ambition the armament processes of the

two nations are the same.



Exercises:

(1) x(n) = 2x{n-1) + 7y(n-1)

y{n) = 4x(n-1) + Sy(n-1)
Using the above two coupled equations obtain a
single equation involving only one variable x
or y.
{2) x(n) = Iy(n-1)

y(n) = 4x(n-1)

Decouple the above two equations to obtain a
single equation in one varisble. Comment on the
difference between this single equation and that

obtained in the first exercise.

4. RICHARDSON'S ARMS RACE MODEL IN MATRIX NOTATION

Richardson's arms race model can be written in yet a
third form, using matrix algebra. Since not all students
may be familiar with matrix algebra, we will provide the
necessary definitions and explanations as we proceed.

A patrix is a rectangular array of numbers. The
horizontal lines are called rows and vertical lines are
called columns. Matrices are usually denoted by block
letters, e.g. A,B,N,. . .

)

mxn

A= [aij

represents a matrix with m rows and n columns, (mxn) is the

size or order of the matrix; [aij} represents a matrix
2x3

10



; . th . .
with two rows and three columns and its (1,j)"— entry is aij’ i.e.

A matrix with one column (or one row) is called a
vector {(some aurhors call only a matrix with one column
a vector but we shall use the move general convention};

x 1s a vector and x can be:
1 1 1
[‘;‘] ’ [j 13 [1 1 2z 1) 3] 13 0 Y e e . (5..2)

The addition and subtraction of matrices is defined
only for matrices of like sizes, i.e., an (nxp} matrix can

only be added to (or subtracted from) another (nxp) matrix, e.g.

351 22 T8, Bi1 b2 Pys
+ =
821 T2 %33 bay Pay Poy
a5ty a1 * 5y, "ap3 * By
(4.3)
a1t Py Ay by, d33 % byy

Only conformable matrices can be multiplied.
Def.: A and B are called conformable if the pumber of columns of

A and the number of rows of B are the same.

11



Rule: A: (nxp) - a matrix with n rows and p columns
B: (pxm) - a matrix with p rows and m columns
A and B can be multiplied as (nxp) and {(pxm)}
are conformable. ' '
This is unlike the case with real numbers {or complex
numbers) where any two can be multiplied. The size of the
product matrix 1s: (nxm).

We shall illustrate the procedure for multiplication

by the following examples:

[r o -11 - 0! = a matrix with 1 row and 1 column
(1x3) 4
X _
(3x1)
+
= (L)1) + (0)+(0) + (~1)+(~4)
=1 +0+4
= 5,
2 1 0 4
1 72 & * _7 = a matrix with 2 rows and 1 column
(2x3) 9
*
(3x1)
* ‘n
€21
where: -
4
e =12 1 o7 - [|-7] = (2)-(4) + (L)-(-7) + (0)-(9}.
1t 9
[ 4
€y = [L 2 4] » -7 = (D)efd) + (D) (-7 + (4)+(9)
9

4 - 14 + 36 = 26.



12 . 1 0 4 a a matrix with 2 rows and 3 columns
0 4 1 -1 0

(2x2) (2x3)
+ + c < c

In the product matrix, the entry ¢,  ; 1 = 1,2, § = 1,2,3; is

i
obtained by multiplying the 15h row of the first matrix with the

jEﬂ column of the second matrix as indicated below:

1
¢ = (1 21 ¢ { (L) (1) + (2)+(1) = 3

(1)+(0) + (2)+(-1) = -2
12

n
]
—_
=
~
=
.
! =
1
| S
]

(1)+(4)Y + (2} (0) = 4
13

n

n

-

o

—

.
(=] F-3
—_

"

- (0)+(1) + (4)+(1) = 4

.
P |
[ -
"

0
€y = [0 4] - ] = (0)+(0) + (&) (-1) = -4

{0 4}

*
[ ]

€y (0)-(4) + (4)-(0) = 0.

Division is not defined for matrices.
Given the above definitions it is now possible to rewrite
the two coupled difference equations of (2.13) in matrix

notarion by defining the following:

x{n} . x{n-1}
Xy = eyl X F

1 % ve |2
8, & B

(4.4)

>
"
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The rule for matrix multiplication allows us to write:
x(n) = A X(n-l) + V » = 1'293.- CRR (“'5)

Consider for example the following set of parameter values

for a specific realization of the Richardson model:

x{n) = 2x({n-1) + 3y(n-1) + g
(4.6)

y(n) = 5x({n-1) + 7y(n-1) + h.

As was done in (4.4), (4.6) can be rewritten in matrix

2 3
X(n) = [; ;] X(n-1) + V. .7

notation:

Exercises:
{1) Rewrite the two equations in matrix notation:
k{n) = Ix(n-1)

y(n) = 2x(n-1) + &y(n-1).

(2) Rewrite the equations in matrix notation:
x{n) = 5y(n-1) + g

y(n) = 2x(n-1) + h.

(3) What difference do you detect between Exercises

(1) and (2)7

Matrix notation allows us to represent systems of
considerably greater complexity and size in a more compact
form. Expansion of the set of equations only increases the
size of the A matrix and the vectors X and V. This can be

seen in the following example. Consider three nations in

14



an arms race. Assume the armament behavior is still

described by the Richardson process, 1.e.,

x(n} = Glx(n-l) + azy(n-l) + u3z(n—1) + £,

y(n) = le(n~l> + Byy(n-1) + B3z(n—l) + g,

z(n) = Yx(n-1) + Y,y (n-1) + Y32z(n-1) + By-
{4.8)
By defining the following quantities:
x(n) &) 20
X(ny = [ y(n) , V= g, [ . &= 32 33
z(n) £q Yy Y3
(4.9)

the equation (4.8) can be compactly rewritten as:

X(n) = A X{n=1) +V | no=1,2,%,. .. (4.10)

Note that the equation (4.10) resembles (4.5), only the
quantities, A, X{(n) and V are defined differencly.

But a matrix representation not only allows us to write
a system of equations in a more compact form. Once a system
of equations is expressed in matrix notation the properties
of that system can be more easily assessed using operations
and theorems in matrix algebra. To illustrate this we wiil
show how the equilibrium point of a system of difference
equations can be found using matrix élgebra. However,
to do this we must define several additicnal operations
and state a relevant theorem in matrix algebra.

To every (nxn) matrix, i.e., square matrix, A, is

assoclated a number, called its determinant and denoted by



det, A. The determinant is alsoc represented by two vertical
lines, i.e. det. A = [A|. For a (2x2) matrix the determinant

is defined as indicated below:

AE , det. A a = a11822 - 312321

(4.11)

1 2 2 4
For example: dec. [, s| =% & det, 1 s =10 - 4 = 6.

For a bigger order square matrix, the determinant is
computed by the successive application of the expansion by
rows (or columns} and ueing the definition (4.11) as shown

below.

B! 12 13
A= a5 8y, ayl. (4.12)
81 %32 333

Before we evaluate the determinant of the above matrix let
us define a useful term:
AZ [aiJJ is an (nxn) matrix. Cortesponding to the

nxn

th
(1,3) entry of the matrix A, the cofactor, denoted by Aij,
is defined as the determinant obtained after deleting the
th .
i"™" row and the §*M column of A, multiplied by (-1)i*i,

Consider the following example:

2 0]
AE (4 5 7
3 9 g

16



The cofactor associarted with the (2,2) entry (i.e., 3},

obtained by deleting the second row and second column is:

2421 0| _
By, = Gl gl = 8

+3,4 35 .15 = 21
biyw DT Ly gl =38

Now we can write an expression for the determinant of (4.12):

det. A = aj A)) + a;,0,, + a;44,, (expansion by first row)

331A31 + 332A32 + a33A33 (expansion by third row)

All + 321A21 + a31A31 (expansion by first column)

S !

A A A (expansion by second column)

213801 ¥ 355852 t 3358y,

Exercise: Write the expressions for det. A as expansions

by second row and third column.

As another example of finding the determinant of a (3x3) matrix,
consider

1 2 0
0 -1 1-1 10
der. |10 a1l = ll 3|—(2) ) 3‘+(0)’2 1,

=1 - 2x5 = -9.

A very useful operation in matrix algebra is called

the transpose. 1f A = ['ij] is a given matrix, then the
nxm
T _
transpose of the matrix A, denoted by A" is = [aji]'

mxn

Essentially, transposing implies changing a row into a column.

Examples:
1 2 0 T 1 a
(1) A= . A= 2 1
o 1 3 0. 3
%3 ix2

17



(1) A = =[1 & o] .

1x3

f=0
-

3x1

Let us now define the identity matrix, which is the matrix
equivalent of the real identity, {.e., the real number 1. In
is an (nxn) identity matrix if all of its main diagonal entries

are the real number 1 and every other entry is zero, i.e,,

1 0 .. 0
0 1 0
I = [ .
n . .
0 0 .. 1

nxn

Next we define the inverse of a matrix. Civen an
{nxn) matrix A such that der. A # 0, we wish to find another
matrix B such that BxA = AxB = In, where In is the identity
matrix of order (nxn). The matrix B is called the inverse
of matrix A and is usually denoted by B = A-l.

Finally we state an essential theorem:

Theorem: Given an {(nxn) matrix A such that det. A ¥ 0,

-1 1 T _
A 3 [Aij] , & = det. A., Aij is the cofactor
for the (1,3) entry of A.
Exampies:
1 0 -1 1 4 0
(1) A= . det. A = 4 + A = Z
3 4 -3 1

0o 1 0 o 0 o 1
AT {0 0 1] L,det,Aa=1+at< |1 0 o
1 0 0 0o 1 0



12 @ U R R
Az |3 -1 -2 ,det.Aa=17A =737 -3 2
1 0 -3 1 2 -7

Given the definitions of determinant, transpose and
inverse, together with the above theorem, we are able to

find the equilibrium point for the three natiocn model given

in (4.10). The equilibrium peint in an arms race represents

the level of arms such that the dynamics of the race cease.
It is the value of the armaments which results in a no change
(i.e., increase or decrease) in the armaments of the two
nations.

Let xe bte the equilibrium armament which represents
no change in the level of arms represented by the equation
(4.10). To find an expression defining such an arms level
iet us subtract %X(n-1) from both sides of the equatien (4.10),

i.e.,
X(n) - X(n-1) = (A-I)XA(n-1) + V.
The above equation can be rewritten compactly as:

AX(n) = on(n—l) + Vv 4.1

where AX(n) represents the change in armaments at the nEE

instant and Ac » A - 1. At the equilibrium point this change,

AX(n), 18 gzero and the equilibrium armament is: xe, i.e.,

D=a % +V
o'e
so that

X = - A"V, (4.14)
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We ghall now compute the equilibrium point

for an arms race represented by the following equation:
X{n) = X{n-1) +
k]

In view of the above equation we can write:

1 o0 -1 4 0
A =AI= > A= .
° 3 4 -3 1

The equilibrium point for the arms race (4.15) is now

£l

computed as:

-1
Xe = — Ao v
.1
. “ ool
4
-3 1{ |.5
.1
R P (4.16)

We have shown how Richardson translated the fears and
ratjonales of statesmen inte a model of an arms race between
two nations. The model, when constructed, was a coupled
system of linear difference equations. We then showed how
such a coupled system could be decoupled and represented
as two independent second order difference equations.
Finally, we saw that yet a third repreéentation could be
obtained for the arms race model by using matrix algebra
and how such a representation allowed for an easy expansion

of the model to n nations and for a simpler solution of
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such properties as the equilibrium point. We turn then
from these issues of how to represent the model to a
discussion of what we can learn from the model--what are

its stability and sensitivity properties?

5. STABILITY PROPERTIES OF THE RICHARDSON ARMS RACE MODEL

To meaningfully discuss the stability conditions for
the arms race model it is necessary to define two relevant

concepts: (1) initial condition and (2) solution. For

simplicity, consider the following first order difference

equation

y(n) = py(n-1), n =1, 2, .... (5.1)

An initial condition Is the value of y at the time the

process described by (5.1) began, viz.
y0 =y,

where Yo is the initial condition. A solution describes
the time path or trajectory, y(n), in terms of the parameters
of the gystem and the initial condition. A solution for

(5.1) 1is given by:

y{a) =y " . 5.2)

This can be shown by substituting (5.2) into (5.1):
n
LHS = y{(n) = ¥oP

RES = py(n-1) = py o™t = y of

hence, the two sides are equal, and therefore,
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v(n) = yopn satisfies (5.1) and can be called

a solution.

The stability of a dynamic system refers to the behavior
of the solution, given in the above example by (5.2), as n
becomes very large. Generally speaking, & system is said
to be stable if the solution y(n) converges to some value
and unstable if it does not. If we examine (5.2) we observe

that if

el > 1

then as n gets larger and larger, y(n) becomes larger and
larger: i.e., n + « implies that y(n) diverges. Thus for
[p] > 1 the system given by (5.1) is unstable. Contrariwise,

we note that if
fol <1

as n lncreases, y(n) approaches zero. Thus the condition

fp] <1 implies that the system given by (5.1) 1s stable.

Note finally that if p = 1 we obtain from (5.2):
y(n) = Yo

l.e., the system "sits" at the initial value and in effect

p =1 implies that there is mno dynamic., However, this
latter case 1s also stable., We distinguish the two stable
cases from one amother by calling the first, i.e., when

[p| < 1, asymptotically stable; the second is simply denoted

as stable.
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Consider a slightly more complicated system:
y(n} = oy(n-1) + ¢ (5.3

where ¢ is a constant, In a completely analogous fashion
it can be shown that the solution to this system is given by:

1 -2 +

y(m) = ply(o) + 2" e + P .+ pe + oc.

(5.4)

Exercise; show that (5.4) is a solution to (5.3)

Examining (5.4) we see that if |p| > 1, as n increases y(n)
still diverges, similarly if |p[ < 1 as n increases y(n)
converges.

We see then that stability implies that the system
converges to some value, zero or otherwise, or that the
system never moves from its initial condition. The value
to which the system converges is the equilibrium point of
the system. As was defined in section 5, the equilibrium
point of a dynamic system is the point at which the dynamic
stops, or the system comes to rest.

At the equilibrium point the dynamics of the system

cease; for the system (5.3) let Yo be the equilibrium point.

Then:
y, = - <
e P -
i.e, the equilibrium point is given by: - ; 1'
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Exercise: Show that zero is the equilibrium peint for (5.1)

Consequently, a system is stable if as n increases y(n)
converges to the equilibrium point of the systenm.

Thus far we have only considered a first order system.
However, as we showed in section 3}, the arms race model is
a second order system. We must, therefore, extend our
analysis of stability to second order systems. Consider

the second order difference equation:
y{(n) = uzy(n—Z) + uly(n-l) (5.5)

and to simplify our analysis assume

n
y(n) = ¢ p, where ¢, p are unknown constants
and n is an integer, be a solution to (5.5) in an anologous

sense to that described above in (5.2),

We can now write

y{n-1}

n
~
©

y(n-2)

n
n
Ao

and substitute Into (5.5} to obtain

c On sa, c lon—2 +a e pn-l‘



Divide by ¢ pn-

pT =, +a p
2 1 (5.8)
0 = 2 o -
o L P 2
Equation (5.6} is a quadratic equation in p. The two
roots of this equation are
Lig + 42
3 [al £ Vo + 4 ay 1.
1f &y > 0 and o, > 0 then both roots will be real.
Now we can write the solution to (5.5):
- n n
y(n) ©1P1 * S0, (5.7

where o and €, are constants detérmined by the initial
conditions. Analyzing the solution given in {(5.7) we see
that the same type of argument given for the stability of
a first order equation applies in a second order system,
viz,, !pii <1l ,4=1, 2 guarantees that the system will
be asympotically stable.

Let us examine the stability properties of the
Richardson model. As we saw in section 3, the two coupled
equations could be decoupled and represented as a second
order difference equation. TIf we further assumed g=h=240
the two equations were identical. Hence, we need examine

only one of these equations:

x(n) = [Bl + lex(n-l) + [6162 - Blﬁzlx(n—Z).

(5.8)
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Let us assume gpecific values for the coefficients:

These coefficient values indicate that the amount of
fatigue felt by both nations and the amount of threat
perceived by each are roughly equivalent, Furthermore,
neither nation is experiencing or perceiving excessive
amounts of fatigue or threat (over or under), as reflected
by the fact that the parameter values are nearly unity.

If we substitute these specific values into (5.8) we obtain:
x(n) = 1.7 x(n-1) + ,48 x{u-2) (5.9
and comparing (5.9) with (5.5) we see that

o, = 1,7

1

oy = 48,

Hence, we can now use (5.6) and solve for p, and the two roots are:

%»[a t Yu 2 + 4 a, )

1 1 2
37 At s . g

= 1.95, -.25, (5.10)

We find that one of the roots is larger than unity

(i.e., 1.95 > 1). Thus (5.9) represents an unstable system.
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As a second, contrasting example, assume the coefficient

values to be:

In this realization of the model we see that two nations

are experiencing fatigue (B)and perceiving threat (§) differently.
But of greater significance is the fact that these parameter
values are less than unity. In the case of the threat
parameter, 5, this indicates that both nations are perceiving
rather little threat. Or to put it somewhat differently,

the amount of hostility between the two 1is low. An
interpretation of B must be done more cautiously. Initially
this parameter measured fatigue but was assumed to be
positive and subtracted from the equation. When we rewrote
Richardson's model to express it more generally, we put

no constraint on 8 and added it in the equation.
Consequently, 0 < B < 1 implies that a nation is experiencing
. some fatigue. Perhaps this interpretation can be seen

more easily by changing the interpretation of B from
“"farigue" to a "depreciation" coefficient. Thus the above
values for B imply that the effectiveness of the weapons

is depreciating at a yearly rate of .5 and .36 respectively.

Let us now consider whether this realization of the

Richardson model is stable. As before, we determine ul and
a,

2 - -
a, Bl + 82 .86

az - ﬁaz - 8182 - -195 - .18 = 015 27



and then solve for the two values of p:

[a, * vo 2 + 40 ]

1 1 2

- % [.86 + /.74 + .06 ]

B |

= .88, -.02z.

These values allow us to conclude that the system is

asymptotically stable.

Exercises:

(1)

2)

(3)

Is the armament race, represented by:

y{n) = 3 y(n-1) + 4 y(n-2) asymptotically
stable?

Choose the coefficient o in the armament equation:
y(a} = a y(n-1) - 10 y(n-2)

so that the armament race represented by

the above equation is asymptotically stable.

In an armament race between two nations, the
behavior of rhe arms buildup can be represented
by the equation: y(n) = + 10 y(n-2), note that
a similar equation is true for the other nation.
Comment on whether the race 1is asymptotically

stable,
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6.

A SENSITIVITY ANALYSIS OF THE RICHARDSOS_&EE%}RACE HOD?L

In this last section we turn to an analysis of the
sensitivity properties of the arms race model. This
analysis, however, requires some familiarity with partial
derivatives. For those unfamiliar with partial derivatives

we provide the following brief background.

Let z = f(x,y) be a function of x and v and let
(xl,yl) be any point. The function f(x,yl) then depends

on x alone and is defined in an interval about Xy Hence

its derivative with respect to x at x = x, may exist. If

1

it deoes, its value is called the partial derivative of

f(x,y) with respect to x at (xl,yl), and is denoted by:

Another notation used for the partial derivative is:

f or more explicitly—-fx(xl,yl). The partial derivative:

-

3

b
to Xy and differentiates f(xl,y) with respect to y.
Examples:
(i) 1f z = xuv + u -~ 2v, then

3z

T = uv, gfr' xv+ 1 = =3xu - 2,

(1) 1f 2% + y2 -2 . 1, then

2x -~ 22 32 = g » 82 2 X
x ox 2z

: 3z 3z
Z - 22 £ = _-x.
y z ay 0~ Iy =z

(xl,yl) is defined similarly: one holds x constant equal
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{ii1) R yz - 1, this is the same equation

as in (ii) above.

2z az dz

== 2)(‘*—-3-
2z

Ix 3x
22 92 = 2y *’%ﬁ =Y

3y y oz

For simplicity consider again the first order system:
y(n) = py(n-1), n =1, 2, . . . (5.1)

Its solution is given by the expression (5.2). We would

like to assess the impact of a slight change in p, on the
sclution trajectory y(n). This is accomplished by evaluating
the first partial derivative of y(n) with respect to p:

agaén) - yonp“‘l . (6.1)

From elementary calculus we know that the change in
y(n} is related to the first partial by the following

relation:
Ay (n) =.¥.._g in) - ap, (6.2)
p

where Ap is the differential change in the parameter

P. The quantiry 3y(n) , the first partial of y(n) with
3p

respect to p, is called the sensitivity coefficient of

y(n) with respect to p, it measures the effect on
y(n) of a differential (or small) change in p, Knowing
the sensitivity coefficient and the differential change

in p, the change in y{(n) can be computed.
30



Now suppose that the quantity of interest, L.e.,
v(n), is a funccion of two parameters, Dl and pz. We
would like to compute the change in y(n) as these

paramcters change by amounts Apl and Apz. Following

the same line of argument, we can write:

Ay(n) = 3¥(0) < ap + ¥(m) .« Ap,, 6.3)
3y L%, ?

dy(n) and dy(n) are the two sensitivity coefficients of
ap ap
1 2

the quantity y(n) with respect to the parameters Ol and

0y-
From (6.2) it can be seen that if the quantity 3y(n}
ap
is large, a change in the quantity p will have a large
effect on y(n), i.e., we will obtain a large Ay(n}. Thus
the size of the sensitivity coefficieut determines the
effect a change in the parameter will have on the quantity
of interest. A knowledge of various sensitivity coefficients
will indicate which parameters have the largest effect on
the quantity being investigated.
Let us consider the armament behavior of a nation
described by the equation (5.5). The solution of this
equation is given by equation (5.7). We want to

investigate which of the two parameters (a1 or a,)

2
has the larger effect on the trajectory when it is

changed from its nominal value. To see this we compute

the sensitivity coefficlents: 3y{n) and 3y(n).
aal 3a,
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ap

3y (n) ) -1 . e np“‘l 2

do 5 T ™ 2772 Aoy

1 i

3 dp

3y (n) 3 n- 2
—_—= . nDn—l —_— c.,np = .

aaz "1 3a 272 aaz

and p, are defined

In the above two expressions p 9

1
by equatien (5.6). For given values of the parameters

c, and ¢ the above two coefficients can be

e % Y 2
evaluated and the relative size of the twa determined.
The larger covefficient results in the larger effect on
the trajectory and hence can be thought of as the more
"ecritical"™ parameter. Thus, in the context of an arms

race model, this would be the parameter one would avoid

changing 1f at all possible.
Z: CONCLUSION

This module has sought to demonstrate the use of
second order linear difference equations for modeling
arms races among nations. Based on the work of Lewis
Fry Richardson, this module has shown how a reaction
system between two nations can be represented in three
alternate but equivalent mathematical forms and how
various properties of the system -- the equilibrium,
stability, and sensitivity properties —— can be examined.
While the model does not ultimately allow Richardson
to predict wars, the mathematical formulation and
subsequent analysis permits an understanding of dynamics
that are related te the outbreak of wars. Thus the model
represents a first step towards the goal of understanding

international conflict.
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PAGE 10:

Exercise 1:

34

9. ANSWERS TO EXERCISES

x{n) =2 x(n-1) + 7 y(n-1) (1}

¥{n) = 4 x(n-1) + 5 y(n-1)

In the above equation let n -+ n-1:
y(o-1l) = § x(n-2) + 5 y(n-2)
From equation (1}: x(n} = 2 x(n-1) + 7 y(n-1)
=2 x(u-1) + 7 {4 x(n-2) + 5 y

= 2 x(n-1) + 28 x(n-2) + 35 ¥{

(2)

Also from equation (1): y(n-1) = % [x(n) - 2 x(n-1)];
changing (n-1) to (n-2) 1in this equation we obtain:
¥(n=-2) = % [x(n-l) - 2 x(n-2)]; substitute this in

equation (2) and simplify to obtain:

x(n) = 7 x(n-1) + 18 x(n-2) (N

Also from the equation (1) one obtains:

y{n) = & x(n=1) + 5 y(n-1) ; (substitute equation (1)
for x(n-1))

=4 [2 x(n=2) + 7 y(n=-2)] + 5 y{(n-1)
= 8 x(n-2) + 28 y(n-2) + 5 y(n-1) (4)
from the second equation in {(1):
y(n) = 5 y(n-1) = 4 x(n-1)
let (n-1) + (n-2):
¥(n-1) = 5 y(n-2) = 4 x(n-2)
substitute the above in (4) and simplify:

y(n) = 7 y(n-1) + 18 y(n-2).



PAGE. 10:
Exercise 2:
x(n) = 7 y(n-1) = x(n+tl) = 7 y(n) (changing n + (n+l))

= 7 * 4 x(n-1) (subsitute for y(n) from the
second equation)

28 x(n-1)

y{n) = 4 x(n-1) + y(ntl) = 4 x(n)
= 4+ 7 y(n-1)

= 28 y(n-1).

Comment: x(n+l) = 28 x(n-1)
let (n+1) + n then: x{(n) = 28 x(n-2).
This is a second-order difference equation, it
resembles the equation (3} except that the term

denoting the value at the instant (n-1) is zero.

PAGE l4:
Exercise 1: TIn view of the definitions (4.4) we can rewrite

the two equations as:
X{n) = X(n-1).
2

Exercise 2: In view of the definitions (4.4) we can rewrite

the two equations as:

X(n) = X(n-1) + V.
2 0
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PAGE 14: Exercises {Continued):

PAGE 17:

Exercise:

PAGE 23:

Exercise:

36

Differences:

(1) The matrices A are different, the main

Diagonal entries In Exercise 1 are nonzero

while these are zero in Exercise 2.

(2) The term V is zerc in the Exercise 1.

det.

The

The

LHS

A= a21A21 + 322A22 + a23A23 second row expansion

A

A - third column expansion

313813 F 32383 ag48q,

difference equation is: y(n) = p y{n-1) + ¢

solution (5.4) is: a n-1 b
piyle) + I pc
j=o
n n-1 .
of the equation (5.3) = p'y(o) + L D]
Jj=o

= py(n-1) + ¢

n-2 .
yio) + £ nlg
j=o

= pfp"!

n n-2
ply(oy + 5 & ol
j=o

a n-1
=pyle) + L pl
j=e

LHS .



EﬁGE 24
Exercise: y(n) = py(n-1} , n=1, 2, .
At the equilibrium point the dynamics of the

system cease, i.e,,

o is the equilibrium point of the system.

PAGE 28:
Exercise 1: y(n)} = 3 y(n-1) + 4 y{n-2),
Following the procedure indicated below equation (5.5)

we obtain the algebraic equation in p i.e.,
2

P -3Ip-4=0

The two roots of the above equation are:

ol.pz=$[3:./9+161
2

-—1-[3t5}

-4, -1

since the root 4 is larger than one, the system is unstable.

Exercise 2: y{(n)} = ay(n-1) - 10 y(n-2).
The corresponding algebraic equation needed for

stabllity analysis is:

pz ~op + 10 = o
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PAGE 28: Exercise 2 (Continued)

Exercise 3:

38

its two roots should be less than one for

asymptotic stability;

Pys 02-%[u1¢a2—é0]

%[a + - 40 ] < 1 ang %[a - " - 40 1 <1,

From the above two inequalities we obtain the

restrictions on o for asymptotic stability.

%[G +a% s 1< > o+ Va2 - 40 < 2
+ a-2<-A%-40 » @-22<a? - a0

-+ !.+01.2-£.o.<u.2—40 + -4 < =44 > o > 11,

Following the above procedure we obtain the

same result from the other inequality, i.e., a > 11,

y(n) » 10 y(n-2),

The corresponding algebraic equation needed for

stability analysis is:

P 10=0 + o=+ Y10

since |o| > 1, the system is unstable.



