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2.5 Iterative Improvement of a Solution to
Linear Equations

Obvioudly it is not easy to obtain greater precision for the solution of a linear
set than the precision of your computer’s floating-point word. Unfortunately, for
large sets of linear equations, it is not always easy to obtain precision equal to, or
even comparable to, the computer’s limit. In direct methods of solution, roundoff
errors accumulate, and they are magnified to the extent that your matrix is close
to singular. You can easily lose two or three significant figures for matrices which
(you thought) were far from singular.

If thishappensto you, thereis a neat trick to restore the full machine precision,
caled iterative improvement of the solution. The theory isvery straightforward (see
Figure 2.5.1): Suppose that a vector x isthe exact solution of the linear set

A-x=b (25.1)

You don’t, however, know x. You only know some dightly wrong solution x + 6Xx,
where 6x istheunknown error. When multiplied by thematrix A, your slightly wrong
solutiongivesaproduct dightly discrepant fromthedesired right-handsideb, namely

A-(x+6x)=b+ b (25.2)
Subtracting (2.5.1) from (2.5.2) gives
A-6x=46b (25.3)
But (2.5.2) can also be solved, trividly, for 6b. Substituting thisinto (2.5.3) gives
A-dx=A-(x+6x)—b (25.4)

In this equation, the whole right-hand side is known, since x + éx is the wrong
solution that you want to improve. It is essential to calculate the right-hand side
in double precision, since there will be a lot of cancellation in the subtraction of b.
Then, we need only solve (2.5.4) for the error 6x, then subtract thisfrom the wrong
solution to get an improved solution.

An important extra benefit occurs if we obtained the origina solution by LU
decomposition. In thiscase we already havethe LU decomposed form of A, and &l
we need do to solve (2.5.4) is compute the right-hand side and backsubstitute!

The code to do al thisis concise and straightforward:
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Figure 2.5.1. Iterativeimprovement of the solutionto A - x = b. Thefirst guessx + éx is multiplied by
A to produceb + éb. The known vector b is subtracted, giving 6b. The linear set with this right-hand
sideisinverted, giving 6x. Thisis subtracted from the first guess giving an improved solution x.

SUBROUTINE mprove(a,alud,n,np,indx,b,x)
INTEGER n,np,indx(n) ,NMAX
REAL a(np,np),alud(np,np),b(n),x(n)
PARAMETER (NMAX=500)
USES | ubksb
Improves a solution vector x(1:n) of the linear set of equations A - X = B. The matrix
a(l:n,1:n), and the vectors b(1:n) and x(1:n) are input, as is the dimension n. Also
input is alud, the LU decomposition of a as returned by ludcmp, and the vector indx also
returned by that routine. On output, only x(1:1n) is modified, to an improved set of values.
INTEGER i, j
REAL r (NMAX)
DOUBLE PRECISION sdp
do12 i=1,n Calculate the right-hand side, accumulating the resid-
sdp=-b(i) ual in double precision.
dou j=1,n
sdp=sdp+dble(a(i,j))*dble(x(j))
enddo 11
r(i)=sdp
enddo 12
call lubksb(alud,n,np,indx,r) Solve for the error term,
do13 i=1,n and subtract it from the old solution.
x(1)=x(i)-r (i)
enddo 13
return
END

Maximum anticipated value of n.

You should note that the routine Ludcmp in §2.3 destroys the input matrix as it
LU decomposes it. Since iterative improvement requires both the original matrix
and its LU decomposition, you will need to copy A beforecalling ludcmp. Likewise
lubksb destroys b in obtaining x, so make a copy of b aso. If you don’t mind
this extra storage, iterative improvement is highly recommended: It is a process
of order only N2 operations (multiply vector by matrix, and backsubstitute — see
discussion following equation 2.3.7); it never hurts; and it can really give you your
money’s worth if it saves an otherwise ruined solution on which you have aready
spent of order N3 operations.
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2.5 lterative Improvement of a Solution to Linear Equations 49

You can call mprove severa timesin succession if you want. Unless you are
starting quite far from the true solution, one cal is generally enough; but a second
cal to verify convergence can be reassuring.

More on lIterative Improvement

It is illuminating (and will be useful later in the book) to give a somewhat more solid
analytical foundation for equation (2.5.4), and also to give some additional results. Implicit in
the previous discussion was the notion that the solution vector x + §x has an error term; but
we neglected the fact that the LU decomposition of A is itself not exact.

A different analytical approach starts with some matrix B that is assumed to be an
approximate inverse of the matrix A, so that By - A is approximately the identity matrix 1.
Define the residual matrix R of Bgy as

R=1-By-A (25.5)
which is supposed to be “small” (we will be more precise below). Note that therefore
Bo-A=1-R (2.5.6)

Next consider the following formal manipulation:

A=A By -Bo)=(A""-By")-Bo=(Bo-A)"" - By
B . B » s (25.7)
=(1-R)”" -Bp=(14+R+R°"+R>+---)-Bog

We can define the nth partial sum of the last expression by
B.=(1+R+---+R")-Bg (25.8)

so that Boo — A1, if the limit exists.
It now is straightforward to verify that equation (2.5.8) satisfies some interesting
recurrence relations. Asregards solving A - x = b, where x and b are vectors, define

Xn =B, -b (25.9)
Then it is easy to show that
Xnt1 =Xn +Bo- (b —A - Xp) (2.5.10)

This is immediately recognizable as equation (2.5.4), with —6X = X,,+1 — X», and with By
taking the role of A~1. We see, therefore, that equation (2.5.4) does not require that the LU
decompositon of A be exact, but only that the implied residual R be small. In rough terms, if
the residual is smaller than the square root of your computer’s roundoff error, then after one
application of equation (2.5.10) (that is, going fromxo = By - b to X1 ) thefirst neglected term,
of order R?, will be smaller than the roundoff error. Equation (2.5.10), like equation (2.5.4),
moreover, can be applied more than once, since it uses only By, and not any of the higher B’s.

A much more surprising recurrence which follows from equation (2.5.8) is one that
more than doubles the order n at each stage:

Bani1 = 2B, —Bn-A-B, n=0,1,37,... (2.5.11)

Repeated application of equation (2.5.11), from a suitable starting matrix By, converges
quadratically to the unknown inverse matrix A~* (see §9.4 for the definition of “quadrati-
cally”). Equation (2.5.11) goesby various names, including Schultzs Method and Hotelling's
Method; see Pan and Reif [1] for references. In fact, equation (2.5.11) is simply the iterative
Newton-Raphson method of root-finding (§9.4) applied to matrix inversion.

Before you get too excited about equation (2.5.11), however, you should notice that it
involvestwo full matrix multiplications at each iteration. Each matrix multiplication involves
N? adds and multiplies. But we already saw in §§2.1-2.3 that direct inversion of A requires
only N* adds and N® multiplies in toto. Equation (2.5.11) is therefore practical only when
special circumstancesallow it to be evaluated much more rapidly than is the case for general
matrices. We will meet such circumstances later, in §13.10.
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50 Chapter 2. Solution of Linear Algebraic Equations

In the spirit of delayed gratification, let us nevertheless pursue the two related issues:
When does the series in equation (2.5.7) converge; and what is a suitable initial guess By (if,
for example, an initial LU decomposition is not feasible)?

We can define the norm of a matrix as the largest amplification of length that it is
able to induce on a vector,

IR|| = max RV

V£0 |V

(25.12)

If welet equation (2.5.7) act on some arbitrary right-hand sideb, as onewantsamatrix inverse
to do, it is obvious that a sufficient condition for convergence is

IR|| <1 (25.13)

Pan and Reif [1] point out that a suitableinitial guessfor By is any sufficiently small constant
€ times the matrix transpose of A, that is,

Bo=eA” o R=1-¢AT.A (2.5.14)

To see Wt}y this is so involves concepts from Chapter 11; we give here only the briefest
sketch: A® - A is a symmetric, positive definite matrix, so it has real, positive eigenvalues.
In its diagonal representation, R takes the form

R=diag(l— eA1,1 — €A, ..., 1 — eln) (2.5.15)

where all the \;’s are positive. Evidently any e satisfying 0 < e < 2/(max; ;) will give
IR| < 1. Itis not difficult to show that the optimal choice for €, giving the most rapid
convergence for equation (2.5.11), is

€ =2/(max \; + min \;) (2.5.16)

Rarely does one know the eigenvalues of AT - A in equation (2.5.16). Pan and Reif
derive several interesting bounds, which are computable directly from A. The following
choices guarantee the convergence of B,, asn — oo,

€< 1/ E ak or e < 1/(max E la;j| X max E |ai]’|> (2.5.17)
i J
J.k J i

The latter expression is truly a remarkable formula, which Pan and Reif derive by noting that
the vector norm in equation (2.5.12) need not be the usual L, norm, but can instead be either
the Lo, (max) norm, or the L, (absolute value) norm. See their work for details.

Another approach, with which we have had some success, is to estimate the largest
eigenvaluestatistically, by calculating s; = |A - v;|? for several unit vector v;’swith randomly
chosendirectionsin N-space. Thelargest eigenvalue A can then be bounded by the maximum
of 2maxs; and 2N Var(s;)/u(s:), where Var and . denote the sample variance and mean,
respectively.
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2.6 Singular Value Decomposition

There existsavery powerful set of techniquesfor dealing with sets of equations
or matricesthat are either singular or else numerically very closeto singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the’ answer
that you thought you should get.

SVD isalsothemethod of choicefor solving most linear | east-squaresproblems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data

SV D methods are based on thefollowingtheorem of linear al gebra, whose proof
isbeyond our scope: Any M x N matrix A whose number of rows M isgreater than
or equa to its number of columns N, can be written as the product of an M x N
column-orthogonal matrix U, an N x N diagona matrix W with positive or zero
elements (the singular values), and thetranspose of an N x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

(2.6.1)

The matrices U and V are each orthogona in the sense that their columns are
orthonormal,

M
1<k<N
UirUin = kn -7 = 26.2
; i i 1<n<N (262)
N
k<N
> VikVin = bkn N (2.6.3)

j=1
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