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l, INTRODUCTIOQN

Ever since Thomas Malthus proposed in 1798 that the
world population increases exponentially, mathematical mod-
els have been used to study the growth and decay of popu-
lations. One model, developed by Robert M, May, John R.
Beddington, Colin W. Clark, Sidney J. Holt and Richard M.
Laws, (see the reference section), involves the relation-
ship of baleen whales with their food, the Antarctic krill.

Baleen whales are generally the largest of the whales.
They include the blue whale which, at a length of up to 30
meters, can truly be called the king of the whales (not to
be confused with the Prince of Wales). They are toothless,
equipped instead with horny plates known as baleen {(from a
Greek word for mustache}, which hang from the roef of their
mouth. The baleen act as a sieve to strain food out of the
water. A favorite food of baleen whales is the Antarctic
krill, & shrimplike creature about two inches long. From
January to April, the density of krill in the Antarctic
Ocean can be as high as 20 kilograms of krill per cubic
meter of ocean. Any whale unwilling to search after such
an abundant source of food must certainly be labeled a
ne'er~do-whale.

The number of baleen whales has been drastically re-

duced by excessive hunting. As a result, there is a sur-
plus of krill, and people have begun harvesting the krill,
a rich source of vitamin A, as an alternative focd source.
The krill are als¢ consumed by many other ¢cean creatures,
however, and the effect on these creatures, as well as on
the already depleted baleen whales, is a cause for concern
(this could be referred to as a problem of over-krill).
One way to predict the effect of various fishing strategies
is to study a mathematical model of the situation. 1In this
mooule we will look at the model studied by May et al. and
rederive some of their results.

2., THE MODEL

Let Nl be the population of the krill, which repre-
sents the prey in this predator-prey model, and let N2 be
the population of the whales (the predators). We will
first write a differential equation describing the growth
and decay of the krill, and then we will write a similar
equation for the whales,

The simplest form of population growth is based on the
assumption that a population grows at a rate proportional

-1-
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to its own size; that is, twice as large a population will
produce twice as many babies. Mathematically,

dN
(1) - N

at - 1t

where r;, the positive constant of proportionality, repre-
sents the rate of growth.

Exercjise 1. Show that Equation (1) implies expomential growth of the
krill.

Equation (1) is unrealistic because krill cannot grow
without bound. Beyond a certain population size, known as
the carrying capacity of the environment, the krill will
have ingufficient plankton toc eat. If we denote the car-
rying capacity by K, then Equation (1) -can be modified as

dN N
—1 _ -
{2) Gt < Ny 1 P ].

This equation is known as the logistic equation.

Exercises
2. Show that
a) if Ny is small, Equation (2) is essentially the seme as
Equation (1);
b) as Nl grows closer to K, the growth rate lefdt declines;

e) if Ny is greater than K, the population decreases. What
happens if Ny is equal to K?

3. Solve Equation (2) for Ny as a functiom ot t.

Equation {2) would be a fairly realistic model were it
not for the whales eating the krill, The hungry whales
will decrease growth at a rate proportional to their num-
ber: twice as many whales will eat twice as many krill.
Furthermore, this decrease should be proportional to the
number of krill: doubling the amount of krill doubles the
chance that the whales will find the krill and eat them.
(Although this last statement is probably not true for ex-
tremely large krill populations, the model we have de-
scribed is fairly realistic without becoming so complex as
to be impossible to study.) Our equation is now

-2-
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an N
(3) at r1N1[l Sl

where C is a positive constant representing the rate at
which the whales consume the krill (i.e., each whale con-
sumes CNy krill per unit time).

We now turn to the whales. Their growth rate can also
be described by a logistic equation, but the carrying ca-
pacity of the whales is limited by how much food they have
to eat, which is proportional to the krill population.
fhus, in place of a constant K, we will have the expression
aNp , where o is a positive constant expressing how many
whales can be sustained on a population of one krill.
(Answer: not very many, $0 o is very small.} The equation
for the whales is thus

dN
{4} 5;2 = N, |1 - Nz/(uﬂl) .

It would be nice at this point if we could solve
Equations (3) and (4). But unlike Equations {1} and (2},
these equations cannot be solved analytically. We can,
however, ¢ive some gualitative results, even if the exact
answers cannot be found.

3. THE FISHERMAN COMETH

since one of the main purposes of this model is to ex-
amine the effects of various fishing strategies, we should
introduce terms into our equations describing the effects
of fishing., Let us denote the fishing effort for krill and
whale by Fy and F,, respectively. We will scale the fish-
ing effort to make F; =1 and Fp =1 correspond to an
effort which yields at a rate proportional to the natural
growth rate. The krill yield can then be expressed as ¥; =
rF1Np {note that Fy = 1 implies ¥} = N, which is the
natural growth rate according to Equation (1)}, and the
whale yield is similarly expressed as Y, = roFgN;.
Equations (3) and (4) become

ay

il
(s) ac = r1N1 1 - K - CNlN2 - rlFlNl'

an
(6) 5E3 = 1N, [1 - Nz/(aNl)] - LF N, .



50

4. REMOVING THE DIMENSIONS

The model as designed would give different numerical
answers for different units of measurements., Since we do
not know the exact numbers anyway, it is simpler to repre-
sent the krill anéd whale populations in dimensionless form
as

(7) Xy = Ny/K

Recall that K is the carrying capacity of the krill, so
that X3 =1 (not 1 kilogram, not 1 ton, just 1) corresponds
to a krill population equal to the maximum that the envi-
ronment can sustain. Notice also that since both Ny and K
have dimensions [krill], Xy has dimensions [krill]/[krill]
= 1; that is, ¥X; is dimensionless. The quantity N- has di-
mensions [whales] and o has dimensions [whales/krill] (this
follows from the original definition of «), so Xo has di-
mensions [whales]/([whales/krill] x fkrill]) = [1], so X5
is also dimensionless.

Exercisges

4. GSubstitute (7) into Equations (5) and (6) and show

dX
S -F. - X -
(8) ' rlxl(l F]. Xl \sz)
dX,
—2 _ _ _
(9) Tl r2x2(1 F2 xzfxl)

where v is the dimensionless parameter
{10) Vo= CaK/rl.

5. Show that v is dimensionlesa. Do this by calculating the dimen-
sions of C, a. K, and r; (e.g., C must have units [1/{whales x
time)] for Equaticn (3) to be correct), and then show that all the
dimensione in Equation (10} cancel out.

We have now reduced the number of relevant parameters
to three: 14, ry, and V. This means that C, a, and K are
not individually relevant. According to Equation (10},
only their product is important.
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Exerciseg

6. Notice from Equation (10) that if C is doubled and @ halved, v
stays the same, so the model does not change. Expleain what this
means biologically.

7. Repeat Exercise 6, except this time cemsider doubling € and
halving K.

8. Repeat Exercise 6, except this time double o and halve K.

L FOR U BR T

gince we cannot sclve Equations (8) and (9), we will
try to derive gualitative information. In particular, we
will look for equilibrium points, which are values of Xy
and X, such that dX;/dt = 0 and dX,/dt = 0. 1In other
words, if Xy and X, are at an eqguilibrium point, they will
stay there forever, since their derivatives are 0. We can
easily find one equilibrium point from (8) and (9}: let X;
=X, =0, Indeed, if there are no whales and no krill, the
situation will stay that way forever. This accurately
models life on the moon, but is not of great interest to us
(or to the whales and krill!).

Exercise
9, Show from Equations (8) and (9) that if X; > 0 and X, > 0, and F;
and F, are both less than 1, there is a unique equilibrium point:

. 1 -F
an T TR TR
(1 - F )1 -F,)
* _ 1 27,
1z L TTT M- Fz)

Another topic of interest is stability. Suppose X
and X, are close to the values given by Equations (11} and
(12), but not exactly egqual to them, Will the sclution
tend to move closer to the egquilibrium point or farther
away? The answer is that it would move closer, which im-
plies that the equilibrium point is stable. (To see how
this is proven, see, for example, Boyce, Wm. E. and
PiPrima, Richard C,, Elementary Differential Equatiopns,
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John Wiley & Sons, 1877, Chapter B.)} If this were not so,
the equilibrium point would never be observed, since it is
highly unlikely that X; and X, would ever take on exactly

the values given by (11) and (12).

6, THE EFFECT OF FISHING

In deriving Equations {11) and {(12), we assumed that
Fy and F, are less than 1, meaning that the fish are being
caught at a rate smaller than their natural replacement
rate. If this were not the case, we would derive different
equations.

Exercises

10. TUse Equations (8) and (9} to determine what would happen if Fj <
1 and Fq > 1,

11. What would happen if F; > 1 and Fy > 17

12, Recall that the krill and whale yield were Y} = rjFyN) and ¥y =
IyF,Ng. Show from Equations (11} and (12} that the equilibrium
krill and whale yield are

» (HERYF (- F,)

(13) Yy =TS - Fz)
. arzk(l - Fl) F, (1 - Fz)
(14) o= 1+ v(1-Fy) :
1. MAXIMUM SUSTAINABLE YIELD

The concept ¢f maximum sustainable yield is very im-
portant in ecosystem modeling. The maximum sustainable
yield is the greatest harvest possible which can be contin-
ved indefinitely. In other words, if one tried to capture
more of a species than the maximum sustainable yield, the
population of the species would decrease, and either the
harvest would have to decrease or the species would become
extinct.

Equations (13) and (14) give sustainable vields, since
they correspond to the equilibrium populations of the krill
and the whales. It is of no value to maximize each one
separately, since the two are interrelated, and making one
larger may make the other smaller, In fact, we can see
from Equation (13) that Yl* is maximized by making F, as

-6—
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large as possible, that is, by letting Fp = 1. But then
Equation (14) tells us that Yz* = 0. In other words, to
maximize the krill yield, we would Lharvest the whales to
extinetion, since then there would bc no whales to compete
with us for the krill.

Exercises

13. Show that for fixed F,, the krill yield is maximized by letting
Fl = 0.5.

14. Show that for fixed Fy, the whale yield is maximized by letting

_Q+ ) - Y1+ v
2 v

(15) F when v F 0.

Our answer to Exercise 13 can be used to shed some
iight on the meaning of wv. First of all, let us ignore the
effect of the whale on the krill by letting v = 0 {notice
from Equation (8) that if v = ¢, the equation for X, does
not involve X,). Now we use the value Fy = 0.5, which was
found in Exercise 13 to give the maximum sustainable yield
of krill, and then Eguation {11) tells us that X * = 0.5.
Next, let us ignore the effect of fishing by letting Fy =
Fy = 0; Equation (11) then gives

D
* =
(16) xl 1+ v

We again get the value X% = 0.5 if v = 1. This gives the
following interpretation of wv: if v =1, the whales are
consuming the krill at the point of maximum sustainable
yield. It is not currently known whether v is less than,
equal to, or greater than 1.

Exercige 15. Evaluate F, from Equation (15) for v = 0,001, 1, and 5.

— e ———— o e =

vou will notice in Exercise 15 that as v increases, s0
does F,., This means that as the rate at which the whales
consume the krill increases, the whales should be sought
with greater effort to achieve the maximum sustainable
yield. That makes sence, since the whales would have a
greater tendency to use up their supply of krill and starve
themselves if their population were not held in check by
fishing.
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8. TOTAL VALUE

The best fishing policy would be to maximize total
yield, which can be expressed as

{17) Y = ¥;% + YYz*

where v is a c¢onstant representing the relative value of
the whales and the krill. Large values of Y cause a small
increase in the whale yield, Y,*, to result in a large in-
crease in the total yield, Y. This indicates that it is
the whales that are valuable, rather than the krill.
similarly, small values of Y indicate that it is the krill
that are more valuable.

Exercise

16, Show that Y can be written as

Kr, (1 - F,)(F) + Br, (1 - F,))
1+ v(1 - F2)

(18) Y=

where B = ya(ry/ry).

You may wish to try maximizing the total yield, as
given by Equation (18), by finding the optimum value of Fy
for a fixed F4, substituting the result into Eqguation (18),
and then solving for the optimum value of F,. (If you are
familiar with multivariable calculus, you can get the same
result by setting the partial derivatives of Y equal to 0.)
Unfortunately the algebra is cumbersome and the result not
particularly enlightening. Instead, let us notice that if
g is very large, Equation (18) becomes

Kr (1 - F,)BF, (1 = F,)
! 1) BFy 2
(1%) v o= 1+ v (1-Fy -

We have ignored the F; term which is small compared to
BF5(1 ~ Fp). If B is very small, Equation (18) becomes

Kr](l - FJ)F]
(20) Y = 1 4v(1 - Fz).

The value of Fi that maximizes the right side of (18}
i F; = 0, since F; appears only in the factor (1 - Fi}.
The right side of (20) is maximized by making F, as large
as possible. 1In other words, if 8 is large, it is best not

.
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to fish krill at all and leave them for the valuable whales
to eat., But if 8 is small, we may as well harvest the
whales to extinction so they will not compete with us for
the valuable krill, It is only for intermediate values of
8 that the optimum fishing strategy involves both species.

9, CONCLUSIONG

To establish specific numerical solutions for F; and
F5, it would be necessary to measure v and B. This may be
extremely difficult, if not impossible, to accomplish. To
calculate v, for example, we would need toc know ry, the
natural growth rate of the krill, and K, the saturation
population of the krill. These might be determined through
extensive measurements of the krill population in the ab-
sence of whales. The other components of v, namely C and
o, are even more difficult to measure, since they involve
the interaction of the two species, as given by the analyt-
ically unsolvable Equations (5) and (6). Measuring B has
an additional problem: our estimates of vy may be heavily
value-laden. How can we measure the worth of an animal
that is in danger of total extinction? Our answer depends
upon how much we care about preserving the biological heri-
tage of this planet.

Despite these difficulties, we do have qualitative
results, such as our conclusion from the last section that,
for many values of the relative worth of the whales and
krill, the optimum strategy inveolves only one of the spe-
cies. Furthermore, we have a quantitative framework in
which to further our research.
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dN
1. - = r N .
dt 171

Separating varisble yields

dN
—L - Jr dt > IniN. | = r
Nl 1 1

1t+C

N = % er1t+C =+ el et = get1t

where k could be either &C or -e€. Since NI represents a

population, k must be positive,
N

-

& - "M [1 K }'

If N; ie small, I - M}/K =1, 80

a - O

which is the equation of exponential growth.

b) As N; approaches K, the expression 1 - NllK approaches ), so
the growth rate, dN)/dt, also approaches 0.

c} TIf Nj im greater than K, the expression 1 - Nj/K is negative,
so the growth rate, dN;/dt, is negative,
If Nj = K. then dNj/dt = 0, s0 the population remains con-
stant.

3. Separating varisbles, we find that

dN
[ El] = Jrldt
N (1 -
1 4
EKdN
—_—d s
NI(K - Nl) 1 -

Using partial fractioms on the left gives

-l

Nl K-Nl
where
A= Em§h§ =1 and B = EK P 1.
I N, = 1 1

-11-
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Thus,
N
1nIN1| - lnlK - Nll = In K - 5 =Tt C

N] r1t+c - etlt

K- N e e
N rit

—d— = Ae ! .

K-8

where A = + eF is negative if Ny > K and positive if N} < K.

Accordingly,

_ rlt rlt

Nl = KAE - NlAe-

r rlt
N, + N, Ae = KAe

rlt rlt
—Kie = llAe ~
rlt - X’lt

1 + Ae 1/Ae

=
1]

R S—
—rlt

1 + Be
where B = 1/A,
Nl = le. Nz = GKXz
dN dX
=K = ryKXy (1 - X - CKX;aKX5 - riFiKX;.
e e L v 19KX; - r]F1RX)

Upon dividing by K we find that

ax
1l _ _ _ Cog _
T S LB T Xy - B

Setting CoK/r; = v yielde Equation (B). To derive Equation
observe that

dN dx
—2 _ —2 . - -
il Spa r oKX, (1 axle(uxxl)) rzeuKXZ.

Dividing by oK yields

dX,

2 _ - _
Tl r2X2(1 lexl FZ).

-12-
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According to Equation (3), r) must have units [1/time] and K must
have unite [krilll. According to Equation (4), o must have units
[whales/krill]. Thue, Vv has dimensions

[1/(shales * time)l * [whales/krillllkrilll _ r11.

[1/time]
If the rate that the whales eat the krill is doubled but the
number of whales is halved, there would be no overall change in

the situation. The number of whalea could be halved if their
carrying capacity (eN;) was cut in half,

If the whales eat the krill at double their coriginal rate, but
there are only half as many krill to eat, the situation would

remain the same.

If the carrying capacity of the whales doubled, the situvation
would remain the same if the number of krill also doubled. This
would be accomplished if the carrying capacity of the krill is
doubled.

Since X} £ 0 and X, £ 0, Equations (8) and (9) imply

l—Fl-Xl-vJ{2=0.

H

1 -F, - Xo/%y =0,

Solving the second equation for X, yields
(1 - Fo)X; = X,.

Substituting into the first equation yields
1 -rFp - Xy - vl - FplKy = 0
1 -F, = Kl(l + v(l - Fz))

1 -F
1°1+w1-F)
and

(1 - Fl)(l - le

1+ w1l - FZ) '

L
n

(1 - Fz)x1 =
If F; < 1 and Fgy > 1, then

dxX
- - - - 2
EEZ" rX, (1 F, XZ/xl) < rz(XZ) /xl.

s0 the whale population would decrease., Then dX;/dt would in-
crease, since vX, would become smaller, so the krill population

~13-



would either increase more quickly or decrease more slowly, de-
pending on the value of Fi.

If we also have F; > 1, then

dX
EEL =¥ {1 - Fi - X - vXy) < - X (Xl + vxz).

so the krill population will alsc decrease.

Yi* = r)Fly*

= rlFJle*
r]FlK (1 - F])

1+ \J(]. - Fz)'
Tg* = TaFoly*

= rzeaKXZ*

roFaK (1 - F1)(1 - Fyp)
1+ (1 - Fyp :

From (13},

dYJ* K
el E+ “(I‘FZJ [1-27]=0.

which implies that F = 0.5.

arpr LarX(L - B LA+ V0L - B0 - %) - (F,-(F)2) (-] Y

dF, [1+ vl - 7,37

1= 2F, + v(l - 3F; + 2(F)2) + vFy - w(F)2 = 0
(1 +v) + Fy(-2 -29) + v(F,)? = 0.

Therefore,

2 e av t g - 2032 - 401 % vdv
F
2 2v

2(1 + v)*z'/l + 20+ 7 -v-v2

2y

+ v i/ ey
= v

-14-



To decide whether the + is plus or minus, notice that the
last equation can be written

F, =12 % + *l—%fgn

Since F; must be no larger than 1, and since v must be positive,
the sign must be negative.

If v = 0.001, then

_ La001 - ¥1,001
2 - .001

0.5001,

You should notice in the second lire of the answer to Exercise
14 that if v = 0, then Fy = 0.5.

If v =1, then F, = 2‘f“£5= 0.586.
If v =5, then F, = §—§—157= 0.710.

Y = Y].* + YYz*
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Krl(l - Fl)(F1 + yar,F, (1 - Fz)/rl)
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where B = vora/ry).
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