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2.6 Singular Value Decomposition

There existsavery powerful set of techniquesfor dealing with sets of equations
or matricesthat are either singular or else numerically very closeto singular. In many
cases where Gaussian elimination and LU decomposition fail to give satisfactory
results, this set of techniques, known as singular value decomposition, or SVD,
will diagnose for you precisely what the problem is. In some cases, SVD will
not only diagnose the problem, it will also solve it, in the sense of giving you a
useful numerical answer, although, as we shall see, not necessarily “the’ answer
that you thought you should get.

SVD isalsothemethod of choicefor solving most linear | east-squaresproblems.
We will outline the relevant theory in this section, but defer detailed discussion of
the use of SVD in this application to Chapter 15, whose subject is the parametric
modeling of data

SV D methods are based on thefollowingtheorem of linear al gebra, whose proof
isbeyond our scope: Any M x N matrix A whose number of rows M isgreater than
or equa to its number of columns N, can be written as the product of an M x N
column-orthogonal matrix U, an N x N diagona matrix W with positive or zero
elements (the singular values), and thetranspose of an N x N orthogonal matrix V.
The various shapes of these matrices will be made clearer by the following tableau:

(2.6.1)

The matrices U and V are each orthogona in the sense that their columns are
orthonormal,

M
1<k<N
UirUin = kn -7 = 26.2
; i i 1<n<N (262)
N
k<N
> VikVin = bkn N (2.6.3)

j=1
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52 Chapter 2. Solution of Linear Algebraic Equations

or as a tableau,

u? : U = vt : v

(2.6.4)

SinceV is square, it is aso row-orthonormal, V - VT = 1.

The SVD decomposition can aso be carried out when M < N. In this case
the singular values w; for j = M +1,..., N are @l zero, and the corresponding
columns of U are also zero. Equation (2.6.2) then holdsonly for &, n < M.

The decomposition (2.6.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That isto say, it is unique up to (i) making
the same permutation of the columns of U, elements of W, and columns of V (or
rows of VT), or (ii) forming linear combinations of any columns of U and V whose
corresponding elements of W happen to be exactly equal. Animportant consequence
of the permutation freedom is that for the case M < N, anumerical algorithm for
the decomposition need not return zero w;'sfor j = M +1,...,N; the N — M
zero singular values can be scattered among al positionsj = 1,2,..., N.

At the end of this section, we give aroutine, svdcmp, that performs SVD on an
arbitrary matrix A, replacing it by U (they are the same shape) and returning W and
V separately. Theroutine svdcmp is based on aroutine by Forsythe et al. [1], which
isin turn based on the origina routine of Golub and Reinsch, found, in various
forms, in[2-4] and elsawhere. These references include extensive discussion of the
algorithmused. Asmuch aswe dislikethe use of black-box routines, we are going to
ask you to accept thisone, sinceit would take ustoo far afield to cover its necessary
background material here. Suffice it to say that the algorithm is very stable, and
that it is very unusua for it ever to misbehave. Most of the concepts that enter
the algorithm (Householder reduction to bidiagonal form, diagonaization by QR
procedure with shifts) will be discussed further in Chapter 11.

If you are as suspiciousof black boxesasweare, you will want to verify yourself
that svdcmp doeswhat we say it does. That isvery easy to do: Generate an arbitrary
matrix A, call the routine, and then verify by matrix multiplication that (2.6.1) and
(2.6.4) are setisfied. Since these two equations are the only defining requirements
for SVD, thisprocedure is (for the chosen A) a complete end-to-end check.

Now let us find out what SVD is good for.
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2.6 Singular Value Decomposition 53

SVD of a Square Matrix

If thematrix A issguare, N x N say, thenU, V, and W are all square matrices
of thesame size. Their inversesare also trivial to compute: U and V are orthogona,
so their inverses are equd to their transposes;, W is diagonal, so itsinverse is the
diagonal matrix whose elements are the reciprocals of the elementsw;. From (2.6.1)
it now follows immediately that the inverse of A is

A=t =V . [diag (1/w;)] - UT (2.6.5)

The only thing that can go wrong with this construction is for one of the w;’s
to be zero, or (numericaly) for it to be so small that its value is dominated by
roundoff error and therefore unknowable. If more than one of the w;’s have this
problem, then the matrix is even more singular. So, first of al, SVD gives you a
clear diagnosis of the situation.

Formally, the condition number of a matrix is defined as theratio of the largest
(in magnitude) of the w;’s to the smallest of the w;'s. A matrix is singuler if its
condition number is infinite, and it is ill-conditioned if its condition number is too
large, that is, if its reciprocal approaches the machine's floating-point precision (for
example, less than 10~ for single precision or 10~*2 for double).

For singular matrices, the concepts of nullspace and range are important.
Consider the familiar set of simultaneous equations

A-x=b (2.6.6)

where A is a square matrix, b and x are vectors. Equation (2.6.6) defines A as a
linear mapping from the vector space x to the vector space b. If A issingular, then
there is some subspace of x, called the nullspace, that is mapped to zero, A - x = 0.
The dimension of the nullspace (the number of linearly independent vectors x that
can be found in it) is caled the nullity of A.

Now, there is aso some subspace of b that can be “reached” by A, in the sense
that there exists some x which ismapped there. This subspace of b iscalled the range
of A. Thedimension of therangeiscalled therank of A. If A isnonsingular, thenits
range will beall of thevector space b, soitsrank is V. If A issingular, then the rank
will belessthan N. Infact, the relevant theorem is“rank plus nullity equals N.”

What has this to do with SYD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the columns of U whose
same-numbered elements w; are nonzero are an orthonormal set of basis vectors that
span the range; the columns of V whose same-numbered elements w; are zero are
an orthonormal basis for the nullspace.

Now let’s have another ook at solving the set of simultaneouslinear equations
(2.6.6) in the case that A issingular. First, the set of homogeneous equations, where
b =0, is solved immediately by SVD: Any column of V whose corresponding w
is zero yields a solution.

When the vector b on the right-hand side is not zero, the important question is
whether it liesin the range of A or not. If it does, then the singular set of equations
does have a solution x; in fact it has more than one solution, since any vector in
the nullspace (any column of V with a corresponding zero w;) can be added to x
in any linear combination.
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54 Chapter 2. Solution of Linear Algebraic Equations

If we want to single out one particular member of thissolution-set of vectors as
arepresentative, we might want to pick the onewith the smallest length |x|2. Hereis
how to find that vector using SVD: Simply replace 1/w; by zero if w; = 0. (Itisnot
very often that one getsto set oo = 0 !) Then compute (working from right to left)

x =V -[diag (1/w;)] - (UT - b) (26.7)

This will be the solution vector of smallest length; the columns of V that are in the
nullspace complete the specification of the solution set.

Proof: Consider |x + x’|, where x’ liesin the nullspace. Then, if W' denotes
the modified inverse of W with some elements zeroed,

x+X|=|V-w™.U" - b+x|
=|V- (W UT b+ VT .x)| (2.6.8)
=|w U b+ V" x|

Here thefirst equality follows from (2.6.7), the second and third from the orthonor-
mality of V. If you now examine the two terms that make up the sum on the
right-hand side, you will see that thefirst one has nonzero 5 components only where
w; # 0, whilethe second one, sincex’ isin the nullspace, has nonzero j components
only where w; = 0. Therefore the minimum length obtainsfor x’ = 0, g.e.d.

If b isnot in the range of the singular matrix A, then the set of equations (2.6.6)
has no solution. But here is some good news. If b is not in the range of A, then
equation (2.6.7) can still be used to construct a “solution” vector x. This vector X
will not exactly solve A - x = b. But, among al possible vectors x, it will do the
closest possiblejob in the least squares sense. In other words (2.6.7) finds

x whichminimizes r =|A-x—b| (2.6.9)

The number r is called the residual of the solution.

The proof issimilar to (2.6.8): Suppose we modify x by adding some arbitrary
x'. Then A - x — b is modified by adding some b’ = A - x’. Obvioudy b’ isin
the range of A. We then have

A x—b+b|=]U-W-V') - (V.-W.U"-b)—b+b|

=|(U-Ww-W - U"—1)-b+b|

= ]U~ [(w Wl 1)U b4 UT. b’]| (2.6.10)

=|WwW-w-1).UT b+ U b

Now, (W - W~ — 1) isadiagona matrix which has nonzero j components only for
wj = 0, while UT'b’ has nonzero j components only for wj # 0, sinceb’ liesinthe
range of A. Therefore the minimum obtains for b’ = 0, g.ed.

Figure 2.6.1 summarizes our discussion of SVD thus far.
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2.6 Singular Value Decomposition 55
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Figure 2.6.1. (a) A nonsingular matrix A maps a vector space into one of the same dimension. The
vector X is mapped into b, so that x satisfies the equation A - x = b. (b) A singular matrix A maps a
vector space into one of lower dimensionality, here a plane into a line, called the “range” of A. The
“nullspace” of A ismapped to zero. The solutionsof A - x = d consist of any one particular solution plus
any vector in the nullspace, here forming aline parallel to the nullspace. Singular value decompostion
(SVD) selects the particular solution closest to zero, as shown. The point c lies outside of the range
of A, so A -x = c has no solution. SVD finds the least-squares best compromise solution, namely a
solution of A - x = ¢/, as shown.

In the discussion since equation (2.6.6), we have been pretending that a matrix
either is singular or else isn't. That is of course true anayticaly. Numericaly,
however, the far more common situation is that some of the w;'s are very small
but nonzero, so that the matrix is ill-conditioned. In that case, the direct solution
methods of LU decomposition or Gaussian elimination may actually give a formal
solution to the set of equations (that is, a zero pivot may not be encountered); but
the solution vector may have wildly large components whose algebraic cancellation,
when multiplying by the matrix A, may give a very poor approximation to the
right-hand vector b. In such cases, the solution vector x obtained by zeroing the
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56 Chapter 2. Solution of Linear Algebraic Equations

small w;’s and then using equation (2.6.7) is very often better (in the sense of the
residua |A - x — b| being smaller) than both the direct-method solution and the SVD
solution where the small w;’s are |left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that
we are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equationsthat is so corrupted by roundoff error asto be at
best useless; usualy it isworse than useless since it “pulls’ the solution vector way
off towardsinfinity along some direction that is amost a nullspace vector. In doing
this, it compounds the roundoff problem and makes theresidud |A - x — b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small w;’s, and/or you have to have some idea
what size of computed residua |A - x — b| is acceptable.

As an example, here is a “backsubstitution” routine svbksb for evaluating
equation (2.6.7) and obtaining a solution vector x from a right-hand side b, given
that the SVD of a matrix A has already been calculated by a call to svdcmp. Note
that this routine presumes that you have aready zeroed the small w;’s. It does not
do this for you. If you haven't zeroed the small w;’s, then this routine is just as
ill-conditioned as any direct method, and you are misusing SVD.

SUBROUTINE svbksb(u,w,v,m,n,mp,np,b,x)
INTEGER m,mp,n,np,NMAX
REAL b(mp) ,u(mp,np),v(np,np) ,w(np) ,x(np)
PARAMETER (NMAX=500) Maximum anticipated value of n.
Solves A - X = B for a vector X, where A is specified by the arrays u, w, v as returned by
svdcmp. m and n are the logical dimensions of a, and will be equal for square matrices. mp
and np are the physical dimensions of a. b(1:m) is the input right-hand side. x(1:n) is
the output solution vector. No input quantities are destroyed, so the routine may be called
sequentially with different b’s.
INTEGER i,3,3j
REAL s, tmp(NMAX)
do12 j=1,n Calculate UTB.
s=0.
if (w(j).ne.0.)then Nonzero result only if w; is nonzero.
don i=1,m
s=s+u(i, j)*b(i)
enddo 11
s=s/w(j) This is the divide by w;.
endif
tmp (j)=s
enddo 12
dou j=1,n Matrix multiply by V' to get answer.
s=0.
do13 jj=1,n
s=s+v(j,j3)*tmp(jj)
enddo 13
x(j)=s
enddo 14
return
END

Note that a typica use of svdcmp and svbksb superficially resembles the
typical use of ludcmp and lubksb: In both cases, you decompose the left-hand
matrix A just once, and then can use the decomposition either once or many times
with different right-hand sides. The crucia differenceisthe“editing” of the singular
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2.6 Singular Value Decomposition 57

vaues before svbksb is called:

REAL a(np,np) ,u(np,np),w(np),v(np,np),b(np),x(np)

do12 i=1,n Copy a into u if you don't want it to be destroyed.
dou j=1,n
u(i,j)=a(i,j)
enddo 11
enddo 12
call svdcmp(u,n,n,np,np,w,v) SVD the square matrix a.
wmax=0. Will be the maximum singular value obtained.
do13 j=1,n
if (w(j) .gt.wmax)wmax=w(j)
enddo 13
wmin=wmax*1.0e-6 This is where we set the threshold for singular values
dos j=1,n allowed to be nonzero. The constant is typical,

if (w(j).lt.wmin)w(j)=0. but not universal. You have to experiment with
enddo 1 your own application.
call svbksb(u,w,v,n,n,np,np,b,x) Now we can backsubstitute.

SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N, then you are not
expecting a unique solution. Usually there will bean N — M dimensiona family
of solutions. If you want to find this whole solution space, then SVD can readily
do the job.

The SVD decomposition will yield N — M zero or negligible w;’s, since
M < N. There may be additiona zero w;'s from any degeneracies in your M
equations. Be sure that you find this many small w;’s, and zero them before calling
svbksb, which will giveyou the particul ar solution vector X. Asbefore, the columns
of V corresponding to zeroed w;'s are the basis vectors whose linear combinations,
added to the particular solution, span the solution space.

SVD for More Equations than Unknowns

This situation will occur in Chapter 15, when we wish to find the least-squares
solution to an overdetermined set of linear equations. In tableau, the equations
to be solved are

A Axl=10b (2.6.11)

The proofs that we gave above for the square case apply without modification
to the case of more equationsthan unknowns. The |east-squares solution vector X is
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58 Chapter 2. Solution of Linear Algebraic Equations

given by (2.6.7), which, with nonsquare matrices, looks like this,

x| = V - | diag(1/w;y) | - u”t “|b

(2.6.12)

In general, the matrix W will not be singular, and no w;’'s will need to be
set to zero. Occasionaly, however, there might be column degeneracies in A. In
this case you will need to zero some small w; values after all. The corresponding
column inV givesthe linear combination of x’'sthat isthen ill-determined even by
the supposedly overdetermined set.

Sometimes, athough you do not need to zero any w;'s for computational
reasons, you may nevertheless want to take note of any that are unusualy small:
Their corresponding columnsin V arelinear combinationsof X' swhich areinsensitive
to your data. Infact, you may then wish to zero these w;’s, to reduce the number of
free parameters in the fit. These matters are discussed more fully in Chapter 15.

Constructing an Orthonormal Basis

Suppose that you have N vectors in an M-dimensional vector space, with
N < M. Then the N vectors span some subspace of the full vector space.
Often you want to construct an orthonormal set of NV vectors that span the same
subspace. The textbook way to do this is by Gram-Schmidt orthogonalization,
starting with one vector and then expanding the subspace one dimension at a
time. Numerically, however, because of the build-up of roundoff errors, naive
Gram-Schmidt orthogonalization is terrible.

The right way to construct an orthonormal basis for a subspace is by SVD:
Form an M x N matrix A whose N columns are your vectors. Run the matrix
through svdcmp. The columns of the matrix U (which in fact replaces A on output
from svdcmp) are your desired orthonormal basis vectors.

You might also want to check the output w;’s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero w;’s should be discarded from the orthonormal basis set.

(QR factorization, discussed in §2.10, aso constructs an orthonormal basis,
see(5].)

Approximation of Matrices

Note that equation (2.6.1) can be rewritten to express any matrix A;; as asum
of outer products of columns of U and rows of V7, with the “weighting factors’
being the singular values wy,

N
Aij = Z wi Ui Vi (2.6.13)
k=1
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2.6 Singular Value Decomposition 59

If you ever encounter a situation where most of the singular values w; of a
matrix A are very small, then A will be well-approximated by only afew termsinthe
sum (2.6.13). This means that you have to store only afew columns of U and V (the
same k ones) and you will be able to recover, with good accuracy, the whole matrix.

Note also that it is very efficient to multiply such an approximated matrix by a
vector X: You just dot x with each of the stored columns of V, multiply the resulting
scalar by the corresponding wy, and accumulate that multiple of the corresponding
column of U. If your matrix is approximated by a smal number K of singular
values, then this computation of A - x takes only about K (M + N) multiplications,
instead of M N for the full matrix.

SVD Algorithm

Here isthe algorithm for constructing the singular value decomposition of any
matrix. See §11.2-§11.3, and also[4-5], for discussion relating to the underlying
method.

SUBROUTINE svdcmp(a,m,n,mp,np,w,v)
INTEGER m,mp,n,np,NMAX
REAL a(mp,np),v(np,np),w(np)
PARAMETER (NMAX=500)
USES pyt hag
Given a matrix a(1:m,1:n), with physical dimensions mp by np, this routine computes its
singular value decomposition, A = U - W - VL. The matrix U replaces a on output. The
diagonal matrix of singular values W is output as a vector w(1:n). The matrix V (not the
transpose V1) is output as v(1:n,1:n).
INTEGER i,its,j,jj,k,1,mm
REAL anorm,c,f,g,h,s,scale,x,y,z,rvi(NMAX) ,pythag
g=0.0 Householder reduction to bidiagonal form.
scale=0.0
anorm=0.0
do2 i=1,n
1=i+1
rvi(i)=scalex*g
g=0.0
s=0.0
scale=0.0
if(i.le.m)then
dou k=i,m
scale=scale+abs(a(k,i))
enddo 11
if (scale.ne.0.0)then
do 12 k=i,m
a(k,i)=a(k,i)/scale
s=s+a(k,i)*a(k,i)
enddo 12
f=a(i,i)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,i)=f-g
do1s j=1,n
s=0.0
do1s k=i,m
s=s+a(k,i)*a(k,j)
enddo 13
f=s/h
dow k=i,m
a(k,j)=a(k,j)+f*a(k,i)
enddo 14

Maximum anticipated value of n.
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60 Chapter 2. Solution of Linear Algebraic Equations

enddo 15
do 16 k=i,m
a(k,i)=scale*a(k,i)

enddo 16
endif
endif
w(i)=scale *g
g=0.0
s=0.0
scale=0.0
if((i.le.m).and. (i.ne.n))then
do17 k=1,n
scale=scale+abs(a(i,k))
enddo 17
if(scale.ne.0.0)then
do s k=1,n
a(i,k)=a(i,k)/scale
s=s+a(i,k)*a(i,k)
enddo 18
f=a(i,1)
g=-sign(sqrt(s),f)
h=f*g-s
a(i,l)=f-g
do19 k=1,n
rvi(k)=a(i,k)/h
enddo 19
dos j=1,m
s=0.0
do21 k=1,n
s=s+a(j,k)*a(i,k)
enddo 21
do2 k=1,n
a(j,k)=a(j,k)+s*xrvi(k)
enddo 22
enddo 23
do24 k=1,n
a(i,k)=scale*xa(i,k)
enddo 24
endif
endif
anorm=max (anorm, (abs(w(i))+abs(rv1(i))))
enddo 25
do3 i=n,1,-1 Accumulation of right-hand transformations.

if(i.1t.n)then
if(g.ne.0.0)then
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do2 j=1,n Double division to avoid possible underflow.
v(j,i)=(a(i,j)/ali,1))/g
enddo 26
do2 j=1l,n
s=0.0
do27 k=1,n
s=s+a(i,k)*v(k,j)
enddo 27
do2s k=1,n
v(k,j)=v(k,j)+s*v(k,1i)
enddo 28
enddo 29
endif
doa j=1l,n
v(i,j)=0.0
v(j,1)=0.0
enddo a1
endif
v(i,i)=1.0
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2.6 Singular Value Decomposition

g=rv1(i)
1=3i
enddo 22
do 3 i=min(m,n),1,-1 Accumulation of left-hand transformations.
1=i+1
g=w(i)
dosx j=1l,n
a(i,j)=0.0
enddo 3
if(g.ne.0.0)then
g=1.0/g
dos j=l,n
s=0.0
dox k=1,m
s=s+a(k,i)*a(k,j)
enddo 34
f=(s/a(i,i))*g
do 3 k=i,m
a(k,j)=a(k,j)+f*a(k,i)
enddo 35
enddo 36
dos7 j=i,m
a(j,i)=a(j,i)*g
enddo 37
else
doss j= i,m
a(j,i)=0.0
enddo 38
endif
a(i,i)=a(i,i)+1.0
enddo 39

do 49 k=n,1,-1 Diagonalization of the bidiagonal form: Loop over
do 4 its=1,30 singular values, and over allowed iterations.

doa 1=k,1,-1 Test for splitting.
nm=1-1 Note that rv1(1) is always zero.
if ((abs(rvi(l))+anorm).eq.anorm) goto 2
if ((abs(w(nm))+anorm) .eq.anorm) goto 1
enddo 4
c=0.0 Cancellation of rv1(1), if 1 > 1.
s=1.0
dos i=1,k
f=s*rv1(i)
rvi(i)=c*rvil(i)
if ((abs(f)+anorm).eq.anorm) goto 2
g=w(i)
h=pythag(f,g)
w(i)=h
h=1.0/h
c= (g*h)
s=-(f*h)
do4 j=1,m
y=a(j,nm)
z=a(j,1)
a(j,nm)=(y*c)+(z*s)
a(j,i)=-(y*s)+(z*c)
enddo #
enddo 43
z=w (k)
if(1.eq.k)then Convergence.
if(z.1t.0.0)then Singular value is made nonnegative.
w(k)=-z
dou j=1,n
v(j,k)=-v(j,k)
enddo 4
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62 Chapter 2. Solution of Linear Algebraic Equations

endif
goto 3
endif
if(its.eq.30) pause ’no convergence in svdcmp’
x=w(1) Shift from bottom 2-by-2 minor.
nm=k-1
y=w(nm)
g=rvi(nm)
h=rvi(k)
f=((y-z)*(y+z)+(g-h) *(g+h) ) / (2. 0*h*y)
g=pythag(f,1.0)
£=((x-2z)* (x+z) +h* ((y/(f+sign(g,£)))-h)) /x
c=1.0 Next QR transformation:
s=1.0
do47 j=1,nm
i=j+1
g=rv1(i)
y=w(i)
h=s*g
g=c*g
z=pythag(f,h)
rvi(j)=z
c=f/z
s=h/z
f= (x*xc)+(g*s)
g=-(x*s)+(g*c)
h=y*s
y=y*c
doss jj=1,n
x=v(jj,J)
z=v(jj,1i)
v(jj,j)= (x*xc)+(z*s)
v(jj,i)=-(x*s)+(z*c)
enddo 45
z=pythag(f,h)
w(j)=z Rotation can be arbitrary if z = 0.
if(z.ne.0.0)then
z=1.0/z
c=f*z
s=h*z
endif
f= (c*g)+(s*xy)
x=-(s*g)+(c*y)
doss jj=1,m
y=a(3j,3)
z=a(jj,i)
a(jj,j)= (y*xc)+(z*s)
a(jj,i)=-(y*s)+(z*c)
enddo 46
enddo 47
rv1(1)=0.0
rvi(k)=£f
w(k)=x
enddo 48
continue
enddo 49
return
END

FUNCTION pythag(a,b)
REAL a,b,pythag
Computes (a2 + b2)1/2 without destructive underflow or overflow.
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2.7 Sparse Linear Systems 63

REAL absa,absb
absa=abs(a)
absb=abs (b)
if (absa.gt.absb)then
pythag=absa*sqrt (1.+(absb/absa)**2)
else
if (absb.eq.0.)then
pythag=0.
else
pythag=absb*sqrt (1.+(absa/absb) **2)
endif
endif
return
END

(Double precision versions of svdcmp, svbksb, and pythag, named dsvdcmp,
dsvbksb, and dpythag, are used by the routine ratlsq in §5.13. You can easily
make the conversions, or €l se get the converted routinesfrom the Numerical Recipes
diskette.)
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2.7 Sparse Linear Systems

A system of linear equationsis called sparse if only arelatively small number
of its matrix elements a;; are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N?3) arithmetic operations
devoted to solving the set of equationsor inverting the matrix invol ve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not dways compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have aready considered one archetypa sparse form in §2.4, the band
diagonal matrix. In the tridiagona case, eg., we saw that it was possible to save
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