
Appendix A Page 1

Relation of Pure Minimum Cost Flow Model to
Linear Programming

The Network Model

The network pure minimum cost flow model has m nodes. The external flows given by the
vector b with m -1 elements. The network has n arcs with parameter vectors u and c, and the
flow variable x. The model is conveniently described by either the graphical form illustrated
on the left of Fig. 1 or the vector description illustrated on the right. Implicit in both
representations is the criterion for optimization, to minimize total cost, the requirement for
conservation of flow at the nodes, and the restriction of flows between zero and the upper
bounds.

5

(3,5)

(1,2)

(2,-1)

(4,1) (5,3)

1

2

4

3

1

2

3

4

5

[Fixed External Flow]
(Upper Bound, Cost)

[+3] [-5]

[0]

[0]
6

7

8

(2,-1)

(1,1)

(1,1)

I = {1, 2, 3, 4, 5}

b = [3, 0, 0, –5]

K= {1, 2, 3, 4, 5, 6, 7, 8}

o = [1, 1, 2, 2, 3, 3, 5, 5]

t = [2, 3, 3, 4, 4, 5, 2, 1]

u = [3, 4, 1, 2, 5, 1, 2, 1]

c = [5, 1, 2, –1, 3, 1, –1, 1]

Figure 1.  Example of network model

Linear Programming Model

The minimum cost network flow problem is a special case of the linear programming
problem.  The solution algorithms described in this book are based on the primal simplex
algorithm for linear programming.  To determine optimality conditions it is necessary to
provide both the primal and dual linear programming models for the network flow problem.

The Primal Model

The algebraic model expresses the objective function and constraints
explicitly using linear functions of the flow variables.  The result is a
mathematical programming model.
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Objective function

Minimize z = ckxk
k =1

n

∑ (1)

subject to

Conservation of flow

xk
keKOi

∑  – xk
keKTi

∑ = bi,   i = 1, 2,…,m–1 (2)

Upper bounds on flow and nonnegativity

0 ≤ xk < uk,    k = 1, 2 ... n (3)

The model for the network of Fig. 1 provides a specific example.

Min x = 5x1 + 1x2 +2x3  –1x4 +3x5 +1x6 –1x7 +1x8

subject to
x1   +x2 –x8 =  3

–x1 x3 +x4 –x7 =  0
–x2  –x3  +x5 +x6 =  0

   –x4 –x5 = –5
x1 ≤  3

x2 ≤  4
x3 ≤  1

x4 ≤  2
   x5 ≤  5
   x6 ≤  1
   x7 ≤  2
  x8 ≤  1

xk ≥ 0   for k = 1,...,n

From the example and from the general expression, we see that,
except for the arcs originating or terminating at the slack node, each arc has
two nonzero coefficients in the conservation of flow constraints, a 1 in the
row of its origin node, and –1 in the row of its terminal node.  Arcs that
originate at the slack node have a single –1 in their columns, while arcs that
terminate at the slack node have a single +1.   Let the matrix A represent the
coefficients of the conservation of flow constraints.  For the example
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A = 

1 1 0 0 0 0 0 −1

−1 0 1 1 0 0 −1 0

0 −1 −1 0 1 1 0 0

0 0 0 −1 −1 0 0 0
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A is called the incidence matrix of the network.  The linear pro-
gramming model for the minimum cost flow problem can now be written in a
matrix format using the vectors previously defined.

Minimize  z =c x

subject to A x = b

0 ≤ x ≤ u

 Since the network flow problem has a linear programming model, it
may be solved by general linear programming algorithms.  The fact that the
A matrix always has the form shown above allows significant simplifications
of the linear programming algorithms and thus much greater efficiencies of
solution.

For the pure network flow model, the matrix A consists of only +1,
–1, and 0.  Because of the arrangement of the nonzero coefficients in the
matrix, it can be shown that the pure network flow problem with integer
parameters will always have an integer optimum solution when solved as a
linear program.  This problem has the characteristic of total unimodularity.

The Dual Model

The dual solution of the network flow problem plays an important role in the
solution algorithm.  In order to form the dual, assign the dual variable i to
the conservation of flow constraint for node i, and the dual variable k to the
upper bound constraint for arc k.  The dual model for the network flow
programming problem becomes

Dual Problem:

Minimize zD = πibi
i =1

m1

∑ + kuk
k =1

n

∑ (4)

subject to i – j + k ≥ – ck for all k(i, j) ∈ (5)

m = 0,  i unrestricted for all i ∈ (6)

k ≥ 0 for all k(i, j) ∈ . (7)
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Conditions for Optimality

From the duality theory of linear programming, we have conditions for
optimality for the primal and dual solutions.  Given solutions to the primal
and dual problems, we are assured that they are optimal for their respective
problems if they are feasible and satisfy the complementary slackness
conditions.  We will not derive the optimality conditions, however, the form
that we use in this chapter is shown below.  Assume we have solution x for
the primal problem and solution  for the dual problem.

For simplicity define for the arcs:

dk = i – j + ck for all k(i, j) ∈ 

The solutions x and  are optimal if the following conditions are satisfied.

1. Primal feasibility

a.  x provides conservation of flow at all nodes except slack node (8)

b.  0 ≤ xk ≤ uk for all arcs (9)

2. Complementary Slackness

For each arc k:

a.  if 0 < xk < uk, then dk = 0 (10)

b.  if xk = 0 then dk ≥ 0 (11)

c.  if xk = uk then dk ≤ 0 (12)

These conditions are fundamental for the solution algorithms.  The
conditions do not use the dual variables, k.  These values are determined by

k = max{0, –dk} for each arc k (13)

With this definition, we assure that for any value of , the dual solution is
feasible.

Basic Solutions and the Primal Simplex

Using the notation of the general linear programming, the matrices defining
the example problem are

x = [ x1, x2, x3, x4, x5, x6, x7, x8 ]T

  u =  [  3,  4, 1,  2, 5, 1 2, 1 ]T

  c =  [ 5, 1, 2, –1, 3,  1, –1, 1 ]

  b = [ 3,  0,  0, –5 ]T
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    a1 a2 a3  a4 a5 a6 a7 a8

A =  




1 1 0 0 0 0 0 –1

–1 0 1 1 0 0 –1 0
0 –1 –1 0 1 1 0 0
0 0 0 –1 –1 0 0 0

 

The Basis and Basis Inverse

For linear programming the basis defines the basis matrix B formed by se-
lecting the columns of A associated with the elements of the basis vector.
For the basis:  nB = [8, 7, 2, 5]

  a8 a7 a2 a5

B = 







–1 0 1 0

0 –1 0 0

0 0 –1 1

0 0 0 –1

 

We have ordered the columns of the basis so that the matrix has an upper
diagonal form.  This is always possible to do when the basis forms a spanning
tree.

Although generally it is fairly difficult to find the inverse of an
arbitrary matrix, it is easy to find the inverse associated with the basis of a
pure network flow problem.  The inverse can be found by observation from
the directed spanning tree defining the basis using the following rules.

a.  Identify the rows of B–1 with the arcs in nB  and the columns with the
nodes 1 to m–1 of the network.

b.  For each node i, construct column i of B–1 by finding the path from the
slack node to node i in the basis tree.  Entry (k, i) of the basis inverse is –1 if
arc k is on the path, +1 if arc -k is on the path, otherwise it is zero.

The information required from the basis inverse is immediately available
from the paths in the tree defining the basis.  The computational procedures
of network flow programming will use the tree and not the inverse of the
basis.

Observing the paths from the basis tree, we construct the basis

inverse.
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Node:     1      2     3      4   Arc

B–1 = 

–1 0 –1 –1

0 –1 0 0

0 0 –1 –1

0 0 0 –1
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Matrix multiplication verifies for the example that BB–1 = I.

Basic Solution

The collection of columns of the A matrix associated with the set n0 is the

matrix N0,  and the collection of columns of the A matrix associated with the

set n1 is the matrix N1.  The objective coefficients c are partitioned into the

vectors cB, c0, and c1 according to the sets nB, n0, and n1.  Similarly the

upper bounds u are partitioned into the arrays uB, u0, and u1.

From the conservation of flow constraints we have Ax = b.

Partitioning the matrices into basic variables and the two kinds of nonbasic
variables:

BxB +  N0x0 + N1x1 = b.

Solving for the basic variables while substituting x0 = 0 and x1 = u1 we have

xB = B–1[b – N1u1].

For the network model, the terms in brackets represent the vector of
adjusted external flows equivalent to Eq. (1).  An individual component of xB

multiplies this vector by a row of B–1.  From the previous discussion this row
represents an arc with entries –1 in column i if the arc is on the path to node i
and 0 if the arc is not on the path.  Thus the matrix multiplication sums the
adjusted external flows for every node containing the arc in its path to the
slack node .

For the example, nB = [8, 7, 2, 5] so









x8

x7
x2
x5

 = B–1[b – N1u1] =  




–1 0 –1 –1

0 –1 0 0
0 0 –1 –1
0 0 0 –1

 




3

–2
0

–3
 = 





0

2
3
3

For the general linear program, we compute the dual variables from
the expression
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 = –cBB–1

A negative sign appears in this expression because the network problem is

stated as a minimization.  For the network problem, the ith column of B–1 is a
vector representing the arcs on the path from the slack node to node i (–1
indicates that the arc is on the path, +1 indicates that the mirror arc is on the
path, and 0 indicates that the arc is not part of the path).  Thus the equation
for i  simply sums the arc costs on the path to node i.

Using the matrices for the example we have









1

2

3

4

  = –cBB–1 =  – (1, –1, 1, 3) 




–1 0 –1 –1

0 –1 0 0
0 0 –1 –1
0 0 0 –1

  

 = [ ]1 –1 2 5  .

The computation of the reduced cost, dk, comes directly from the
operation for computing the marginal costs for the general linear program.

dk = ck + ak

where  ak is the kth column of A, shown again for the example below

           a1 a2 a3  a4 a5 a6 a7 a8

A = 




1 1 0 0 0 0 0 –1

–1 0 1 1 0 0 –1 0
0 –1 –1 0 1 1 0 0
0 0 0 –1 –1 0 0 0

 

The Primal Simplex

The first step of the primal simplex is to compute the reduced cost of the
nonbasic variables.  The computation of the reduced cost, dk, comes directly
from the operation for computing the marginal costs for the general linear
program.

dk = ck +  ak

where  ak is the kth column of A, shown again for the example below
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           a1 a2 a3  a4 a5 a6 a7 a8

A = 




1 1 0 0 0 0 0 –1

–1 0 1 1 0 0 –1 0
0 –1 –1 0 1 1 0 0
0 0 0 –1 –1 0 0 0

 

For the special case of the network, the column ak, representing the arc k(i, j),
has at most two entries a +1 in row i and a –1 in row j.  The matrix
multiplication ak involves only two terms of the vector of dual variables: i
– j.  The general case then specializes for the network problem into the

simpler form

dk = ck + i – j.

For the general linear program, the arc to leave the basis is found by

computing the vector yk = B–1ak, where ak is the column of A for the

entering variable.  For the network model ak, representing arc k(i, j), has only

two nonzero entries, +1 in row i and –1 in row j.  Recall the ith column of

B–1 describes the path from the source node to node i in the basis tree with an
element equal to +1 if the arc is traversed in the mirror direction and –1 if it is
traversed in the forward direction.  Let pi be the column of B-1 describing this
path for node i.  Similarly pj describes the path to node j.  Then the
computation

yk = B–1ak = pi – pj.

When paths pi and pj have elements in common, they cancel out in the
expression above and yk simply indicates the arcs on the cycle formed by the
entering arc.  A 0 element indicates that the basic arc is not on the cycle, a –1
indicates that it is traversed in the forward direction, and a +1 indicates that it
is in the mirror direction.

The vector yk is used for the familiar ratio test that selects the variable

to leave the basis for linear programming.  When the arc flows and upper
bounds are integer, yk will always prescribe an integer value of ∆f. When the

initial flows are integer, the flows in subsequent iterations remain integer.
This is further justification, that all basic solutions will be integer, an
important result for many applications.

For general linear programming a basis change is accomplished by
changing the contents of the set nB and recomputing the inverse of the basis.

It is unnecessary to compute the basis inverse for the network problem,
because the information associated with the basis inverse is obtained directly
from the basis tree.


