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Relation of Pure Minimum Cost Flow M odel to
Linear Programming

The Network M odedl

The network pure minimum cost flow model has m nodes. The external flows given by the
vector b with m -1 elements. The network has n arcs with parameter vectors u and ¢, and the
flow variable x. The model is conveniently described by either the graphical formillustrated
on the left of Fig. 1 or the vector description illustrated on the right. Implicit in both
representations is the criterion for optimization, to minimize total cost, the requirement for
conservation of flow at the nodes, and the restriction of flows between zero and the upper
bounds.

[Fixed External Flow]
(Upper Bound, Cost)

| ={1,2, 3, 4 5)
b=[3,0,0,-5]

K={1,2 3,4,5,6, 7,8
0=[1,1,2,23, 35,5
t=[2,33 4,4,5 2 1]
u=[3412512 1]
c=[51,2-1,3, 1,1, 1]

(2,-1)

Figure 1. Example of network model

Linear Programming M odel

The minimum cost network flow problem is a special case of the linear programming
problem. The solution algorithms described in this book are based on the primal simplex
algorithm for linear programming. To determine optimality conditionsit is necessary to
provide both the primal and dual linear programming models for the network flow problem.

The Primal Model
The algebraic model expresses the objective function and constraints

explicitly using linear functions of the flow variables. Theresultisa
mathematical programming model.
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Objective function

Minimizez= Q C Xy (1)
k=1

subject to

Conservation of flow

ax - ax=hb i=12..ml (2)
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Upper bounds on flow and nonnegativity
OExk<uk, k=1,2..n ©)]

The model for the network of Fig. 1 provides a specific example.
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From the example and from the general expression, we see that,
except for the arcs originating or terminating at the slack node, each arc has
two nonzero coefficients in the conservation of flow constraints, al in the
row of its origin node, and —1 in the row of itsterminal node. Arcsthat
originate at the slack node have a single—1 in their columns, while arcs that
terminate at the slack node have asingle +1. Let the matrix A represent the
coefficients of the conservation of flow constraints. For the example
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A iscalled the incidence matrix of the network. The linear pro-
gramming model for the minimum cost flow problem can now be writtenin a
matrix format using the vectors previously defined.

Minimize z=cx
subjectto A x=b
OE£EXEuU

Since the network flow problem has alinear programming model, it
may be solved by general linear programming algorithms. The fact that the
A matrix always has the form shown above allows significant ssmplifications
of the linear programming agorithms and thus much greater efficiencies of
solution.

For the pure network flow model, the matrix A consists of only +1,
-1, and 0. Because of the arrangement of the nonzero coefficientsin the
matrix, it can be shown that the pure network flow problem with integer
parameters will always have an integer optimum solution when solved as a
linear program. This problem has the characteristic of total unimodularity.

The Dual Model

The dua solution of the network flow problem plays an important rolein the
solution algorithm. In order to form the dual, assign the dual variable mj to
the conservation of flow constraint for node i, and the dual variable §i to the
upper bound constraint for arc k. The dual model for the network flow
programming problem becomes

Dual Problem:
ml n

Minimize z, = a pb + a O, U, (4)
i=1 k=1

subjectto  m-m+ 8% —c  foralk(,j)T K (5)
nim =0, mj unrestricted for all i T 1 (6)

83 Oforal k(i,j)T K. (7)




4 Relations of Network Flow Model to Linear Programming

Conditions for Optimality

From the duality theory of linear programming, we have conditions for
optimality for the primal and dual solutions. Given solutions to the primal
and dual problems, we are assured that they are optimal for their respective
problemsif they are feasible and satisfy the complementary slackness
conditions. We will not derive the optimality conditions, however, the form
that we use in this chapter is shown below. Assume we have solution x for
the primal problem and solution & for the dual problem.

For ssimplicity define for the arcs:
dx = mj —mj + ¢k for all k(i, DT K
The solutions x and &t are optimal if the following conditions are satisfied.
1. Primal feasibility
a. x provides conservation of flow at all nodes except slack node (8)
b. O£ x £ ug for all arcs 9)

2. Complementary Sackness

For each arc k:
a ifO<x<ukthendk=0 (10)
b. if xxc=0thendk3 0 (112)
C. ifxk=ukthendx£0 (12)

These conditions are fundamental for the solution algorithms. The
conditions do not use the dual variables, dk. These values are determined by

Ok = max{ 0, —dk} for each arc k (13)

With this definition, we assure that for any value of &, the dual solutionis
feasible.

Basic Solutions and the Primal Simplex

Using the notation of the general linear programming, the matrices defining
the example problem are

X = [ X, Xp Xg, X4, X5, X, X7, Xg 1T
u=1[3 41 25121]T
c=1[512-13 1,-1,1]
b=[3, 0 0-5]T
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The Basis and Basis Inverse

For linear programming the basis defines the basis matrix B formed by se-
lecting the columns of A associated with the elements of the basis vector.
For the basis: ng =8, 7, 2, §]

a3 &7 @ ag
@1 0 1 o
A 0-1 0 O
B:g 0 0 -1 19
o o o U

We have ordered the columns of the basis so that the matrix has an upper
diagonal form. Thisisaways possible to do when the basis forms a spanning
tree.

Although generally it isfairly difficult to find the inverse of an
arbitrary matrix, it is easy to find the inverse associated with the basis of a
pure network flow problem. The inverse can be found by observation from
the directed spanning tree defining the basis using the following rules.

a. Identify the rows of B-1 with the arcsin ng and the columns with the
nodes 1 to m-1 of the network.

b. For each nodei, construct column i of B- by finding the path from the
dack nodeto nodei in the basistree. Entry (k, i) of the basisinverseis—1 if
arc kison the path, +1if arc -k ison the path, otherwise it is zero.

The information required from the basisinverse isimmediately available
from the paths in the tree defining the basis. The computational procedures
of network flow programming will use the tree and not the inverse of the
basis.

Observing the paths from the basis tree, we construct the basis

inverse.




Relations of Network Flow Model to Linear Programming

Nodee 1 2 3 4 Arc
é1 0 -1 -1U 8

€0 -1 0 o047

e —

B1=¢ U

QO 0 -1 —lg 2

€0 0 0 -1 5

Matrix multiplication verifies for the example that BB-1 = 1.

Basic Solution

The collection of columns of the A matrix associated with the set n isthe
matrix N, and the collection of columns of the A matrix associated with the
set np isthe matrix N,. The objective coefficients ¢ are partitioned into the
Vvectors cg, ¢, and ¢, according to the sets ng, Ny, and ny. Similarly the
upper bounds u are partitioned into the arrays ug, up, and uj.

From the conservation of flow constraints we have Ax = b.

Partitioning the matrices into basic variables and the two kinds of nonbasic
variables:

Bxg + NgXg+ Nix; =b.
Solving for the basic variables while substituting x, = 0 and X, = u; we have
xg = B b —Nyu,].
For the network model, the terms in brackets represent the vector of

adjusted external flows equivalent to Eq. (1). Anindividual component of xg

multiplies this vector by arow of B™X. From the previous discussion this row
represents an arc with entries—1 in column i if the arc is on the path to nodei
and O if the arc is not on the path. Thus the matrix multiplication sums the
adjusted external flows for every node containing the arc in its path to the
slack node .

For the example, ng =[8, 7, 2, 5] so

éx 0 , N G
S R E
SZH o 8 0 0 _O :1H8—3 SSH

For the genera linear program, we compute the dual variables from
the expression
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A negative sign appearsin this expression because the network problemis

stated as aminimization. For the network problem, the ith column of Blisa
vector representing the arcs on the path from the slack node to nodei (-1
indicates that the arc is on the path, +1 indicates that the mirror arc is on the
path, and O indicates that the arc is not part of the path). Thus the equation
for mj simply sums the arc costs on the path to node i.

Using the matrices for the example we have

€. U 4 y
&l g 1 0 1 1y

éﬂ3l:| = —CBB_:L =-(1,-1,13 g 0 0 -1 -1 |
é7t40 0 0 0 1
n=] 1-12 5] _

The computation of the reduced cost, dk, comes directly from the
operation for computing the marginal costs for the general linear program.

dy = ¢ + may

where a, is the kth column of A, shown again for the example below

& & B Yy B dg a7 o4
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ThePrimal Simplex

The first step of the primal ssimplex isto compute the reduced cost of the
nonbasic variables. The computation of the reduced cost, dk, comes directly
from the operation for computing the marginal costs for the general linear
program.

dk:Ck+7'Ca.k

where a, is the kth column of A, shown again for the example below
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For the special case of the network, the column a, representing the arc k(i, j),
has at most two entriesa+1inrow i and a—-1inrow j. The matrix
multiplication na, involves only two terms of the vector of dua variables: T
- The general case then specializes for the network problem into the

simpler form

dk: Ck+TCi —TEJ-.

For the general linear program, the arc to leave the basisis found by
computing the vector y, = B™a,, where a, isthe column of A for the
entering variable. For the network model a,, representing arc k(i, j), has only
two nonzero entries, +1 inrow i and -1 inrow j. Recall theith column of
B~ describes the path from the source node to node i in the basis tree with an
element equal to +1 if the arc istraversed in the mirror direction and -1 if itis
traversed in the forward direction. Let p;j be the column of B-1 describing this
path for nodei. Similarly pj describes the path to nodej. Then the
computation

V=B a, = p;—p;.
When paths pj and pj have elements in common, they cancel out in the
expression above and yx ssmply indicates the arcs on the cycle formed by the
entering arc. A 0 element indicates that the basic arc is not on the cycle, a-1

indicates that it is traversed in the forward direction, and a+1 indicates that it
isin the mirror direction.

The vector y, is used for the familiar ratio test that selectsthe variable

to leave the basis for linear programming. When the arc flows and upper
bounds are integer, y, will always prescribe an integer value of Dy. When the

initial flows are integer, the flows in subsequent iterations remain integer.
Thisisfurther justification, that al basic solutions will be integer, an
important result for many applications.

For general linear programming a basis change is accomplished by
changing the contents of the set ng and recomputing the inverse of the basis.

It is unnecessary to compute the basis inverse for the network problem,
because the information associated with the basisinverse is obtained directly
from the basis tree.



