Chapter 19 Page 1

Dynamic Programming M odels

Many planning and control problems in manufacturing, telecommunications and capital
budgeting call for a sequence of decisionsto be made at fixed pointsintime. Theinitia
decision is followed by a second, the second by athird, and so on perhaps infinitely.
Because the word dynamic describes situations that occur over time and programml ngisa
synonym for planning, the original definition of dynamic programming was “planning over
time.” Inalimited sense, our concern is with decisions that relate to and affect phenomena
that are functions of time. Thisisin contrast to other forms of mathematical programming
that often, but not always, describe static decision problems. Asistrue in many fields, the
original definition has been broadened somewhat over the years to connote an analytic
approach to problems involving decisions that are not necessarily sequential but can be
viewed as such. In this expanded sense, dynamic programming (DP) has come to embrace
a solution methodology in addition to a class of planning problems. It is put to the best
advantage when the decision set is bounded and discrete, and the objective function is
nonlinear.

This chapter is primarily concerned with modeling of deterministic, discrete
systems. Although it is possible to handle certain problems with continuous variables,
either directly or indirectly by superimposing agrid on the decision space, such problems
will not be pursued here because they are better suited for other methods. In any case,
modeling requires definitions of states and decisions, as well as the specification of a
measure of effectiveness. For the usual reasons, areduction in complexity of the real
problem is also necessary. From a practical point of view, it israrely possible to identify
and evaluate all the factors that are relevant to aredistic decision problem. Thusthe analyst
will inevitably leave out some more or lessimportant descriptors of the situation. From a
computational point of view, only problems with relatively simple state descriptions will be
solvable by dynamic programming. Thus abstraction is necessary to arrive at aformulation
that is computationally tractable. Often a particular problem may have severa
representations in terms of the state and decision variables. It isimportant that the analyst
realize that the choice of formulation can greatly affect hisor her ability to find solutions.

Dynamic programming has been described as the most genera of the optimization
approaches because conceivably it can solve the broadest class of problems. In many
instances, this promiseis unfulfilled because of the attending computational requirements.
Certain problems, however, are particularly suited to the model structure and lend
themselves to efficient computational procedures; in cases involving discontinuous
functions or discrete variables, dynamic programming may be the only practical solution
method.

In the next section, we present an investment example to introduce general concepts
and notation. The solution approach common to all dynamic programming is then outlined
to motivate the need for the new notation. In the remainder of the chapter we describe
severa problem classes and their individual model characteristics. Solution procedures are
left to the DP Methods chapter, as are situations with stochastic € ements.

6/3/02

Dynamic Programming Models

19.1 Investment Example

A portfolio manager with afixed budget of $100 million is considering the eight investment
opportunities shown in Table 1. The manager must choose an investment level for each
aternative ranging from $0 to $40 million. Although an acceptable investment may assume
any value within the range, we discretize the permissible allocations to intervals of $10
million to facilitate the modeling. Thisrestriction isimportant to what follows. For
convenience we define a unit of investment to be $10 million. In these terms, the budget is
10 and the amounts to invest are the integers in the range from 0 to 4.

Table1l. Annua returnsfor aternative investments

Amount Opportunity
($'18"n‘ﬁﬁgn) 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0
1 4.1 1.8 15 2.2 1.3 4.2 2.2 1.0
2 5.8 3.0 2.5 3.8 24 5.9 3.5 1.7
3 6.5 3.9 3.3 4.8 3.2 6.6 4.2 2.3
4 6.8 4.5 3.8 55 3.9 6.8 4.6 2.8

Table 1 provides the net annual returns from the investment
opportunities expressed in millions of dollars. A ninth opportunity, not
shown in the table, is available for funds left over from the first eight
investments. The return is 5% per year for the amount invested, or
equivalently, $0.5 million for each $10 million invested. The manager’s
goal isto maximize thetotal annual return without exceeding the budget.

Using notation introduced in the text, amathematical programming
statement of the problem is as follows.

Maximize z=r(1, Xq) + (2, X,) + -« +r1,(N, X)) + €Xg
Subjectto X; + X+ eee+ X+ X =D
O£xj £ U andinteger, j=1,...,n

In the model, x; isthe amount to invest in aternativej, r(j, xj) isthe return
from aternative j written as a function of Xj» Uy isan upper bound on the

amount invested in opportunity j, and b istheinitial budget. The funds
remaining after al allocations are made is represented by the dack variable
Xs Theunit return for any unspent money ise. Table 1 quantifiesthe

functionr(j, x;).

The problem as stated is similar in structure to the knapsack problem
but the objective function isnonlinear. To formulate it as a mixed-integer
linear program it would be necessary to introduce 32 binary variables, one

for each nonzero level of investment. The dack variable, Xg, Can be treated

Investment Example 3

as continuous. Rather than pursuing the MILP formulation, though, we
will use the problem as an introduction to dynamic programming.

To begin, we ask the manager to decide on the amount to invest
sequentially. That is, wefirst ask her to consider opportunity 1, then
opportunity 2, and so on. Thisisdifficult to do in away that maximizesthe
total return. The manager notes that the more she investsin opportunity 1,
the greater the annual return. Consequently, she might feel that a greedy
approach is called for -- one that invests in the highest possible level, 4 in
this case. It should be apparent, though, that such an approach may yield
very poor results. Committing alarge portion of the budget to early
opportunities precludes potentially more attractive returns later on. Instead,
we ask the manager to solve the problem backwards, starting with
opportunity 8 conditioned on the funds available, then 7 and so on until she
makes a decision for opportunity 1. With alittle organization, we find that
this procedure is possible.

First we ask, how many units should we invest in opportunity 8?
The manager responds that she cannot make that decision unless she knows
how much of the budget has already been spent for the first 7 opportunities.
Then, the decision isobvious. For example, if al the budget is spent by the
previous opportunities, the investment in 8 must be zero. If one unit of
budget remains she will invest 1 in opportunity 8 if the return exceeds the
0.5, the value for leftover funds. In general, if x units are already spent,
she can invest up to 10 —x in opportunity 8. Of coursewhen x is5 or less,
4 units can be invested and there will still be money left over.

To formalize the dynamic programming
approach, we define states and decisions Here, a
state can be described by the opportunity index s;,

and the amount already spent s,. The state

—O Lol variables are contained in the vector s = (s, S,).

We uses; = 9to mean that there are no

_() [0.5] more opportunities. For this problem, we call any

statethat has's; equal to 9 afinal state because

_Q [1] there are no more decisions in our sequential

process. The set of final statesisF. For the
Investment problem

[J
i F={s:s;=90£s,£ 10}.
A final state has avalue defined by the final value

_/ function, f(s) fors1 F. For this problem, the
9 3 final value isthe annual return of the funds not
Spent.

Figure 1. Statesfors, =9 f(s) = 0.5(10—s,) fors 1 F.

Graphically, we represent a state as a node
in anetwork asin Fig. 1 where only the final
states are shown. The final state valuesarein
brackets next to the nodes.

Dynamic Programming Models

Now we address the question of finding the optimal decision for
opportunity 8. In general, adecision isidentified by the decision variable,
d, the amount to invest. Let dg be the number of units selected for

opportunity 8. In state (8, 10) no budget remains so the optimal value of dg
must be 0. In state (8, 9), the choice is between investing O or 1. For dg =
0, aunit of budget will remain for afina return of 0.5. The return for dg =

lis1, aclearly better result. The details of the decision process for four
states are givenin Table 2.

Table 2. Optimal decision process for opportunity 8

Decision Next state Optima Optima
State Decision Objective Nextstate vVaue Tota return decision return
S d r(s, d) s' f(s") r(s, d)+ f(s") d*(s) f(s)
(8, 10) 0 0 (9, 10) 0 0 0 0
(8,9 0 0 (9,9) 0.5 0.5
1 1.0 (9, 10) 0 1.0 1 1.0
(8, 8) 0 0 (9, 8) 1.0 1.0
1 1.0 (9,9 0.5 15
2 1.7 (9, 10) 0 1.7 2 1.7
8,7 0 0 (9,7 15 15
1 1.0 (9, 8) 1.0 2.0
2 1.7 (9,9 0.5 2.2
3 2.3 (9, 10) 0 2.3 3 2.3
(8, 6) 0 0 (9. 6) 2.0 2.0
1 1.0 (9,7 15 2.5
2 1.7 (9, 8) 1.0 2.7
3 2.3 (9,9 0.5 2.8
4 2.8 (9, 10 0 2.8 3or4 2.8

The computations for aparticular state are shown between the
parallel solid linesin thetable. We see that a separate optimization is carried
out for each states. The column labeled d shows all feasible values of the
decison variable. A value not in thislist would use more than the budget
available. The decision objective isthe annual return for selecting the
amount d. This value comes from Table 1. The column labeled s' is the next
dtate reached by making decision d whilein state s. The next state is given
by thetransition function T(s, d). For this problem the transition function
is

s'=(sy, sp) = T(s, d) where

s;=s;+1lands,=s,+d.

Investment Example 5

The value of the next state, f(s"), has already been computed and is shown
in the next column. Thetotal return isthe sum of the decision return and the
next state value and is the quantity to be maximized.

For each value of s, we compare the total returns for the different
values of d and choose the one that gives the maximum. Thisisasimple
one-dimensional problem solved by enumerating the alternatives. The

optimal decisionisd’(s), where the argument s indicates that the decision is
afunction of s. Finally the optimal return isthe valuef(s).

The computations are performed by solving the following backward
recursive equation.

f(sy, s5) =Max{r(s, d) +f(s; +1,s,+d): O£dE 4,
ands, £ 8,s,+d£ 10}

It isarecursive equation because the function f(s) appears on both sides of
the equality sign. We can solveit, only if we proceed in a backward
direction through the states. The details of the solution process are
discussed in the chapter on DP methods.

The optimal decisions for opportunity 8 are shown in Fig. 2 asthe
lines between the states. When atie occursit can be broken arbitrarily.
State (8, 6), for example, admits two optimal decisionsd’ (8, 6) = 3 and

d’ (8, 6) = 4. We have chosen 3 for theillustration. The values for the
states are shown adjacent to the nodes.

Dynamic Programming Models

S S

101 [0] [0] 101 [0 [0]

9 | [2.2] [1] 9| [4.2] [2.2]
g | [6.4] [3.5]
7| [8.1] [4.5]
6 | [9-4] [5.2]

Figure 2. Optimal decisons Figure 3. Optimal decisons Figure4. Optimal decisions
fors; =8 fors, =7 fors; =6

In asimilar manner, once we know the function values for each state
with s, = 8, we can compute the optimal decisions and function vaues for

the stateswith s; = 7. Theseresultsare shown in Fig. 3. Again wetake a

backward step in Fig. 4 to compute the optimal decisions and function
valueswhens; = 6.

The process continues until s; = 1. At this point, the manager must

make a decision for opportunity 1. Since thisisthefirst decision, she
knows how much of the budget is already spent. It must be 0.
Accordingly, we cal (1, 0) theinitial state. Now it is possible to decide on
the amount to invest in opportunity 1 because the value of the remaining
budget for opportunities 2 through 8 is known. The decision process
associated with opportunity 1 isshownin Fig. 5.

Investment Example 7

S, The figure shows the five decisions associated
with theinitial state. The recursive equation used to
determine the optimal value and decision at (1, 0) is

4 4 0[13.7] . 0+19 .. . 19 ..
[15.2] | 4.1+ 17.8tj 1 21.91',J
3 3@ f(1.0)=Max | 5 8 + 16.5Y =Max| 203y =223

,_ 2()[16-5] te.8+137h t205p

[17.8] | withtheoptimal decisiond’ = 2.

[22.3]
0 0, [19]
(% /s
1 2
Figure 5. Optimal decision for state
(1,0)

Figure 6 depicts the collection of states used to solve the problem.
The set of al feasible statesis called the state space S. When we represent
all feasible states by nodes and all feasible decisions by arcs, the resultant
network is called the decision network. Figure 6 isreally a subnetwork for
the investment problem because it includes only the states that can be
reached by decisionsfrom the initia state, and highlights only the optimal
decisions. A critical feature of thismodel is that the return associated with
each arc depends only on the states at its two end points.

The procedure just described allowed us to uncover the path through
the decision network with the largest total return. For the investment
problem, this path starts at the initial state (1,0) and terminates at the final
state (9,10). Itismarked by bold arcsin Fig. 6.

Dynamic Programming Models

S

10 0505050 ,0
° OO0 O (O
° .../.
’ ()0 ()

o\\o\

000

nNONO

00000000
OO
Ot
OO
Y 00
LO 000000

O
U
()
U
@

2

00¢

~

1

w
IN
ol

Figure 6. Decision network with optimal solution

The algorithm computes the optimal decision leaving each state. For
the example, the decision in state (1, 0) is 2, leading to state (2, 2). The
optimal decision in state (2, 2) is 1, leading to state (3, 3), and so on. The
processis called forward recovery since it beginsin an initial state and
moves in the forward direction until afinal stateisreached. Table 3 liststhe
optimal decisions from one state to the next.

Investment Example 9

Table 3. Path for the optimal solution

State Decison| Return
Index | s S, d f(s1, s)
1 1 0 2 22.3
2 2 2 1 16.5
3 3 3 1 14.7
4 4 4 2 13.2
5 5 6 1 9.4
6 6 7 2 8.1
7 7 9 1 2.2
8 8 10 0 0
9 9 10 — 0

In addition to the path leaving (1, 0), it is possible to identify an
optimal path for every state s, by tracing the optimal decisionsfroms to a

find state s;, where sz F. The complete set of decisionsis called apolicy

because it specifies an action for every state. In general, the amount of
work required to determine an optimal policy is proportional to the size of
the state space. During the solution process for the investment example, a
simple problem characterized by a single variable was solved for each state.

This gave us an optimal policy forals1 S.

10 Dynamic Programming Models

19.2 Model Components

The language of dynamic programming is quite different from that used in other areas of
mathematical programming. Although it iscommon to have an objective to be optimized
and a set of constraints that limits the decisions, a DP model represents a sequential
decision process rather than an algebraic statement of aproblem. The two principal
components of the dynamic programming model are the states and decisions. A stateislike
a snapshot of the situation at some point in time. It describes the developmentsin sufficient
detail so that alternative courses of action starting from the current state, can be evaluated.
A decision isan action that causes the state to change in some predefined way. Thusa
decision causes amovement from one state to another. The state-transition equations
govern the movement. A sequential decision process startsin someinitial state and
advances forward, continuing until some final stateisreached. The alternating sequence of
states and decisions describes a path through the state space.

Although many situations can be modeled in thisway, the principa difficulty isto
define the state space so that sufficient information is provided to evauate alternative
choices. For achess game, the state must describe the arrangement of pieces on the board
at any point in the game. Enumerating the statesis awell defined task, but not practical
because the number of possible board arrangements is unmanageably large. The sameis
true for many combinatorial optimization problems such as the traveling salesman problem
(TSP). The state space of the TSP grows exponentially with the number of cities.

Another aspect of the moddl that requires careful consideration is the measure of
effectiveness used to eva uate aternative paths through the state space. The optimal pathis
the one that maximizes or minimizes this measure. A dynamic programming algorithm
aims at finding at least one such path or sequence. There are a number of ways of doing
this, but for the moment it is sufficient to mention that solution methods are closely linked
to modeling conventions. This follows from the desire to make the computational
procedures as universally applicable as possible. If aprocedureisto solve awide variety
of problems, a standard form must be established for model input. In this section, we
define the notation more carefully using the investment problem as an example.

General Format

As we have seen, the components of a DP model consist of the state vector,
the decision vector, the feasible state space, the feasible decision set for each
state, theinitia states, the final states, the transition function, the form of
the path objective, and the final value function. Although several of these
terms are similar to those used in describing the mathematical programming
model s discussed up until now, the differences are what stand out. Table 4
definesthe individual components of a dynamic program in such away that
allows for abroad range of applications.

Model Components 11

Table 4. Components of the general dynamic programming model

Component Description

State S=(S, Sy, ..., Syy)» Where s; isthe value of state variable and m
isthe number of state variables

Initial state set I ={s: nodesin decision network with only leaving arcs}

Final state set F ={s: nodesin decision network with only entering arcs}

State space S ={s:sisfeasble}

Decision d(s)= (dy, ds,..., dp), where d; isthe value of the jth decision

Feasible decision set

Transition function

Decision objective

Path objective

Final value function

variable and p is the number of decision variables
D(s) ={d : d leadsto afeasible state from state s}

s' =T(s, d), afunction that determines the next state, s', reached
when decisiond istaken from state s

z(s, d), the measure of effectiveness associated with decision d
takenin state s

z(P), the measure of effectiveness defined for path P. This
function describes how the objective termsfor each state on the
path and the final value function are combined to obtain a measure
for the entire path.

f(s) givenforalsi F

Sequential Decision Problem

Sates

To formulate a problem asa DP, it must be stated in terms of a sequential
set of decisions. As presented, the investment problem does not have this
characteristic. In particular, the solution is a statement of investment
allocations presumably all to be made at the same time rather than serialy
over afinitetime horizon. To accommodate the sequential nature of
dynamic programming, the numbers assigned to the investments were used
to provide an artificial order. Thuswe first decide on the amount to invest
in opportunity 1, then in opportunity 2, and finally in opportunity n.

The problem must be described in amanner such that asolutionisa
sequence of alternating states and decisions. The state represents the current
alternative under consideration and the amount of the budget used to this
point. Thustwo pieces of information are described by the state requiring
the introduction of two state variables. In general, we call the m-dimen-
siona vector s = (s, ...

variables. For the investment problem, m =2 and

» Sy the state, and its components s; the State

Dynamic Programming Models

s, = index of the current alternative being considered (s, = 1,...,n+1)

s, = amount of the budget used prior to this investment opportunity
(s,=0,1,...,b)

s=(sy, Sy).

In some textbook expositions on dynamic programming, the term
“stage” is used to identify the sequence of decisions. In our exposition, we
will not use the concept of a stage but rather include the stage information as
the first component of the state vector. Although this approach may seem
awkward at first to those already familiar with the stage terminology, it
allows amore genera class of problemsto be modeled as dynamic
programs.

Decisions
The decision at any particular state is the amount to invest in the opportunity

identified by s;. In general, the set of all possible decisions is denoted by

D, whereas a particular decision as afunction of state s is denoted by d(s).
To accommodate cases in which the decision has more than one dimension,
d =(dq, d,,...) isspecified as a vector with each component identified by a
lowercase subscripted letter d. In the present instance the decision isjust
the amount to invest, so d has only one dimension.

D={0,1,..,b}

d = amount to invest in opportunity s,

d(s) = (d(s))
Solution

A solution is an alternating sequence of states and decisions that have
indices indicating their place in the sequence. The process startsin state s,

called theinitia state. For the investment problem, the initial stateis
s1=(1,0)

indicating that thisis the first opportunity and none of the budget has been
alocated. Thefirst decisonisd(s,), theinvestment in opportunity 1. The

new states, must be equal to
S, =(2, d(sq))

since the vaue of the decision variable d(s,) is precisely the amount

invested in the first alternative and the next opportunity is2. The decision
d(s,) movesthe process from state s, to s5. The value of s; must be

S5= (3, d(sp) + d(s,)).

Model Components 13

Trans

Thefirst component, s; = 3, of the vector s, indicates the index of the next

alternative to be considered, and the second component gives the total
investment associated with the first two decisions.

tion Function

As each decision is made, the state changesin apredictable way. The
function that gives the value of the next state vector in terms of the current
state and decision is called the transition function. Let the state at the kth
step of the process be s, and let the decision taken at this step be d, .. The

next stateiss, 4 and is determined by the transition function as follows.
Siie1 = Ti(Sie i @

Very often T, (s, d,) does not depend on the sequence number of the

decision, or, asin our example, the sequence number isincluded as the first
component of the state vector. In such cases, one can simplify the notation
by denoting the current state by s, the current decision by d, and the next
state by s'. Now the transition function can be written without the
subscript; i.e.,

s'= (s}, $) =T(s, d) @

where T(-,.) isagenera function of s and d. When there is no ambiguity,
we will always use Eq. (2) without the index k, rather than Eq. (1). Note
that when the state vector has more than one component, the transition
function is multidimensional. It must describe how each component of the
state vector changes.

For the investment problem, the transition function is separable in
the two state variables and can be written as

s;=s;+lands,=s,+d.

Sate Space

The collection of all feasible statesis called the state space and is identified
by the symbol S. For the example, the first state variable, s;, ranges from

1 to n +1. (For modeling purposes, the decision associated with opportunity
nresultsin the transition to s'1 =n+1.) Becauseonly positive integer

investments are allowed and the total investment cannot exceed the budget,
itisclear that the second state variable, s,, must be integer and lie between 0

and b. Thusthe state space for the exampleis

Decis

S={(L,0O)E{s: 2£s5,<n+1,0£s,£b, s; ands,integer}}.
on Network
As mentioned, a conceptually useful representation of aDP model isa

decision network, partialy illustrated for the investment problem in Fig. 6.
The elements of the state space are shown as the nodes in the figure.

Because a decision leads from one state to another as defined by the

14

Dynamic Programming Models

Path

Acycli

transition function, the decisions are represented as arcs. Only the optimal
decisions are shown in Fig. 6; the full network would include an arc for
each feasible decision. When both the decision space and state space are
discrete, it is always possible to construct a decision network for aDP
although it may be impractical to do so when the number of statesis large.

A solution to the problem is a sequence of states and decisions that defines a
path through the network. We represent a path P as avector of aternating
states and decisions beginning at theinitial state s; and ending at afind state

Sn+1- For theinvestment problem, we have

P= (Sl, dl! So, d2, S3,...,Sg, d8’ Sg).

Every feasible solution to the problem can be associated with some path
through the network.

¢ Decision Network

With the help of Fig. 6, several new definitions can be introduced. First
note that all the arcsin the figure are drawn from left to right. Thisindicates
that there are no cyclesin this network making it acyclic. With an acyclic
decision network, there must be some set of nodes that has no entering arcs.
These nodes comprise the initial states and are identified asthe set 1. State
(1, 0) isthe soleinitial statein the investment example. Also, there must be
some set of nodes that has no leaving arcs. The collection of these nodesis
thefind set F. Thereare 11 find states for the example (9, s,), where s,

ranges from O to 10. It should be clear that a path corresponding to a
solution beginsat astatein| and endsat astate in F.

Feasible Decision St

Only certain decisions from a given state will lead to afeasible state. If s' =
T(s, d) and s' isafeasible state, thend T D iscalled afeasible decision for

states. The set of feasible decisions for states isD(s) I D. For the
investment problem

D(s)={d:0£s,+d£ b, and disinteger}
whered = (d).

Path Objective

The next step in the modeling processis to define ameasure of effectiveness
for comparing aternative paths and selecting the optimum. We denote the

path objective by z(P). The optimal path, P", is determined by solving
either

z(P") = Minp z(P) or z(P") = Maxp Z(P).

Whether the objective isto maximize or minimize depends on the problem

under consideration. The optimization is conducted over all feasible paths.

Model Components 15

For the investment problem, the goal is to maximize return so the objective
can be written in the following manner.

Maxp 2(P) = Maxgj s i p(s) ZS1: 1, Sp:-- -+ Sgr dg: So)

For computational tractability, we require that the objective function
take a separable form that can be expressed as the sum of n + 1 terms that
individually consist of astate and adecision. In general, we have

Z(P) = z(sq, dq) + (S5, dp) +++- + Z(s,, d ;) + T(Sp41)

or 2(P) =& s, dy) + f(Sp0) €)

k=1

where the last term f(s,, 1) assigns a payoff to the final state and is called
the final value function. This function must be given as part of the model.
For the example, thefina stateissg = (9, s,), and it was assumed that f(sg)

= e(b-s,), where eisthe unit value of unallocated budget.

Becauses' can be computed from (s, d) viathe transition function it
IS sometimes useful to express the summation terms in the objective
function as explicit functions of s’ such as z(s, d, s') or z(s, s'). In Eq.
(3), each term depends only on the current state and the current decision.
Thistype of function arises frequently. For notational convenience, we
write the path objective function in such away that omits the index of the
decisions. Inthisform, the objective isthe sum over the states and the
corresponding decisions taken at those state in the path P plus the value of
thefina state denoted by s;. We aso omit the explicit dependence of P on

sandd.
ZP)= @ zZsd +f(s)

sl Sdi D(s)

For the investment problem, the function z can be written in terms of
only sq, the index of the current opportunity, and d, the amount of

investment. Thus
Z(s, d) =f(s;, d)

wheref(s,, d) isthe return obtained by investing amount d in opportunity
s,. Asmentioned, we take the final value function to be alinear expression
of the unspent funds.

f(s)=e(b-s,) forsT F

The rest of the chapter describes dynamic programming models
associated with several problem classes.

16 Dynamic Programming Models

19.3 Resource Allocation Problems

Describing a problem in aformat that is suitable for the computational techniques of
dynamic programming is perhaps more of an art than for other mathematical programming
methods. 1n the remaining sections we attempt to aid the modeling process by identifying
severa problem classes. Familiarity with these classes may suggest how a given problem
should be stated. It may fit directly into one of the classes or more commonly may require
a series of minor modifications.

Resource all ocation problems can be viewed as generdizations of the investment
problem considered in the first section. In particular, suppose that n investment
opportunities are available, each having a payoff that depends on the level of investment.
Let the decision d; represent the level of investment in alternativej forj = 1,...,n. Only

nonnegative integer values of dj will be considered up to some finite upper limit. When dj
=0, no investment takes place; when dj =1, weareinvesting at thefirst level; when dj =2

we areinvesting at the second level, and so on. This structure gives us flexibility in that
the levels do not necessarily have to equal the amounts of the investment.

M athematical Programming M odel

Letc(, dj) be the return for investing at level dj in opportunity j. The
returns are functions of j and dj and may or may not belinear. The

objective of the problem isto maximize the total return from the investment
policy; that is,

cG, dj) (4)

Qo5

Maximize z =

=1

Portions of one or more resources are consumed with each
allocation. A typical resource isthe budget; however, there may be several
others. In amultiperiod problem, for example, the investments may incur
claims on future funds and so will require aresource constraint for each

time period. In addition, there may be limits on the amount of money that
can be invested in a certain instrument or particular sector of the economy.

In defining the model, we make use of the following notation.
m = number of resources

b; = amount of resource i available

al, j, dj) = amount of resource i used by investing at level dj in
aternative]

We further restrict the values of (i, |, dj) and bj to beinteger. Now,

algebraic constraints can be written that limit the amount of each resource
that may be used by afeasible solution.

Resour ce Allocation Problems 17

n
& a(i,j, d)Eb, i=1,.,m (5)
j=1

The objective function (4) together with the inequalitiesin (5) givea
mathematical programming statement of an investment problem with
resource constraints. Since the decision variables d; are required to assume
only discrete values, neither linear nor nonlinear programming is an appro-
priate solution technique. An enumerative solution procedure such as
integer or dynamic programming must be used.

Dynamic Programming M odel

To formulate this problem as a dynamic program, a solution must be
described as a sequence of states and decisions. The sequence of decisions
iseasly obtained by arbitrarily ordering the investment opportunities. Thus
thefirst decision isthe level of investment in alternative 1, the second isthe
level for aternative 2, and so on. To complete the model we must define
each of its componentsin Table 3. Many variations in the problem
statement can be accommodated with minor variationsin the model.

Table5. Genera resource allocation model

Component Description
State S=(S1, S, ---» Sm+1), Where
s, = dternative currently under consideration
s; = amount of resource i —1 used up prior to the current
decision,i = 2,...,m+1
Initial state set I ={(1,0,...,0)}
We start with alternative 1 and no resources used.
Final state set F={s:s;=n+1}
After al the aternatives have been considered we are finished.
State space S=1 E{s:2£5E£n+1,0£Es£D 4, i=2,.. ,m+l}
Integrality is also required for all elements of S which consists of
theinitial state set plusall the integer values within the specified
ranges.
Decision d(s) = (d), where d isthe investment level for dternative s,

Feasible decisionset | D(s)={d:0£s +&i-L, s, d)£b_y, i = 2,...,m+1,d3 0

and integer}
All decisions that do not exceed the resources are feasible.

Dynamic Programming Models

Transition function | s’ = T(s, d), where

Decision objective Z(s, d) = ¢(sy, d)

Path objective

Fina valuefunction |[f(s)=0 forsT F

s;=s +1
s=s+ai-1,s,d), i=2..,m+1l

We move to the next alternative with the amount of resources used
up by the decisions made previously.

The contribution to the objective is determined by the payoff func-
tion of the current alternative for the current decision. 1t does not

depend on the successor state s’

Maximize zP)= & z(sd)+ f(s;)
sl SdT D(s)

The total return is the sum of the decision objectives over the
opportunities.

If thereis avaluefor leftover resources we can includeit in the
final value function. Here we assume the value is 0.

Example 1 — Binary Knapsack Problem

Consider a boy scout packing his knapsack for an overnight camping trip.
He has a set of n itemsthat he can bring. There are no duplicates and item |
weighs an integer amount w(j). Unfortunately, the total weight of the items
that heis considering is greater than the amount W that he can reasonably
carry. To help determine which items to pack, he has assigned a benefit c(j)
toitemj. Thegoa isto maximizetota benefit. Intheinteger programming
chapters, this problem was called the binary knapsack problem because it
was modeled using 0-1 decision variables whose individual values
corresponded to either selecting or not selecting an item.

The boy scout clearly faces aresource allocation problem, so it
should be possible to describe his situation in dynamic programming terms.
The specific components of the model are listed in Table 6. Because weight
isthe only resource, m = 1. The number n in the general model corresponds
to the number of items under consideration.

Resour ce Allocation Problems 19

Table 6. Binary knapsack problem

Components Description

State

Initial state set I ={(1, 0)}
Final state set F={s:5y=n+1,0£s,£W}
State space S=1 E{s:2£s,En+10£s,£W}

Decision d(s) = (d), where d = |

Feasibledecisonset | D(s) ={d: 0£ sy+ w(s;)d £ W}

Trangtionfunction | s' =T(s, d), wheres; =s; + Land s, = s, + W(s;)d
Decision objective Z(s, d) =c(s)d

Path objective Maximize zP)= Q zsd)+ f(s;)

Final valuefunction |f(s)=0foralsi F

s =(sy, Sy), Where
s, = item currently under consideration

s, = weight allocated prior to the current decision

Integrality isalso required for al elements of S.

10 if item s; is not packed

i1 if item s, is packed
Thedecisiond = Oisawaysfeasible, whiled = 1lisfeasibleif it

does not violate the weight constraint.

This term does not depend on the successor state's'.

sl Sdi D(s)

There is no value associated with any amount of unused resource.

As an example, consider aknapsack problem with 15 items. The benefits
and weightsare listed in Table 7. We have chosen the parameters so that no
item is dominated by another; that is, thereis no item with aweight that is
greater than some other but with asmaller benefit.

Table7. Datafor binary knapsack problem

[tem, |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benefit, c(j)
Weight, w(j)

8 95 115 128 141 186 198 224 236 25 291 32 33 346 37.2
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20

Dynamic Programming Models

With aweight limitation of 30, there are 466 statesin S. This
number can be reduced somewhat by removing states that cannot be reached
fromtheinitia state (1, 0). We report the optimum in the order of the
decisions starting from (1, 0). The optimal decision for this state isto bring
0 of item 1, so the next state is computed from the transition equation as

;=S t1=1+1=2
and s,=s,+Ww(s)d=0+6" 0=0.

In asimilar manner, the entire optimal sequence of decisionsis derived.
The objective function value is the sum of the decision returns. The value

for (1, 0) isthe total benefit of the knapsack, z(P"). Table 8 indicates the
optimal path in the format provided by the Teach DP Excel add-in. The
solution callsfor items 10 and 12 to be included in the knapsack giving a

total value of 57 for z(P"). The computations were performed using
backward recursion and forward recovery.

Table 8. Optimal solution of the binary knapsack problem

S

Index S, S, d(s)=d| zP) Action
1 1 0 0 57 | BringOof item1
2 2 0 0 57 | Bring O of item 2
3 3 0 0 57 | Bring O of item 3
4 4 0 0 57 | Bring O of item 4
5 5 0 0 57 | BringOof item5
6 6 0 0 57 | Bring O of item 6
7 7 0 0 57 | Bring O of item7
8 8 0 0 57 | Bring O of item 8
9 9 0 0 57 | Bring O of item9
10 10 0 1 57 | Bring 1 of item 10
11 11 14 0 32 | Bring Oof item 11
12 12 14 1 32 | Bring1of item 12
13 13 30 0 0 Bring O of item 13
14 14 30 0 0 Bring O of item 14
15 15 30 0 0 Bring O of item 15
16 16 30 — 0 Finished

Example 2 — Binary Knapsack with Two Constraints

Toillustrate the effect of including a second resource, we solve the same
problem but with a volume constraint added. With two constraints another
state variable is necessary. The components of the model that have changed
areshown in Table 9. In addition to the notation used in Example 1, we

Resour ce Allocation Problems 21

defined V to be the knapsack volume and v(j) to be the volume required by
itemj.

Table 9. Modifications for binary knapsack problem with two constraints

Components Description

State s =(sy, Sy), Where
s, = item currently under consideration
s, = weight allocated prior to the current decision

S; = volume alocated prior to the current decision

Initial state set I ={(1, 0, 0)}
Final state set F={s:$g=n+10£s,£W,0£5£V}
State space S=1 E{s:2£5,En+10£s,£W,0£s;£V}

Integrality isalso required for all elementsof S.

Transtion function [s’ =T(s, d),
wheres; =s; + 1,5, =5, + W(s;)d ands; = 53+ v(s;)d

The volume of each item is given in Table 10 while the benefit and
weight dataarethe sameasin Table 7. Thetotal volumewas set at 30. The
total number of elementsin the state spaceis

IS|=14" 31" 31+ 1=14,416.

We chose to solve the problem using only the states that are reachable from
theinitial state. The corresponding state space has only 729 elements. The
process used to generate only reachable states is described in the DP
Methods chapter and is often leads to sharp reductions in the computational
effort. The solution to the new problem isto bring only items 6 and 15.
With the additional constraint, the value of the total return decreasesto 55.8.
The volume constraint is tight but the weight constraint is loose at the
optimum.

Table 10. Datafor binary knapsack problem

Item, | 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Volume, v(j)| 5 6 7 11 9 10 15 16 14 14 18 19 19 22

Example 3 — Personnel Assignment Problem

Asasecond illustration of a problem with two resources and atwo-
dimensional decision vector, consider a company employing three electrical

22 Dynamic Programming Models

engineers (EE), three mechanical engineers (ME), and an unlimited number
of technicians (Techs). The company has four jobsto do in the next week,
A,B,CandD. Table 11 identifies the time required to do each job with
various combinations of personnel. A synergy existsfor certain pairs but at
most two engineers can be assigned to ajob. An additional restrictionis
that if Techs are assigned to ajob, no engineers are to be used.

Table11. Timeto perform jobs

Job | Techs 1ME 2MEs 1EE 2EEs 1ME&1lEE
A 45 49 30 a7 21 15
B — 73 15 — 27 20
C 60 52 24 78 54 —
D 75 70 57 61 80 57

The problem is to assign workers to jobs so that the total timeis
minimized. The DP model specified in Table 12 can be used for this
purpose. Thefirst state variable, s;, assumes the values 1 through 4 to
correspond to the four jobs A through D. A vaue of 5 for thisvariable
indicates afinal state. The other two state variables hold the number of
engineers remaining of each type. Note that the resource state variables (s,

and s;) can indicate either the amount of aresource already used up asin
Examples 1 and 2, or the amount remaining as defined here.

Table 12. Personnel assignment problem model

Component | Description

State S =(Sy, Sy, S3), Where

s, = job number with A, B, C and D being assigned values 1,

2,3, and 4. Thevaue5 indicatesthat afina state has
been reached.

S, = number of MEs remaining

S5 = number of EEsremaining
No state variable is necessary for Techs since there isan unlimited
supply.

Initial state set I ={(4, 3, 3)}
Start with all ME's and EE’ savailable.

Final state set F={(55,5):5=0,123ands;=0,1, 2,3}

It is not necessary to use all the engineers.

Resour ce Allocation Problems

23

State space

Decision

Feasible decision set

Transition function

Decision objective

Path objective

Final value function

S=1 E {s:2£5£50£s,£3, 0£5,£ 3}
Integrality isrequired for all elementsof S.
i d; = number of MEs assigned

number of EEs assigned

D(s)={d:d;+s,£3,d,+s;£3}

The assignment must not exceed the number available.

s' =T(s, d)
wheres; =s; +1,s,=5,+d; ands;=s;3+d,

Z(s, d) =4&(s, d)

Here &(s, d) isthe cost of doing job s, with assignment (d,, d»).

It does not depend on the successor state s.

Maximize z(P) = é z(sd) + f(s;)
sl Sdi D(s)

f(s)=0foralsl F

No additional benefit is obtained if any of the engineers are not

assigned to jobs.

This exampleillustrates a Situation where there are two decisions to

make for every job. The decision objective is anonseparable function of the
variablesd; and d,. The optimal solution isgivenin Table 13.

Table 13. Optimal solution of the personnel assignment problem

Index S, S, S, d, d, z(P) Decison
1 1 3 3 2 0 140 Job A:use2 ME, use O EE
2 2 1 3 1 1 119 JobB:uselME, uselEE
3 3 0 2 0 2 99 Job C:useO0ME, use2 EE
4 4 0 0 0 0 75 Job D: use Techsonly
5 5 0 0 — — 0 Finished

24 Dynamic Programming Models

19.4 Line Partitioning Problems

Another class of problems for which dynamic programming can be effectively applied
involves the partitioning of aline into non-overlapping segments. Applications include
cutting sheet metal and cloth, developing a machine overhaul schedule, and setting up
ingpection stations along an assembly line. In the definition of these problems both the
state and decision vectors have a single component, making them easy to solve. From a
modeling point of view, they areillustrative of the case where the classical stage
representation for dynamic programming is not appropriate.

Problem Statement

Consider aline, asin Fig. 7, with n+1 discrete points or nodes numbered O
to n starting at the left. The problem isto find an optimal partition of the
line into segments such that each segment begins at one node and ends at
another. Some objective or payoff function is associated with each
continuous subsequence of nodes, and istypically nonlinear. Figure 8
shows one possible partition.

Figure 7. Line with discrete points

e Y
Segment 1 Segment 2 Segment 3

Figure 8. Linedivided into segments

A vector of selected nodes defines a solution, with each adjacent pair
of nodes defining a segment of the line. Thus a genera solution comprising
k segments can be written as avector; that is,

(01 |11 |2’ |31 ey ik_11 n)1

where 0<ij<ip<ig<eee<i_y<n

such that (0,14), (i1, 15), (ip, ig) ..., (ix_1, N)
identifiesthe k ordered segments. Note that the number of segments, k, isa
variablein this problem.

A cost function is defined in terms of the nodes the comprise the
segments with c(i , j) the cost of the segment starting at node i and terminat-
ing a nodej. The cost of asolution isthe sum of the segment costs

k
a c(ij_y, i;) whereip=0 andi, =n.
=1

Line Partitioning Problems 25

Dynamic Programming M odel

The nodes on the line comprise the states of the problem. Formally, we
introduce asingle state variable s = (s). The state space hasn + 1 elements

s={0,1,2,..,n}.

The decision vector d(s) = (d) also hasasingle dimension. Hered
isthe number of intervalsto be included in the segment startingats. A
solution is defined by a sequence of states and decisions. To illustrate,
consider the solution shown in Fig. 9. The corresponding path begins at
theuniqueinitial state s, = (0). Thefirst decision indicates that three

intervals are to be included in the first ssgment sod; = (3). This movesthe
processto state s, = (3). The next decision, d, = (4), indicates that four
intervals are to be included in the next segment, moving the processto s; =
(7). The segment starting at state (7) hasthree intervals, so d5 = (3) and the
successor states, = (10) which isthe final state for the path. The sequence
of states and decisions defines a path starting at state 0 and hopping through
the state space until the final state n is encountered. The general path is

P= (s, dq, Sp, do, ..., Sy, iy Sppp)s

wheres; = (0) and si41 = (n).

26, 2O
Figure 9. Path through the decision network

The solution given in Fig. 9 defines the path
P =((0), 3, (3), 4, (7), 3, (10)).

Parentheses around alternating elementsin P identify states.

The collection of al possible states and decisions comprise the
decision network. Figure 10 depictsall the states but only the decisions
starting from state 0. In general, the decision network for this problem will
haven + 1 nodes and (n)(n + 1)/2 arcs. The formal statement of the model
isgivenin Table 13 and includes the parameter m, the maximum number of
intervals to be included in asegment. When this maximum isless than n,
the number for arcs in the decision network is reduced.

26 Dynamic Programming Models
Figure 10. Partia representation of the decision network
Table 13. General model for line partitioning problems

Component Description
State s = (s), where sisanode on the line that begins or ends a segment
Initial state set | ={(0)}, the process begins at state 0
Final state set F ={(n)}, the process ends at state n
State space S={0,1, 2,...,n}, the state space has n + 1 elements
Decison d(s) = (d), the decision isthe number of intervalsto includein the

Feasible decision set

Transition function

Decision objective

Path objective

Fina value function

segment starting at s

D(s) = {1, 2,...,Min(m, n—9s)} for s<n,

where mis the maximum number of intervals in a segment.
Feasible decisions must remain within the state space.

S =T(s, d),wheres' =s+d

The new state is the old state plus the number of intervals
traversed.

Z(s, d) = c(s, d), where the function may be given anadyticaly or in
tabular form.

Minimize z(P) = a zsd) +f(sy)
sl S,di D(s)

f(s)=Oforalsl F
For specific problems the final value function may be nonzero.

Line Partitioning Problems 27

Example4 - Line Partitioning

We wish to divide a 10-inch line into segments whose lengths are in 1-inch
multiples. The cost of asegment of length x is

c(X) = 10 + X2

The objective isto minimize the total cost of the partition. The parameters
that must be specified are n and the cost function ¢(s, d). For the given
problem

n=10and c(s, d) = (10 + d), whered=s —s.

The optimal solution is shown in Table 14.

Table 14. Optimal solution for line partitioning problem

Index S d z(P) Decison
1 0 3 64 Segment 1: length=3
2 3 3 45 Segment 4: length=3
3 6 4 26 Segment 7: length=4
4 10 — 0 Finished

Example5 — Capacity Expansion

A power company expects a growth in demand of one unit (100 megawatts)
of power for each year in the next 20 years. To cover the growth the
company will install additional plants with capacitiesin integer sizesof 1
through 10. The size chosen will determine how many years before the
next capacity expansion isrequired. The cost for the 10 sizesis shown
below.

Size| 1 2 3 4 5 6 7 8 9 10

Cost| 15 16 19 24 30 34 39 45 49 54

The goal isto minimize the present worth of the expansion costs for
the next 20 years. We usei to indicate the interest rate for present worth
calculations, and assumei = 5%. To illustrate how the objective function is
evaluated, say we choose to build plantsin the size sequence 4, 6, 5, 5.
This means that the expansions occur at times 0, 4, 10 and 15 so the present
worth of the costsis

z=24+

1
T O e G0+

The situation can be modeled as aline partitioning problem with
c(d)
(1+i)°

— = (30)=84.82

n=20, m=10and z(s, d) =

28 Dynamic Programming Models
where ¢(d) isgiven in the cost table as a function of the expansion size d.
Note that the discount factor isafunction of the state so it is easily included.
The solution is displayed Table 16.
Table 16. Optimal solution to capacity expansion problem
Index S d z(P) Decison
1 6 83.73 TimeO0: Sze6
2 6 6 49.73 Time6: Size6
3 12 4 24.359 Timel2: size4d
4 16 4 10.995 Timel6: size4
5 20 — 0 Finished
Example 6 — Production Scheduling
A manufacturing facility has forecasted demand for the next 20 weeks as
shown inthetable below. Thereisafixed cost for setting up a production
run equal tof. In addition, thereisavariable cost v that is proportional the
number of items produced. If we produce more than the demand in a
particular week, the excess items are stored until needed. The inventory
cost is proportional to the number of units and the number of weeks stored.
The cost per unit per week isw. The problem isto find a production
schedule that minimizes the total fixed, variable and inventory costs.
Week 1 2 3 4 5 6 7 8 9 10
Demand 3 1 7 0 0 2 8 2 3 2
Week 11 12 13 14 15 16 17 18 19 20
Demand 9 4 1 8 3 3 8 6 5 5

The appropriate dynamic programming model is similar to that for
the line partitioning problem. When applied to the inventory problem, the
approach is called the Wagner-Whitin algorithm. The line to be partitioned
inthis caseisthetimeline. The nodes correspond to thetimes{0, 1,
2,...,20}. A solution is described by a sequenced set of times at which
production occurs: (0, iy, iy, i3, ..., I_4, N). Forthiscase n=20. With the
cost computations described above, it can be shown that when production
occurs, it isaways optimal to produce exactly the quantity demanded for
the interval being considered (Dreyfus and Law 1977). Thus production at
time O satisfies the demands for weeks, 1 through i;. Production at timei,

satisfies the demands for times i, +1 through i,, and so on.

To express the decision objective in generd terms|et g, be the
demand inweek t, and let (s, s") be the cost associated with producing at
time s to satisfy the demands for periodss+1to s. The cost function has
three components.

Line Partitioning Problems 29

s' S
2(s,s)=c(s, s)=f+va q+w (t-s- 1)

t=s+1 t=st+l

Toillustrate, we calculate z(s, s) fors=0,d=6ands = 6. The
parameter valuesaref = 30, v=4andw = 1.

6 .
o0, 6) = f + vg’é qt§+ w(0g, + 10, +¥4 + 50,) = 30 + 4(13) + 1(25) = 107.
t=1

Using the line partitioning model with this cost function, the optimal
sequenceis (0, 6, 10, 13, 16, 20). Table 17 depictstheresults. Thefirst
five components of this sequence are production times; the corresponding
production quantities are 13, 15, 14, 14 and 24, respectively. Thetota
cost is 555.

Table 17. Optimal solution for inventory problem

Index S d z(P) Decison
1 6 555 TimeO: Interval 6
2 6 4 448 Time®6: Interva 4
3 10 3 344 Time10: Interval 3
4 13 3 252 Timel3: Interval 3
5 16 4 157 Time16: Interva 4
6 20 — 0 Finished

Integer Knapsack Problem

An interesting variation of the line partitioning problem alows the solution
of the integer knapsack problem. The mathematical programming model is

n

. . [¢]
Maximize z= g ;X

i=1

subject to é ax £b
j=1
xj3 Oandinteger,j = 1,...,n

whereq >0and > Ofor dlj. Notethat thevariablexj IS not restricted to

binary values but can take on any nonnegative integer value up to éb/q o To
model the problem as a dynamic program we define the state using asingle
state variable; i.e., s = (S), where s = amount of resource used by the
current solution.

The sequence of decisionsto be madeisd, d,,..., d,, where d, is
the index of the first item to be included in the knapsack, d, isthe index of
the second item, and so on. The decision isthe index of an item and may

30

Dynamic Programming Models

take on the values 1, 2,...,n. Note that different decisions may refer to the
same item; e.g., d, and dg may both refer to item 4. We add one additional

possibility denoted by O to indicate that no more items are to be included.
The complete decision set is

D={0,1,2,..,n},
and the transition function is
s =s+g, ford>0

s =bford=0.
Thusif the current solution uses s units of the resource and the decision is
to bring another item d, the new solution will usegyadditiona units. When
the constraint coefficients a are integer, the states assume integer values

between 0 and b. Thefinal transition is associated with the decisond =0
and uses up whatever amount of the resource that remains, so s; = b. If

there is no penalty for not completely filling up the knapsack or no benefit
for any remaining capacity, then f(s;) = 0.

The decision set for state s consists of any item whose inclusion
would not exceed the total capacity b.

D(s)={0orj s+g £b, j= 1,...,n}.

The decision objective z(s, d) = ¢4 where ¢ = 0. Thusthe integer

knapsack problem can be related to the line partitioning problem by viewing
the resource b as alinethat is being divided successively into segments.

Example 7 — Unbounded Knapsack

Consider asingle constraint knapsack problem with right-hand side
parameter b = 35. The values of 3 and G are given in thetable below. The

latter were randomly generated so that no item dominates another. Although
no restrictions are placed on the number of items of each type that can be
packed, implicit upper bounds exist due to the weight restriction.

Item, |

1 2 3 4 5 6 7 8 9 10

18 166 15 148 131 113 105 86 6.7 5.2
15 14 13 12 11 10 9 8 7 6

Table 18 displays the results of the computations and indicates that
the optimal policy isto bring two of item 4 and one of item 5. The model
has only 36 states. To extend the model to include more than asingle
resource restriction, additiona state variables must be introduced, one for
each new constraint.

Line Partitioning Problems

31

Table 18. Solution to the integer knapsack problem

Index S d z(P) Decison
1 0 4 427 Bring4
2 12 4 279 Bring4
3 24 5 13.1 Bring5
4 35 — 0 Final

32 Dynamic Programming Models

19.5 Path Problems

When trying to find an optimal path through a network it is natura to use dynamic
programming because the optimization problem can be represented explicitly in graphical
form. Dijkstra s algorithm introduced in Network Flow Programming Methods chapter
for finding the shortest path through a directed network is atypical example. Several
variations of the basic problem can aso be modeled using dynamic programming. We
begin with the grid network depicted in Fig. 11 and define what is called the simple path
problem. Nodes represent locations and are identified by their coordinate vector X = (X,

X,) while arcs represent transportation links between nodes. A traveler at a particular node
is permitted to move up to the node with the next higher x,-coordinate (and the same x ;-
coordinate) or move right to the node with the next higher x,-coordinate (and the same X,,-

coordinate). The direction traveled will be indicated by the variabled. Wetaked =0 to
mean that travel isup and d = 1 to mean that travel isto theright. Clearly, al arcs are one-
way. Each arc has aknown length given by a(x, d) where x describes the node at which
the arc begins and d indicates the direction of travel. We assume that the traveler starts at
node (1,1) and wants to travel to node (n, n) using the shortest possible route -- the
problem objective. The dynamic programming model is straightforward, as defined in
Table 19.

X2

IREREN

.
A et
B

-

e S SR
S I G G G

1 — O—>0O—>0O0——>0

0 I I I I I >
0 1 2 3 4 Co N

Figure 11. Coordinate representation of path problem

Path Problems 33

Table 19. Genera path problem model

Transition function

Decision objective

Path objective

Final value function

Component Description
State s =(sy, Sy), Where

S, = X¢-coordinate

S, = X,-coordinate
Initial state set I ={(1, 1}
Final state set F ={(m, n)}, we generalize the model to allow n rows

and m columns,
State space S={s: 1£s,£m 1£s,£n, s;ands,integer}
Decision d = (d), where d indicates the direction traveled
10, go up one node
= %1, go to right one node

Feasibledecisonset | D(s) = {0, L: s; +d£ mands, + (1-d) £ n}

s' =T(s, d)
s;=s;+d, s,=s,+1-d

2(s, d) = &(s, d)

Minimize zP)= & zsd)+ f(s;)
st Sdi D(s)

f(s)=0 forsi F

Example 8 — Grid Problem

Asan example, consider a10” 10 grid with arc lengths as follows

as, d)=|s; —sy[ford=0, 1

where s, and s, are the coordinates of the current node. Thus arcs that

originate at nodes along the main diagonal have length O, arcsthat originate
at nodes one removed from the main diagonal have length 1, and so on. The
optimal path for agrid with n = 10 is shown in Fig. 12 where the numbers
in parentheses along the arcs are their lengths. The path has atotal length of
9. Of course, thisis not a surprising solution given the arc length
definition; however, dynamic programming does not take advantage of

34 Dynamic Programming Models

symmetry. The solution is obtained as easily for arbitrary arc lengths as for
this special case.

There are many ways to find solutions to the shortest path problem.
The linear programming model for this example consists of 180 variables
and 100 congtraints. The dynamic programming model correspondingly
has 100 states in the state space, and 180 arcs, al of which have to be
considered in the solution process.

Sy A

10 — O O O O O O O O O O
A
9 — O O O O O O O O O(—%()
0 i(l)
8 — o o o O o 0 o0 (—)>

O
.
7 — O O O O O O &O()O @)

0 @
) 1(1)

o 0 o 0
0 1
5 — o o o © OQJ(Yo o o o
(Oﬁ l(l)
4 — O O O O O O O O

©) 1D

3 - O O b Z© O O O O O O
0 T(l)
2 — O o(—)>© O O O O O O O

(Osl(l)
1 — O o o o o o o 0o o°

I I I I I I I I I I >

1 2 3 4 5 6 7 8 9 10
Figure 12. Shortest path from (1, 1) to (10, 10)

Turn Penalties

There are anumber of variations of the smple path problem that illustrate
the power of dynamic programming. For instance, consider the case where
apenaty p, isassessed for turning left and a penalty p, for turning right.
To evaluate a movement from one state to the next, we need to know the last

direction traveled as well asthe location. Thismodel, givenin Table 20,
requires an additional state variable to indicate the direction last traveled.

Path Problems

35

Table 20. General model for the path problem with turn penalties

Component Description
State S =(Sy, Sy, S3), Where
S, = X4-coordinate
S, = X,-coordinate
Sy = direction last traveled
Initial state set I ={(1,1,0), (1,1, 1)}
Final state set F ={(n, n, 0), (n n, 1)}
State space S={s:1£s £n1£s,£n, s ands,integer,s;=0, 1}
Decison d = (d), where d indicates the direction traveled

Feasible decision set

Transition function

Decision objective

Path objective

Final value function

10, go up one node
:%1, go to right one node

D(s)= {0,1:s;+dEnands,+(1-d) £ n}
s' =T(s, d)

s;=s;+d, s,=s,+1-dands;=d

Z(s, d)=4as, d)forsy=d
Z(s,d)=4as,d)+p;ford=0ands3=1
Z(s,d)=as,d)+p,ford=1ands; =0

a zsd)+f(sy)

sl Sdi D(s)

Minimize z(P) =

f(s)=0 forsi F

Example9 — Grid Problemwith Turn Penalties

The solution for the example 10~ 10 grid with aleft-turn penalty of 10 and

right-turn penalty of 5 is shown in the Fig. 13. The solution has migrated

away from the diagonal to escape excessive turn pendties. Thetotal arc
length isnow 27. Adding to this 10 for each turn gives atotal path value of

47.

36 Dynamic Programming Models

Sz A
3 (2
10 - O O o O O O Q(—)>©(S
i(Z)
9 — O O @) O O @) O
i(l)
g — o o o o o O o o ©
0)
7 _ o o o o o O o o ©
(1)
6 — O O @) O O @) O O @) O
i@)
5 — O O @) O O @) O @) O
3 @ @O (© 1 @ @
dooe e o o0 aaly
i(z)
3 — O @) O O @) O O @) O
, @
| O @) O O @) O O @) O
0)
1 o o o o o o o o o
| — | | | | | | | ’S
1 2 3 4 5 6 7 8 9 10 1

Figure 13. Path solution with turn penalties

The turn penalty problem is an example of the usefulness of
dynamic programming. The new model has 200 states and each arcis
considered twice in the solution process. Aninteger programming model
for the problem would be considerably more complicated.

Sequencing Problems 37

19.6 Sequencing Problems

Many operational problems in manufacturing, service and distribution require the
sequencing of various types of activities or items. Examplesinclude a production facility in
which chassis must be sequenced through an assembly line, an express mail service where
parcels and letters must be routed for delivery, and a utility company that must schedule
repair work. In general, problemsin this class are easily formulated as mathematical
programs but with afew exceptions owing to special structure, are difficult to solve. In
this section, we introduce a robust dynamic programming formulation that can be used to
tackle anumber of such problems. In most cases, however, the size of the state spaceisan
exponentia function of the number of items being sequenced. In practical instances, the
success of the DP approach may depend on our ability to reduce the number of states that
must be explored in the search for the optimum. One way to do thisisto impose
precedence requirements on the items to be sequenced; a second way isto introduce the
logic of branch and bound within a dynamic programming algorithm.

Single M achine Scheduling

As a prototype, consider the problem of sequencing a set of n jobs through
asingle machine that can work on only one job at atime. Onceajobis
started, it must be completed without preemption. The time required to
process job j once the machine beginsto work onitisp(j) forj = 1,...,n.
The associated cost (], t) isafunction of its completion timet and can take a
variety of forms, the smplest being

¢, = a(t

where &) isthe cost per unit timefor jobj. Aswe saw in the first section
of the Integer Programming M ethods chapter on greedy algorithms, this
form admits a very simple solution when the objective isto minimize the
total completion cost of al thejobs. The optimum is obtained by computing
theratio p(j)/a(j) for each job and then sequencing them in order of
increasing values of thisratio. The job with the smallest ratio is processed
firgt, the job with next smallest ratio is processed second, and so on until all
jobs are completed. Ties may be broken arbitrarily.

A much more difficult problem results when each job j has a due
dateb(j). Thecost of ajobiszeroif it iscompleted before its due date but
increases linearly if it istardy.

. 1 0 forOE t £b(j)
U.9=1 i)t =b(j) fort> b

The goal of the optimization isto determine the sequence that has the
smallest total cost. Table 21 givesthe relevant parameters for a4-job
instance. There are 4! = 24 possible solutions. For the solution (3, 1, 2,
4), the completion timesare 7, 12, 21 and 31 respectively. Jobs 3 and 1 are
completed before their due date so no cost isincurred. Job 2is 11 days late
resulting in a cost of $440 and job 4 is 14 days late resulting in a cost of
$420. Thetotal cost is therefore $860.

Dynamic Programming Models

Table 21. Job parameters for a sequencing problem

Job Processing time Duedate Cost per day
j p() b(j) aj)
1 5 12 $80
2 9 10 40
3 7 10 100
4 10 17 30

In genera, we write a sequence as avector (jq, jo, ja - - -, jp) Which
impliesthat job j; is processed first, job j, second and so on until the final
jobj,. Thisvector isapermutation of the integers 1 through n and admits

n! possible sequences, a number that increases rapidly with n. Infact, itis
not possible to find a polynomial function of n that provides a bound on
how fast n! grows.

Thetime at which ajob isfinished is determined by its place in the
sequence. Job ji isin position k and is not started until the previousk — 1
jobsfinish processing. It ends at timet(j,), the sum of the processing times
of the previous jobs plusits processing time p(j,).

tG) =a p(y)

The cost associated with a particular sequence isthe sum of the
individua job costs as determined by their completion times. The objective
functionisthen

c(J,t(1))

Qo5

Z =
j=1

and the goal isto minimize z.

To solve this problem with dynamic programming, we must first
describe it as a sequential decision process. In this case, the descriptionis
once again straightforward with the decisions corresponding to placesin the
sequence. Thusthe decision at each step isajob number. The DP mode is
givenin Table 22.

Sequencing Problems 39

Table 22. Genera sequencing problem

Component

Description

State

Initial state set

Final state set

State space

Decison

Feasible decision set

Transition function

To determine the state definition, consider the information neces-
sary to specify the set of feasible decisions and to evaluate the cost
associated with adecision. At a particular step in the sequence, a
jobisafeasible choiceif it hasn't been chosen before. Thusthe
minimal information the state must provide is the set of jobs previ-
oudly included in the sequence. Thisaso istheinformation nec-
essary to compute the time of completion of the job and hence the
associated cost. To describe the state we need a vector with n
components

S=(Sy, Sy, --+1 S, Where

i0 if job] has not been included in the sequence
S Ti1 if job j has already been included in the sequence

I ={(0, 0,...,0)}
None of the jobs has been scheduled.

F={(,1,..,1)}
All jobs are schedul ed.

The state vector is abinary vector with n components. Therefore,

there are 2" members of the state space representing all possible
combinations.

S={s:g=00r1, j=1,..,n}

The decision vector has a single component that identifies the next
job to be processed.

d = (d), where d = the next job in the sequence
Thefeasible decisions at a given state are the jobs not aready
chosen. _ _

D(s) ={j 'S =0, j=1,...,n}

The transition function changes the state to reflect the inclusion of
an additional job in the sequence.

s' =T(s, d),wheres'd:landsj =g forjtd

40

Dynamic Programming Models

Path objective

n
Decision objective Z(s, d) = c(d, t), where t= 3 s;p(j) + p(d)

=1
The cost function is problem dependent. For the job sequencing

problem with tardiness penalties we use the cost function defined
above.

Minimize zZP)= a zsd) + f(s;)
sl Sdi D(s)

Final valuefunction |f(s)=0 fors1 F

Example 10 — Job Sequencing with Tardiness Penalties

The decision network for the datagiven in Table 21 isdepicted in Fig. 14.
The state vectors are shown in parentheses adjacent to the nodes. Arcs
represent the transition from one state to the next, and each has an
associated cost (not shown). The solution is determined by finding the
shortest path through the network and is shown by the heavy linesin the
figure. The optimum is the sequence (3, 1, 2, 4) as before.

Although the shortest path problem on an acyclic network can be
solved efficiently, the difficulty hereisthat there are an exponential number

of states, 2". This means that the DP approach as given in Table 22 does
not lead to an efficient solution procedure for most sequencing problems;
that is, the amount of computationsis not bounded by a polynomial function
of n. Because of the large number of states, problems can be solved only
for small values of n. For example, a 10-job problem with 1024 states took
about 8 minutes on a Macintosh G3 running at 400 Mz.

The state space is considerably reduced if an ordering between some
jobsisimposed. For example, if one specifiesthat job 3 must precede job
1, the number of feasible statesis reduced from 16 to 12. Each additional
restriction reduces the number of statesin some nonlinear fashion.

Sequencing Problems 41

(1,1,0,0)

(0,0,0,0) (1,1,1,1)

(0,0,0,1)

(0,0,1,1)

Figure 14. Decision network for 4-job sequencing problem

Traveling Salesman Problem

In our description of the total tardiness problem, the cost associated with a
particular job did not depend on itsimmediate predecessor. There are many
situations, though, where these costs are sequence dependent. In
manufacturing, for example, it may be necessary to change the tooling
between two successive jobs, or in scheduling propane deliveries, the
length of the route and hence travel cost depends on the order in which
customers are visited. 1n these cases, it would be necessary to extend the
definition of the state spacein Table 22 to include an additional state
representing the last job processed in the sequence. The traveling salesman
problem fits this situation.

Recall that in the TSP a salesman must visit n cities starting and
ending at hishome base. The objective isto minimize some measure of
travel cost subject to the restriction that each city be visited once and only

42

Dynamic Programming Models

once. A feasible solution iscalled atour. We arbitrarily identify city 1 as
the home base. Like the sequencing problem, a solution is described by a
vector (1, j,, ja, - - -, Jp) Which implies that the tour starts at city 1, goes next

to city jo, and so on until the final city j, isreached. To complete the tour,
the salesman must travel from j,, back to city 1. The cost of the tour is

n-1
. o .. .
z=¢(Lj) + A (i Jira) + in 1)

k=2
where the function (i, j) specifiesthe cost of traveling from city i to city j.
When c(i, j) represents the distance between i and j, the objective of the
problem is simply to minimize the total distance traveled. For those cases
wherec(i, j) = c(j, 1), the TSP is said to be symmetric; otherwiseit is
asymmetric.

The dynamic programming model is similar to the sequencing model
in that the state identifies the set of citiesthat have been visited at any point
in the tour. To compute the cost of traveling to the next city, though, we
need to know the last city visited. An additional state variable is defined for
this purpose.

Table 23. Traveling salesman problem

Component Description
State S=(Sq, So1--+1 Sy Spyep)» Where
10 if city jisnotin the sequence
S =11 if city jisin the sequence J=L..n
Sh+1 = index of the last city in the sequence
Initial state set | ={(1,0,...,0, 1)}
Only city 1lisinthetour and that isthe last city visited.
Final state set F={(1,1,...1,):j=2,....,n}
All citiesarein thetour. Thelast city can be any city but 1.
State space There are 2™ possible combinations of the first n state variables,
sinces, isfixedas 1. Thelast state variable can takeonupton—
1 values.
S={s:s=1 §=00rl j=2..,n adsy,=2,..,n}
(The actual number of feasible states is about half the cardinality of
S)

Sequencing Problems 43

Decison The decision vector has a single component that identifies the next
city to beincluded in the tour.

d = (d), where d = the next city in the tour
Feasbledecisonset | D(s) ={j: § = 0, j=2,...,n}
The feasible decisions at a given state are the cities not yet visited.
Trangtion function | The trangition function changes the state to reflect the inclusion of
an additional city in thetour. Thelast state variable becomesthe
decision.

s' =T(s, d), where sy=1, sJ =s forj* d,ands,,; =d
Decision objective Z(s, d) = c(s41,d)
wherec(-,-) isdefined for all city pairs.

Path objective Minimize z(P) = é z(sd) + f(s;)
sl Sdi D(s)

Final valuefunction | ¢(s) = (Spep,1) forsT F

Thisfunction isthe cost of traveling from the last city to city 1.

To determine the actual number of feasible statesit is necessary to
examine the model used in the solution process. For one particular

asymmetric formulation, Dryfus and Law [1977] show that when é T= LS =

— 2
i, there are (n—l)g%Lg different states (i = 1,...,n-2) in the recursion.

In addition, there are n — 1 states that are not evaluated recursively but are
associated with boundary conditions. This gives an approximate total of
(N=1)(2"2-1) + n—1=(n—1)2"2 states. For the symmetric case, the
direction of the tour isimmaterial so about half the number of statesis
required.

Example 11 — Traveling Salesman Problem

Consider an 8-city problem on a square grid with the coordinates assigned
randomly in therange 0 to 25. The following matrix shows the locations of
thecitiesin the (x, y)-plane.

Dynamic Programming Models

X y
1 70 92 |
2| 200 9.3
3| 206 153
4 9.0 75
5 6.6 137
6 4.2 5.2
7 43 47
8| 139 127

For the cost function we use the p-norm distance between a city pair
given by

i) =@ — xP+ Iy — viPg "

When p = 2, this function gives the Euclidean distance between the two
points; when p = 1, the function gives the rectilinear distance. Other values
are possible. For the example, we usedp = 2.

The dynamic programming model of the problem has 449 states.
The optimal solutionisshown in Fig. 15. The effort required to solve the
problem is primarily influenced by the number of states. It ispossibleto
reduce this number if precedence relations can be specified between city
pairs.

Sequencing Problems

0 2 4 6 8 10 12 14 16 18 20 22

Figure 15. Optimal solutionto TSP

46 Dynamic Programming Models

19.7 Exercises

Numerical problemsin this chapter can be solved with the Teach DP Excedl add-in.
Thefirst seven exercises refer to the investment example in Section 19.1.

1. Provideaninteger linear programming model for this problem.

2. Assuming abudget of 10, use the dynamic programming model to show the sequence
of states and decisions and the path objective values for each of the following
investment decisions. The decisions are given as vectors with the investment in the ith
opportunity shown as theith component of the vector.

a (0,0,0,0,0,0,0,0)
b. (1,2,0,3,1,0, 1, 2)
c. (0,3,3,0,0,0,3,0)
d. (0,0,2,4,2,1,1,0)

3. For abudget of 10, try to find the optimal investment plan by observation. What was
your reasoning?

4. Letthefina valuefunctionf(s) = 2(10—s,). Thisrepresentsthe value of any
remaining funds at the final state s; = s. Reevauate each of the decision sets given in
Exercise 2 using this function.

5. For the decision network associated with this problem, find the number of nodes,
number of arcs, and number of feasible paths as a general function of n and b.

6. Let the second state variable be defined as follows.

s, = amount of the budget not yet spent

Describeinitial states, fina states, and the transition function for this modification.

7. What modifications to the DP model are necessary if a constraint is added that requires
investment in at least 5 alternatives?

8. How would the model for the knapsack problem in Section 19.3 change with the
following variations. Each part should be done separately rather than cumulatively.

a. It may be preferable not to fill the knapsack to capacity. Lety be the difference
between the capacity W and the weight associated with the solution, and let r(y) be
its corresponding value.

b. The entire capacity of the knapsack must be used.

Upto U unitsof item j are available, j = 1,...,n, and may be packed as long as the

weight constraint is not violated. Under what conditions can the integer knapsack
model be used for this problem?

Exercises 47

0.

10.

For the line partitioning problem described in Example 4 in Section 19.4, give the path
and path objective values for the following situations.

a. The solution has only a single segment.
b. The solution has 10 segments.
c. Thefirst two segments have length 2, and the next two segments have length 3.

The table below gives the benefits and weights associated with items that might be
included in a knapsack whose maximum capacity is 19 Ibs. Using the dynamic
programming model, show the path and path objective associated with each of the
following.

a. Include one of item 1 and one of item 2.

b. Include as many as possible of item 4.

c. The best solution you can find by observation.
d

. Find the optimal solution with the Teach DP add-in.

tem 1 2 3 4
Benelit | 20 15 10 5
Weght | 10 7 6 4

N W] o1

For Exercises 11 — 15, give the DP model for the following variations of the path problem.

11.

12.

13.

14.

15.

16.

17.

Y ou are allowed to reduce the length of one arc of your choice to zero.

A toll in theamount of ¢(x, d) dollarsis charged for each arc traversed. Y ou can't
spend more than b dollars on tolls.

Y ou want to minimize the length of the longest arc on your path.
Y ou can change direction on the solution path at most w times.

Once you change direction, you can't change direction again until you have traversed
two arcs in the new direction.

Find the optimal sequence when the due dates for the jobsin Table 21 are changed to
0.

Using the data in Table 21, show the sequence of states and decisions and the path
objective values for the following sequences:
a (1,234
b. (3,142
c. The sequence found by the greedy a gorithm when due dates are not specified.
d. The best sequence you can find by observation.

48

Dynamic Programming Models

e. Theoptima sequence found with DP software.

18. GiveaDP formulation for the following variations of the path problem.

19.

a. You make only every other decision (beginning with the first). Y our spouse,
whose goal isto maximize trip length, makes the alternate decisions.

b. You terminate your trip whenever the x,-coordinate reaches n; however, you
must pay apenalty equal tow(n—Xx,) if you don't finishat x = (n, n).

¢ Assumethe network in Fig. 6 represents a maze in an adventure game. Rather
than alength, the quantity a(x, d) represents the probability that you will be killed
by an evil force if you travel that arc. Find the route that maximizes your
probability of survival.

d. Assume that the network represents alternative routes for a proposed road through
amountain range. Thereisan additional quantity b(x, d) associated with each arc
that represents the amount of dirt that must be removed or added to the road link
to bring it to a specified height above sealevel. A positive value of b(x, d) isthe
amount that must be added and a negative value is the amount that must be
removed. An unlimited quantity of dirt can be obtained at node (1, 1) or disposed
of at node (n, n); quantities removed on one link can be deposited on another.

Dirt will be moved along the selected arcs but only in the directions indicated by
thearcs. The cost of moving dirt on an arc islinear with unit cost a(x, d). These
costs are aso incurred on the links where the dirt is removed or deposited. What
isthe route that minimizes the dirt moving costs?

(Elevator Problem) A 20 floor building has three elevators. During the morning rush
hour they are operated so that each serves a contiguous set of floors, and no two serve
the samefloor. The problem isto determine which floors are to be served by each
elevator. Thetimeit takesfor an elevator to travel between two levelsthat are k floors
apart is 15 + 5k seconds. The population of each floor is given in the table below.

Floor 2 3 4 5 6 7 8 9 10

Population 30 40 70 20 10 30 50 80 60

20.

11 12 13 14 15 16 17 18 19 20
20 10 20 40 60 80 70 60 30 70

The objectiveisto minimize the fill time — the time required to bring al the people to
their floors. The elevator can hold up to 20 people. Assume that in each run the
elevator must stop at al floorsto which it isassigned. Set up a dynamic programming
model asaline partitioning problem and solve it with the Teach DP add-in.

(Inspection Sation Problem) A manufacturing process consists of a series of
operations through which each product must pass in the same order. The operations
are numbered 1 to n. Each operation ruins a fixed percent of the products that pass
through it. Datafor an example are given in the table.

21.

22.

Exercises 49
Operation 1 2 3 4 5 6 7 8
Cost/unit processed, $ 5 10 8 15 3 20 7 10
Percentage ruined, % 1 2 1 3 1 2 3 1

Ruined products can't be identified except by a careful inspection. The problemisto
determine where along the line to include inspection stations. One must be placed at
the end of the line but otherwise, they can be placed after any operation. When a
ruined product is detected, it is discarded and has no scrap value. Inspection stations
cost $1000 per year to run. Find the optimal solution (number and location of
stations) if the annual production rateis: (a) 1000 units, (b) 2000 units, and (c) 3000
units. (Set up and solve the DP for this problem for one year).

(Machine Overhaul Problem) The service of a particular type of machine is needed for
the next nyears. At present (t = 0) the machineisnew. Asit ages, its operating costs
increase so it may be advisable to buy a new machine prior to the end of its useful life,
or have the existing one overhauled. Thereisnot limit to the number of overhauls and
no degradation in performance. The cost of overhauling a machine of aget (or t years
after the last overhaul) is O(t). The cost of operating an overhauled machine for one
year ending t years after overhaul is C(t). Thetrade-in value of an overhauled

machinet years after overhaul is T(t)

The cost of purchasing anew machineisP. A machine that has never been
overhauled is called an origina machine. The cost of operating an original machine
for one year ending t years after purchaseis Cy(t). The trade-in value of an original

machinet years after purchaseis T\(t). The salvage value at the end of the n year
period obeys the same function as the trade-in value.

The problem isto find the optimal purchase/overhaul policy over the n-year
horizon. The decision to be made at the beginning of each year iswhether to purchase
anew machine or overhaul the current machine, and how many years until the next
purchase or overhaul. The decision vector should have two components.

a. Formulate the problem as a dynamic program.

b. How would you modify this formulation to account for the time value of money.
Assume a constant discount ratei.

(Circle Search Problem) Consider the problem of locating an item that is known to be
lost in an area defined by acircle with aone-mileradius. The circle has been divided
into 12 equal segments as shown in part a of the figure below. Using various
evidence, it is determined that the probability that theitemisin segmentiisP; fori=

1,...,12. Tenteamsare available to search the area. From past experience it has also
been determined that if an item isin an area of size A the probability that | teams
searching together will find it in the allowed timeis

= g K1A(1 _g7k2)

PDetect

where k, and k, are positive known constants. Thisis the probability of detection
given that the item isin the area searched.

50 Dynamic Programming Models

a. Circle with 12 segments b. Circle with segments allocated to search areas

Two versions of circle search problem

Set up the dynamic programming formulations for partsaand b below. In each case
the goal isto maximize the probability that the item will be found.

a. The solution should indicate how many teams should be assigned to each
segment. A team can only be assigned to one segment.

b. A search areais defined to be one or more contiguous segments asillustrated in
part b of thefigure. Search areas do not overlap. The solution should indicate
how the circle should be divided and how many teams should be assigned to each
search area.

c. Letk;=0.04and k, =0.7. The probabilities P; are given below. For the

problem in part a, show the path through the state space and evaluate the solution
when one team is assigned to segments 1 and 5, and two teams are each assigned
to segments 4, 8, 9 and 10.

[1 2 3 4 5 6 7 8 9 10 | 11 | 12
P |101| O (005(015(01 |005| O |015| 02 |015(0.05(O

d. Solvethe problem using the datain part c.

23. (Pumpsfor a Pipeline) An ail distribution company is constructing an 800 mile
pipeline across Texas. The oil isto flow from west to east. The pressure at the west
endisfixed at 100 ps (pounds per square inch). Because of losses due to friction the
pressure drops at arate of 1 psi for each mile of pipe. Pressure at the east end of the
pipeisrequired to be 50 psi. To make up for the losses, pump stations are to be
constructed at intervals along the pipe. The pressure must never fall below 30 ps.
Pump stations have a fixed cost of $10,000 and a variable cost that depends on the
pressure rise provided by the pump, as given in the following table.

Increase in pressure (psi) | 10 20 30 40 50 60 70
Variable cost ($1000) 3 6 8 10 11 13 17

Exercises 51

24,

25.

The problem is to determine the minimum cost policy of installing pumps. Write out
the DP formulation for the following two cases.

a. First assumethat a pump will alwaysincrease the line pressure to 100 psi at the
point where it is located.

b. Alternatively, do not require the condition of part a
c. Solvethe problemsin parts aand b using DP software.

(Traveling Salesman Problem - TSP) The table below gives the cost (i, j) of going
fromcity i tocity j. Thevauesof c(i,) and c(j,) are not necessarily equal. Propose
agreedy algorithm to find a solution and then write out the corresponding sequence of
states and decisions. Solve the TSP with the Teach DP add-in and compare the
optimal cost with the cost given by your greedy agorithm.

Cost matrix for TSP

From city
To city 1 2 3 4 5 6
1 — 27 43 16 30 26
2 7 — 16 1 30 30
3 20 13 — 35 5 0
4 21 16 25 — 18 18
5 12 46 27 48 — 5
6 23 5 5 9 5 —

(Capacity Expansion Problem) A city expects the following annual growthin
electricity demand (MW) during the next 10 years.

Year 1 2 3 4 5 6 7 8 9 10

Growth(Mw)| 2 | 3 1| 5] 2] 3] 4] 3] 2 1

26.

To meet this demand, additiona generating capacity must be installed. Construction
costs as afunction of size (MW) are given in the following table.

szew)| 1| 2] 3] a4 5
Cost,$M | 20 [38 [55 | 70 | 80

The discount rate for time value of money calculationsis 10%. Assume that capacity
can beinstalled instantaneoudly and that there must always be sufficient capacity to
meet demand. Set up and solve the dynamic programming model to find the capacity
expansion policy that will minimize the present worth of construction costs.

(Road Repair Problem) A repair policy isto be determined for amajor highway for the
next 10 years. After that time, the highway will be completely rebuilt. There are two
types of repairsthat can be performed: the first will be referred to as along term fix,

52

Dynamic Programming Models

27.

28.

29.

and the second as a short term fix. Relevant parameters are given in the table below.
In addition to the cost of repair, it is necessary to factor in an annual maintenance cost
that depends on the type of repair last done. The current time is 0 and the road must
now be repaired in some fashion. The short-term fix cannot be done two timesin
succession. Give the dynamic programming formulation that will determine apolicy
that minimizesthe total cost over the 10 year planning horizon. All costsarein
thousands of dollars. Setup and solve your model using the Excel add-in.

Typeof repair | Longterm Short term
Cost of repair 1500 400
Annual cost of maintenance 50 100
Time until next repair 5 2

(Production Scheduling over a Finite Horizon) Use the approach described for
Example 6 in Section 19.4 to solve the production scheduling problem for the demand
data given below. Assume that the fixed charge per order is $100 and that the
inventory holding cost per unit per week is$1. State your solution as a path through
the state space.

Period 1 2 3 4 5 6 7 8 9 10

Demand | 15 20 5 40 25 4 15 10 40 20

(Soot Collection) A pollution control device in a smoke stack collects soot (particul ate
matter from combustion). The amount of soot deposited varies from month to month
due to furnace usage, asindicated in the table below. The device must be cleaned
occasionally to remove the soot. 1t may be cleaned at the end of any month for afixed
cost of $100.

The stack does not operate as efficiently when there is soot in the device as
whenitisclean. If at the beginning of any month the amount of soot present isy, the
increase in operating cost associated with the soot is 20y. At most 10 units of soot is
permitted to be in the device at the beginning of any month.

Set up the dynamic programming model that can be used to solve the problem
of determining the optimal cleaning schedule for a 10-month period. Assume that we
are at the beginning of month 1 and that the device isclean. In addition to other times
that might be selected, the device must be cleaned at the end of the 10th month. Use
the Excel add-in to solve the problem.

Month 1 2 3 4 5 6 7 8 9 10

Soot 5 3 2 8 6 2 3 6 5 3

(Optimal Redundancy Problem) An electronic system has n components. The
reliability of acomponent is the probability that it will not fail during operation. The
reliability of component i isgiven asr;. Thereliability of the system is the probability
that none of its componentsfail. Thisiscomputed as the product of the component
reliabilities.

Exercises 53

To increase the reliability of the system, extra units may be included as
backups for the original components. These are called redundant components since
they are not required unlessthe originals fail. Assume a component of typei costs ¢

dollars. The probability that a collection of x components of the sametype failsisthe
probability that they all fail. Thusthe reliability of a component type with x redundant
unitsis

R =1—(1—r)d™

The reliability of the system, R, isthe product of the component type

reliabilities; i.e, Rg= P in:lRi. We want to determine how many redundant
components of each type to provide without exceeding the available budget b.

a. Formulate this problem as a dynamic program.

b. Explain how you would incorporate additional system constraints such as weight
and power limits.

c. For the data given below, describe the state space for the problem. Use the Excel
add-in to solve the problem. Show the optimal path through the state space by
listing the sequence of states and decisions. The amount spent on redundant
components should be no more than $500.

[tem, i 1 2 3 4
Reliability, r; 0.9 0.8 0.95 0.75

Costlitem,c, | $100 $50 $40 $200

54 Dynamic Programming Models

Bibliography

Bard, J.F., “Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian
Relaxation,” Operations Research, Vol. 36, No. 5, pp. 756-766, 1988.

Bard, J.F. and W.A. Bgjjani, “ Designing Telecommunications Networks for the Reseller
Market,” Management Science, Vol. 37, No. 9, pp. 1125-1146, 1991.

Beadey, JE. and B. Cao, “A Dynamic Programming Based Algorithm for the Crew
Scheduling Problem,” Computers & Operations Research, Vol. 25, No. 7/8, pp. 567-582,
1998.

Bellman, R.E. and S.E. Dreyfus, Applied Dynamic Programming, Princeton University
Press, Princeton, NJ, 1962.

Chatwin, R.E., Multiperiod Airline Overbooking with a Single Fare Class,” Operations
Research, Vol. 46, No. 6, pp. 805-819 1998.

Denardo, E.V., Dynamic Programming: Models and Applications, Prentice Hall,
Engelwood Cliffs, NJ, 1982.

Dreyfus, S.E. and A.M. Law, The Art and Theory of Dynamic Programming, Academic
Press, New York, 1977.

Edwards, D.M., R.D. Shachter and D.K. Owens, “A Dynamic HIV-Transmission Model
for Evaluating the Costs and Benefits of Vaccine Programs,” Interfaces, Vol. 28, No. 3,
pp. 144-166, 1998.

Hark, H., and U.S. Ji, “Production Sequencing Problem with Reentrant Work Flows and
Sequence Dependent Setup Times,” Computers & Industrial Engineering, Vol. 33, No.
3/4, pp. 773-776, 1997.

Hodgson, T.J., G. Ge, R.E. King and H. Said, “Dynamic Lot Size/Sequencing Policiesin
aMulti-Product, Single-Machine System,” |1E Transactions on Scheduling & Logistics,
Vol. 29, No. 2, pp. 127-137, 1997.

Johnson, L.A. and D.C. Montgomery, Operations Research in Production, Planning,
Scheduling, and Inventory Control, John Wiley & Sons, New Y ork, 1974.

Khater, M., “Optimal Packing of Transformer Coil via Dynamic Programming,”
Computers & Industrial Engineering, Vol. 35, No. 3/4, pp. 447-450, 1998.

Peters, E.R., “A Dynamic Programming Model for the Expansion of Electric Power
Systems,” Management Science, Vol. 10, pp. 656-664, 1973.

Wagner, H. and T. Whitin, “Dynamic Version of the Economic Lot Size Moddl,”
Management Science, Vol. 5, pp. 89-96, 1958.

