6.7 Bessel Functions of Fractional Order, Airy Functions, Spherical Bessel Functions

Many algorithms have been proposed for computing Bessel functions of fractional order numerically. Most of them are, in fact, not very good in practice. The routines given here are rather complicated, but they can be recommended wholeheartedly.

Ordinary Bessel Functions

The basic idea is Steed's method, which was originally developed [1] for Coulomb wave functions. The method calculates $J_{\nu}, J_{\nu}^{\prime}, Y_{\nu}$, and Y_{ν}^{\prime} simultaneously, and so involves four relations among these functions. Three of the relations come from two continued fractions, one of which is complex. The fourth is provided by the Wronskian relation

$$
\begin{equation*}
W \equiv J_{\nu} Y_{\nu}^{\prime}-Y_{\nu} J_{\nu}^{\prime}=\frac{2}{\pi x} \tag{6.7.1}
\end{equation*}
$$

The first continued fraction, CF1, is defined by

$$
\begin{align*}
f_{\nu} \equiv \frac{J_{\nu}^{\prime}}{J_{\nu}} & =\frac{\nu}{x}-\frac{J_{\nu+1}}{J_{\nu}} \tag{6.7.2}\\
& =\frac{\nu}{x}-\frac{1}{2(\nu+1) / x-} \frac{1}{2(\nu+2) / x-} \cdots
\end{align*}
$$

You can easily derive it from the three-term recurrence relation for Bessel functions: Start with equation (6.5.6) and use equation (5.5.18). Forward evaluation of the continued fraction by one of the methods of $\S 5.2$ is essentially equivalent to backward recurrence of the recurrence relation. The rate of convergence of CF1 is determined by the position of the turning point $x_{\mathrm{tp}}=\sqrt{\nu(\nu+1)} \approx \nu$, beyond which the Bessel functions become oscillatory. If $x \lesssim x_{\mathrm{tp}}$, convergence is very rapid. If $x \gtrsim x_{\mathrm{tp}}$, then each iteration of the continued fraction effectively increases ν by one until $x \lesssim x_{\mathrm{tp}}$; thereafter rapid convergence sets in. Thus the number of iterations of CF1 is of order x for large x. In the routine bessjy we set the maximum allowed number of iterations to 10,000 . For larger x, you can use the usual asymptotic expressions for Bessel functions.

One can show that the sign of J_{ν} is the same as the sign of the denominator of CF1 once it has converged.

The complex continued fraction CF2 is defined by

$$
\begin{equation*}
p+i q \equiv \frac{J_{\nu}^{\prime}+i Y_{\nu}^{\prime}}{J_{\nu}+i Y_{\nu}}=-\frac{1}{2 x}+i+\frac{i}{x} \frac{(1 / 2)^{2}-\nu^{2}}{2(x+i)+} \frac{(3 / 2)^{2}-\nu^{2}}{2(x+2 i)+} \cdots \tag{6.7.3}
\end{equation*}
$$

(We sketch the derivation of CF2 in the analogous case of modified Bessel functions in the next subsection.) This continued fraction converges rapidly for $x \gtrsim x_{\mathrm{tp}}$, while convergence fails as $x \rightarrow 0$. We have to adopt a special method for small x, which we describe below. For x not too small, we can ensure that $x \gtrsim x_{\mathrm{tp}}$ by a stable recurrence of J_{ν} and J_{ν}^{\prime} downwards to a value $\nu=\mu \lesssim x$, thus yielding the ratio f_{μ} at this lower value of ν. This is the stable direction for the recurrence relation. The initial values for the recurrence are

$$
\begin{equation*}
J_{\nu}=\text { arbitrary }, \quad J_{\nu}^{\prime}=f_{\nu} J_{\nu}, \tag{6.7.4}
\end{equation*}
$$

with the sign of the arbitrary initial value of J_{ν} chosen to be the sign of the denominator of CF1. Choosing the initial value of J_{ν} very small minimizes the possibility of overflow during the recurrence. The recurrence relations are

$$
\begin{align*}
J_{\nu-1} & =\frac{\nu}{x} J_{\nu}+J_{\nu}^{\prime} \\
J_{\nu-1}^{\prime} & =\frac{\nu-1}{x} J_{\nu-1}-J_{\nu} \tag{6.7.5}
\end{align*}
$$

Once CF2 has been evaluated at $\nu=\mu$, then with the Wronskian (6.7.1) we have enough relations to solve for all four quantities. The formulas are simplified by introducing the quantity

$$
\begin{equation*}
\gamma \equiv \frac{p-f_{\mu}}{q} \tag{6.7.6}
\end{equation*}
$$

Then

$$
\begin{align*}
J_{\mu} & = \pm\left(\frac{W}{q+\gamma\left(p-f_{\mu}\right)}\right)^{1 / 2} \tag{6.7.7}\\
J_{\mu}^{\prime} & =f_{\mu} J_{\mu} \tag{6.7.8}\\
Y_{\mu} & =\gamma J_{\mu} \tag{6.7.9}\\
Y_{\mu}^{\prime} & =Y_{\mu}\left(p+\frac{q}{\gamma}\right) \tag{6.7.10}
\end{align*}
$$

The sign of J_{μ} in (6.7.7) is chosen to be the same as the sign of the initial J_{ν} in (6.7.4).
Once all four functions have been determined at the value $\nu=\mu$, we can find them at the original value of ν. For J_{ν} and J_{ν}^{\prime}, simply scale the values in (6.7.4) by the ratio of (6.7.7) to the value found after applying the recurrence (6.7.5). The quantities Y_{ν} and Y_{ν}^{\prime} can be found by starting with the values in (6.7.9) and (6.7.10) and using the stable upwards recurrence

$$
\begin{equation*}
Y_{\nu+1}=\frac{2 \nu}{x} Y_{\nu}-Y_{\nu-1} \tag{6.7.11}
\end{equation*}
$$

together with the relation

$$
\begin{equation*}
Y_{\nu}^{\prime}=\frac{\nu}{x} Y_{\nu}-Y_{\nu+1} \tag{6.7.12}
\end{equation*}
$$

Now turn to the case of small x, when CF2 is not suitable. Temme [2] has given a good method of evaluating Y_{ν} and $Y_{\nu+1}$, and hence Y_{ν}^{\prime} from (6.7.12), by series expansions that accurately handle the singularity as $x \rightarrow 0$. The expansions work only for $|\nu| \leq 1 / 2$, and so now the recurrence (6.7.5) is used to evaluate f_{ν} at a value $\nu=\mu$ in this interval. Then one calculates J_{μ} from

$$
\begin{equation*}
J_{\mu}=\frac{W}{Y_{\mu}^{\prime}-Y_{\mu} f_{\mu}} \tag{6.7.13}
\end{equation*}
$$

and J_{μ}^{\prime} from (6.7.8). The values at the original value of ν are determined by scaling as before, and the Y 's are recurred up as before.

Temme's series are

$$
\begin{equation*}
Y_{\nu}=-\sum_{k=0}^{\infty} c_{k} g_{k} \quad Y_{\nu+1}=-\frac{2}{x} \sum_{k=0}^{\infty} c_{k} h_{k} \tag{6.7.14}
\end{equation*}
$$

Here

$$
\begin{equation*}
c_{k}=\frac{\left(-x^{2} / 4\right)^{k}}{k!} \tag{6.7.15}
\end{equation*}
$$

while the coefficients g_{k} and h_{k} are defined in terms of quantities p_{k}, q_{k}, and f_{k} that can be found by recursion:

$$
\begin{align*}
g_{k} & =f_{k}+\frac{2}{\nu} \sin ^{2}\left(\frac{\nu \pi}{2}\right) q_{k} \\
h_{k} & =-k g_{k}+p_{k} \\
p_{k} & =\frac{p_{k-1}}{k-\nu} \tag{6.7.16}\\
q_{k} & =\frac{q_{k-1}}{k+\nu} \\
f_{k} & =\frac{k f_{k-1}+p_{k-1}+q_{k-1}}{k^{2}-\nu^{2}}
\end{align*}
$$

The initial values for the recurrences are

$$
\begin{align*}
& p_{0}=\frac{1}{\pi}\left(\frac{x}{2}\right)^{-\nu} \Gamma(1+\nu) \\
& q_{0}=\frac{1}{\pi}\left(\frac{x}{2}\right)^{\nu} \Gamma(1-\nu) \tag{6.7.17}\\
& f_{0}=\frac{2}{\pi} \frac{\nu \pi}{\sin \nu \pi}\left[\cosh \sigma \Gamma_{1}(\nu)+\frac{\sinh \sigma}{\sigma} \ln \left(\frac{2}{x}\right) \Gamma_{2}(\nu)\right]
\end{align*}
$$

with

$$
\begin{align*}
\sigma & =\nu \ln \left(\frac{2}{x}\right) \\
\Gamma_{1}(\nu) & =\frac{1}{2 \nu}\left[\frac{1}{\Gamma(1-\nu)}-\frac{1}{\Gamma(1+\nu)}\right] \tag{6.7.18}\\
\Gamma_{2}(\nu) & =\frac{1}{2}\left[\frac{1}{\Gamma(1-\nu)}+\frac{1}{\Gamma(1+\nu)}\right]
\end{align*}
$$

The whole point of writing the formulas in this way is that the potential problems as $\nu \rightarrow 0$ can be controlled by evaluating $\nu \pi / \sin \nu \pi, \sinh \sigma / \sigma$, and Γ_{1} carefully. In particular, Temme gives Chebyshev expansions for $\Gamma_{1}(\nu)$ and $\Gamma_{2}(\nu)$. We have rearranged his expansion for Γ_{1} to be explicitly an even series in ν so that we can use our routine chebev as explained in $\S 5.8$.

The routine assumes $\nu \geq 0$. For negative ν you can use the reflection formulas

$$
\begin{align*}
& J_{-\nu}=\cos \nu \pi J_{\nu}-\sin \nu \pi Y_{\nu} \\
& Y_{-\nu}=\sin \nu \pi J_{\nu}+\cos \nu \pi Y_{\nu} \tag{6.7.19}
\end{align*}
$$

The routine also assumes $x>0$. For $x<0$ the functions are in general complex, but expressible in terms of functions with $x>0$. For $x=0, Y_{\nu}$ is singular.

Internal arithmetic in the routine is carried out in double precision. To maintain portability, complex arithmetic has been recoded with real variables.

```
    SUBROUTINE bessjy(x, xnu,rj,ry,rjp,ryp)
    INTEGER MAXIT
    REAL rj,rjp,ry,ryp,x,xnu,XMIN
    DOUBLE PRECISION EPS,FPMIN,PI
    PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2 .,
            PI=3.141592653589793d0)
    USES beschb
        Returns the Bessel functions rj = J , ry = Y , and their derivatives rjp = J , ryp = Y ,
        for positive }\textrm{x}\mathrm{ and for xnu = L}\geq0\mathrm{ . The relative accuracy is within one or two significant
        digits of EPS, except near a zero of one of the functions, where EPS controls its absolute
        accuracy. FPMIN is a number close to the machine's smallest floating-point number. All
        internal arithmetic is in double precision. To convert the entire routine to double precision,
        change the REAL declaration above and decrease EPS to 10-16. Also convert the subroutine
        beschb.
    INTEGER i,isign,l,nl
    DOUBLE PRECISION a,b,br,bi,c,cr,ci,d,del,del1,den,di,dlr,dli,
        dr,e,f,fact,fact2,fact3,ff,gam,gam1,gam2,gammi,gampl,h,
*
* p,pimu,pimu2,q,r,rjl,rjl1,rjmu,rjp1,rjpl,rjtemp,ry1,
* rymu,rymup,rytemp,sum,sum1,temp,w,x2,xi,xi2,xmu,xmu2
if(x.le.0..or.xnu.lt.0.) pause 'bad arguments in bessjy'
if(x.lt.XMIN)then
        nl is the number of downward recurrences of the J's and
        nl=int(xnu+.5d0)
        upward recurrences of Y's. xmu lies between -1/2 and
else 1/2 for x < XMIN, while it is chosen so that x is greater
        nl=max(0,int(xnu-x+1.5d0)) than the turning point for }\textrm{x}\geq\mathrm{ XMIN.
    endif
    xmu=xnu-nl
    xmu2=xmu*xmu
    xi=1.d0/x
    xi2=2.d0*xi
    w=xi2/PI The Wronskian.
```

```
isign=1
h=xnu*xi
if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT
        b=b+xi2
        d=b-d
        if(abs(d).lt.FPMIN)d=FPMIN
    c=b-1.d0/c
    if(abs(c).lt.FPMIN)c=FPMIN
    d=1.d0/d
    del=c*d
    h=del*h
    if(d.lt.0.d0)isign=-isign
    if(abs(del-1.d0).lt.EPS) goto 1
enddo 11
pause 'x too large in bessjy; try asymptotic expansion'
continue
rjl=isign*FPMIN
Initialize }\mp@subsup{J}{\nu}{}\mathrm{ and }\mp@subsup{J}{\nu}{\prime}\mathrm{ for downward recurrence.
rjpl=h*rjl
Store values for later rescaling.
rjl1=rjl
rjp1=rjpl
fact=xnu*xi
do 12 l=nl,1,-1
    rjtemp=fact*rjl+rjpl
    fact=fact-xi
    rjpl=fact*rjtemp-rjl
    rjl=rjtemp
enddo }1
if(rjl.eq.0.d0)rjl=EPS
f=rjpl/rjl
Now have unnormalized }\mp@subsup{J}{\mu}{}\mathrm{ and }\mp@subsup{J}{\mu}{\prime}\mathrm{ .
if(x.lt.XMIN) then
    Use series.
    x2=.5d0*x
    pimu=PI*xmu
    if(abs(pimu).lt.EPS)then
        fact=1.d0
    else
        fact=pimu/sin(pimu)
    endif
    d=-log(x2)
    e=xmu*d
    if(abs(e).lt.EPS)then
        fact2=1.d0
    else
        fact2=sinh(e)/e
    endif
    call beschb(xmu,gam1,gam2,gampl,gammi) Chebyshev evaluation of \Gamma}\mp@subsup{\Gamma}{1}{}\mathrm{ and }\mp@subsup{\Gamma}{2}{}\mathrm{ .
    ff=2.d0/PI*fact*(gam1*cosh(e)+gam2*fact2*d) fo.
    e=exp(e)
    p=e/(gampl*PI)
    po.
    q=1.d0/(e*PI*gammi) 
    pimu2=0.5d0*pimu
    if(abs(pimu2).lt.EPS)then
        fact3=1.d0
    else
        fact3=sin(pimu2)/pimu2
    endif
    r=PI*pimu2*fact3*fact3
    c=1.dO
    d=-x2*x2
    sum=ff+r*q
    sum1=p
```

1
do $13 \mathrm{i}=1$, MAXIT
$f f=(i * f f+p+q) /(i * i-x m u 2)$
$\mathrm{c}=\mathrm{c} * \mathrm{~d} / \mathrm{i}$
$\mathrm{p}=\mathrm{p} /(\mathrm{i}-\mathrm{xmu})$
$q=q /(i+x m u)$
$\mathrm{del}=\mathrm{c} *(\mathrm{ff}+\mathrm{r} * \mathrm{q})$
sum=sum+del
del1=c*p-i*del
sum1=sum1+del1
if (abs(del).lt.(1.d0+abs(sum))*EPS)goto 2
enddo 13
pause 'bessy series failed to converge'
continue
rymu=-sum
ry1=-sum1*xi2
rymup $=x m u * x i * r y m u-r y 1$
rjmu=w/ (rymup-f*rymu) Equation (6.7.13).
else $a=.25 d 0-x m u 2$
$\mathrm{p}=-.5 \mathrm{~d} 0 * x i$
$\mathrm{q}=1$. d 0
br=2.d0*x
bi=2.d0
fact $=a * x i /(p * p+q * q)$
cr=br+q*fact
$c i=b i+p * f a c t$
den=br*br+bi*bi
$d r=b r / d e n$
di=-bi/den
$\mathrm{dlr}=\mathrm{cr} * \mathrm{dr}-\mathrm{ci} * \mathrm{di}$
$d l i=c r * d i+c i * d r$
temp=p*dlr-q*dli
$q=p * d l i+q * d l r$
p=temp
do $14 \mathrm{i}=2$, MAXIT
$a=a+2 *(i-1)$
bi=bi+2.d0
$d r=a * d r+b r$
$d i=a * d i+b i$
if (abs(dr)+abs (di).lt. FPMIN) dr=FPMIN
fact=a/(cr*cr+ci*ci)
cr=br+cr*fact
ci=bi-ci*fact
if (abs(cr)+abs (ci).lt. FPMIN) cr=FPMIN
den=dr*dr+di*di
$d r=d r / d e n$
di=-di/den
dlr=cr*dr-ci*di
dli=cr*di+ci*dr
temp=p*dlr-q*dli
$\mathrm{q}=\mathrm{p} * \mathrm{dli}+\mathrm{q} * \mathrm{dl} \mathrm{r}$
$\mathrm{p}=\mathrm{temp}$
if (abs(dlr-1.d0)+abs(dli).lt.EPS) goto 3
enddo 14
pause 'cf2 failed in bessjy'
continue
$\operatorname{gam}=(p-f) / q$
$r j m u=\operatorname{sqrt}(w /((p-f) * \operatorname{gam}+q))$
Equations (6.7.6) - (6.7.10).
rjmu=sign(rjmu,rjl)
rymu=rjmu*gam
rymup=rymu*(p+q/gam)
ry1=xmu*xi*rymu-rymup
endif
fact=rjmu/rjl

rj=rjl1*fact	Scale original J_{ν} and J_{ν}^{\prime}.
rjp=rjp1*fact	
do $\begin{aligned} & 15 \\ & \quad \mathrm{i}=1, \mathrm{nl} \\ & \quad \text { rytemp }=(\mathrm{xmu}+\mathrm{i}) * \mathrm{x} \\ & \\ & \quad \text { rymu } \\ & \\ & \text { ry } 1=\text { ry } 1\end{aligned}$	Upward recurrence of Y_{ν}. ymu
enddo 15	
ry=rymu	
ryp=xnu*xi*rymu-ry1	
return	
END	

END
SUBROUTINE beschb ($\mathrm{x}, \operatorname{gam} 1$, gam2, gampl, gammi)
INTEGER NUSE1,NUSE2
DOUBLE PRECISION gam1, gam2, gammi, gampl, x
PARAMETER (NUSE1=5,NUSE2=5)
C USES chebev
Evaluates Γ_{1} and Γ_{2} by Chebyshev expansion for $|\mathrm{x}| \leq 1 / 2$. Also returns $1 / \Gamma(1+\mathrm{x})$ and
$1 / \Gamma(1-x)$. If converting to double precision, set NUSE1 $=7, \operatorname{NUSE} 2=8$.
REAL $\mathrm{xx}, \mathrm{c} 1(7), \mathrm{c} 2(8)$, chebev
SAVE c1,c2
DATA c1/-1.142022680371168d0,6.5165112670737d-3,
3.087090173086d-4,-3.4706269649d-6,6.9437664d-9,
3.67795d-11,-1.356d-13/
DATA c2/1.843740587300905d0,-7.68528408447867d-2,
$1.2719271366546 \mathrm{~d}-3,-4.9717367042 \mathrm{~d}-6,-3.31261198 \mathrm{~d}-8$,
$\begin{array}{ll}* & 1.2719271366546 \mathrm{~d}-3,-4.9717367042 \mathrm{~d}- \\ * & 2.423096 \mathrm{~d}-10,-1.702 \mathrm{~d}-13,-1.49 \mathrm{~d}-15 /\end{array}$
$\mathrm{xx}=8 . \mathrm{d} 0 * \mathrm{x} * \mathrm{x}-1 . \mathrm{d} 0$
Multiply x by 2 to make range be -1 to 1 , and then
$\operatorname{gam} 1=\operatorname{chebev}(-1 ., 1 ., c 1, \operatorname{NUSE} 1, \mathrm{xx})$ apply transformation for evaluating even Cheby-
gam2=chebev $(-1 ., 1 ., c 2$, NUSE2,$x x)$ shev series.
gam2 $=$ chebev $(-1 ., 1$
gampl $=$ gam2-x*gam1
gammi=gam2+x*gam1
return
END

Modified Bessel Functions

Steed's method does not work for modified Bessel functions because in this case CF2 is purely imaginary and we have only three relations among the four functions. Temme [3] has given a normalization condition that provides the fourth relation.
The Wronskian relation is

$$
\begin{equation*}
W \equiv I_{\nu} K_{\nu}^{\prime}-K_{\nu} I_{\nu}^{\prime}=-\frac{1}{x} \tag{6.7.20}
\end{equation*}
$$

The continued fraction CF1 becomes

$$
\begin{equation*}
f_{\nu} \equiv \frac{I_{\nu}^{\prime}}{I_{\nu}}=\frac{\nu}{x}+\frac{1}{2(\nu+1) / x+} \frac{1}{2(\nu+2) / x+} \cdots \tag{6.7.21}
\end{equation*}
$$

To get CF2 and the normalization condition in a convenient form, consider the sequence of confluent hypergeometric functions

$$
\begin{equation*}
z_{n}(x)=U(\nu+1 / 2+n, 2 \nu+1,2 x) \tag{6.7.22}
\end{equation*}
$$

for fixed ν. Then

$$
\begin{align*}
K_{\nu}(x) & =\pi^{1 / 2}(2 x)^{\nu} e^{-x} z_{0}(x) \tag{6.7.23}\\
\frac{K_{\nu+1}(x)}{K_{\nu}(x)} & =\frac{1}{x}\left[\nu+\frac{1}{2}+x+\left(\nu^{2}-\frac{1}{4}\right) \frac{z_{1}}{z_{0}}\right] \tag{6.7.24}
\end{align*}
$$

Equation (6.7.23) is the standard expression for K_{ν} in terms of a confluent hypergeometric function, while equation (6.7.24) follows from relations between contiguous confluent hypergeometric functions (equations 13.4.16 and 13.4.18 in Abramowitz and Stegun). Now the functions z_{n} satisfy the three-term recurrence relation (equation 13.4.15 in Abramowitz and Stegun)

$$
\begin{equation*}
z_{n-1}(x)=b_{n} z_{n}(x)+a_{n+1} z_{n+1} \tag{6.7.25}
\end{equation*}
$$

with

$$
\begin{align*}
b_{n} & =2(n+x) \\
a_{n+1} & =-\left[(n+1 / 2)^{2}-\nu^{2}\right] \tag{6.7.26}
\end{align*}
$$

Following the steps leading to equation (5.5.18), we get the continued fraction CF2

$$
\begin{equation*}
\frac{z_{1}}{z_{0}}=\frac{1}{b_{1}+} \frac{a_{2}}{b_{2}+} \cdots \tag{6.7.27}
\end{equation*}
$$

from which (6.7.24) gives $K_{\nu+1} / K_{\nu}$ and thus $K_{\nu}^{\prime} / K_{\nu}$.
Temme's normalization condition is that

$$
\begin{equation*}
\sum_{n=0}^{\infty} C_{n} z_{n}=\left(\frac{1}{2 x}\right)^{\nu+1 / 2} \tag{6.7.28}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=\frac{(-1)^{n}}{n!} \frac{\Gamma(\nu+1 / 2+n)}{\Gamma(\nu+1 / 2-n)} \tag{6.7.29}
\end{equation*}
$$

Note that the C_{n} 's can be determined by recursion:

$$
\begin{equation*}
C_{0}=1, \quad C_{n+1}=-\frac{a_{n+1}}{n+1} C_{n} \tag{6.7.30}
\end{equation*}
$$

We use the condition (6.7.28) by finding

$$
\begin{equation*}
S=\sum_{n=1}^{\infty} C_{n} \frac{z_{n}}{z_{0}} \tag{6.7.31}
\end{equation*}
$$

Then

$$
\begin{equation*}
z_{0}=\left(\frac{1}{2 x}\right)^{\nu+1 / 2} \frac{1}{1+S} \tag{6.7.32}
\end{equation*}
$$

and (6.7.23) gives K_{ν}.
Thompson and Barnett [4] have given a clever method of doing the sum (6.7.31) simultaneously with the forward evaluation of the continued fraction CF2. Suppose the continued fraction is being evaluated as

$$
\begin{equation*}
\frac{z_{1}}{z_{0}}=\sum_{n=0}^{\infty} \Delta h_{n} \tag{6.7.33}
\end{equation*}
$$

where the increments Δh_{n} are being found by, e.g., Steed's algorithm or the modified Lentz's algorithm of $\S 5.2$. Then the approximation to S keeping the first N terms can be found as

$$
\begin{equation*}
S_{N}=\sum_{n=1}^{N} Q_{n} \Delta h_{n} \tag{6.7.34}
\end{equation*}
$$

Here

$$
\begin{equation*}
Q_{n}=\sum_{k=1}^{n} C_{k} q_{k} \tag{6.7.35}
\end{equation*}
$$

To find K_{ν} and $K_{\nu+1}$ for small x we use series analogous to (6.7.14):

$$
\begin{equation*}
K_{\nu}=\sum_{k=0}^{\infty} c_{k} f_{k} \quad K_{\nu+1}=\frac{2}{x} \sum_{k=0}^{\infty} c_{k} h_{k} \tag{6.7.37}
\end{equation*}
$$

Here

$$
\begin{align*}
c_{k} & =\frac{\left(x^{2} / 4\right)^{k}}{k!} \\
h_{k} & =-k f_{k}+p_{k} \\
p_{k} & =\frac{p_{k-1}}{k-\nu} \tag{6.7.38}\\
q_{k} & =\frac{q_{k-1}}{k+\nu} \\
f_{k} & =\frac{k f_{k-1}+p_{k-1}+q_{k-1}}{k^{2}-\nu^{2}}
\end{align*}
$$

The initial values for the recurrences are

$$
\begin{align*}
& p_{0}=\frac{1}{2}\left(\frac{x}{2}\right)^{-\nu} \Gamma(1+\nu) \\
& q_{0}=\frac{1}{2}\left(\frac{x}{2}\right)^{\nu} \Gamma(1-\nu) \tag{6.7.39}\\
& f_{0}=\frac{\nu \pi}{\sin \nu \pi}\left[\cosh \sigma \Gamma_{1}(\nu)+\frac{\sinh \sigma}{\sigma} \ln \left(\frac{2}{x}\right) \Gamma_{2}(\nu)\right]
\end{align*}
$$

Both the series for small x, and CF2 and the normalization relation (6.7.28) require $|\nu| \leq 1 / 2$. In both cases, therefore, we recurse I_{ν} down to a value $\nu=\mu$ in this interval, find K_{μ} there, and recurse K_{ν} back up to the original value of ν.

The routine assumes $\nu \geq 0$. For negative ν use the reflection formulas

$$
\begin{align*}
I_{-\nu} & =I_{\nu}+\frac{2}{\pi} \sin (\nu \pi) K_{\nu} \tag{6.7.40}\\
K_{-\nu} & =K_{\nu}
\end{align*}
$$

Note that for large $x, I_{\nu} \sim e^{x}, K_{\nu} \sim e^{-x}$, and so these functions will overflow or underflow. It is often desirable to be able to compute the scaled quantities $e^{-x} I_{\nu}$ and $e^{x} K_{\nu}$. Simply omitting the factor e^{-x} in equation (6.7.23) will ensure that all four quantities will have the appropriate scaling. If you also want to scale the four quantities for small x when the series in equation (6.7.37) are used, you must multiply each series by e^{x}.

```
SUBROUTINE bessik(x,xnu,ri,rk,rip,rkp)
    INTEGER MAXIT
    REAL ri, rip,rk, rkp,x,xnu, XMIN
    DOUBLE PRECISION EPS,FPMIN,PI
    PARAMETER (EPS=1.e-10, FPMIN=1.e-30, MAXIT=10000, XMIN=2.,
        \(\mathrm{PI}=3.141592653589793 \mathrm{~d} 0\) )
    USES beschb
        Returns the modified Bessel functions ri \(=I_{\nu}, \mathrm{rk}=K_{\nu}\) and their derivatives rip \(=I_{\nu}^{\prime}\),
        \(\operatorname{rkp}=K_{\nu}^{\prime}\), for positive x and for \(\mathrm{xnu}=\nu \geq 0\). The relative accuracy is within one or
        two significant digits of EPS. FPMIN is a number close to the machine's smallest floating-
        point number. All internal arithmetic is in double precision. To convert the entire routine
        to double precision, change the REAL declaration above and decrease EPS to \(10^{-16}\). Also
        convert the subroutine beschb.
    INTEGER i,l,nl
    DOUBLE PRECISION a,a1,b,c,d,del,del1,delh,dels,e,f,fact,
        fact2,ff,gam1, gam2, gammi, gampl,h,p,pimu, q, q1, q2,
        qnew,ril,ril1,rimu,rip1,ripl,ritemp,rk1,rkmu,rkmup,
    rktemp,s,sum,sum1,x2,xi,xi2,xmu,xmu2
if(x.le.0..or.xnu.lt.0.) pause 'bad arguments in bessik'
```

$\mathrm{nl}=\mathrm{int}(\mathrm{xnu}+.5 \mathrm{dO}$)	nl is the number of downward recurrences
$\mathrm{xmu}=\mathrm{xnu}-\mathrm{nl}$	of the I 's and upward recurrences
xmu2=xmu*xmu	of K 's. xmu lies between $-1 / 2$ and
xi=1.d0/x	1/2.
xi2=2.d0*xi	
$\mathrm{h}=\mathrm{xnu*xi}$	Evaluate CF1 by modified Lentz's method
if (h.lt.FPMIN)h=FPMIN	(§5.2).
$\mathrm{b}=\mathrm{xi} 2 * \mathrm{xnu}$	
d=0.d0	
$\mathrm{c}=\mathrm{h}$	
do $11 \mathrm{i}=1, \mathrm{MAXIT}$	
$\mathrm{b}=\mathrm{b}+\mathrm{xi} 2$	
$\mathrm{d}=1 . \mathrm{d} 0 /(\mathrm{b}+\mathrm{d})$	Denominators cannot be zero here, so no
$c=b+1 . d 0 / c$	need for special precautions.
del=c*d	
$\mathrm{h}=\mathrm{del} * \mathrm{~h}$	
if (abs (del-1.d0).lt.EPS)goto 1	
enddo 11	
pause 'x too large in bessik; try asymptot continue	expansion'
ril=FPMIN	Initialize I_{ν} and I_{ν}^{\prime} for downward recur-
ripl=h*ril	rence.
ril1=ril	Store values for later rescaling.
rip1=ripl	
fact=xnu*xi	
do $12 \mathrm{l}=\mathrm{nl}, 1,-1$	
ritemp=fact*ril+ripl	
fact=fact-xi	
ripl=fact*ritemp+ril	
ril=ritemp	
enddo 12	
f=ripl/ril	Now have unnormalized I_{μ} and I_{μ}^{\prime}.
if (x.lt.XMIN) then Use series.	
$\mathrm{x} 2=.5 \mathrm{~d} 0 * \mathrm{x}$	
pimu=PI*xmu	
if (abs(pimu).lt.EPS)then	
fact=1.d0	
else	
fact=pimu/sin(pimu)	
endif	
$d=-\log (\mathrm{x} 2)$	
e=xmu*d	
if (abs(e).lt.EPS)then	
else	
fact2=sinh(e)/e	
endif	
call beschb (xmu,gam1,gam2,gampl,gammi)	Chebyshev evaluation of Γ_{1} and Γ_{2}.
$\mathrm{ff}=\mathrm{fact*}(\operatorname{gam} 1 * \cosh (\mathrm{e})+\mathrm{gam} 2 * \mathrm{fact2} 2 \mathrm{~d})$	
sum=ff	
$\mathrm{e}=\exp (\mathrm{e})$	
$\mathrm{p}=0.5 \mathrm{~d} 0 * \mathrm{e} / \mathrm{gampl}$	p_{0}.
$\mathrm{q}=0.5 \mathrm{~d} 0 /(\mathrm{e}$ *gammi)	q_{0}.
$\mathrm{c}=1 . \mathrm{d} 0$	
$\mathrm{d}=\mathrm{x} 2 * \mathrm{x} 2$	
sum1=p	
do $13 \mathrm{i}=1$, MAXIT	
$\mathrm{ff}=(\mathrm{i} * \mathrm{ff}+\mathrm{p}+\mathrm{q}) /(\mathrm{i} * \mathrm{i}-\mathrm{xmu} 2)$	
$\mathrm{c}=\mathrm{c} * \mathrm{~d} / \mathrm{i}$	
$p=p /(i-x m u)$	
$\mathrm{q}=\mathrm{q} /(\mathrm{i}+\mathrm{xmu})$	
$\mathrm{del}=\mathrm{c} * \mathrm{ff}$	
sum=sum+del	
del1 $=\mathrm{c} *(\mathrm{p}-\mathrm{i} * \mathrm{ff})$	

```
        sum1=sum1+del1
        if(abs(del).lt.abs(sum)*EPS)goto 2
    enddo }1
    pause 'bessk series failed to converge'
    continue
    rkmu=sum
    rk1=sum1*xi2 Evaluate CF2 by Steed's algorithm (§5.2),
    b=2.d0*(1.d0+x) which is OK because there can be no
    d=1.d0/b zero denominators.
    delh=d
    h=delh
    q1=0.d0 Initializations for recurrence (6.7.35).
    q2=1.d0
    a1=.25d0-xmu2
    c=a1
    q=c First term in equation (6.7.34).
    a=-a1
    s=1.d0+q*delh
    do 14 i=2,MAXIT
        a=a-2*(i-1)
        c=-a*c/i
        qnew=(q1-b*q2)/a
        q1=q2
        q2=qnew
        q=q+c*qnew
        b=b+2.d0
        d=1.d0/(b+a*d)
        delh=(b*d-1.d0)*delh
        h=h+delh
        dels=q*delh
        s=s+dels
        if(abs(dels/s).lt.EPS)goto 3 Need only test convergence of sum since
    enddo 14 CF2 itself converges more quickly.
    pause 'bessik: failure to converge in cf2'
    continue
    h=a1*h
    rkmu=sqrt(PI/ (2.d0*x))*exp(-x)/s
    rk1=rkmu*(xmu+x+.5d0-h)*xi
endif
rkmup=xmu*xi*rkmu-rk1
rimu=xi/(f*rkmu-rkmup)
ri=(rimu*ril1)/ril
rip=(rimu*rip1)/ril
do 15 i=1,nl
    rktemp=(xmu+i)*xi2*rk1+rkmu
    rkmu=rk1
    rk1=rktemp
enddo }1
rk=rkmu
rkp=xnu*xi*rkmu-rk1
return
END
Omit the factor \(\exp (-x)\) to scale all the returned functions by \(\exp (x)\) for \(x \geq\) XMIN.
Get \(I_{\mu}\) from Wronskian.
Scale original \(I_{\nu}\) and \(I_{\nu}^{\prime}\).
Upward recurrence of \(K_{\nu}\).
```

readable files (including this one) to any servercomputer, is stricty
visit website http://www.nr.com or call 1-800-872-7423 (North America only),or send email to trade@cup.cam.ac.uk (outside North America). Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-

Airy Functions

For positive x, the Airy functions are defined by

$$
\begin{equation*}
\operatorname{Ai}(x)=\frac{1}{\pi} \sqrt{\frac{x}{3}} K_{1 / 3}(z) \tag{6.7.41}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Bi}(x)=\sqrt{\frac{x}{3}}\left[I_{1 / 3}(z)+I_{-1 / 3}(z)\right] \tag{6.7.42}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\frac{2}{3} x^{3 / 2} \tag{6.7.43}
\end{equation*}
$$

By using the reflection formula (6.7.40), we can convert (6.7.42) into the computationally more useful form

$$
\begin{equation*}
\operatorname{Bi}(x)=\sqrt{x}\left[\frac{2}{\sqrt{3}} I_{1 / 3}(z)+\frac{1}{\pi} K_{1 / 3}(z)\right] \tag{6.7.44}
\end{equation*}
$$

so that Ai and Bi can be evaluated with a single call to bessik.
The derivatives should not be evaluated by simply differentiating the above expressions because of possible subtraction errors near $x=0$. Instead, use the equivalent expressions

$$
\begin{align*}
\operatorname{Ai}^{\prime}(x) & =-\frac{x}{\pi \sqrt{3}} K_{2 / 3}(z) \\
\operatorname{Bi}^{\prime}(x) & =x\left[\frac{2}{\sqrt{3}} I_{2 / 3}(z)+\frac{1}{\pi} K_{2 / 3}(z)\right] \tag{6.7.45}
\end{align*}
$$

The corresponding formulas for negative arguments are

$$
\begin{align*}
\mathrm{Ai}(-x) & =\frac{\sqrt{x}}{2}\left[J_{1 / 3}(z)-\frac{1}{\sqrt{3}} Y_{1 / 3}(z)\right] \\
\mathrm{Bi}(-x) & =-\frac{\sqrt{x}}{2}\left[\frac{1}{\sqrt{3}} J_{1 / 3}(z)+Y_{1 / 3}(z)\right] \\
\mathrm{Ai}^{\prime}(-x) & =\frac{x}{2}\left[J_{2 / 3}(z)+\frac{1}{\sqrt{3}} Y_{2 / 3}(z)\right] \tag{6.7.46}\\
\mathrm{Bi}^{\prime}(-x) & =\frac{x}{2}\left[\frac{1}{\sqrt{3}} J_{2 / 3}(z)-Y_{2 / 3}(z)\right]
\end{align*}
$$

SUBROUTINE airy(x, ai,bi,aip,bip)

REAL ai,aip,bi,bip,x
C USES bessik,bessjy
Returns Airy functions $\operatorname{Ai}(x), \operatorname{Bi}(x)$, and their derivatives $\operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)$.
REAL absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z,

* PI,THIRD, TWOTHR, ONOVRT

PARAMETER (PI=3.1415927,THIRD=1./3.,TWOTHR=2.*THIRD,

* ONOVRT=.57735027)
absx=abs(x)
rootx=sqrt(absx)
z=TWOTHR*absx*rootx
if(x.gt.0.) then
call bessik(z,THIRD,ri,rk,rip,rkp)
ai=rootx*ONOVRT*rk/PI
bi=rootx*(rk/PI+2.*ONOVRT*ri)
call bessik(z,TWOTHR,ri,rk,rip,rkp)
aip $=-x *$ ONOVRT $* r k / P I$
bip=x*(rk/PI+2.*ONOVRT*ri)
else if(x.lt.0.)then
call bessjy(z,THIRD,rj,ry,rjp,ryp)
ai=. $5 *$ rootx* (rj-ONOVRT*ry)
bi=-. $5 *$ rootx* (ry+ONOVRT*rj)
call bessjy(z,TWOTHR,rj,ry,rjp,ryp)
aip $=.5 * \operatorname{absx} *($ ONOVRT $* r y+r j)$
bip=.5*absx*(ONOVRT*rj-ry)
else
ai=. 35502805
bi=ai/ONOVRT

```
    aip=-. 25881940
    bip=-aip/ONOVRT
endif
return
END
```


Spherical Bessel Functions

For integer n, spherical Bessel functions are defined by

$$
\begin{align*}
j_{n}(x) & =\sqrt{\frac{\pi}{2 x}} J_{n+(1 / 2)}(x) \tag{6.7.47}\\
y_{n}(x) & =\sqrt{\frac{\pi}{2 x}} Y_{n+(1 / 2)}(x)
\end{align*}
$$

They can be evaluated by a call to bessjy, and the derivatives can safely be found from the derivatives of equation (6.7.47).

Note that in the continued fraction CF2 in (6.7.3) just the first term survives for $\nu=1 / 2$. Thus one can make a very simple algorithm for spherical Bessel functions along the lines of bessjy by always recursing j_{n} down to $n=0$, setting p and q from the first term in CF2, and then recursing y_{n} up. No special series is required near $x=0$. However, bessjy is already so efficient that we have not bothered to provide an independent routine for spherical Bessels.

```
SUBROUTINE sphbes(n,x,sj,sy,sjp,syp)
INTEGER n
REAL sj,sjp,sy,syp,x
C USES bessjy
    Returns spherical Bessel functions }\mp@subsup{j}{n}{}(x),\mp@subsup{y}{n}{}(x)\mathrm{ , and their derivatives }\mp@subsup{j}{n}{\prime}(x),\mp@subsup{y}{n}{\prime}(x)\mathrm{ for
    integer n.
REAL factor,order,rj,rjp,ry,ryp,RTPIO2
PARAMETER (RTPIO2=1.2533141)
if(n.lt.0.or.x.le.0.)pause 'bad arguments in sphbes'
order=n+0.5
call bessjy(x,order,rj,ry,rjp,ryp)
factor=RTPIO2/sqrt(x)
sj=factor*rj
sy=factor*ry
sjp=factor*rjp-sj/(2.*x)
syp=factor*ryp-sy/(2.*x)
return
END
```

CITED REFERENCES AND FURTHER READING:
Barnett, A.R., Feng, D.H., Steed, J.W., and Goldfarb, L.J.B. 1974, Computer Physics Communications, vol. 8, pp. 377-395. [1]
Temme, N.M. 1976, Journal of Computational Physics, vol. 21, pp. 343-350 [2]; 1975, op. cit., vol. 19, pp. 324-337. [3]
Thompson, I.J., and Barnett, A.R. 1987, Computer Physics Communications, vol. 47, pp. 245257. [4]

Barnett, A.R. 1981, Computer Physics Communications, vol. 21, pp. 297-314.
Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490-509.
Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathematics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by Dover Publications, New York), Chapter 10.

