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yy(j)=yy(j)+y*fac/(nden*(x-j))
enddo 12

endif
return
END
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13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

I =

∫ b

a

eiωth(t)dt , (13.9.1)

or the equivalent real and imaginary parts

Ic =

∫ b

a

cos(ωt)h(t)dt Is =

∫ b

a

sin(ωt)h(t)dt , (13.9.2)

and one wants to evaluate this integral for many different values ofω. In cases of interest, h(t)
is often a smooth function, but it is not necessarily periodic in [a, b], nor does it necessarily
go to zero at a or b. While it seems intuitively obvious that the force majeure of the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, where M is a large integer, and define

∆ ≡ b− a
M

, tj ≡ a+ j∆ , hj ≡ h(tj) , j = 0, . . . ,M (13.9.3)

Notice that h0 = h(a) and hM = h(b), and that there are M + 1 values hj . We can
approximate the integral I by a sum,

I ≈ ∆

M−1∑
j=0

hj exp(iωtj) (13.9.4)

which is at any rate first-order accurate. (If we centered the hj ’s and the tj’s in the intervals,
we could be accurate to second order.) Now for certain values of ω and M , the sum in
equation (13.9.4) can be made into a discrete Fourier transform, or DFT, and evaluated by
the fast Fourier transform (FFT) algorithm. In particular, we can chooseM to be an integer
power of 2, and define a set of special ω’s by

ωm∆ ≡ 2πm

M
(13.9.5)
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where m has the values m = 0, 1, . . . ,M/2 − 1. Then equation (13.9.4) becomes

I(ωm) ≈ ∆eiωma
M−1∑
j=0

hje
2πimj/M = ∆eiωma[DFT(h0 . . . hM−1)]m (13.9.6)

Equation (13.9.6), while simple and clear, is emphatically not recommended for use: It is
likely to give wrong answers!

The problem lies in the oscillatory nature of the integral (13.9.1). If h(t) is at all smooth,
and if ω is large enough to imply several cycles in the interval [a, b] — in fact, ωm in equation
(13.9.5) gives exactly m cycles — then the value of I is typically very small, so small that
it is easily swamped by first-order, or even (with centered values) second-order, truncation
error. Furthermore, the characteristic “small parameter” that occurs in the error term is not
∆/(b− a) = 1/M , as it would be if the integrand were not oscillatory, butω∆, which can be
as large as π for ω’s within the Nyquist interval of the DFT (cf. equation 13.9.5). The result
is that equation (13.9.6) becomes systematically inaccurate as ω increases.

It is a sobering exercise to implement equation (13.9.6) for an integral that can be done
analytically, and to see just how bad it is. We recommend that you try it.

Let us therefore turn to a more sophisticated treatment. Given the sampled points hj , we
can approximate the function h(t) everywhere in the interval [a, b] by interpolation on nearby
hj’s. The simplest case is linear interpolation, using the two nearest hj’s, one to the left and
one to the right. A higher-order interpolation, e.g., would be cubic interpolation, using two
points to the left and two to the right — except in the first and last subintervals, where we
must interpolate with three hj’s on one side, one on the other.

The formulas for such interpolation schemes are (piecewise) polynomial in the inde-
pendent variable t, but with coefficients that are of course linear in the function values
hj . Although one does not usually think of it in this way, interpolation can be viewed as
approximating a function by a sum of kernel functions (which depend only on the interpolation
scheme) times sample values (which depend only on the function). Let us write

h(t) ≈
M∑
j=0

hj ψ

(
t − tj

∆

)
+

∑
j=endpoints

hj ϕj

(
t− tj

∆

)
(13.9.7)

Here ψ(s) is the kernel function of an interior point: It is zero for s sufficiently negative
or sufficiently positive, and becomes nonzero only when s is in the range where the
hj multiplying it is actually used in the interpolation. We always have ψ(0) = 1 and
ψ(m) = 0, m = ±1,±2, . . . , since interpolation right on a sample point should give the
sampled function value. For linear interpolation ψ(s) is piecewise linear, rises from 0 to 1
for s in (−1, 0), and falls back to 0 for s in (0, 1). For higher-order interpolation, ψ(s) is
made up piecewise of segments of Lagrange interpolation polynomials. It has discontinuous
derivatives at integer values of s, where the pieces join, because the set of points used in
the interpolation changes discretely.

As already remarked, the subintervals closest to a and b require different (noncentered)
interpolation formulas. This is reflected in equation (13.9.7) by the second sum, with the
special endpoint kernels ϕj(s). Actually, for reasons that will become clearer below, we have
included all the points in the first sum (with kernel ψ), so the ϕj’s are actually differences
between true endpoint kernels and the interior kernel ψ. It is a tedious, but straightforward,
exercise to write down all the ϕj(s)’s for any particular order of interpolation, each one
consisting of differences of Lagrange interpolating polynomials spliced together piecewise.

Now apply the integral operator
∫ b
a
dt exp(iωt) to both sides of equation (13.9.7),

interchange the sums and integral, and make the changes of variable s = (t − tj)/∆ in the
first sum, s = (t − a)/∆ in the second sum. The result is

I ≈ ∆eiωa
[
W (θ)

M∑
j=0

hje
ijθ +

∑
j=endpoints

hjαj(θ)

]
(13.9.8)

Here θ ≡ ω∆, and the functions W (θ) and αj(θ) are defined by

W (θ) ≡
∫ ∞
−∞

ds eiθsψ(s) (13.9.9)
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αj(θ) ≡
∫ ∞
−∞

ds eiθsϕj(s− j) (13.9.10)

The key point is that equations (13.9.9) and (13.9.10) can be evaluated, analytically,
once and for all, for any given interpolation scheme. Then equation (13.9.8) is an algorithm
for applying “endpoint corrections” to a sum which (as we will see) can be done using the
FFT, giving a result with high-order accuracy.

We will consider only interpolations that are left-right symmetric. Then symmetry
implies

ϕM−j(s) = ϕj(−s) αM−j(θ) = eiθMα*
j(θ) = eiω(b−a)α*

j(θ) (13.9.11)

where * denotes complex conjugation. Also, ψ(s) = ψ(−s) implies that W (θ) is real.
Turn now to the first sum in equation (13.9.8), which we want to do by FFT methods.

To do so, choose some N that is an integer power of 2 with N ≥ M + 1. (Note that
M need not be a power of two, so M = N − 1 is allowed.) If N > M + 1, define
hj ≡ 0, M + 1 < j ≤ N − 1, i.e., “zero pad” the array of hj ’s so that j takes on the range
0 ≤ j ≤ N − 1. Then the sum can be done as a DFT for the special valuesω = ωn given by

ωn∆ ≡ 2πn

N
≡ θ n = 0, 1, . . . ,

N

2
− 1 (13.9.12)

For fixed M , the larger N is chosen, the finer the sampling in frequency space. The
value M , on the other hand, determines the highest frequency sampled, since ∆ decreases
with increasing M (equation 13.9.3), and the largest value of ω∆ is always just under π
(equation 13.9.12). In general it is advantageous to oversample by at least a factor of 4, i.e.,
N > 4M (see below). We can now rewrite equation (13.9.8) in its final form as

I(ωn) = ∆eiωna
{
W (θ)[DFT(h0 . . . hN−1)]n

+ α0(θ)h0 + α1(θ)h1 + α2(θ)h2 + α3(θ)h3 + . . .

+ eiω(b−a)
[
α*

0(θ)hM + α*
1(θ)hM−1 + α*

2(θ)hM−2 + α*
3(θ)hM−3 + . . .

]}
(13.9.13)

For cubic (or lower) polynomial interpolation, at most the terms explicitly shown above
are nonzero; the ellipses (. . .) can therefore be ignored, and we need explicit forms only for
the functions W,α0, α1, α2, α3, calculated with equations (13.9.9) and (13.9.10). We have
worked these out for you, in the trapezoidal (second-order) and cubic (fourth-order) cases.
Here are the results, along with the first few terms of their power series expansions for small θ:

Trapezoidal order:

W (θ) =
2(1− cos θ)

θ2
≈ 1 − 1

12
θ2 +

1

360
θ4 − 1

20160
θ6

α0(θ) = − (1− cos θ)

θ2
+ i

(θ − sin θ)

θ2

≈ −1

2
+

1

24
θ2 − 1

720
θ4 +

1

40320
θ6 + iθ

(
1

6
− 1

120
θ2 +

1

5040
θ4 − 1

362880
θ6

)
α1 = α2 = α3 = 0
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Cubic order:

W (θ) =

(
6 + θ2

3θ4

)
(3− 4 cos θ + cos 2θ) ≈ 1− 11

720
θ4 +

23

15120
θ6

α0(θ) =
(−42 + 5θ2) + (6 + θ2)(8 cos θ − cos 2θ)

6θ4
+ i

(−12θ + 6θ3) + (6 + θ2) sin 2θ

6θ4

≈ −
2

3
+

1

45
θ2 +

103

15120
θ4 −

169

226800
θ6 + iθ

(
2

45
+

2

105
θ2 −

8

2835
θ4 +

86

467775
θ6

)

α1(θ) =
14(3− θ2) − 7(6 + θ2) cos θ

6θ4
+ i

30θ − 5(6 + θ2) sin θ

6θ4

≈ 7

24
− 7

180
θ2 +

5

3456
θ4 − 7

259200
θ6 + iθ

(
7

72
− 1

168
θ2 +

11

72576
θ4 − 13

5987520
θ6

)

α2(θ) =
−4(3− θ2) + 2(6 + θ2) cos θ

3θ4
+ i
−12θ + 2(6 + θ2) sin θ

3θ4

≈ −1

6
+

1

45
θ2 − 5

6048
θ4 +

1

64800
θ6 + iθ

(
− 7

90
+

1

210
θ2 − 11

90720
θ4 +

13

7484400
θ6

)

α3(θ) =
2(3− θ2)− (6 + θ2) cos θ

6θ4
+ i

6θ − (6 + θ2) sin θ

6θ4

≈ 1

24
− 1

180
θ2 +

5

24192
θ4 − 1

259200
θ6 + iθ

(
7

360
− 1

840
θ2 +

11

362880
θ4 − 13

29937600
θ6

)

The program dftcor, below, implements the endpoint corrections for the cubic case.
Given input values ofω,∆, a, b, and an array with the eight valuesh0, . . . , h3, hM−3, . . . , hM ,
it returns the real and imaginary parts of the endpoint corrections in equation (13.9.13), and the
factor W (θ). The code is turgid, but only because the formulas above are complicated. The
formulas have cancellations to high powers of θ. It is therefore necessary to compute the right-
hand sides in double precision, even when the corrections are desired only to single precision.
It is also necessary to use the series expansion for small values of θ. The optimal cross-over
value of θ depends on your machine’s wordlength, but you can always find it experimentally
as the largest value where the two methods give identical results to machine precision.

SUBROUTINE dftcor(w,delta,a,b,endpts,corre,corim,corfac)
REAL a,b,corfac,corim,corre,delta,w,endpts(8)

For an integral approximated by a discrete Fourier transform, this routine computes the
correction factor that multiplies the DFT and the endpoint correction to be added. Input
is the angular frequency w, stepsize delta, lower and upper limits of the integral a and b,
while the array endpts contains the first 4 and last 4 function values. The correction factor
W (θ) is returned as corfac, while the real and imaginary parts of the endpoint correction
are returned as corre and corim.

REAL a0i,a0r,a1i,a1r,a2i,a2r,a3i,a3r,arg,c,cl,cr,s,sl,sr,t,
* t2,t4,t6

DOUBLE PRECISION cth,ctth,spth2,sth,sth4i,stth,th,th2,th4,
* tmth2,tth4i

th=w*delta
if (a.ge.b.or.th.lt.0.d0.or.th.gt.3.1416d0)

* pause ’bad arguments to dftcor’
if(abs(th).lt.5.d-2)then Use series.

t=th
t2=t*t
t4=t2*t2
t6=t4*t2
corfac=1.-(11./720.)*t4+(23./15120.)*t6
a0r=(-2./3.)+t2/45.+(103./15120.)*t4-(169./226800.)*t6
a1r=(7./24.)-(7./180.)*t2+(5./3456.)*t4-(7./259200.)*t6
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a2r=(-1./6.)+t2/45.-(5./6048.)*t4+t6/64800.
a3r=(1./24.)-t2/180.+(5./24192.)*t4-t6/259200.
a0i=t*(2./45.+(2./105.)*t2-(8./2835.)*t4+(86./467775.)*t6)
a1i=t*(7./72.-t2/168.+(11./72576.)*t4-(13./5987520.)*t6)
a2i=t*(-7./90.+t2/210.-(11./90720.)*t4+(13./7484400.)*t6)
a3i=t*(7./360.-t2/840.+(11./362880.)*t4-(13./29937600.)*t6)

else Use trigonometric formulas in double precision.
cth=cos(th)
sth=sin(th)
ctth=cth**2-sth**2
stth=2.d0*sth*cth
th2=th*th
th4=th2*th2
tmth2=3.d0-th2
spth2=6.d0+th2
sth4i=1./(6.d0*th4)
tth4i=2.d0*sth4i
corfac=tth4i*spth2*(3.d0-4.d0*cth+ctth)
a0r=sth4i*(-42.d0+5.d0*th2+spth2*(8.d0*cth-ctth))
a0i=sth4i*(th*(-12.d0+6.d0*th2)+spth2*stth)
a1r=sth4i*(14.d0*tmth2-7.d0*spth2*cth)
a1i=sth4i*(30.d0*th-5.d0*spth2*sth)
a2r=tth4i*(-4.d0*tmth2+2.d0*spth2*cth)
a2i=tth4i*(-12.d0*th+2.d0*spth2*sth)
a3r=sth4i*(2.d0*tmth2-spth2*cth)
a3i=sth4i*(6.d0*th-spth2*sth)

endif
cl=a0r*endpts(1)+a1r*endpts(2)+a2r*endpts(3)+a3r*endpts(4)
sl=a0i*endpts(1)+a1i*endpts(2)+a2i*endpts(3)+a3i*endpts(4)
cr=a0r*endpts(8)+a1r*endpts(7)+a2r*endpts(6)+a3r*endpts(5)
sr=-a0i*endpts(8)-a1i*endpts(7)-a2i*endpts(6)-a3i*endpts(5)
arg=w*(b-a)
c=cos(arg)
s=sin(arg)
corre=cl+c*cr-s*sr
corim=sl+s*cr+c*sr
return
END

Since the use of dftcor can be confusing, we also give an illustrative program dftint
which uses dftcor to compute equation (13.9.1) for general a, b, ω, and h(t). Several points
within this program bear mentioning: The parameters M and NDFT correspond to M and N
in the above discussion. On successive calls, we recompute the Fourier transform only if a
or b has changed. (We should also recompute if h(t) has changed, but FORTRAN doesn’t
provide a way for us to test this.)

Since dftint is designed to work for any value of ω satisfying ω∆ < π, not just the
special values returned by the DFT (equation 13.9.12), we do polynomial interpolation of
degree MPOL on the DFT spectrum. You should be warned that a large factor of oversampling
(N � M ) is required for this interpolation to be accurate. After interpolation, we add the
endpoint corrections from dftcor, which can be evaluated for any ω.

While dftcor is good at what it does, dftint is illustrative only. It is not a general
purpose program, because it does not adapt its parameters M, NDFT, MPOL, or its interpolation
scheme, to any particular function h(t). You will have to experiment with your own
application.

SUBROUTINE dftint(func,a,b,w,cosint,sinint)
INTEGER M,NDFT,MPOL
REAL a,b,cosint,sinint,w,func,TWOPI
PARAMETER (M=64,NDFT=1024,MPOL=6,TWOPI=2.*3.14159265)
EXTERNAL func

C USES dftcor,func,polint,realft
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Example program illustrating how to use the routine dftcor. The user supplies an external

function func that returns the quantity h(t). The routine then returns
∫ b
a cos(ωt)h(t)dt

as cosint and
∫ b
a sin(ωt)h(t)dt as sinint.

Parameters: The values of M, NDFT, and MPOL are merely illustrative and should be opti-
mized for your particular application. M is the number of subintervals, NDFT is the length of
the FFT (a power of 2), and MPOL is the degree of polynomial interpolation used to obtain
the desired frequency from the FFT.

INTEGER init,j,nn
REAL aold,bold,c,cdft,cerr,corfac,corim,corre,delta,en,s,

* sdft,serr,cpol(MPOL),data(NDFT),endpts(8),spol(MPOL),
* xpol(MPOL)

SAVE init,aold,bold,delta,data,endpts
DATA init/0/,aold/-1.e30/,bold/-1.e30/
if (init.ne.1.or.a.ne.aold.or.b.ne.bold) then Do we need to initialize, or is only ω

changed?init=1
aold=a
bold=b
delta=(b-a)/M
do 11 j=1,M+1 Load the function values into the data array.

data(j)=func(a+(j-1)*delta)
enddo 11

do 12 j=M+2,NDFT Zero pad the rest of the data array.
data(j)=0.

enddo 12

do 13 j=1,4 Load the endpoints.
endpts(j)=data(j)
endpts(j+4)=data(M-3+j)

enddo 13

call realft(data,NDFT,1)
realft returns the unused value corresponding to ωN/2 in data(2). We actually want
this element to contain the imaginary part corresponding to ω0, which is zero.

data(2)=0.
endif

Now interpolate on the DFT result for the desired frequency. If the frequency is an ωn, i.e.,
the quantity en is an integer, then cdft=data(2*en-1), sdft=data(2*en), and you could
omit the interpolation.

en=w*delta*NDFT/TWOPI+1.
nn=min(max(int(en-0.5*MPOL+1.),1),NDFT/2-MPOL+1) Leftmost point for the interpola-

tion.do 14 j=1,MPOL
cpol(j)=data(2*nn-1)
spol(j)=data(2*nn)
xpol(j)=nn
nn=nn+1

enddo 14

call polint(xpol,cpol,MPOL,en,cdft,cerr)
call polint(xpol,spol,MPOL,en,sdft,serr)
call dftcor(w,delta,a,b,endpts,corre,corim,corfac) Now get the endpoint cor-

rection and the multiplica-
tive factor W (θ).

cdft=cdft*corfac+corre
sdft=sdft*corfac+corim
c=delta*cos(w*a) Finally multiply by ∆ and exp(iωa).
s=delta*sin(w*a)
cosint=c*cdft-s*sdft
sinint=s*cdft+c*sdft
return
END

Sometimes one is interested only in the discrete frequencies ωm of equation (13.9.5),
the ones that have integral numbers of periods in the interval [a, b]. For smooth h(t), the
value of I tends to be much smaller in magnitude at these ω’s than at values in between,
since the integral half-periods tend to cancel precisely. (That is why one must oversample for
interpolation to be accurate: I(ω) is oscillatory with small magnitude near the ωm’s.) If you
want these ωm’s without messy (and possibly inaccurate) interpolation, you have to set N to
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a multiple of M (compare equations 13.9.5 and 13.9.12). In the method implemented above,
however,N must be at leastM + 1, so the smallest such multiple is 2M , resulting in a factor
∼2 unnecessary computing. Alternatively, one can derive a formula like equation (13.9.13),
but with the last sample function hM = h(b) omitted from the DFT, but included entirely in
the endpoint correction for hM . Then one can set M = N (an integer power of 2) and get the
special frequencies of equation (13.9.5) with no additional overhead. The modified formula is

I(ωm) = ∆eiωma
{
W (θ)[DFT(h0 . . . hM−1)]m

+ α0(θ)h0 + α1(θ)h1 + α2(θ)h2 + α3(θ)h3

+ eiω(b−a)
[
A(θ)hM + α*

1(θ)hM−1 + α*
2(θ)hM−2 + α*

3(θ)hM−3

]} (13.9.14)

where θ ≡ ωm∆ and A(θ) is given by

A(θ) = −α0(θ) (13.9.15)

for the trapezoidal case, or

A(θ) =
(−6 + 11θ2) + (6 + θ2) cos 2θ

6θ4
− i Im[α0(θ)]

≈ 1

3
+

1

45
θ2 − 8

945
θ4 +

11

14175
θ6 − i Im[α0(θ)]

(13.9.16)

for the cubic case.
Factors likeW (θ) arise naturally whenever one calculates Fourier coefficients of smooth

functions, and they are sometimes called attenuation factors [1]. However, the endpoint
corrections are equally important in obtaining accurate values of integrals. Narasimhan
and Karthikeyan [2] have given a formula that is algebraically equivalent to our trapezoidal
formula. However, their formula requires the evaluation of two FFTs, which is unnecessary.
The basic idea used here goes back at least to Filon [3] in 1928 (before the FFT!). He used
Simpson’s rule (quadratic interpolation). Since this interpolation is not left-right symmetric,
two Fourier transforms are required. An alternative algorithm for equation (13.9.14) has been
given by Lyness in [4]; for related references, see [5]. To our knowledge, the cubic-order
formulas derived here have not previously appeared in the literature.

Calculating Fourier transforms when the range of integration is (−∞,∞) can be tricky.
If the function falls off reasonably quickly at infinity, you can split the integral at a large
enough value of t. For example, the integration to +∞ can be written∫ ∞

a

eiωth(t) dt =

∫ b

a

eiωth(t) dt+

∫ ∞
b

eiωth(t) dt

=

∫ b

a

eiωth(t) dt− h(b)eiωb

iω
+
h′(b)eiωb

(iω)2
− · · · (13.9.17)

The splitting point b must be chosen large enough that the remaining integral over (b,∞) is
small. Successive terms in its asymptotic expansion are found by integrating by parts. The
integral over (a, b) can be done using dftint. You keep as many terms in the asymptotic
expansion as you can easily compute. See [6] for some examples of this idea. More
powerful methods, which work well for long-tailed functions but which do not use the FFT,
are described in [7-9].
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13.10 Wavelet Transforms

Like the fast Fourier transform (FFT), the discrete wavelet transform (DWT) is
a fast, linear operation that operates on a data vector whose length is an integer power
of two, transforming it into a numerically different vector of the same length. Also
like the FFT, the wavelet transform is invertible and in fact orthogonal — the inverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors ei,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions” and “wavelets.”

Of course there are an infinity of possible bases for function space, almost all of
them uninteresting! What makes the wavelet basis interesting is that, unlike sines and
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisely) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operators sparse, or sparse to some high accuracy, when transformed into the wavelet
domain. Analogously with the Fourier domain, where a class of computations, like
convolutions, become computationally fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain [1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets. Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies [2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
called DAUB4, has only four coefficients, c0, . . . , c3. For the moment we specialize
to this case for ease of notation.


