
Operations Research Models and Methods
Paul A. Jensen and Jonathan F. Bard

Nonlinear Programming Methods.S3
Primal Methods
In solving a nonlinear program, primal methods work on the original problem directly by
searching the feasible region for an optimal solution.  Each point generated in the process
is feasible and the value of the objective function constantly decreases.  These methods
have three significant advantages: (1) if they terminate before confirming optimality
(which is very often the case with all procedures), the current point is feasible; (2) if they
generate a convergent sequence, it can usually be shown that the limit point of that
sequence must be at least a local minimum; (3) they do not rely on special structure, such
as convexity, so they are quite general.  Notable disadvantages are that they require a
phase 1 procedure to obtain an initial feasible point and that they are all plagued,
particularly when the problem constraints are nonlinear, with computational difficulties
arising from the need to remain within the feasible region as the algorithm progresses.
The convergence rates of primal methods are competitive with those of other procedures,
and for problems with linear constraints, they are often among the most efficient.

Primal methods, often called feasible direction methods, embody the same
philosophy as the techniques of unconstrained minimization but are designed to deal with
inequality constraints.  Briefly, the idea is to pick a starting point satisfying the
constraints and to find a direction such that (i) a small move in that direction remains
feasible, and (ii) the objective function improves.  One then moves a finite distance in the
determined direction, obtaining a new and better point.  The process is repeated until no
direction satisfying both (i) and (ii) can be found.  In general, the terminal point is a
constrained local (but not necessarily global) minimum of the problem.  A direction
satisfying both (i) and (ii) is called a usable feasible direction.  There are many ways of
choosing such directions, hence many different primal methods.  We now present a
popular one based on linear programming.

Zoutendijk's Procedure

Once again, we consider problem (23) with constraint set is S = {x : gi(x)

≤ 0, i = 1, … , m}.  Assume that a starting point x0
 ∈ S is available.  The

problem is to choose a vector d whose direction is both usable and
feasible.  Let gi(x

0) = 0, i ∈ I, where the indices in I correspond to the

binding constraints at x0.  For feasible direction d, a small move along this

vector beginning at the point x0 makes no binding constraints negative,
i.e.,


d

dt
 gi(x

0+td)
 
 

t=0
 = ∇gi(x

0)Td ≤ 0,    i ∈ I

A usable feasible vector has the additional property that
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
d

dt
 f(x0+td)

 
  

t=0
 = ∇f(x0)Td < 0

Therefore the function initially decreases along the vector.  In searching
for a "best" vector d along which to move, one could choose that feasible

vector minimizing ∇f(x0)Td.  If some of the binding constraints were

nonlinear, however, this could lead to certain difficulties.  In particular,

starting at x0 the feasible direction d0 that minimizes ∇f(x0)Td is the

projection of –∇f(x0) onto the tangent plane generated by the binding

constraints at x0.  Because the constraint surface is curved, movement

along d0 for any finite distance violates the constraint.  Thus a recovery
move must be made to return to the feasible region.  Repetitions of the
procedure lead to inefficient zigzagging.  As a consequence, when looking
for a locally best direction it is wise to choose one that, in addition to
decreasing f, also moves away from the boundaries of the nonlinear
constraints.  The expectation is that this will avoid zigzagging.  Such a
direction is the solution of the following problem.

Minimize ξ (28a)

subject to ∇gi(x
0)Td – iξ ≤ 0,   i ∈ I (28b)

∇f(x0)Td – ξ  ≤  0 (28c)

dTd  =  1 (28d)

where 0 ≤ i ≤ 1 is selected by the user.  If all i = 1, then any vector (d, ξ)

satisfying (28b) - (28c) with ξ < 0 is a usable feasible direction.  That with

minimum ξ value is a best direction which simultaneously makes ∇f(x0)Td

and ∇gi(x
0)Td as negative as possible; i.e., steers away from the nonlinear

constraint boundaries.  Other values of i enable one to emphasize certain

constraint boundaries relative to others.  Equation (28d) is a normalization
requirement ensuring that ξ is finite.  If it were not included and a vector

(d, ξ) existed satisfying (28b) - (28c) with ξ negative, then ξ could be

made to approach –∞, since (28b) - (28c) are not homogeneous.  Other
normalizations, such as |dj| ≤ 1 for all j, are also possible.

Because the vectors ∇f and ∇gi are evaluated at a fixed point x0,

the above direction-finding problem is almost linear, the only nonlinearity
being (28d).  Zoutendijk showed that this constraint can be handled by a
modified version of the simplex method so problem (28) may be solved
with reasonable efficiency.  Note that if some of the constraints in the
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original NLP (1) were given as equalities, the algorithm would have to be
modified slightly.

Of course, once a direction has been determined, the step size must
still be found.  This problem may be dealt with in almost the same manner
as in the unconstrained case.  It is still desirable to minimize the objective
function along the vector d, but now no constraint may be violated.  Thus t
is determined to minimize f(xk + tdk) subject to the constraint xk + tdk

 ∈ S.

Any of the techniques discussed in Section 11.6 can be used.  A new point
is thus determined and the direction-finding problem is re-solved.  If at
some point the minimum ζ ≥ 0, then there is no feasible direction

satisfying ∇f(x0)Td < 0 and the procedure terminates.  The final point will

generally be a local minimum of the problem.  Zoutendijk showed that for
convex programs the procedure converges to the global minimum.


