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Dynamic Programming Models

Many planning and control problems in manufacturing, telecommunications and capital
budgeting call for a sequence of decisions to be made at fixed points in time.  The initial
decision is followed by a second, the second by a third, and so on perhaps infinitely.
Because the word dynamic describes situations that occur over time and programming is a
synonym for planning, the original definition of dynamic programming was “planning over
time.”  In a limited sense, our concern is with decisions that relate to and affect phenomena
that are functions of time.  This is in contrast to other forms of mathematical programming
that often, but not always, describe static decision problems.  As is true in many fields, the
original definition has been broadened somewhat over the years to connote an analytic
approach to problems involving decisions that are not necessarily sequential but can be
viewed as such.  In this expanded sense, dynamic programming (DP) has come to embrace
a solution methodology in addition to a class of planning problems.  It is put to the best
advantage when the decision set is bounded and discrete, and the objective function is
nonlinear.

This chapter is primarily concerned with modeling of deterministic, discrete
systems.  Although it is possible to handle certain problems with continuous variables,
either directly or indirectly by superimposing a grid on the decision space, such problems
will not be pursued here because they are better suited for other methods.  In any case,
modeling requires definitions of states and decisions, as well as the specification of a
measure of effectiveness.  For the usual reasons, a reduction in complexity of the real
problem is also necessary.  From a practical point of view, it is rarely possible to identify
and evaluate all the factors that are relevant to a realistic decision problem.  Thus the analyst
will inevitably leave out some more or less important descriptors of the situation.  From a
computational point of view, only problems with relatively simple state descriptions will be
solvable by dynamic programming.  Thus abstraction is necessary to arrive at a formulation
that is computationally tractable.  Often a particular problem may have several
representations in terms of the state and decision variables.  It is important that the analyst
realize that the choice of formulation can greatly affect his or her ability to find solutions.

Dynamic programming has been described as the most general of the optimization
approaches because conceivably it can solve the broadest class of problems.  In many
instances, this promise is unfulfilled because of the attending computational requirements.
Certain problems, however, are particularly suited to the model structure and lend
themselves to efficient computational procedures; in cases involving discontinuous
functions or discrete variables, dynamic programming may be the only practical solution
method.

In the next section, we present an investment example to introduce general concepts
and notation.  The solution approach common to all dynamic programming is then outlined
to motivate the need for the new notation.  In the remainder of the chapter we describe
several problem classes and their individual model characteristics.  Solution procedures are
left to the DP Methods chapter, as are situations with stochastic elements.
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19.1 Investment Example
A portfolio manager with a fixed budget of $100 million is considering the eight investment
opportunities shown in Table 1.  The manager must choose an investment level for each
alternative ranging from $0 to $40 million.  Although an acceptable investment may assume
any value within the range, we discretize the permissible allocations to intervals of $10
million to facilitate the modeling.  This restriction is important to what follows.  For
convenience we define a unit of investment to be $10 million.  In these terms, the budget is
10 and the amounts to invest are the integers in the range from 0 to 4.

Table 1.  Annual returns for alternative investments

Amount Opportunity
Invested

($10 million) 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0

1 4.1 1.8 1.5 2.2 1.3 4.2 2.2 1.0

2 5.8 3.0 2.5 3.8 2.4 5.9 3.5 1.7

3 6.5 3.9 3.3 4.8 3.2 6.6 4.2 2.3

4 6.8 4.5 3.8 5.5 3.9 6.8 4.6 2.8

Table 1 provides the net annual returns from the investment
opportunities expressed in millions of dollars.  A ninth opportunity, not
shown in the table, is available for funds left over from the first eight
investments.  The return is 5% per year for the amount invested, or
equivalently, $0.5 million for each $10 million invested.  The manager’s
goal is to maximize the total annual return without exceeding the budget.

Using notation introduced in the text, a mathematical programming
statement of the problem is as follows.

Maximize  z = r(1, x1) + r(2, x2) + • • • + rn(n, xn) + e xs

subject to x1 + x2 + • • • + xn + xs = b

0 ≤ xj ≤ uj and integer,  j = 1,…, n

In the model, xj is the amount to invest in alternative j, r(j, xj) is the return
from alternative j written as a function of xj,  uj is an upper bound on the
amount invested in opportunity j, and b is the initial budget.  The funds
remaining after all allocations are made is represented by the slack variable
xs.  The unit return for any unspent money is e.  Table 1 quantifies the
function r(j, xj).

The problem as stated is similar in structure to the knapsack problem
but the objective function is nonlinear.  To formulate it as a mixed-integer
linear program it would be necessary to introduce 32 binary variables, one
for each nonzero level of investment.  The slack variable, xs, can be treated
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as continuous.  Rather than pursuing the MILP formulation, though, we
will use the problem as an introduction to dynamic programming.

To begin, we ask the manager to decide on the amount to invest
sequentially.  That is, we first ask her to consider opportunity 1, then
opportunity 2, and so on.  This is difficult to do in a way that maximizes the
total return.  The manager notes that the more she invests in opportunity 1,
the greater the annual return.  Consequently, she might feel that a greedy
approach is called for -- one that invests in the highest possible level, 4 in
this case.  It should be apparent, though, that such an approach may yield
very poor results.  Committing a large portion of the budget to early
opportunities precludes potentially more attractive returns later on.  Instead,
we ask the manager to solve the problem backwards, starting with
opportunity 8 conditioned on the funds available, then 7 and so on until she
makes a decision for opportunity 1.  With a little organization, we find that
this procedure is possible.

First we ask, how many units should we invest in opportunity 8?
The manager responds that she cannot make that decision unless she knows
how much of the budget has already been spent for the first 7 opportunities.
Then, the decision is obvious.  For example, if all the budget is spent by the
previous opportunities, the investment in 8 must be zero.  If one unit of
budget remains she will invest 1 in opportunity 8 if the return exceeds the
0.5, the value for leftover funds.  In general, if x units are already spent,
she can invest up to 10 – x in opportunity 8.  Of course when x is 5 or less,
4 units can be invested and there will still be money left over.
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Figure 1.  States for s1 = 9

To formalize the dynamic programming
approach, we define states and decisions.  Here, a
state can be described by the opportunity index s1,
and the amount already spent s2. The state
variables are contained in the vector s  = (s1, s2).

We use s1 = 9 to mean that there are no
more opportunities.  For this problem, we call any
state that has s1 equal to 9 a final state because
there are no more decisions in our sequential
process.  The set of final states is F. For the
investment problem

F = {s  : s1 = 9, 0 ≤ s2 ≤ 10}.

A final state has a value defined by the final value
function, f(s ) for s  ∈ F.  For this problem, the
final value is the annual return of the funds not
spent.

f(s ) = 0.5(10 – s2) for s  ∈ F.

Graphically, we represent a state as a node
in a network as in Fig. 1 where only the final
states are shown. The final state values are in
brackets next to the nodes.
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Now we address the question of finding the optimal decision for
opportunity 8.  In general, a decision is identified by the decision variable,
d, the amount to invest.  Let d8 be the number of units selected for
opportunity 8.  In state (8, 10) no budget remains so the optimal value of d8
must be 0.  In state (8, 9), the choice is between investing 0 or 1.  For d8 =
0, a unit of budget will remain for a final return of 0.5.  The return for d8 =
1 is 1, a clearly better result.  The details of the decision process for four
states are given in Table 2.

Table 2.  Optimal decision process for opportunity 8

State Decision
Decision
objective Next state

Next state
value Total return

Optimal
decision

Optimal
return

s d r(s , d) s ' f(s ') r(s , d)+ f(s ') d*(s ) f(s )

(8, 10) 0 0 (9, 10) 0 0 0 0
(8, 9) 0 0 (9, 9) 0.5 0.5

1 1.0 (9, 10) 0 1.0 1 1.0
(8, 8) 0 0 (9, 8) 1.0 1.0

1 1.0 (9, 9) 0.5 1.5
2 1.7 (9, 10) 0 1.7 2 1.7

(8, 7) 0 0 (9, 7) 1.5 1.5
1 1.0 (9, 8) 1.0 2.0
2 1.7 (9, 9) 0.5 2.2
3 2.3 (9, 10) 0 2.3 3 2.3

(8, 6) 0 0 (9. 6) 2.0 2.0
1 1.0 (9, 7) 1.5 2.5
2 1.7 (9, 8) 1.0 2.7
3 2.3 (9, 9) 0.5 2.8
4 2.8 (9, 10) 0 2.8 3 or 4 2.8

The computations for a particular state are shown between the
parallel solid lines in the table.  We see that a separate optimization is carried
out for each state s .  The column labeled d shows all feasible values of the
decision variable.  A value not in this list would use more than the budget
available. The decision objective is the annual return for selecting the
amount d. This value comes from Table 1. The column labeled s '  is the next
state reached by making decision d while in state s .  The next state is given
by the transition function T(s , d).  For this problem the transition function
is

s ' = (s'
1, s'

2) = T(s , d) where

s'
1 = s1 + 1 and s'

2 = s2 + d.
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The value of the next state, f(s '), has already been computed and is shown
in the next column.  The total return is the sum of the decision return and the
next state value and is the quantity to be maximized.

For each value of s , we compare the total returns for the different
values of d and choose the one that gives the maximum.  This is a simple
one-dimensional problem solved by enumerating the alternatives.  The
optimal decision is d*(s ), where the argument s  indicates that the decision is
a function of s .  Finally the optimal return is the value f(s ).

The computations are performed by solving the following backward
recursive equation.

f(s1, s2) = Max{r(s1,  d) + f(s1 + 1, s2 + d) :  0 ≤ d ≤ 4,

and s1 ≤ 8, s2 + d ≤ 10}

It is a recursive equation because the function f(s ) appears on both sides of
the equality sign.  We can solve it, only if we proceed in a backward
direction through the states.  The details of the solution process are
discussed in the chapter on DP methods.

The optimal decisions for opportunity 8 are shown in Fig. 2 as the
lines between the states.  When a tie occurs it can be broken arbitrarily.
State (8, 6), for example, admits two optimal decisions d*(8, 6) = 3 and
d*(8, 6) = 4.  We have chosen 3 for the illustration.  The values for the
states are shown adjacent to the nodes.



6 Dynamic Programming Models

10

s2

9

8

7

6

5

4

3

2

1

0
s1

8 9

[0]

[1]

[1.7]

[2.3]

[2.8]

[4.3]

[4.8]

[5.3]

[5.8]

[0]

[0.5]

[1]

[1.5]

[2]

[2.5]

[3]

[3.5]

[4]

[4.5]

[5]

[3.8]

[3.3]

10

s2

9

8

7

6

5

4

3

2

1

0
s1

7 8

[0]

[2.2]

[3.5]

[4.5]

[5.2]

[5.9]

[6.5]

[7]

[0]

[1]

[1.7]

[2.3]

[2.8]

[7.5]

[8]

[8.5]

[4.3]

[4.8]

[5.3]

[5.8]

[3.8]

[3.3]

6 7

10

s2

9

8

7

6

5

4

3

2

1

0
s1

[0]

[2.2]

[3.5]

[4.5]

[5.2]

[5.9]

[6.5]

[7]

[0]

[4.2]

[6.4]

[8.1]

[9.4]

[10.4]

[11.1]

[11.8]

[12.5]

[13.1]

[13.6]

[7.5]

[8]

[8.5]

Figure 2. Optimal decisions
for s1 = 8

Figure 3. Optimal decisions
for s1 = 7

Figure 4. Optimal decisions
for s1 = 6

In a similar manner, once we know the function values for each state
with s1 = 8, we can compute the optimal decisions and function values for
the states with s1 = 7.  These results are shown in Fig. 3.  Again we take a
backward step in Fig. 4 to compute the optimal decisions and function
values when s1 = 6.

The process continues until s1 = 1.  At this point, the manager must
make a decision for opportunity 1.  Since this is the first decision, she
knows how much of the budget is already spent.  It must be 0.
Accordingly, we call (1, 0) the initial state.  Now it is possible to decide on
the amount to invest in opportunity 1 because the value of the remaining
budget for opportunities 2 through 8 is known.  The decision process
associated with opportunity 1 is shown in Fig. 5.
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The figure shows the five decisions associated
with the initial state.  The recursive equation used to
determine the optimal value and decision at (1, 0) is

f(1,0) = Max 









0 + 19

4.1 + 17.8

5.8 + 16.5

6.8 + 13.7

 = Max 









19

21.9

22.3

20.5

 = 22.3

with the optimal decision d* = 2.

Figure 6 depicts the collection of states used to solve the problem.
The set of all feasible states is called the state space S .  When we represent
all feasible states by nodes and all feasible decisions by arcs, the resultant
network is called the decision network.  Figure 6 is really a subnetwork for
the investment problem because it includes only the states that can be
reached by decisions from the initial state, and highlights only the optimal
decisions.  A critical feature of this model is that the return associated with
each arc depends only on the states at its two end points.

The procedure just described allowed us to uncover the path through
the decision network with the largest total return.  For the investment
problem, this path starts at the initial state (1,0) and terminates at the final
state (9,10).   It is marked by bold arcs in Fig. 6.
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Figure 6.  Decision network with optimal solution

The algorithm computes the optimal decision leaving each state. For
the example, the decision in state (1, 0) is 2, leading to state (2, 2).  The
optimal decision in state (2, 2) is 1, leading to state (3, 3), and so on.  The
process is called forward recovery since it begins in an initial state and
moves in the forward direction until a final state is reached.  Table 3 lists the
optimal decisions from one state to the next.
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Table 3.  Path for the optimal solution

State Decision Return

Index s1 s2 d f(s1,  s2)

1 1 0 2 22.3

2 2 2 1 16.5

3 3 3 1 14.7

4 4 4 2 13.2

5 5 6 1 9.4

6 6 7 2 8.1

7 7 9 1 2.2

8 8 10 0 0

9 9 10 –– 0

In addition to the path leaving (1, 0), it is possible to identify an
optimal path for every state sk by tracing the optimal decisions from sk to a

final state s f, where s f ∈ F.  The complete set of decisions is called a policy
because it specifies an action for every state.  In general, the amount of
work required to determine an optimal policy is proportional to the size of
the state space.  During the solution process for the investment example, a
simple problem characterized by a single variable was solved for each state.
This gave us an optimal policy for all s  ∈ S .
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19.2 Model Components
The language of dynamic programming is quite different from that used in other areas of
mathematical programming.  Although it is common to have an objective to be optimized
and a set of constraints that limits the decisions, a DP model represents a sequential
decision process rather than an algebraic statement of a problem.  The two principal
components of the dynamic programming model are the states and decisions.  A state is like
a snapshot of the situation at some point in time.  It describes the developments in sufficient
detail so that alternative courses of action starting from the current state, can be evaluated.
A decision is an action that causes the state to change in some predefined way.  Thus a
decision causes a movement from one state to another.  The state-transition equations
govern the movement.  A sequential decision process starts in some initial state and
advances forward, continuing until some final state is reached.  The alternating sequence of
states and decisions describes a path through the state space.

Although many situations can be modeled in this way, the principal difficulty is to
define the state space so that sufficient information is provided to evaluate alternative
choices.  For a chess game, the state must describe the arrangement of pieces on the board
at any point in the game.  Enumerating the states is a well defined task, but not practical
because the number of possible board arrangements is unmanageably large.  The same is
true for many combinatorial optimization problems such as the traveling salesman problem
(TSP).  The state space of the TSP grows exponentially with the number of cities.

Another aspect of the model that requires careful consideration is the measure of
effectiveness used to evaluate alternative paths through the state space.  The optimal path is
the one that maximizes or minimizes this measure.  A dynamic programming algorithm
aims at finding at least one such path or sequence.  There are a number of ways of doing
this, but for the moment it is sufficient to mention that solution methods are closely linked
to modeling conventions.  This follows from the desire to make the computational
procedures as universally applicable as possible.  If a procedure is to solve a wide variety
of problems, a standard form must be established for model input.  In this section, we
define the notation more carefully using the investment problem as an example.

General Format

As we have seen, the components of a DP model consist of the state vector,
the decision vector, the feasible state space, the feasible decision set for each
state, the initial states, the final states, the transition function, the form of
the path objective, and the final value function.  Although several of these
terms are similar to those used in describing the mathematical programming
models discussed up until now, the differences are what stand out.  Table 4
defines the individual components of a dynamic program in such a way that
allows for a broad range of applications.
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Table 4. Components of the general dynamic programming model

Component Description
State s  = (s1, s2, . . . , sm), where si is the value of state variable i and m

is the number of state variables

Initial state set I = {s  : nodes in decision network with only leaving arcs}

Final state set F = {s  : nodes in decision network with only entering arcs}

State space S = {s  : s  is feasible}

Decision d(s ) =  (d1, d2, . . . , dp), where dj is the value of the jth decision
variable and p is the number of decision variables

Feasible decision set D(s ) = {d : d leads to a feasible state from state s}

Transition function s '  = T(s , d), a function that determines the next state, s ' , reached
when decision d is taken from state s

Decision objective z(s , d), the measure of effectiveness associated with decision d
taken in state s

Path objective z(P), the measure of effectiveness defined for path P.  This
function describes how the objective terms for each state on the
path and the final value function are combined to obtain a measure
for the entire path.

Final value function f(s ) given for all s  ∈ F

Sequential Decision Problem

To formulate a problem as a DP, it must be stated in terms of a sequential
set of decisions.  As presented, the investment problem does not have this
characteristic.  In particular, the solution is a statement of investment
allocations presumably all to be made at the same time rather than serially
over a finite time horizon.  To accommodate the sequential nature of
dynamic programming, the numbers assigned to the investments were used
to provide an artificial order.  Thus we first decide on the amount to invest
in opportunity 1, then in opportunity 2, and finally in opportunity n.

States

The problem must be described in a manner such that a solution is a
sequence of alternating states and decisions.  The state represents the current
alternative under consideration and the amount of the budget used to this
point.  Thus two pieces of information are described by the state requiring
the introduction of two state variables.  In general, we call the m-dimen-
sional vector s  = (s1,…, sm) the state, and its components si the state
variables.  For the investment problem, m = 2 and
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s1 = index of the current alternative being considered (s1 = 1,…, n+1)

s2 = amount of the budget used prior to this investment opportunity

(s2 = 0,1,…, b)

s  = (s1, s2).

In some textbook expositions on dynamic programming, the term
“stage” is used to identify the sequence of decisions.  In our exposition, we
will not use the concept of a stage but rather include the stage information as
the first component of the state vector.  Although this approach may seem
awkward at first to those already familiar with the stage terminology, it
allows a more general class of problems to be modeled as dynamic
programs.

Decisions

The decision at any particular state is the amount to invest in the opportunity
identified by s1.  In general, the set of all possible decisions is denoted by
D, whereas a particular decision as a function of state s  is denoted by d(s ).
To accommodate cases in which the decision has more than one dimension,
d = (d1,  d2,…) is specified as a vector with each component identified by a
lowercase subscripted letter dl.  In the present instance the decision is just
the amount to invest, so d has only one dimension.

D = {0, 1,..., b}

d = amount to invest in opportunity s1

d(s ) = (d(s ))

Solution

A solution is an alternating sequence of states and decisions that have
indices indicating their place in the sequence.  The process starts in state s1,
called the initial state. For the investment problem, the initial state is

s1 = (1, 0)

indicating that this is the first opportunity and none of the budget has been
allocated. The first decision is d(s1), the investment in opportunity 1. The
new state s2 must be equal to

s2 = (2, d(s1))

since the value of the decision variable d(s1) is precisely the amount
invested in the first alternative and the next opportunity is 2.  The decision
d(s2) moves the process from state s2 to s3.  The value of s3 must be

s3 = (3, d(s1) + d(s2)).
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The first component, s1 = 3, of the vector s3 indicates the index of the next
alternative to be considered, and the second component gives the total
investment associated with the first two decisions.

Transition Function

As each decision is made, the state changes in a predictable way.  The
function that gives the value of the next state vector in terms of the current
state and decision is called the transition function.  Let the state at the kth
step of the process be sk, and let the decision taken at this step be dk. The
next state is sk+1 and is determined by the transition function as follows.

sk+1 = Tk(sk, dk) (1)

Very often Tk(sk, dk) does not depend on the sequence number of the
decision, or, as in our example, the sequence number is included as the first
component of the state vector.  In such cases, one can simplify the notation
by denoting the current state by s , the current decision by d, and the next
state by s '.  Now the transition function can be written without the
subscript; i.e.,

s ' = (s'
1, s'

2) = T(s , d) (2)

where T(•, •) is a general function of s  and d.  When there is no ambiguity,
we will always use Eq. (2) without the index k, rather than Eq. (1).  Note
that when the state vector has more than one component, the transition
function is multidimensional.  It must describe how each component of the
state vector changes.

For the investment problem, the transition function is separable in
the two state variables and can be written as

s'
1 = s1 + 1 and s'

2 = s2 + d.

State Space

The collection of all feasible states is called the state space and is identified
by the symbol S .  For the example, the first state variable, s1, ranges from
1 to n +1. (For modeling purposes, the decision associated with opportunity
n results in the transition to s'

1 = n + 1.)  Because only positive integer
investments are allowed and the total investment cannot exceed the budget,
it is clear that the second state variable, s2, must be integer and lie between 0
and b.  Thus the state space for the example is

S   =  {(1, 0) ∪ {s  :  2 ≤ s1 < n + 1, 0 ≤ s2 ≤ b, s1 and s2 integer}}.

Decision Network

As mentioned, a conceptually useful representation of a DP model is a
decision network, partially illustrated for the investment problem in Fig. 6.
The elements of the state space are shown as the nodes in the figure.
Because a decision leads from one state to another as defined by the
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transition function, the decisions are represented as arcs.  Only the optimal
decisions are shown in Fig. 6; the full network would include an arc for
each feasible decision.  When both the decision space and state space are
discrete, it is always possible to construct a decision network for a DP
although it may be impractical to do so when the number of states is large.

Path

A solution to the problem is a sequence of states and decisions that defines a
path through the network.  We represent a path P as a vector of alternating
states and decisions beginning at the initial state s1 and ending at a final state
sn+1.  For the investment problem, we have

P = (s1, d1, s2, d2, s3, . . . , s8, d8, s9).

Every feasible solution to the problem can be associated with some path
through the network.

Acyclic Decision Network

With the help of Fig. 6, several new definitions can be introduced.  First
note that all the arcs in the figure are drawn from left to right.  This indicates
that there are no cycles in this network making it acyclic.  With an acyclic
decision network, there must be some set of nodes that has no entering arcs.
These nodes comprise the initial states and are identified as the set I.  State
(1, 0) is the sole initial state in the investment example.  Also, there must be
some set of nodes that has no leaving arcs. The collection of these nodes is
the final set F.  There are 11 final states for the example (9, s2), where s2
ranges from 0 to 10.  It should be clear that a path corresponding to a
solution begins at a state in I and ends at a state in F.

Feasible Decision Set

Only certain decisions from a given state will lead to a feasible state.  If s ' =
T(s , d) and s ' is a feasible state, then d ∈ D is called a feasible decision for

state s .  The set of feasible decisions for state s  is D(s ) ⊆ D.  For the
investment problem

D(s ) = {d : 0 ≤ s2 + d ≤ b, and d is integer}

where d = (d).

Path Objective

The next step in the modeling process is to define a measure of effectiveness
for comparing alternative paths and selecting the optimum.  We denote the

path objective by z(P).  The optimal path, P*, is determined by solving
either

z(P*) = MinP z(P)  or  z(P*) = MaxP z(P).

Whether the objective is to maximize or minimize depends on the problem
under consideration.  The optimization is conducted over all feasible paths.
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For the investment problem, the goal is to maximize return so the objective
can be written in the following manner.

MaxP z(P) = Maxs∈S , d∈D(s ) z(s1, d1, s2, . . . , s8, d8, s9)

For computational tractability, we require that the objective function
take a separable form that can be expressed as the sum of n + 1 terms that
individually consist of a state and a decision.  In general, we have

z(P) = z(s1, d1) + z(s2, d2) + • • • + z(sn, dn,) + f(sn+1)

or z(P) = z(
k=1

n

∑ sk ,dk ) + f (s n+1) (3)

where the last term f(sn+1) assigns a payoff to the final state and is called
the final value function.  This function must be given as part of the model.
For the example, the final state is s9 = (9, s2), and it was assumed that f(s9)
= e(b – s2), where e is the unit value of unallocated budget.

Because s ' can be computed from (s , d) via the transition function it
is sometimes useful to express the summation terms in the objective
function as explicit functions of s '  such as z(s , d, s ' ) or z(s , s ' ).  In Eq.
(3), each term depends only on the current state and the current decision.
This type of function arises frequently.  For notational convenience, we
write the path objective function in such a way that omits the index of the
decisions.  In this form, the objective is the sum over the states and the
corresponding decisions taken at those state in the path P plus the value of
the final state denoted by s f.  We also omit the explicit dependence of P on
s  and d.

z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑
For the investment problem, the function z can be written in terms of

only s1, the index of the current opportunity, and d, the amount of
investment.  Thus

z(s , d) = f(s1, d)

where f(s1, d) is the return obtained by investing amount d in opportunity
s1.  As mentioned, we take the final value function to be a linear expression
of the unspent funds.

f(s ) = e(b – s2) for s  ∈ F

The rest of the chapter describes dynamic programming models
associated with several problem classes.
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19.3 Resource Allocation Problems
Describing a problem in a format that is suitable for the computational techniques of
dynamic programming is perhaps more of an art than for other mathematical programming
methods.  In the remaining sections we attempt to aid the modeling process by identifying
several problem classes.  Familiarity with these classes may suggest how a given problem
should be stated.  It may fit directly into one of the classes or more commonly may require
a series of minor modifications.

Resource allocation problems can be viewed as generalizations of the investment
problem considered in the first section.  In particular, suppose that n investment
opportunities are available, each having a payoff that depends on the level of investment.
Let the decision dj represent the level of investment in alternative j for j = 1,. . . , n.  Only
nonnegative integer values of dj will be considered up to some finite upper limit.  When dj
= 0, no investment takes place; when dj = 1, we are investing at the first level; when dj = 2
we are investing at the second level, and so on.  This structure gives us flexibility in that
the levels do not necessarily have to equal the amounts of the investment.

Mathematical Programming Model

Let c(j, dj) be the return for investing at level dj in opportunity j.  The
returns are functions of j and dj and may or may not be linear.  The
objective of the problem is to maximize the total return from the investment
policy; that is,

Maximize  z = ∑
j=1

n
 c(j,  dj) (4)

Portions of one or more resources are consumed with each
allocation.  A typical resource is the budget; however, there may be several
others.  In a multiperiod problem, for example, the investments may incur
claims on future funds and so will require a resource constraint for each
time period.  In addition, there may be limits on the amount of money that
can be invested in a certain instrument or particular sector of the economy.

In defining the model, we make use of the following notation.

m = number of resources

bi = amount of resource i available

a(i, j, dj) = amount of resource i used by investing at level dj in
alternative j

We further restrict the values of a(i, j, dj) and bi to be integer.  Now,
algebraic constraints can be written that limit the amount of each resource
that may be used by a feasible solution.
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 ∑
j=1

n
 a(i ,  j ,  d j) ≤ bi ,  i = 1,. . . , m (5)

The objective function (4) together with the inequalities in (5) give a
mathematical programming statement of an investment problem with
resource constraints.  Since the decision variables dj are required to assume
only discrete values, neither linear nor nonlinear programming is an appro-
priate solution technique.  An enumerative solution procedure such as
integer or dynamic programming must be used.

Dynamic Programming Model

To formulate this problem as a dynamic program, a solution must be
described as a sequence of states and decisions.  The sequence of decisions
is easily obtained by arbitrarily ordering the investment opportunities.  Thus
the first decision is the level of investment in alternative 1, the second is the
level for alternative 2, and so on.  To complete the model we must define
each of its components in Table 3.  Many variations in the problem
statement can be accommodated with minor variations in the model.

Table 5.  General resource allocation model

Component Description
State s  = (s1, s2, . . . , sm+1), where

s1 = alternative currently under consideration
si  = amount of resource i –1 used up prior to the current

decision, i = 2,. . . , m +1

Initial state set I  = {(1, 0,...,0)}

We start with alternative 1 and no resources used.

Final state set F = {s  : s1 = n + 1}
After all the alternatives have been considered we are finished.

State space S  = I  ∪ {s  : 2 ≤ s1 ≤ n + 1, 0 ≤ si ≤ bi–1,  i = 2,. . . , m +1}

Integrality is also required for all elements of S  which consists of
the initial state set plus all the integer values within the specified
ranges.

Decision d(s ) = (d), where d is the investment level for alternative s1

Feasible decision set D(s ) = {d : 0 ≤ si + a(i–1, s1, d) ≤ bi–1,  i = 2,. . . , m +1; d ≥ 0

and integer}
All decisions that do not exceed the resources are feasible.



Dynamic Programming Models18

Transition function s '  = T(s , d), where

s'
1 = s1 + 1

s'
i  = si + a(i –1, s1, d),  i = 2,. . . , m + 1

We move to the next alternative with the amount of resources used
up by the decisions made previously.

Decision objective z(s , d) = c(s1, d)

The contribution to the objective is determined by the payoff func-
tion of the current alternative for the current decision.  It does not
depend on the successor state s ' .

Path objective Maximize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑
The total return is the sum of the decision objectives over the
opportunities.

Final value function f(s ) = 0  for s  ∈ F

If there is a value for leftover resources we can include it in the
final value function. Here we assume the value is 0.

Example 1 – Binary Knapsack Problem

Consider a boy scout packing his knapsack for an overnight camping trip.
He has a set of n items that he can bring.  There are no duplicates and item j
weighs an integer amount w(j).  Unfortunately, the total weight of the items
that he is considering is greater than the amount W  that he can reasonably
carry.  To help determine which items to pack, he has assigned a benefit c(j)
to item j.  The goal is to maximize total benefit.  In the integer programming
chapters, this problem was called the binary knapsack problem because it
was modeled using 0-1 decision variables whose individual values
corresponded to either selecting or not selecting an item.

The boy scout clearly faces a resource allocation problem, so it
should be possible to describe his situation in dynamic programming terms.
The specific components of the model are listed in Table 6.  Because weight
is the only resource, m = 1. The number n in the general model corresponds
to the number of items under consideration.
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Table 6.  Binary knapsack problem

Components Description
State s  = (s1, s2), where

s1 = item currently under consideration

s2 = weight allocated prior to the current decision

Initial state set I = {(1, 0)}

Final state set F = {s  : s1 = n + 1, 0 ≤ s2 ≤ W  }

State space S  = I  ∪ {s  : 2 ≤ s1 ≤ n + 1, 0 ≤ s2 ≤ W}
Integrality is also required for all elements of S .

Decision d(s ) = (d), where d = 


0  if item s1 is not packed

1  if item s1 is packed

Feasible decision set D(s ) = {d : 0 ≤ s2+ w(s1)d ≤ W}
The decision d = 0 is always feasible, while d = 1 is feasible if it
does not violate the weight constraint.

Transition function s '  = T(s , d), where s'
1 = s1 + 1 and s '

2 = s2 + w(s1)d

Decision objective z(s , d) = c(s1)d

This term does not depend on the successor state s ' .

Path objective Maximize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑

Final value function f(s ) = 0 for all s  ∈ F
There is no value associated with any amount of unused resource.

As an example, consider a knapsack problem with 15 items. The benefits
and weights are listed in Table 7.  We have chosen the parameters so that no
item is dominated by another; that is, there is no item with a weight that is
greater than some other but with a smaller benefit.

Table 7.  Data for binary knapsack problem

Item, j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benefit, c(j) 8 9.5 11.5 12.8 14.1 18.6 19.8 22.4 23.6 25 29.1 32 33 34.6 37.2

Weight, w(j) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19



Dynamic Programming Models20

With a weight limitation of 30, there are 466 states in S .  This
number can be reduced somewhat by removing states that cannot be reached
from the initial state (1, 0).  We report the optimum in the order of the
decisions starting from (1, 0).  The optimal decision for this state is to bring
0 of item 1, so the next state is computed from the transition equation as

s'
1 = s1 + 1 = 1 + 1 = 2

and s '
2 = s2 + w(s1)d = 0 + 6 × 0 = 0.

In a similar manner, the entire optimal sequence of decisions is derived.
The objective function value is the sum of the decision returns.  The value
for (1, 0) is the total benefit of the knapsack, z(P*).  Table 8 indicates the
optimal path in the format provided by the Teach DP Excel add-in.  The
solution calls for items 10 and 12 to be included in the knapsack giving a
total value of 57 for z(P*).  The computations were performed using
backward recursion and forward recovery.

Table 8.  Optimal solution of the binary knapsack problem

s
Index s1 s2 d(s ) = d z(P) Action

1 1 0 0 57 Bring 0 of item 1
2 2 0 0 57 Bring 0 of item 2
3 3 0 0 57 Bring 0 of item 3
4 4 0 0 57 Bring 0 of item 4
5 5 0 0 57 Bring 0 of item 5
6 6 0 0 57 Bring 0 of item 6
7 7 0 0 57 Bring 0 of item 7
8 8 0 0 57 Bring 0 of item 8
9 9 0 0 57 Bring 0 of item 9
10 10 0 1 57 Bring 1 of item 10
11 11 14 0 32 Bring 0 of item 11
12 12 14 1 32 Bring 1 of item 12
13 13 30 0 0 Bring 0 of item 13
14 14 30 0 0 Bring 0 of item 14
15 15 30 0 0 Bring 0 of item 15
16 16 30 –– 0 Finished

Example 2 – Binary Knapsack with Two Constraints

To illustrate the effect of including a second resource, we solve the same
problem but with a volume constraint added. With two constraints another
state variable is necessary.  The components of the model that have changed
are shown in Table 9.  In addition to the notation used in Example 1, we
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defined V to be the knapsack volume and v(j) to be the volume required by
item j.

Table 9.  Modifications for binary knapsack problem with two constraints

Components Description
State s  = (s1, s2), where

s1 = item currently under consideration

s2 = weight allocated prior to the current decision

s3 = volume allocated prior to the current decision

Initial state set I = {(1, 0, 0)}

Final state set F = {s  : s1 = n + 1, 0 ≤ s2 ≤ W , 0 ≤ s3 ≤ V }

State space S  = I  ∪ {s  : 2 ≤ s1 ≤ n + 1, 0 ≤ s2 ≤ W , 0 ≤ s3 ≤ V}
Integrality is also required for all elements of S .

Transition function s '  = T(s , d),

where s'
1 = s1 + 1, s '

2 = s2 + w(s1)d  and s'
3 = s3 + v(s1)d

The volume of each item is given in Table 10 while the benefit and
weight data are the same as in Table 7.  The total volume was set at 30.  The
total number of elements in the state space is

|S | = 14 × 31 × 31 + 1 = 14,416.

We chose to solve the problem using only the states that are reachable from
the initial state.  The corresponding state space has only 729 elements.  The
process used to generate only reachable states is described in the DP
Methods chapter and is often leads to sharp reductions in the computational
effort.  The solution to the new problem is to bring only items 6 and 15.
With the additional constraint, the value of the total return decreases to 55.8.
The volume constraint is tight but the weight constraint is loose at the
optimum.

Table 10.  Data for binary knapsack problem

Item, j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Volume, v(j) 5 6 7 11 9 10 15 16 14 14 18 19 19 22 20

Example 3 – Personnel Assignment Problem

As a second illustration of a problem with two resources and a two-
dimensional decision vector, consider a company employing three electrical
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engineers (EE), three mechanical engineers (ME), and an unlimited number
of technicians (Techs).  The company has four jobs to do in the next week,
A, B, C and D.  Table 11 identifies the time required to do each job with
various combinations of personnel.  A synergy exists for certain pairs but at
most two engineers can be assigned to a job.  An additional restriction is
that if Techs are assigned to a job, no engineers are to be used.

Table 11.  Time to perform jobs

Job Techs 1 ME 2 MEs 1 EE 2 EEs 1 ME & 1 EE

A 45 49 30 47 21 15

B –– 73 15 –– 27 20

C 60 52 24 78 54 ––

D 75 70 57 61 80 57

The problem is to assign workers to jobs so that the total time is
minimized.  The DP model specified in Table 12 can be used for this
purpose.  The first state variable, s1, assumes the values 1 through 4 to
correspond to the four jobs A through D.  A value of 5 for this variable
indicates a final state.  The other two state variables hold the number of
engineers remaining of each type.  Note that the resource state variables (s2
and s3) can indicate either the amount of a resource already used up as in
Examples 1 and 2, or the amount remaining as defined here.

Table 12.  Personnel assignment problem model

Component Description
State s  = (s1, s2, s3), where

s1 = job number with A, B, C and D being assigned values 1,
2, 3, and 4.  The value 5 indicates that a final state has
been reached.

s2 = number of MEs remaining

s3 = number of EEs remaining

No state variable is necessary for Techs since there is an unlimited
supply.

Initial state set I = {(1, 3, 3)}

Start with all ME’s and EE’s available.

Final state set F = {(5, s2, s3) : s2 = 0, 1, 2, 3 and s3 = 0, 1, 2, 3}

It is not necessary to use all the engineers.
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State space S  = I  ∪  {s  : 2 ≤ s1 ≤ 5, 0 ≤ s2 ≤ 3, 0 ≤ s3 ≤ 3}

Integrality is required for all elements of S .

Decision
d(s ) = (d1, d2), where 



d1  = number of MEs assigned

d2  = number of EEs assigned

Feasible decision set D(s ) = {d : d1 + s2 ≤ 3, d2 + s3 ≤ 3}

The assignment must not exceed the number available.

Transition function s '  = T(s , d)

where s'
1 = s1 + 1, s '

2 = s2 + d1  and s'
3 = s3 + d2

Decision objective z(s , d) = a(s , d)

Here a(s , d) is the cost of doing job s1 with assignment (d1, d2).
It does not depend on the successor state s'.

Path objective Maximize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑

Final value function f(s ) = 0 for all s  ∈ F
No additional benefit is obtained if any of the engineers are not
assigned to jobs.

This example illustrates a situation where there are two decisions to
make for every job.  The decision objective is a nonseparable function of the
variables d1 and d2. The optimal solution is given in Table 13.

Table 13.  Optimal solution of the personnel assignment problem

Index s1 s2 s3 d1 d2 z(P) Decision

1 1 3 3 2 0 140 Job A: use 2 ME, use 0 EE

2 2 1 3 1 1 119 Job B: use 1 ME, use 1 EE

3 3 0 2 0 2 99 Job C: use 0 ME, use 2 EE

4 4 0 0 0 0 75 Job D: use Techs only

5 5 0 0 –– –– 0 Finished
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19.4 Line Partitioning Problems
Another class of problems for which dynamic programming can be effectively applied
involves the partitioning of a line into non-overlapping segments.  Applications include
cutting sheet metal and cloth, developing a machine overhaul schedule, and setting up
inspection stations along an assembly line.  In the definition of these problems both the
state and decision vectors have a single component, making them easy to solve.  From a
modeling point of view, they are illustrative of the case where the classical stage
representation for dynamic programming is not appropriate.

Problem Statement

Consider a line, as in Fig. 7, with n+1 discrete points or nodes numbered 0
to n starting at the left.  The problem is to find an optimal partition of the
line into segments such that each segment begins at one node and ends at
another.  Some objective or payoff function is associated with each
continuous subsequence of nodes, and is typically nonlinear.  Figure 8
shows one possible partition.

1 2 3 4 5 6 7 8 9 10 0 

Figure 7.  Line with discrete points

1 2 3 4 5 6 7 8 9 10 0 

Segment 1 Segment 2 Segment 3

Figure 8.  Line divided into segments

A vector of selected nodes defines a solution, with each adjacent pair
of nodes defining a segment of the line.  Thus a general solution comprising
k segments can be written as a vector; that is,

(0, i1, i2, i3, . . . , ik–1, n),

where 0 < i1 < i2 < i3 < • • • < ik–1 < n

such that (0, i1), (i1, i2 ), (i2, i3) , . . . , ( ik–1, n)

identifies the k ordered segments.  Note that the number of segments, k, is a
variable in this problem.

A cost function is defined in terms of the nodes the comprise the
segments with c(i , j) the cost of the segment starting at node i and terminat-
ing at node j.  The cost of a solution is the sum of the segment costs

∑
j=1

k
 c(ij–1,  ij)  where i0 = 0  and ik = n.
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Dynamic Programming Model

The nodes on the line comprise the states of the problem. Formally, we
introduce a single state variable s  = (s).  The state space has n + 1 elements

S  = {0, 1, 2,..., n}.

The decision vector d(s ) = (d) also has a single dimension.  Here d
is the number of intervals to be included in the segment starting at s.   A
solution is defined by a sequence of states and decisions.  To illustrate,
consider the solution shown in Fig. 9.  The corresponding path begins at
the unique initial state s1 = (0).  The first decision indicates that three
intervals are to be included in the first segment so d1 = (3).  This moves the
process to state s2 = (3).  The next decision, d2 = (4), indicates that four
intervals are to be included in the next segment, moving the process to s3 =
(7).  The segment starting at state (7) has three intervals, so d3 = (3) and the
successor state s4 = (10) which is the final state for the path.  The sequence
of states and decisions defines a path starting at state 0 and hopping through
the state space until the final state n is encountered. The general path is

P =  (s1, d1, s2, d2, . . . , sk, dk, sk+1),

where s1 = (0) and sk+1 = (n).

3 7 10 0 

Figure 9. Path through the decision network

The solution given in Fig. 9 defines the path

P = ((0), 3, (3), 4, (7), 3, (10)).

Parentheses around alternating elements in P identify states.

The collection of all possible states and decisions comprise the
decision network.  Figure 10 depicts all the states but only the decisions
starting from state 0.  In general, the decision network for this problem will
have n + 1 nodes and (n)(n + 1)/2 arcs. The formal statement of the model
is given in Table 13 and includes the parameter m, the maximum number of
intervals to be included in a segment.  When this maximum is less than n,
the number for arcs in the decision network is reduced.
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1 2 3 4 5 6 7 8 9 10 0 

Figure 10.  Partial representation of the decision network

Table 13.  General model for line partitioning problems

Component Description

State s  = (s), where s is a node on the line that begins or ends a segment

Initial state set I = {(0)}, the process begins at state 0

Final state set F = {(n)}, the process ends at state n

State space S  = {0, 1, 2,...,n}, the state space has n + 1 elements

Decision d(s) = (d), the decision is the number of intervals to include in the

segment starting at s

Feasible decision set D(s) = {1, 2,...,Min(m, n – s)} for s < n,
where m is the maximum number of intervals in a segment.
Feasible decisions must remain within the state space.

Transition function s' = T(s, d), where s' = s + d

The new state is the old state plus the number of intervals
traversed.

Decision objective z(s, d) = c(s, d), where the function may be given analytically or in
tabular form.

Path objective Minimize  z(P) = ∑
s∈S , d∈D(s )

   z(s, d)  + f(s f)

Final value function f(s ) = 0 for all s  ∈ F
For specific problems the final value function may be nonzero.
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Example 4 - Line Partitioning

We wish to divide a 10-inch line into segments whose lengths are in 1-inch
multiples.  The cost of a segment of length x is

c(x) = 10 + x2

The objective is to minimize the total cost of the partition.  The parameters
that must be specified are n and the cost function c(s, d).  For the given
problem

n = 10 and c(s, d) = (10 + d2), where d = s'  – s.

The optimal solution is shown in Table 14.

Table 14.  Optimal solution for line partitioning problem

Index s d z(P) Decision

1 0 3 64 Segment 1: length = 3

2 3 3 45 Segment 4: length = 3

3 6 4 26 Segment 7: length = 4

4 10 –– 0 Finished

Example 5 – Capacity Expansion

A power company expects a growth in demand of one unit (100 megawatts)
of power for each year in the next 20 years.  To cover the growth the
company will install additional plants with capacities in integer sizes of 1
through 10.  The size chosen will determine how many years before the
next capacity expansion is required.  The cost for the 10 sizes is shown
below.

Size 1 2 3 4 5 6 7 8 9 10

Cost 15 16 19 24 30 34 39 45 49 54

The goal is to minimize the present worth of the expansion costs for
the next 20 years.  We use i to indicate the interest rate for present worth
calculations, and assume i = 5%.  To illustrate how the objective function is
evaluated, say we choose to build plants in the size sequence 4, 6, 5, 5.
This means that the expansions occur at times 0, 4, 10 and 15 so the present
worth of the costs is

z = 24 +
1

(1+ i)4 (34) +
1

(1+ i)10 (30) +
1

(1+ i)15 (30) = 84.82

The situation can be modeled as a line partitioning problem with

n = 20, m = 10 and z(s, d) = 
c(d)

(1+ i) s
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where c(d) is given in the cost table as a function of the expansion size d.
Note that the discount factor is a function of the state so it is easily included.
The solution is displayed Table 16.

Table 16.  Optimal solution to capacity expansion problem

Index s d z(P) Decision

1 0 6 83.73 Time 0: size 6

2 6 6 49.73 Time 6: size 6

3 12 4 24.359 Time 12: size 4

4 16 4 10.995 Time 16: size 4

5 20 –– 0 Finished

Example 6 – Production Scheduling

A manufacturing facility has forecasted demand for the next 20 weeks as
shown in the table below.  There is a fixed cost for setting up a production
run equal to f.  In addition, there is a variable cost v that is proportional the
number of items produced.  If we produce more than the demand in a
particular week, the excess items are stored until needed.  The inventory
cost is proportional to the number of units and the number of weeks stored.
The cost per unit per week is w .  The problem is to find a production
schedule that minimizes the total fixed, variable and inventory costs.

Week 1 2 3 4 5 6 7 8 9 10
Demand 3 1 7 0 0 2 8 2 3 2

Week 11 12 13 14 15 16 17 18 19 20
Demand 9 4 1 8 3 3 8 6 5 5

The appropriate dynamic programming model is similar to that for
the line partitioning problem.  When applied to the inventory problem, the
approach is called the Wagner-Whitin algorithm.  The line to be partitioned
in this case is the time line.  The nodes correspond to the times {0, 1,
2,…,20}.  A solution is described by a sequenced set of times at which
production occurs: (0, i1, i2, i3, . . . , ik–1, n).  For this case n = 20.  With the
cost computations described above, it can be shown that when production
occurs, it is always optimal to produce exactly the quantity demanded for
the interval being considered (Dreyfus and Law 1977).  Thus production at
time 0 satisfies the demands for weeks, 1 through i1.  Production at time i1
satisfies the demands for times i1+1 through i2, and so on.

To express the decision objective in general terms let qt be the
demand in week t, and let c(s, s') be the cost associated with producing at
time s to satisfy the demands for periods s+1 to s'.  The cost function has
three components.
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z(s, s') = c(s, s') = f + v qt
t=s+1

s '

∑ + w ( t − s −1)
t= s+1

s'

∑ qt

To illustrate, we calculate z(s, s') for s = 0, d = 6 and s' = 6.  The
parameter values are f = 30, v = 4 and w  = 1.

c(0, 6) = f + v qt
t =1

6

∑ 
  

 
  + w 0q1 + 1q2 +…+ 5q6( )  = 30 + 4(13) + 1(25) = 107.

Using the line partitioning model with this cost function, the optimal
sequence is (0, 6, 10, 13, 16, 20).  Table 17 depicts the results.  The first
five components of this sequence are production times; the corresponding
production quantities are 13, 15, 14, 14  and 24, respectively.  The total
cost is 555.

Table 17.  Optimal solution for inventory problem

Index s d z(P) Decision

1 0 6 555 Time 0: Interval 6

2 6 4 448 Time 6: Interval 4

3 10 3 344 Time 10: Interval 3

4 13 3 252 Time 13: Interval 3

5 16 4 157 Time 16: Interval 4

6 20 –– 0 Finished

Integer Knapsack Problem

An interesting variation of the line partitioning problem allows the solution
of the integer knapsack problem.  The mathematical programming model is

Maximize  z = c j x j
j =1

n

∑

subject to aj x j
j =1

n

∑  ≤ b

xj ≥ 0 and integer, j = 1,. . . , n

where cj > 0 and aj > 0 for all j.  Note that the variable xj is not restricted to

binary values but can take on any nonnegative integer value up to b/aj.  To
model the problem as a dynamic program we define the state using a single
state variable; i.e., s  = (s), where s = amount of resource used by the
current solution.

The sequence of decisions to be made is d1, d2, . . . , dk, where d1 is
the index of the first item to be included in the knapsack, d2 is the index of
the second item, and so on.  The decision is the index of an item and may
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take on the values 1, 2,...,n.  Note that different decisions may refer to the
same item; e.g., d2 and d5 may both refer to item 4.  We add one additional
possibility denoted by 0 to indicate that no more items are to be included.
The complete decision set is

D = {0, 1, 2,..., n},

and the transition function is

s'  = s + ad  for d > 0

s'  = b for d = 0.

Thus if the current solution uses s units of the resource and the decision is
to bring another item d, the new solution will use ad additional units.  When
the constraint coefficients aj are integer, the states assume integer values
between 0 and b.  The final transition is associated with the decision d = 0
and uses up whatever amount of the resource that remains, so sf = b.  If
there is no penalty for not completely filling up the knapsack or no benefit
for any remaining capacity, then f(sf) = 0.

The decision set for state s consists of any item whose inclusion
would not exceed the total capacity b.

D(s) = {0 or j  : s + aj  ≤ b,  j = 1,. . . , n}.

The decision objective z(s , d) = cd, where c0 = 0.  Thus the integer
knapsack problem can be related to the line partitioning problem by viewing
the resource b as a line that is being divided successively into segments.

Example 7 – Unbounded Knapsack

Consider a single constraint knapsack problem with right-hand side
parameter b = 35.  The values of aj and cj are given in the table below.  The
latter were randomly generated so that no item dominates another.  Although
no restrictions are placed on the number of items of each type that can be
packed, implicit upper bounds exist due to the weight restriction.

Item, j 1 2 3 4 5 6 7 8 9 10

cj 18 16.6 15 14.8 13.1 11.3 10.5 8.6 6.7 5.2

aj 15 14 13 12 11 10 9 8 7 6

Table 18 displays the results of the computations and indicates that
the optimal policy is to bring two of item 4 and one of item 5.  The model
has only 36 states.  To extend the model to include more than a single
resource restriction, additional state variables must be introduced, one for
each new constraint.
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Table 18.  Solution to the integer knapsack problem

Index s d z(P) Decision

1 0 4 42.7 Bring 4

2 12 4 27.9 Bring 4

3 24 5 13.1 Bring 5

4 35 –– 0 Final
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19.5 Path Problems
When trying to find an optimal path through a network it is natural to use dynamic
programming because the optimization problem can be represented explicitly in graphical
form.  Dijkstra’s algorithm introduced in Network Flow Programming Methods chapter
for finding the shortest path through a directed network is a typical example.  Several
variations of the basic problem can also be modeled using dynamic programming.  We
begin with the grid network depicted in Fig. 11 and define what is called the simple path
problem.  Nodes represent locations and are identified by their coordinate vector x  = (x1,
x2) while arcs represent transportation links between nodes.  A traveler at a particular node
is permitted to move up to the node with the next higher x2-coordinate (and the same x1-
coordinate) or move right to the node with the next higher x1-coordinate (and the same x2-
coordinate).  The direction traveled will be indicated by the variable d.  We take d = 0 to
mean that travel is up and d = 1 to mean that travel is to the right.  Clearly, all arcs are one-
way.  Each arc has a known length given by a(x , d) where x  describes the node at which
the arc begins and d indicates the direction of travel.  We assume that the traveler starts at
node (1,1) and wants to travel to node (n, n) using the shortest possible route -- the
problem objective.  The dynamic programming model is straightforward, as defined in
Table 19.
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Figure 11.  Coordinate representation of path problem
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Table 19. General path problem model

Component Description
State s  = (s1, s2), where

s1 = x1-coordinate
s2 = x2-coordinate

Initial state set I  = {(1, 1)}

Final state set F  = {(m, n)}, we generalize the model to allow n rows

and m columns.

State space S  = {s  :  1 ≤ s1 ≤ m, 1 ≤ s2 ≤ n, s1 and s2 integer}

Decision d = (d), where d indicates the direction traveled

d = 


0,  go up one node

1,  go to right one node

Feasible decision set D(s ) =  {0, 1: s1 + d ≤ m and s2 + (1 – d ) ≤ n}

Transition function s '  = T(s , d)

s'
1 = s1 + d, s '

2 = s2 + 1 – d

Decision objective z(s , d) = a(s , d)

Path objective Minimize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑

Final value function f(s ) = 0  for s  ∈ F

Example 8 – Grid Problem

As an example, consider a 10 × 10 grid with arc lengths as follows

a(s , d) = |s1 – s2| for d = 0, 1

where s1 and s2 are the coordinates of the current node.  Thus arcs that
originate at nodes along the main diagonal have length 0, arcs that originate
at nodes one removed from the main diagonal have length 1, and so on. The
optimal path for a grid with n = 10 is shown in Fig. 12 where the numbers
in parentheses along the arcs are their lengths.  The path has a total length of
9.  Of course, this is not a surprising solution given the arc length
definition; however, dynamic programming does not take advantage of
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symmetry.  The solution is obtained as easily for arbitrary arc lengths as for
this special case.

There are many ways to find solutions to the shortest path problem.
The linear programming model for this example consists of 180 variables
and 100 constraints.  The dynamic programming model correspondingly
has 100 states in the state space, and 180 arcs, all of which have to be
considered in the solution process.
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Figure 12.  Shortest path from (1, 1) to (10, 10)

Turn Penalties

There are a number of variations of the simple path problem that illustrate
the power of dynamic programming.  For instance, consider the case where
a penalty p1 is assessed for turning left and a penalty p2 for turning right.
To evaluate a movement from one state to the next, we need to know the last
direction traveled as well as the location.  This model, given in Table 20,
requires an additional state variable to indicate the direction last traveled.
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Table 20.  General model for the path problem with turn penalties

Component Description
State s  = (s1, s2, s3), where

s1 = x1-coordinate

s2 = x2-coordinate

s3 = direction last traveled

Initial state set I  = {(1, 1, 0), (1, 1, 1)}

Final state set F  = {(n, n, 0), (n, n, 1)}

State space S  = {s  : 1 ≤ s1 ≤ n, 1 ≤ s2 ≤ n,  s1 and s2 integer, s3 = 0, 1}

Decision d = (d), where d indicates the direction traveled

d = 


0,  go up one node

1,  go to right one node

Feasible decision set D(s ) =  {0, 1 : s1 + d ≤ n and s2 + (1 – d ) ≤ n}

Transition function s '  = T(s , d)

s'
1 = s1 + d, s '

2 = s2 + 1 – d and s3 = d

Decision objective z(s , d) = a(s , d) for s3 = d

z(s , d) = a(s , d) + p1 for d = 0 and s3 = 1

z(s , d) = a(s , d) + p2 for d = 1 and s3 = 0

Path objective Minimize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑

Final value function f(s ) = 0  for s  ∈ F

Example 9 – Grid Problem with Turn Penalties

The solution for the example 10 × 10 grid with a left-turn penalty of 10 and
right-turn penalty of 5 is shown in the Fig. 13. The solution has migrated
away from the diagonal to escape excessive turn penalties.  The total arc
length is now 27.  Adding to this 10 for each turn gives a total path value of
47.
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Figure 13.  Path solution with turn penalties

The turn penalty problem is an example of the usefulness of
dynamic programming.  The new model has 200 states and each arc is
considered twice in the solution process.  An integer programming model
for the problem would be considerably more complicated.
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19.6 Sequencing Problems
Many operational problems in manufacturing, service and distribution require the
sequencing of various types of activities or items.  Examples include a production facility in
which chassis must be sequenced through an assembly line, an express mail service where
parcels and letters must be routed for delivery, and a utility company that must schedule
repair work.  In general, problems in this class are easily formulated as mathematical
programs but with a few exceptions owing to special structure, are difficult to solve.  In
this section, we introduce a robust dynamic programming formulation that can be used to
tackle a number of such problems.  In most cases, however, the size of the state space is an
exponential function of the number of items being sequenced.  In practical instances, the
success of the DP approach may depend on our ability to reduce the number of states that
must be explored in the search for the optimum.  One way to do this is to impose
precedence requirements on the items to be sequenced; a second way is to introduce the
logic of branch and bound within a dynamic programming algorithm.

Single Machine Scheduling

As a prototype, consider the problem of sequencing a set of n jobs through
a single machine that can work on only one job at a time.  Once a job is
started, it must be completed without preemption.  The time required to
process job j once the machine begins to work on it is p(j) for j = 1,. . . , n.
The associated cost c(j, t) is a function of its completion time t and can take a
variety of forms, the simplest being

c(j, t) = a(j)t

where a(j) is the cost per unit time for job j.  As we saw in the first section
of the Integer Programming Methods chapter on greedy algorithms, this
form admits a very simple solution when the objective is to minimize the
total completion cost of all the jobs.  The optimum is obtained by computing
the ratio p(j)/a(j) for each job and then sequencing them in order of
increasing values of this ratio.  The job with the smallest ratio is processed
first, the job with next smallest ratio is processed second, and so on until all
jobs are completed.  Ties may be broken arbitrarily.

A much more difficult problem results when each job j has a due
date b(j).  The cost of a job is zero if it is completed before its due date but
increases linearly if it is tardy.

c(j, t) = 


 0 for 0 ≤ t  ≤ b( j)

 a(j)(t –  b( j)) for t >  b(j)

The goal of the optimization is to determine the sequence that has the
smallest total cost.  Table 21 gives the relevant parameters for a 4-job
instance.  There are 4! = 24 possible solutions.  For the solution (3, 1, 2,
4), the completion times are 7, 12, 21 and 31 respectively. Jobs 3 and 1 are
completed before their due date so no cost is incurred.  Job 2 is 11 days late
resulting in a cost of $440 and job 4 is 14 days late resulting in a cost of
$420.  The total cost is therefore $860.
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Table 21.  Job parameters for a sequencing problem

Job
j

Processing time
p(j)

Due date
b(j)

Cost per day
a(j)

1 5 12 $80

2 9 10 40

3 7 10 100

4 10 17 30

 In general, we write a sequence as a vector (j1, j2, j3, . . . , jn) which
implies that job j1 is processed first, job j2 second and so on until the final
job jn.  This vector is a permutation of the integers 1 through n and admits
n! possible sequences, a number that increases rapidly with n.  In fact, it is
not possible to find a polynomial function of n that provides a bound on
how fast n! grows.

The time at which a job is finished is determined by its place in the
sequence.  Job jk is in position k and is not started until the previous k – 1
jobs finish processing.  It ends at time t(jk), the sum of the processing times
of the previous jobs plus its processing time p(jk).

t(jk)  = p( j i)
i =1

k

∑

The cost associated with a particular sequence is the sum of the
individual job costs as determined by their completion times.  The objective
function is then

z  =  c( j,t( j))
j =1

n

∑

and the goal is to minimize z.

To solve this problem with dynamic programming, we must first
describe it as a sequential decision process.  In this case, the description is
once again straightforward with the decisions corresponding to places in the
sequence.  Thus the decision at each step is a job number.  The DP model is
given in Table 22.
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Table 22.  General sequencing problem

Component Description

State To determine the state definition, consider the information neces-
sary to specify the set of feasible decisions and to evaluate the cost
associated with a decision.  At a particular step in the sequence, a
job is a feasible choice if it hasn't been chosen before.  Thus the
minimal information the state must provide is the set of jobs previ-
ously included in the sequence.  This also is the information nec-
essary to compute the time of completion of the job and hence the
associated cost.  To describe the state we need a vector with n
components

s  = (s1, s2, . . . , sn), where

sj   = 


0 if job j  has not been included in the sequence
1 if job j has already been included in the sequence

Initial state set I = {(0, 0,...,0)}

None of the jobs has been scheduled.

Final state set F = {(1, 1,...,1)}

All jobs are scheduled.

State space The state vector is a binary vector with n components.  Therefore,

there are 2n members of the state space representing all possible
combinations.

S  = {s  : sj = 0 or 1,  j= 1, . . . , n}

Decision The decision vector has a single component that identifies the next
job to be processed.

d = (d), where d = the next job in the sequence

Feasible decision set The feasible decisions at a given state are the jobs not already
chosen.

D(s ) = {j : sj = 0,  j= 1, . . . , n}

Transition function The transition function changes the state to reflect the inclusion of
an additional job in the sequence.

s '  = T(s , d), where s'
d = 1 and s'

j  = sj   for j ≠ d
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Decision objective z(s , d) = c(d, t), where t = ∑
j=1

n
sjp(j) + p(d)

The cost function is problem dependent.  For the job sequencing
problem with tardiness penalties we use the cost function defined
above.

Path objective Minimize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑

Final value function f(s ) = 0  for s  ∈ F

Example 10 – Job Sequencing with Tardiness Penalties

The decision network for the data given in Table 21 is depicted in Fig. 14.
The state vectors are shown in parentheses adjacent to the nodes.  Arcs
represent the transition from one state to the next, and each has an
associated cost (not shown).  The solution is determined by finding the
shortest path through the network and is shown by the heavy lines in the
figure. The optimum is the sequence (3, 1, 2, 4) as before.

Although the shortest path problem on an acyclic network can be
solved efficiently, the difficulty here is that there are an exponential number

of states, 2n.  This means that the DP approach as given in Table 22 does
not lead to an efficient solution procedure for most sequencing problems;
that is, the amount of computations is not bounded by a polynomial function
of n.  Because of the large number of states, problems can be solved only
for small values of n.  For example, a 10-job problem with 1024 states took
about 8 minutes on a Macintosh G3 running at 400 Mz.

The state space is considerably reduced if an ordering between some
jobs is imposed.  For example, if one specifies that job 3 must precede job
1, the number of feasible states is reduced from 16 to 12.  Each additional
restriction reduces the number of states in some nonlinear fashion.



Sequencing Problems 41

(0,0,0,0)

(0,1,0,0)

(0,0,1,0)

(1,0,0,0)

(0,0,0,1)

(1,0,0,1)

(0,1,1,0)

(1,0,1,0)

(0,1,0,1)

(1,1,0,0)

(0,0,1,1)

(1,1,0,1)

(1,0,1,1)

(1,1,1,0)

(0,1,1,1)

(1,1,1,1)

(0)

(440)

(420)

(0)

Figure 14.  Decision network for 4-job sequencing problem

Traveling Salesman Problem

In our description of the total tardiness problem, the cost associated with a
particular job did not depend on its immediate predecessor.  There are many
situations, though, where these costs are sequence dependent.  In
manufacturing, for example, it may be necessary to change the tooling
between two successive jobs, or in scheduling propane deliveries, the
length of the route and hence travel cost depends on the order in which
customers are visited.  In these cases, it would be necessary to extend the
definition of the state space in Table 22 to include an additional state
representing the last job processed in the sequence.  The traveling salesman
problem fits this situation.

Recall that in the TSP a salesman must visit n cities starting and
ending at his home base.  The objective is to minimize some measure of
travel cost subject to the restriction that each city be visited once and only
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once.  A feasible solution is called a tour.  We arbitrarily identify city 1 as
the home base.  Like the sequencing problem, a solution is described by a
vector (1, j2, j3, . . . , jn) which implies that the tour starts at city 1, goes next
to city j2, and so on until the final city jn is reached.  To complete the tour,
the salesman must travel from jn back to city 1.  The cost of the tour is

z = c(1, j2 ) + c( jk , jk+1) + c( jn ,1)
k =2

n−1

∑
where the function c(i, j) specifies the cost of traveling from city i to city j.
When c(i, j) represents the distance between i and j, the objective of the
problem is simply to minimize the total distance traveled.  For those cases
where c(i, j) = c(j, i), the TSP is said to be symmetric; otherwise it is
asymmetric.

The dynamic programming model is similar to the sequencing model
in that the state identifies the set of cities that have been visited at any point
in the tour.  To compute the cost of traveling to the next city, though, we
need to know the last city visited.  An additional state variable is defined for
this purpose.

Table 23.  Traveling salesman problem

Component Description

State s  = (s1, s2, . . . , sn, sn+1 ), where

sj = 


0  if city j is not in the sequence

1  if city j is in the sequence   j = 1,…,n

sn+1 = index of the last city in the sequence

Initial state set I = {(1, 0,...,0, 1)}

Only city 1 is in the tour and that is the last city visited.

Final state set F = {(1, 1,...,1, j) : j = 2,…, n}

All cities are in the tour. The last city can be any city but 1.

State space There are 2n-1 possible combinations of the first n state variables,
since s1 is fixed as 1.  The last state variable can take on up to n –
1 values.

S  = {s  : s1= 1,  sj = 0 or 1,  j = 2,…, n  and sn+1= 2,…, n}

(The actual number of feasible states is about half the cardinality of
S .)
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Decision The decision vector has a single component that identifies the next
city to be included in the tour.

d = (d), where d = the next city in the tour

Feasible decision set D(s ) = {j : sj = 0,  j= 2,…, n }

The feasible decisions at a given state are the cities not yet visited.

Transition function The transition function changes the state to reflect the inclusion of
an additional city in the tour.  The last state variable becomes the
decision.

s '  = T(s , d), where s'
d = 1, s'

j  = sj  for j ≠ d, and sn+1 = d

Decision objective z(s , d) = c(sn+1, d)

where c(•, •) is defined for all city pairs.

Path objective Minimize  z(P) = z(s, d) + f (s f )
s∈S,d∈D(s )

∑

Final value function f(s ) = c(sn+1,1) for s  ∈ F

This function is the cost of traveling from the last city to city 1.

To determine the actual number of feasible states it is necessary to
examine the model used in the solution process.  For one particular

asymmetric formulation, Dryfus and Law [1977] show that when s jj= 2

n∑ =

i, there are (n – 1)



n  – 2

i   different states (i = 1,…, n–2) in the recursion.

In addition, there are n – 1 states that are not evaluated recursively but are
associated with boundary conditions.  This gives an approximate total of

(n – 1)(2n–2 – 1) + n – 1 = (n – 1)2n–2 states.  For the symmetric case, the
direction of the tour is immaterial so about half the number of states is
required.

Example 11 – Traveling Salesman Problem

Consider an 8-city problem on a square grid with the coordinates assigned
randomly in the range 0 to 25.  The following matrix shows the locations of
the cities in the (x, y)-plane.
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x y

1 7.0 9.2
2 20.0 9.3
3 20.6 15.3
4 9.0 7.5
5 6.6 13.7
6 4.2 5.2
7 4.3 4.7
8 13.9 12.7

For the cost function we use the p-norm distance between a city pair
given by

c(i, j) =  |xi –  xj|
p +  |yi –  yj|

p 1/p
 .

When p = 2, this function gives the Euclidean distance between the two
points; when p = 1, the function gives the rectilinear distance.  Other values
are possible.  For the example, we used p = 2.

The dynamic programming model of the problem has 449 states.
The optimal solution is shown in Fig. 15.  The effort required to solve the
problem is primarily influenced by the number of states.  It is possible to
reduce this number if precedence relations can be specified between city
pairs.
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Figure 15.  Optimal solution to TSP
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19.7 Exercises

Numerical problems in this chapter can be solved with the Teach DP Excel add-in.
The first seven exercises refer to the investment example in Section 19.1.

1. Provide an integer linear programming model for this problem.

2. Assuming a budget of 10, use the dynamic programming model to show the sequence
of states and decisions and the path objective values for each of the following
investment decisions.  The decisions are given as vectors with the investment in the ith
opportunity shown as the ith component of the vector.

a.  (0, 0, 0, 0, 0, 0, 0, 0)

b.  (1, 2, 0, 3, 1, 0, 1, 2)

c.  (0, 3, 3, 0, 0, 0, 3, 0)

d.  (0, 0, 2, 4, 2, 1, 1, 0)

3. For a budget of 10, try to find the optimal investment plan by observation.  What was
your reasoning?

4. Let the final value function f(s ) = 2(10 – s2).  This represents the value of any
remaining funds at the final state s f = s9.  Reevaluate each of the decision sets given in
Exercise 2 using this function.

5. For the decision network associated with this problem, find the number of nodes,
number of arcs, and number of feasible paths as a general function of n and b.

6. Let the second state variable be defined as follows.

s2 = amount of the budget not yet spent

Describe initial states, final states, and the transition function for this modification.

7. What modifications to the DP model are necessary if a constraint is added that requires
investment in at least 5 alternatives?

8. How would the model for the knapsack problem in Section 19.3 change with the
following variations.  Each part should be done separately rather than cumulatively.

a. It may be preferable not to fill the knapsack to capacity.   Let y be the difference
between the capacity W  and the weight associated with the solution, and let r(y) be
its corresponding value.

b. The entire capacity of the knapsack must be used.

c. Up to uj units of item j are available, j = 1,…, n, and may be packed as long as the
weight constraint is not violated.  Under what conditions can the integer knapsack
model be used for this problem?
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9. For the line partitioning problem described in Example 4 in Section 19.4, give the path
and path objective values for the following situations.

a.  The solution has only a single segment.

b.  The solution has 10 segments.

c.  The first two segments have length 2, and the next two segments have length 3.

10. The table below gives the benefits and weights associated with items that might be
included in a knapsack whose maximum capacity is 19 lbs.  Using the dynamic
programming model, show the path and path objective associated with each of the
following.

a. Include one of item 1 and one of item 2.

b. Include as many as possible of item 4.

c. The best solution you can find by observation.

d. Find the optimal solution with the Teach DP add-in.

Item 1 2 3 4 5
Benefit 20 15 10 5 3
Weight 10  7  6 4 2

For Exercises 11 – 15, give the DP model for the following variations of the path problem.

11. You are allowed to reduce the length of one arc of your choice to zero.

12. A toll in the amount of c(x , d) dollars is charged for each arc traversed.   You can't
spend more than b dollars on tolls.

13. You want to minimize the length of the longest arc on your path.

14. You can change direction on the solution path at most w  times.

15. Once you change direction, you can't change direction again until you have traversed
two arcs in the new direction.

16. Find the optimal sequence when the due dates for the jobs in Table 21 are changed to
0.

17. Using the data in Table 21, show the sequence of states and decisions and the path
objective values for the following sequences:

a. (1, 2, 3, 4)
b. (3, 1, 4, 2)
c. The sequence found by the greedy algorithm when due dates are not specified.
d. The best sequence you can find by observation.
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e. The optimal sequence found with DP software.

18. Give a DP formulation for the following variations of the path problem.

a. You make only every other decision (beginning with the first).  Your spouse,
whose goal is to maximize trip length, makes the alternate decisions.

b. You terminate your trip whenever the x1-coordinate reaches n; however, you
must pay a penalty equal to w(n – x2) if you don't finish at x  = (n, n).

c Assume the network in Fig. 6 represents a maze in an adventure game.  Rather
than a length, the quantity a(x , d) represents the probability that you will be killed
by an evil force if you travel that arc.  Find the route that maximizes your
probability of survival.

d. Assume that the network represents alternative routes for a proposed road through
a mountain range.  There is an additional quantity b(x , d) associated with each arc
that represents the amount of dirt that must be removed or added to the road link
to bring it to a specified height above sea level.  A positive value of b(x , d) is the
amount that must be added and a negative value is the amount that must be
removed.  An unlimited quantity of dirt can be obtained at node (1, 1) or disposed
of at node (n, n); quantities removed on one link can be deposited on another.
Dirt will be moved along the selected arcs but only in the directions indicated by
the arcs.  The cost of moving dirt on an arc is linear with unit cost a(x , d).   These
costs are also incurred on the links where the dirt is removed or deposited.  What
is the route that minimizes the dirt moving costs?

19. (Elevator Problem)  A 20 floor building has three elevators.  During the morning rush
hour they are operated so that each serves a contiguous set of floors, and no two serve
the same floor.  The problem is to determine which floors are to be served by each
elevator.  The time it takes for an elevator to travel between two levels that are k floors
apart is 15 + 5k seconds.  The population of each floor is given in the table below.

Floor 2 3 4 5 6 7 8 9 10
Population 30 40 70 20 10 30 50 80 60

11 12 13 14 15 16 17 18 19 20
20 10 20 40 60 80 70 60 30 70

The objective is to minimize the fill time –– the time required to bring all the people to
their floors.  The elevator can hold up to 20 people.  Assume that in each run the
elevator must stop at all floors to which it is assigned. Set up a dynamic programming
model as a line partitioning problem and solve it with the Teach DP add-in.

20. (Inspection Station Problem) A manufacturing process consists of a series of
operations through which each product must pass in the same order.  The operations
are numbered 1 to n.  Each operation ruins a fixed percent of the products that pass
through it.  Data for an example are given in the table.
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Operation 1 2 3 4 5 6 7 8
Cost/unit processed, $ 5 10 8 15 3 20 7 10
Percentage ruined, % 1 2 1 3 1 2 3 1

Ruined products can't be identified except by a careful inspection.  The problem is to
determine where along the line to include inspection stations.  One must be placed at
the end of the line but otherwise, they can be placed after any operation.  When a
ruined product is detected, it is discarded and has no scrap value.  Inspection stations
cost $1000 per year to run.  Find the optimal solution (number and location of
stations) if the annual production rate is: (a) 1000 units, (b) 2000 units, and (c) 3000
units.  (Set up and solve the DP for this problem for one year).

21. (Machine Overhaul Problem) The service of a particular type of machine is needed for
the next n years.  At present (t = 0) the machine is new.  As it ages, its operating costs
increase so it may be advisable to buy a new machine prior to the end of its useful life,
or have the existing one overhauled.  There is not limit to the number of overhauls and
no degradation in performance.  The cost of overhauling a machine of age t (or t years
after the last overhaul) is O(t).  The cost of operating an overhauled machine for one
year ending t years after overhaul is CO(t).  The trade-in value of an overhauled
machine t years after overhaul is TO(t)

The cost of purchasing a new machine is P.  A machine that has never been
overhauled is called an original machine.  The cost of operating an original machine
for one year ending t years after purchase is CN(t).  The trade-in value of an original
machine t years after purchase is TN(t).  The salvage value at the end of the n year
period obeys the same function as the trade-in value.

The problem is to find the optimal purchase/overhaul policy over the n-year
horizon.  The decision to be made at the beginning of each year is whether to purchase
a new machine or overhaul the current machine, and how many years until the next
purchase or overhaul.  The decision vector should have two components.

a. Formulate the problem as a dynamic program.

b. How would you modify this formulation to account for the time value of money.
Assume a constant discount rate i.

22. (Circle Search Problem)  Consider the problem of locating an item that is known to be
lost in an area defined by a circle with a one-mile radius.  The circle has been divided
into 12 equal segments as shown in part a of the figure below.  Using various
evidence, it is determined that the probability that the item is in segment i is Pi  for i =
1,…,12.  Ten teams are available to search the area.  From past experience it has also
been determined that if an item is in an area of size A the probability that j teams
searching together will find it in the allowed time is

PDetect  = e–k1A(1 – e–k2j)
where k1 and k2 are positive known constants.  This is the probability of detection
given that the item is in the area searched.
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a. Circle with 12 segments b. Circle with segments allocated to search areas

Two versions of circle search problem

Set up the dynamic programming formulations for parts a and b below.  In each case
the goal is to maximize the probability that the item will be found.

a. The solution should indicate how many teams should be assigned to each
segment.  A team can only be assigned to one segment.

b. A search area is defined to be one or more contiguous segments as illustrated in
part b of the figure.  Search areas do not overlap.  The solution should indicate
how the circle should be divided and how many teams should be assigned to each
search area.

c. Let k1 = 0.04 and k2 = 0.7.  The probabilities Pi are given below.  For the
problem in part a, show the path through the state space and evaluate the solution
when one team is assigned to segments 1 and 5, and two teams are each assigned
to segments 4, 8, 9 and 10.

i 1 2 3 4 5 6 7 8 9 10 11 12

Pi 0.1 0 0.05 0.15 0.1 0.05 0 0.15 0.2 0.15 0.05 0

d. Solve the problem using the data in part c.

23. (Pumps for a Pipeline) An oil distribution company is constructing an 800 mile
pipeline across Texas.  The oil is to flow from west to east.  The pressure at the west
end is fixed at 100 psi (pounds per square inch).  Because of losses due to friction the
pressure drops at a rate of 1 psi for each mile of pipe.  Pressure at the east end of the
pipe is required to be 50 psi.  To make up for the losses, pump stations are to be
constructed at intervals along the pipe.  The pressure must never fall below 30 psi.
Pump stations have a fixed cost of $10,000 and a variable cost that depends on the
pressure rise provided by the pump, as given in the following table.

Increase in pressure (psi) 10 20 30 40 50 60 70

Variable cost ($1000) 3 6 8 10 11 13 17
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The problem is to determine the minimum cost policy of installing pumps.  Write out
the DP formulation for the following two cases.

a. First assume that a pump will always increase the line pressure to 100 psi at the
point where it is located.

b. Alternatively, do not require the condition of part a.

c. Solve the problems in parts a and b using DP software.

24. (Traveling Salesman Problem - TSP) The table below gives the cost c(i, j) of going
from city i to city j.  The values of c(i, j) and c(j, i) are not necessarily equal.  Propose
a greedy algorithm to find a solution and then write out the corresponding sequence of
states and decisions.  Solve the TSP with the Teach DP add-in and compare the
optimal cost with the cost given by your greedy algorithm.

Cost matrix for TSP

From city

To city 1 2 3 4 5 6

1 –– 27 43 16 30 26
2 7 –– 16 1 30 30
3 20 13 –– 35 5 0
4 21 16 25 –– 18 18
5 12 46 27 48 –– 5
6 23 5 5 9 5 ––

25. (Capacity Expansion Problem) A city expects the following annual growth in
electricity demand (MW) during the next 10 years.

Year 1 2 3 4 5 6 7 8 9 10

Growth (MW) 2 3 1 5 2 3 4 3 2  1

To meet this demand, additional generating capacity must be installed.  Construction
costs as a function of size (MW) are given in the following table.

Size (MW)  1  2  3  4  5

Cost, $M 20 38 55 70 80

The discount rate for time value of money calculations is 10%.  Assume that capacity
can be installed instantaneously and that there must always be sufficient capacity to
meet demand.  Set up and solve the dynamic programming model to find the capacity
expansion policy that will minimize the present worth of construction costs.

26. (Road Repair Problem) A repair policy is to be determined for a major highway for the
next 10 years.  After that time, the highway will be completely rebuilt.  There are two
types of repairs that can be performed: the first will be referred to as a long term fix,
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and the second as a short term fix.  Relevant parameters are given in the table below.
In addition to the cost of repair, it is necessary to factor in an annual maintenance cost
that depends on the type of repair last done.  The current time is 0 and the road must
now be repaired in some fashion.  The short-term fix cannot be done two times in
succession.  Give the dynamic programming formulation that will determine a policy
that minimizes the total cost over the 10 year planning horizon.  All costs are in
thousands of dollars. Setup and solve your model using the Excel add-in.

Type of repair Long term Short term

Cost of repair 1500 400
Annual cost of maintenance 50 100

Time until next repair 5 2

27. (Production Scheduling over a Finite Horizon)  Use the approach described for
Example 6 in Section 19.4 to solve the production scheduling problem for the demand
data given below.  Assume that the fixed charge per order is $100 and that  the
inventory holding cost per unit per week is $1.  State your solution as a path through
the state space.

Period 1 2 3  4 5  6 7  8 9 10

Demand 15 20 5 40 25  4 15 10 40 20

28. (Soot Collection) A pollution control device in a smoke stack collects soot (particulate
matter from combustion).  The amount of soot deposited varies from month to month
due to furnace usage, as indicated in the table below.  The device must be cleaned
occasionally to remove the soot.  It may be cleaned at the end of any month for a fixed
cost of $100.

The stack does not operate as efficiently when there is soot in the device as
when it is clean.  If at the beginning of any month the amount of soot present is y, the
increase in operating cost associated with the soot is 20y.  At most 10 units of soot is
permitted to be in the device at the beginning of any month.

Set up the dynamic programming model that can be used to solve the problem
of determining the optimal cleaning schedule for a 10-month period.  Assume that we
are at the beginning of month 1 and that the device is clean.  In addition to other times
that might be selected, the device must be cleaned at the end of the 10th month.  Use
the Excel add-in to solve the problem.

Month 1 2 3 4 5 6 7 8 9 10

Soot 5 3 2 8 6 2 3 6 5 3

29. (Optimal Redundancy Problem) An electronic system has n components.  The
reliability of a component is the probability that it will not fail during operation.  The
reliability of component i is given as ri.  The reliability of the system is the probability
that none of its components fail.  This is computed as the product of the component
reliabilities.
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To increase the reliability of the system, extra units may be included as
backups for the original components.  These are called redundant components since
they are not required unless the originals fail.  Assume a component of type i costs ci
dollars.  The probability that a collection of x components of the same type fails is the
probability that they all fail.  Thus the reliability of a component type with x redundant
units is

Ri  = 1 – (1 – ri)
(1+x)

The reliability of the system, Rs, is the product of the component type

reliabilities; i.e., Rs = Πn
i=1Ri.  We want to determine how many redundant

components of each type to provide without exceeding the available budget b.

a. Formulate this problem as a dynamic program.

b. Explain how you would incorporate additional system constraints such as weight
and power limits.

c. For the data given below, describe the state space for the problem.  Use the Excel
add-in to solve the problem.  Show the optimal path through the state space by
listing the sequence of states and decisions. The amount spent on redundant
components should be no more than $500.

Item, i 1 2 3 4

Reliability, ri 0.9 0.8 0.95 0.75

Cost/item, ci $100 $50 $40 $200
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