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18.4 Inverse Problems and the Use of A Priori
Information

Later discussion will be facilitated by some preliminary mention of a couple
of mathematical points. Suppose that u is an “unknown” vector that we plan to
determine by some minimization principle. Let A[u] > 0 and B[u] > 0 be two
positive functionals of u, so that we can try to determine u by either

minimize: A[u] or minimize: B[u] (18.4.1)

(Of course these will generally give different answers for u.) As another possibility,
now suppose that we want to minimizeA[u] subject to the constraint that B[u] have
some particular value, say b. The method of Lagrange multipliers gives the variation

δ

δu
{A[u] + λ1(B[u]− b)} =

δ

δu
(A[u] + λ1B[u]) = 0 (18.4.2)

where λ1 is a Lagrange multiplier. Notice that b is absent in the second equality,
since it doesn’t depend on u.

Next, suppose that we change our minds and decide to minimize B[u] subject
to the constraint that A[u] have a particular value, a. Instead of equation (18.4.2)
we have

δ

δu
{B[u] + λ2(A[u]− a)} =

δ

δu
(B[u] + λ2A[u]) = 0 (18.4.3)

with, this time, λ2 the Lagrange multiplier. Multiplying equation (18.4.3) by the
constant 1/λ2, and identifying 1/λ2 with λ1, we see that the actual variations are
exactly the same in the two cases. Both cases will yield the same one-parameter
family of solutions, say, u(λ1). As λ1 varies from 0 to ∞, the solution u(λ1)
varies along a so-called trade-off curve between the problem of minimizing A and
the problem of minimizing B. Any solution along this curve can equally well
be thought of as either (i) a minimization of A for some constrained value of B,
or (ii) a minimization of B for some constrained value of A, or (iii) a weighted
minimization of the sum A + λ1B.

The second preliminary point has to do with degenerate minimization principles.
In the example above, now suppose that A[u] has the particular form

A[u] = |A · u − c|2 (18.4.4)

for some matrix A and vector c. If A has fewer rows than columns, or if A is square
but degenerate (has a nontrivial nullspace, see §2.6, especially Figure 2.6.1), then
minimizing A[u] will not give a unique solution for u. (To see why, review §15.4,
and note that for a “design matrix” A with fewer rows than columns, the matrix
AT · A in the normal equations 15.4.10 is degenerate.) However, if we add any
multiple λ times a nondegenerate quadratic form B[u], for example u ·H · u with H
a positive definite matrix, then minimization of A[u] + λB[u] will lead to a unique
solution for u. (The sum of two quadratic forms is itself a quadratic form, with the
second piece guaranteeing nondegeneracy.)
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We can combine these two points, for this conclusion: When a quadratic
minimization principle is combined with a quadratic constraint, and both are
positive, only one of the two need be nondegenerate for the overall problem to be
well-posed. We are now equipped to face the subject of inverse problems.

The Inverse Problem with Zeroth-Order Regularization

Suppose that u(x) is some unknown or underlying (u stands for both unknown
and underlying!) physical process, which we hope to determine by a set of N
measurements ci, i = 1, 2, . . . , N . The relation between u(x) and the ci’s is that
each ci measures a (hopefully distinct) aspect of u(x) through its own linear response
kernel ri, and with its own measurement error ni. In other words,

ci ≡ si + ni =

∫
ri(x)u(x)dx+ ni (18.4.5)

(compare this to equations 13.3.1 and 13.3.2). Within the assumption of linearity,
this is quite a general formulation. The ci’s might approximate values of u(x) at
certain locations xi, in which case ri(x) would have the form of a more or less
narrow instrumental response centered aroundx = xi. Or, the ci’s might “live” in an
entirely different function space from u(x), measuring different Fourier components
of u(x) for example.

The inverse problem is, given the ci’s, the ri(x)’s, and perhaps some information
about the errors ni such as their covariance matrix

Sij ≡ Covar[ni, nj] (18.4.6)

how do we find a good statistical estimator of u(x), call it û(x)?
It should be obvious that this is an ill-posed problem. After all, how can we

reconstruct a whole function û(x) from only a finite number of discrete values ci?
Yet, whether formally or informally, we do this all the time in science. We routinely
measure “enough points” and then “draw a curve through them.” In doing so, we
are making some assumptions, either about the underlying function u(x), or about
the nature of the response functions ri(x), or both. Our purpose now is to formalize
these assumptions, and to extend our abilities to cases where the measurements and
underlying function live in quite different function spaces. (How do you “draw a
curve” through a scattering of Fourier coefficients?)

We can’t really want every point x of the function û(x). We do want some
large number M of discrete points xµ, µ = 1, 2, . . . ,M , where M is sufficiently
large, and the xµ’s are sufficiently evenly spaced, that neither u(x) nor ri(x) varies
much between any xµ and xµ+1. (Here and following we will use Greek letters like
µ to denote values in the space of the underlying process, and Roman letters like i
to denote values of immediate observables.) For such a dense set of xµ’s, we can
replace equation (18.4.5) by a quadrature like

ci =
∑
µ

Riµu(xµ) + ni (18.4.7)

where the N ×M matrix R has components

Riµ ≡ ri(xµ)(xµ+1 − xµ−1)/2 (18.4.8)
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(or any other simple quadrature — it rarely matters which). We will view equations
(18.4.5) and (18.4.7) as being equivalent for practical purposes.

How do you solve a set of equations like equation (18.4.7) for the unknown
u(xµ)’s? Here is a bad way, but one that contains the germ of some correct ideas:
Form a χ2 measure of how well a model û(x) agrees with the measured data,

χ2 =

N∑
i=1

N∑
j=1

[
ci −

M∑
µ=1

Riµû(xµ)

]
S−1
ij

[
cj −

M∑
µ=1

Rjµû(xµ)

]

≈
N∑
i=1

[
ci −

∑M
µ=1 Riµû(xµ)

σi

]2
(18.4.9)

(compare with equation 15.1.5). Here S−1 is the inverse of the covariance matrix,
and the approximate equality holds if you can neglect the off-diagonal covariances,
with σi ≡ (Covar[i, i])1/2.

Now you can use the method of singular value decomposition (SVD) in §15.4
to find the vector û that minimizes equation (18.4.9). Don’t try to use the method
of normal equations; since M is greater than N they will be singular, as we already
discussed. The SVD process will thus surely find a large number of zero singular
values, indicative of a highly non-unique solution. Among the infinity of degenerate
solutions (most of them badly behaved with arbitrarily large û(xµ)’s) SVD will
select the one with smallest |û| in the sense of∑

µ

[û(xµ)]2 a minimum (18.4.10)

(look at Figure 2.6.1). This solution is often called the principal solution. It
is a limiting case of what is called zeroth-order regularization, corresponding to
minimizing the sum of the two positive functionals

minimize: χ2[û] + λ(û · û) (18.4.11)

in the limit of small λ. Below, we will learn how to do such minimizations, as well
as more general ones, without the ad hoc use of SVD.

What happens if we determine û by equation (18.4.11) with a non-infinitesimal
value of λ? First, note that if M � N (many more unknowns than equations), then
u will often have enough freedom to be able to make χ2 (equation 18.4.9) quite
unrealistically small, if not zero. In the language of §15.1, the number of degrees of
freedom ν = N −M , which is approximately the expected value of χ2 when ν is
large, is being driven down to zero (and, not meaningfully, beyond). Yet, we know
that for the true underlying function u(x), which has no adjustable parameters, the
number of degrees of freedom and the expected value of χ2 should be about ν ≈ N .

Increasing λ pulls the solution away from minimizingχ2 in favor of minimizing
û · û. From the preliminary discussion above, we can view this as minimizing û · û
subject to the constraint that χ2 have some constant nonzero value. A popular
choice, in fact, is to find that value of λ which yields χ2 = N , that is, to get about as
much extra regularization as a plausible value of χ2 dictates. The resulting û(x) is
called the solution of the inverse problem with zeroth-order regularization.
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Figure 18.4.1. Almost all inverse problem methods involve a trade-off between two optimizations:
agreementbetween data and solution, or “sharpness”of mapping between true and estimated solution (here
denotedA), and smoothness or stability of the solution (here denoted B). Among all possible solutions,
shown here schematically as the shaded region, those on the boundary connecting the unconstrained
minimum of A and the unconstrained minimum of B are the “best” solutions, in the sense that every
other solution is dominated by at least one solution on the curve.

The value N is actually a surrogate for any value drawn from a Gaussian
distribution with mean N and standard deviation (2N)1/2 (the asymptotic χ2

distribution). One might equally plausibly try two values of λ, one giving χ2 =
N + (2N)1/2, the other N − (2N)1/2.

Zeroth-order regularization, though dominated by better methods, demonstrates
most of the basic ideas that are used in inverse problem theory. In general, there are
two positive functionals, call them A and B. The first, A, measures something like
the agreement of a model to the data (e.g., χ2), or sometimes a related quantity like
the “sharpness” of the mapping between the solution and the underlying function.
When A by itself is minimized, the agreement or sharpness becomes very good
(often impossibly good), but the solution becomes unstable, wildly oscillating, or in
other ways unrealistic, reflecting that A alone typically defines a highly degenerate
minimization problem.

That is where B comes in. It measures something like the “smoothness” of the
desired solution, or sometimes a related quantity that parametrizes the stability of
the solution with respect to variations in the data, or sometimes a quantity reflecting
a priori judgments about the likelihood of a solution. B is called the stabilizing
functional or regularizing operator. In any case, minimizing B by itself is supposed
to give a solution that is “smooth” or “stable” or “likely” — and that has nothing
at all to do with the measured data.
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The single central idea in inverse theory is the prescription

minimize: A+ λB (18.4.12)

for various values of 0 < λ < ∞ along the so-called trade-off curve (see Figure
18.4.1), and then to settle on a “best” value of λ by one or another criterion, ranging
from fairly objective (e.g., making χ2 = N ) to entirely subjective. Successful
methods, several of which we will now describe, differ as to their choices of A and
B, as to whether the prescription (18.4.12) yields linear or nonlinear equations, as
to their recommended method for selecting a final λ, and as to their practicality for
computer-intensive two-dimensional problems like image processing.

They also differ as to the philosophical baggage that they (or rather, their
proponents) carry. We have thus far avoided the word “Bayesian.” (Courts have
consistently held that academic license does not extend to shouting “Bayesian” in a
crowded lecture hall.) But it is hard, nor have we any wish, to disguise the fact that
B has something to do with a priori expectation, or knowledge, of a solution, while
A has something to do with a posteriori knowledge. The constant λ adjudicates a
delicate compromise between the two. Some inverse methods have acquired a more
Bayesian stamp than others, but we think that this is purely an accident of history.
An outsider looking only at the equations that are actually solved, and not at the
accompanying philosophical justifications, would have a difficult time separating the
so-called Bayesian methods from the so-called empirical ones, we think.

The next three sections discuss three different approaches to the problem of
inversion, which have had considerable success in different fields. All three fit
within the general framework that we have outlined, but they are quite different in
detail and in implementation.
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18.5 Linear Regularization Methods

What we will call linear regularization is also called the Phillips-Twomey
method [1,2], the constrained linear inversion method [3], the method of regulariza-
tion [4], and Tikhonov-Miller regularization [5-7]. (It probably has other names also,


