
1.1 Program Organization and Control Structures 5

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Previous Routines Omitted from This Edition

Name(s) Replacement(s) Comment

ADI mglin or mgfas better method

COSFT cosft1 or cosft2 choice of boundary conditions

CEL, EL2 rf, rd, rj, rc better algorithms

DES, DESKS ran4 now uses psdes was too slow

MDIAN1, MDIAN2 select, selip more general

QCKSRT sort name change (SORT is now hpsort)

RKQC rkqs better method

SMOOFT use convlvwith coefficients from savgol

SPARSE linbcg more general

is sometimes quite difficult. We have not attempted this, and we do not pretend
to any degree of bibliographical completeness in this book. For topics where a
substantial secondary literature exists (discussion in textbooks, reviews, etc.) we
have consciously limited our references to a few of the more useful secondary
sources, especially those with good references to the primary literature. Where the
existing secondary literature is insufficient, we give references to a few primary
sources that are intended to serve as starting points for further reading, not as
complete bibliographies for the field.

The order in which references are listed is not necessarily significant. It reflects a
compromise between listing cited references in the order cited, and listing suggestions
for further reading in a roughly prioritized order, with the most useful ones first.

The remaining two sections of this chapter review some basic concepts of
programming (control structures, etc.) and of numerical analysis (roundoff error,
etc.). Thereafter, we plunge into the substantive material of the book.

CITED REFERENCES AND FURTHER READING:

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [1]

1.1 Program Organization and Control
Structures

We sometimes like to point out the close analogies between computer programs,
on the one hand, and written poetry or written musical scores, on the other. All
three present themselves as visual media, symbols on a two-dimensional page or
computer screen. Yet, in all three cases, the visual, two-dimensional, frozen-in-time
representation communicates (or is supposed to communicate) something rather



6 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

different, namely a process that unfolds in time. A poem is meant to be read; music,
played; a program, executed as a sequential series of computer instructions.

In all three cases, the target of the communication, in its visual form, is a human
being. The goal is to transfer to him/her, as efficiently as can be accomplished,
the greatest degree of understanding, in advance, of how the process will unfold in
time. In poetry, this human target is the reader. In music, it is the performer. In
programming, it is the program user.

Now, you may object that the target of communication of a program is not
a human but a computer, that the program user is only an irrelevant intermediary,
a lackey who feeds the machine. This is perhaps the case in the situation where
the business executive pops a diskette into a desktop computer and feeds that
computer a black-box program in binary executable form. The computer, in this
case, doesn’t much care whether that program was written with “good programming
practice” or not.

We envision, however, that you, the readers of this book, are in quite a different
situation. You need, or want, to know not just what a program does, but also how
it does it, so that you can tinker with it and modify it to your particular application.
You need others to be able to see what you have done, so that they can criticize or
admire. In such cases, where the desired goal is maintainable or reusable code, the
targets of a program’s communication are surely human, not machine.

One key to achieving good programming practice is to recognize that pro-
gramming, music, and poetry — all three being symbolic constructs of the human
brain — are naturally structured into hierarchies that have many different nested
levels. Sounds (phonemes) form small meaningful units (morphemes) which in turn
form words; words group into phrases, which group into sentences; sentences make
paragraphs, and these are organized into higher levels of meaning. Notes form
musical phrases, which form themes, counterpoints, harmonies, etc.; which form
movements, which form concertos, symphonies, and so on.

The structure in programs is equally hierarchical. Appropriately, good pro-
gramming practice brings different techniques to bear on the different levels [1-3].
At a low level is the ascii character set. Then, constants, identifiers, operands,
operators. Then program statements, like a(j+1)=b+c/3.0. Here, the best pro-
gramming advice is simply be clear, or (correspondingly) don’t be too tricky. You
might momentarily be proud of yourself at writing the single line

k=(2-j)*(1+3*j)/2

if you want to permute cyclically one of the values j = (0, 1, 2) into respectively
k = (1, 2, 0). You will regret it later, however, when you try to understand that
line. Better, and likely also faster, is

k=j+1
if (k.eq.3) k=0

Many programming stylists would even argue for the ploddingly literal

if (j.eq.0) then
k=1

else if (j.eq.1) then
k=2



1.1 Program Organization and Control Structures 7

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

else if (j.eq.2) then
k=0

else
pause ’never get here’

endif

on the grounds that it is both clear and additionally safeguarded from wrong assump-
tions about the possible values of j. Our preference among the implementations
is for the middle one.

In this simple example, we have in fact traversed several levels of hierarchy:
Statements frequently come in “groups” or “blocks” which make sense only taken
as a whole. The middle fragment above is one example. Another is

swap=a(j)
a(j)=b(j)
b(j)=swap

which makes immediate sense to any programmer as the exchange of two variables,
while

sum=0.0
ans=0.0
n=1

is very likely to be an initialization of variables prior to some iterative process. This
level of hierarchy in a program is usually evident to the eye. It is good programming
practice to put in comments at this level, e.g., “initialize” or “exchange variables.”

The next level is that of control structures. These are things like the
if. . .then. . .else clauses in the example above, do loops, and so on. This
level is sufficiently important, and relevant to the hierarchical level of the routines
in this book, that we will come back to it just below.

At still higher levels in the hierarchy, we have (in FORTRAN) subroutines,
functions, and the whole “global” organization of the computational task to be
done. In the musical analogy, we are now at the level of movements and complete
works. At these levels, modularization and encapsulation become important
programming concepts, the general idea being that program units should interact
with one another only through clearly defined and narrowly circumscribed interfaces.
Good modularization practice is an essential prerequisite to the success of large,
complicated software projects, especially those employing the efforts of more than
one programmer. It is also good practice (if not quite as essential) in the less massive
programming tasks that an individual scientist, or reader of this book, encounters.

Some computer languages, such as Modula-2 and C++, promote good modular-
ization with higher-level language constructs, absent in FORTRAN-77. In Modula-2,
for example, subroutines, type definitions, and data structures can be encapsulated
into “modules” that communicate through declared public interfaces and whose
internal workings are hidden from the rest of the program [4]. In the C++ language,
the key concept is “class,” a user-definable generalization of data type that provides
for data hiding, automatic initialization of data, memory management, dynamic
typing, and operator overloading (i.e., the user-definable extension of operators like
+ and * so as to be appropriate to operands in any particular class) [5]. Properly
used in defining the data structures that are passed between program units, classes



8 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

can clarify and circumscribe these units’ public interfaces, reducing the chances of
programming error and also allowing a considerable degree of compile-time and
run-time error checking.

Beyond modularization, though depending on it, lie the concepts of object-
oriented programming. Here a programming language, such as C++ or Turbo Pascal
5.5 [6], allows a module’s public interface to accept redefinitions of types or actions,
and these redefinitions become shared all the way down through the module’s
hierarchy (so-called polymorphism). For example, a routine written to invert a
matrix of real numbers could — dynamically, at run time — be made able to handle
complex numbers by overloading complex data types and corresponding definitions
of the arithmetic operations. Additional concepts of inheritance (the ability to define
a data type that “inherits” all the structure of another type, plus additional structure
of its own), and object extensibility (the ability to add functionality to a module
without access to its source code, e.g., at run time), also come into play.

We have not attempted to modularize, or make objects out of, the routines in
this book, for at least two reasons. First, the chosen language, FORTRAN-77, does
not really make this possible. Second, we envision that you, the reader, might want
to incorporate the algorithms in this book, a few at a time, into modules or objects
with a structure of your own choosing. There does not exist, at present, a standard or
accepted set of “classes” for scientific object-oriented computing. While we might
have tried to invent such a set, doing so would have inevitably tied the algorithmic
content of the book (which is its raison d’être) to some rather specific, and perhaps
haphazard, set of choices regarding class definitions.

On the other hand, we are not unfriendly to the goals of modular and object-
oriented programming. Within the limits of FORTRAN, we have therefore tried to
structure our programs to be “object friendly,” principally via the clear delineation of
interface vs. implementation (§1.0) and the explicit declaration of variables. Within
our implementation sections, we have paid particular attention to the practices of
structured programming, as we now discuss.

Control Structures

An executing program unfolds in time, but not strictly in the linear order in
which the statements are written. Program statements that affect the order in which
statements are executed, or that affect whether statements are executed, are called
control statements. Control statements never make useful sense by themselves. They
make sense only in the context of the groups or blocks of statements that they in turn
control. If you think of those blocks as paragraphs containing sentences, then the
control statements are perhaps best thought of as the indentation of the paragraph
and the punctuation between the sentences, not the words within the sentences.

We can now say what the goal of structured programming is. It is to make
program control manifestly apparent in the visual presentation of the program. You
see that this goal has nothing at all to do with how the computer sees the program.
As already remarked, computers don’t care whether you use structured programming
or not. Human readers, however, do care. You yourself will also care, once you
discover how much easier it is to perfect and debug a well-structured program than
one whose control structure is obscure.



1.1 Program Organization and Control Structures 9

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

You accomplish the goals of structured programming in two complementary
ways. First, you acquaint yourself with the small number of essential control
structures that occur over and over again in programming, and that are therefore
given convenient representations in most programming languages. You should learn
to think about your programming tasks, insofar as possible, exclusively in terms of
these standard control structures. In writing programs, you should get into the habit
of representing these standard control structures in consistent, conventional ways.

“Doesn’t this inhibit creativity?” our students sometimes ask. Yes, just
as Mozart’s creativity was inhibited by the sonata form, or Shakespeare’s by the
metrical requirements of the sonnet. The point is that creativity, when it is meant to
communicate, does well under the inhibitions of appropriate restrictions on format.

Second, you avoid, insofar as possible, control statements whose controlled
blocks or objects are difficult to discern at a glance. This means, in practice, that
you must try to avoid statement labels and goto’s. It is not the goto’s that are
dangerous (although they do interrupt one’s reading of a program); the statement
labels are the hazard. In fact, whenever you encounter a statement label while
reading a program, you will soon become conditioned to get a sinking feeling in
the pit of your stomach. Why? Because the following questions will, by habit,
immediately spring to mind: Where did control come from in a branch to this label?
It could be anywhere in the routine! What circumstances resulted in a branch to
this label? They could be anything! Certainty becomes uncertainty, understanding
dissolves into a morass of possibilities.

Some older languages, notably 1966 FORTRAN and to a lesser extent FORTRAN-
77, require statement labels in the construction of certain standard control structures.
We will see this in more detail below. This is a demerit for these languages. In
such cases, you must use labels as required. But you should never branch to them
independently of the standard control structure. If you must branch, let it be to an
additional label, one that is not masquerading as part of a standard control structure.

We call labels that are part of a standard construction and never otherwise
branched to tame labels. They do not interfere with structured programming in any
way, except possibly typographically as distractions to the eye.

Some examples are now in order to make these considerations more concrete
(see Figure 1.1.1).

Catalog of Standard Structures

Iteration. In FORTRAN, simple iteration is performed with a do loop, for
example

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j

10 continue

Notice how we always indent the block of code that is acted upon by the control
structure, leaving the structure itself unindented. The statement label 10 in this
example is a tame label. The majority of modern implementations of FORTRAN-77
provide a nonstandard language extension that obviates the tame label. Originally



10 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

yes 

no

DO iteration
(a)

false

true

DO WHILE iteration
(b)

true

false

BREAK iteration
(d)

false

true

DO UNTIL iteration
(c)

iteration
complete?

block

increment
index

while
condition

until
condition



block

break
condition

block

block

block

Figure 1.1.1. Standard control structures used in structured programming: (a) DO iteration; (b) DO
WHILE iteration; (c) DO UNTIL iteration; (d) BREAK iteration; (e) IF structure; (f) obsolete form of
DO iteration found in FORTRAN-66, where the block is executed once even if the iteration condition
is initially not satisfied.



1.1 Program Organization and Control Structures 11

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if
condition

block

true

else if
condition

block

false

true

. . .

. . .

false

else block

else if
condition

block

false

true

IF structure
(e)

iteration
complete?

increment
index

no

block

FORTRAN-66 DO (obsolete)
(f )

yes

Figure 1.1.1. Standard control structures used in structured programming (see caption on previouspage).



12 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

introduced in Digital Equipment Corporations’s VAX-11 FORTRAN, the “enddo”
statement is used as

do j=2,1000
b(j)=a(j-1)
a(j-1)=j

enddo

In fact, it was a terrible mistake that the American National Standard for FORTRAN-77
(ANSI X3.9–1978) failed to provide an enddo or equivalent construction. This
mistake by the people who write standards, whoever they are, presents us now,
more than 15 years later, with a painful quandary: Do we stick to the standard, and
clutter our programs with tame labels? Or do we adopt a nonstandard (albeit widely
implemented) FORTRAN construction like enddo?

We have adopted a compromise position. Standards, even imperfect standards,
are terribly important and highly necessary in a time of rapid evolution in computers
and their applications. Therefore, all machine-readable forms of our programs (e.g.,
the diskettes that you can order from the publisher — see back of this book) are
strictly FORTRAN-77 compliant. (Well, almost strictly: there is a minor anomaly
regarding bit manipulation functions, see below.) In particular, do blocks always
end with labeled continue statements, as in the first example above.

In the printed version of this book, however, we make use of typography to
mitigate the standard’s deficiencies. The statement label that follows the do is printed
in small type — as a signal that it is a tame label that you can safely ignore. And,
the word “continue” is printed as “enddo”, which you may regard as a very peculiar
change of font! The example above, in our adopted typographical format, is

do 10 j=2,1000
b(j)=a(j-1)
a(j-1)=j

enddo 10

(Notice that we also take the typographical liberty of writing the tame label after the
“continue” statement, rather than before.)

A nested do loop looks like this:

do 12 j=1,20
s(j)=0.
do 11 k=5,10

s(j)=s(j)+a(j,k)
enddo 11

enddo 12

Generally, the numerical values of the tame labels are chosen to put the enddo’s
(labeled continue’s on the diskette) into ascending numerical order, hence the do 12

before the do 11 in the above example.

IF structure. In this structure the FORTRAN-77 standard is exemplary. Here
is a working program that consists dominantly of if control statements:



1.1 Program Organization and Control Structures 13

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

FUNCTION julday(mm,id,iyyy)
INTEGER julday,id,iyyy,mm,IGREG
PARAMETER (IGREG=15+31*(10+12*1582)) Gregorian Calendar adopted Oct. 15, 1582.

In this routine julday returns the Julian Day Number that begins at noon of the calendar
date specified by month mm, day id, and year iyyy, all integer variables. Positive year
signifies A.D.; negative, B.C. Remember that the year after 1 B.C. was 1 A.D.

INTEGER ja,jm,jy
jy=iyyy
if (jy.eq.0) pause ’julday: there is no year zero’
if (jy.lt.0) jy=jy+1
if (mm.gt.2) then Here is an example of a block IF-structure.

jm=mm+1
else

jy=jy-1
jm=mm+13

endif
julday=int(365.25*jy)+int(30.6001*jm)+id+1720995
if (id+31*(mm+12*iyyy).ge.IGREG) then Test whether to change to Gregorian Calen-

dar.ja=int(0.01*jy)
julday=julday+2-ja+int(0.25*ja)

endif
return
END

(Astronomers number each 24-hour period, starting and ending at noon, with
a unique integer, the Julian Day Number [7]. Julian Day Zero was a very long
time ago; a convenient reference point is that Julian Day 2440000 began at noon
of May 23, 1968. If you know the Julian Day Number that begins at noon of a
given calendar date, then the day of the week of that date is obtained by adding
1 and taking the result modulo base 7; a zero answer corresponds to Sunday, 1 to
Monday, . . . , 6 to Saturday.)

Do-While iteration. Most good languages, except FORTRAN, provide for
structures like the following C example:

while (n<1000) {
n=2*n;
j++; In C this has the meaning j=j+1.

}

In fact, many FORTRAN implementations have the nonstandard extension

do while (n.lt.1000)
n=2*n
j=j+1

enddo

Within the FORTRAN-77 standard, however, the structure requires a tame label:

17 if (n.lt.1000) then
n=2*n
j=j+1

goto 17

endif



14 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

There are other ways of constructing a Do-While in FORTRAN, but we try to use
the above format consistently. You will quickly get used to a statement like 17if as
signaling this structure. Notice that the two final statements are not indented, since
they are part of the control structure, not of the inside block.

Do-Until iteration. In Pascal, for example, this is rendered as

REPEAT
n:=n DIV 2; Pascal’s integer divide is DIV.
k:=k+1;

UNTIL (n=1);

In FORTRAN we write

19 continue
n=n/2
k=k+1

if (n.ne.1) goto 19

Break. In this case, you have a loop that is repeated indefinitely until some
condition tested somewhere in the middle of the loop (and possibly tested in more
than one place) becomes true. At that point you wish to exit the loop and proceed
with what comes after it. Standard FORTRAN does not make this structure accessible
without labels. We will try to avoid using the structure when we can. Sometimes,
however, it is plainly necessary. We do not have the patience to argue with the
designers of computer languages over this point. In FORTRAN we write

13 continue
[statements before the test]
if (· · ·) goto 14

[statements after the test]
goto 13

14 continue

Here is a program that uses several different iteration structures. One of us was
once asked, for a scavenger hunt, to find the date of a Friday the 13th on which the
moon was full. This is a program which accomplishes that task, giving incidentally
all other Fridays the 13th as a by-product.

PROGRAM badluk
INTEGER ic,icon,idwk,ifrac,im,iybeg,iyend,iyyy,jd,jday,n,

* julday
REAL TIMZON,frac
PARAMETER (TIMZON=-5./24.) Time zone −5 is Eastern Standard Time.
DATA iybeg,iyend /1900,2000/ The range of dates to be searched.

C USES flmoon,julday
write (*,’(1x,a,i5,a,i5)’) ’Full moons on Friday the 13th from’,

* iybeg,’ to’,iyend
do 12 iyyy=iybeg,iyend Loop over each year,

do 11 im=1,12 and each month.
jday=julday(im,13,iyyy) Is the 13th a Friday?
idwk=mod(jday+1,7)
if(idwk.eq.5) then

n=12.37*(iyyy-1900+(im-0.5)/12.)
This value n is a first approximation to how many full moons have occurred
since 1900. We will feed it into the phase routine and adjust it up or down until



1.1 Program Organization and Control Structures 15

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

we determine that our desired 13th was or was not a full moon. The variable
icon signals the direction of adjustment.

icon=0
1 call flmoon(n,2,jd,frac) Get date of full moon n.

ifrac=nint(24.*(frac+TIMZON)) Convert to hours in correct time zone.
if(ifrac.lt.0)then Convert from Julian Days beginning at noon

to civil days beginning at midnight.jd=jd-1
ifrac=ifrac+24

endif
if(ifrac.gt.12)then

jd=jd+1
ifrac=ifrac-12

else
ifrac=ifrac+12

endif
if(jd.eq.jday)then Did we hit our target day?

write (*,’(/1x,i2,a,i2,a,i4)’) im,’/’,13,’/’,iyyy
write (*,’(1x,a,i2,a)’) ’Full moon ’,ifrac,

* ’ hrs after midnight (EST).’
Don’t worry if you are unfamiliar with FORTRAN’s esoteric input/output
statements; very few programs in this book do any input/output.

goto 2 Part of the break-structure, case of a match.
else Didn’t hit it.

ic=isign(1,jday-jd)
if(ic.eq.-icon) goto 2 Another break, case of no match.
icon=ic
n=n+ic

endif
goto 1

2 continue
endif

enddo 11

enddo 12

END

If you are merely curious, there were (or will be) occurrences of a full moon
on Friday the 13th (time zone GMT−5) on: 3/13/1903, 10/13/1905, 6/13/1919,
1/13/1922, 11/13/1970, 2/13/1987, 10/13/2000, 9/13/2019, and 8/13/2049.

Other “standard” structures. Our advice is to avoid them. Every
programming language has some number of “goodies” that the designer just couldn’t
resist throwing in. They seemed like a good idea at the time. Unfortunately they
don’t stand the test of time! Your program becomes difficult to translate into other
languages, and difficult to read (because rarely used structures are unfamiliar to the
reader). You can almost always accomplish the supposed conveniences of these
structures in other ways. Try to do so with the above standard structures, which
really are standard. If you can’t, then use straightforward, unstructured, tests and
goto’s. This will introduce real (not tame) statement labels, whose very existence
will warn the reader to give special thought to the program’s control flow.

In FORTRAN we consider the ill-advised control structures to be
• assigned goto and assign statements
• computed goto statement
• arithmetic if statement



16 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

About “Advanced Topics”

Material set in smaller type, like this, signals an “advanced topic,” either one outside of
the main argument of the chapter, or else one requiring of you more than the usual assumed
mathematical background, or else (in a few cases) a discussion that is more speculative or an
algorithm that is less well-tested. Nothing important will be lost if you skip the advanced
topics on a first reading of the book.

You may have noticed that, by its looping over the months and years, the programbadluk
avoids using any algorithm for converting a Julian Day Number back into a calendar date. A
routine for doing just this is not very interesting structurally, but it is occasionally useful:

SUBROUTINE caldat(julian,mm,id,iyyy)
INTEGER id,iyyy,julian,mm,IGREG
PARAMETER (IGREG=2299161)

Inverse of the function julday given above. Here julian is input as a Julian Day Number,
and the routine outputs mm,id, and iyyy as the month, day, and year on which the specified
Julian Day started at noon.

INTEGER ja,jalpha,jb,jc,jd,je
if(julian.ge.IGREG)then Cross-over to Gregorian Calendar produces

this correction.jalpha=int(((julian-1867216)-0.25)/36524.25)
ja=julian+1+jalpha-int(0.25*jalpha)

else if(julian.lt.0)then Make day number positive by adding in-
teger number of Julian centuries, then
subtract them off at the end.

ja=julian+36525*(1-julian/36525)
else

ja=julian
endif
jb=ja+1524
jc=int(6680.+((jb-2439870)-122.1)/365.25)
jd=365*jc+int(0.25*jc)
je=int((jb-jd)/30.6001)
id=jb-jd-int(30.6001*je)
mm=je-1
if(mm.gt.12)mm=mm-12
iyyy=jc-4715
if(mm.gt.2)iyyy=iyyy-1
if(iyyy.le.0)iyyy=iyyy-1
if(julian.lt.0)iyyy=iyyy-100*(1-julian/36525)
return
END

(For additional calendrical algorithms, applicable to various historical calendars, see [8].)

Some Habits and Assumed ANSI Extensions

Mentioning a few of our programming habits here will make it easier for you
to read the programs in this book.

• We habitually use m and n to refer to the logical dimensions of a matrix,
mp and np to refer to the physical dimensions. (These important concepts
are detailed in §2.0 and Figure 2.0.1.)

• Often, when a subroutine or procedure is to be passed some integer n, it
needs an internally preset value for the largest possible value that will be
passed. We habitually call this NMAX, and set it in a PARAMETER statement.
When we say in a comment, “largest value of n,” we do not mean to imply
that the program will fail algorithmically for larger values, but only that
NMAX must be altered.

• A number represented by TINY, usually a parameter, is supposed to be
much smaller than any number of interest to you, but not so small that it
underflows. Its use is usually prosaic, to prevent divide checks in some
circumstances.



1.1 Program Organization and Control Structures 17

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

As a matter of typography, the printed FORTRAN programs in this book, if typed
into a computer exactly as written, would violate the FORTRAN-77 standard in a few
trivial ways. The anomalies, which are not present in the machine-readable program
distributions, are as follows:

• As already discussed, we use enddo followed by the statement label
instead of continue preceded by the label.

• Standard FORTRAN reads no more than 72 characters on a line and ignores
input from column 73 onward. Longer statements are broken up onto
“continuation lines.” In the printed programs in this book, some lines
contain more than 72 characters. When the break to a continuation line
is not shown explicitly, it should be inserted when you type the program
into a computer.

• In standard FORTRAN, columns 1 through 6 on each line are used variously
for (i) statement labels, (ii) signaling a comment line, and (iii) signaling
a continuation line. We simplify the format slightly: To the left of the
“program left margin,” an integer is a statement label (not a “tame label”
as described above), an asterisk (*) indicates a continuation line, and a “C”
indicates a comment line. Comment lines shown in this way are generally
either USES statements (see §1.0), or else “commented-out program lines”
that are separately explained in each instance.

A small number of routines in this book require the use of functions that act
bitwise on integers, e.g., bitwise “and” or “exclusive or”. Unfortunately, although
these functions are available in virtually all modern FORTRAN implementations, they
are not a part of the FORTRAN-77 standard. Even more unfortunate is the fact that
there are two different naming conventions in widespread use. We use the names
iand(i,j), ior(i,j), not(i), ieor(i,j), and ishft(i,j), for and, or, not,
exclusive-or, and left-shift, respectively, as well as the subroutines ibset(i,j),
ibclr(i,j), and the logical function btest(i,j) for bit-set, bit-clear, and bit-test.
Some (mainly UNIX) FORTRAN compilers use a different set of names, with the
following correspondences:

Us. . . Them. . .
iand(i,j) = and(i,j)

ior(i,j) = or(i,j)

not(i) = not(i)

ieor(i,j) = xor(i,j)

ishft(i,j) = lshft(i,j)

ibset(i,j) = bis(j,i) Note reversed arguments!
ibclr(i,j) = bic(j,i) Ditto!
btest(i,j) = bit(j,i) Ditto!

If you are one of “Them,” you can either modify the small number of programs
affected (e.g., by inserting FORTRAN statement function definitions at the beginning
of the routines), or else link to an object file into which you have compiled the
trivial functions that define “our” names in terms of “yours,” as in the above table.
Standards really are important!

Hexadecimal constants, for which there is no standard notation in FORTRAN

compilers, occur at three places in Chapter 7: a program fragment at the end of §7.1,



18 Chapter 1. Preliminaries

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

and routines psdes and ran4 in §7.5. We use a notation like Z’3F800000’, which
is consistent with the new FORTRAN-90 standard, but you may need to change this
to, e.g., x’3f800000’, ’3F800000’X, or even 16#3F800000. In extremis, you can
convert the hex values to decimal integers; but note that most compilers will require
a negative decimal integer as the value of a hex constant with its high-order bit set.

As already mentioned in §1.0, the notationa(1:m), in program comments and in
the text, denotes the array element range a(1), a(2), . . . , a(m). Likewise, notations
like b(2:7) or c(1:m,1:n) are to be interpreted as denoting ranges of array indices.

CITED REFERENCES AND FURTHER READING:

Kernighan, B.W. 1978, The Elements of Programming Style (New York: McGraw-Hill). [1]

Yourdon, E. 1975, Techniques of Program Structure and Design (Englewood Cliffs, NJ: Prentice-
Hall). [2]

Meissner, L.P. and Organick, E.I. 1980, Fortran 77 Featuring Structured Programming (Reading,
MA: Addison-Wesley). [3]

Hoare, C.A.R. 1981, Communications of the ACM, vol. 24, pp. 75–83.

Wirth, N. 1983, Programming in Modula-2, 3rd ed. (New York: Springer-Verlag). [4]

Stroustrup, B. 1986, The C++ Programming Language (Reading, MA: Addison-Wesley). [5]

Borland International, Inc. 1989, Turbo Pascal 5.5 Object-Oriented Programming Guide (Scotts
Valley, CA: Borland International). [6]

Meeus, J. 1982, Astronomical Formulae for Calculators, 2nd ed., revised and enlarged (Rich-
mond, VA: Willmann-Bell). [7]

Hatcher, D.A. 1984, Quarterly Journal of the Royal Astronomical Society, vol. 25, pp. 53–55; see
also op. cit. 1985, vol. 26, pp. 151–155, and 1986, vol. 27, pp. 506–507. [8]

1.2 Error, Accuracy, and Stability

Although we assume no prior training of the reader in formal numerical analysis,
we will need to presume a common understanding of a few key concepts. We will
define these briefly in this section.

Computers store numbers not with infinite precision but rather in some ap-
proximation that can be packed into a fixed number of bits (binary digits) or bytes
(groups of 8 bits). Almost all computers allow the programmer a choice among
several different such representations or data types. Data types can differ in the
number of bits utilized (the wordlength), but also in the more fundamental respect
of whether the stored number is represented in fixed-point (also called integer) or
floating-point (also called real) format.

A number in integer representation is exact. Arithmetic between numbers in
integer representation is also exact, with the provisos that (i) the answer is not outside
the range of (usually, signed) integers that can be represented, and (ii) that division
is interpreted as producing an integer result, throwing away any integer remainder.


