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do 12 j=1,ncom
df1dim=df1dim+df(j)*xicom(j)

enddo 12

return
END

CITED REFERENCES AND FURTHER READING:
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Press), Chapter III.1.7 (by K.W. Brodlie). [2]
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10.7 Variable Metric Methods in
Multidimensions

The goal of variable metric methods, which are sometimes called quasi-Newton
methods, is not different from the goal of conjugate gradient methods: to accumulate
information from successive line minimizations so that N such line minimizations
lead to the exact minimum of a quadratic form in N dimensions. In that case, the
method will also be quadratically convergent for more general smooth functions.

Both variable metric and conjugate gradient methods require that you are able to
compute your function’s gradient, or first partial derivatives, at arbitrary points. The
variable metric approach differs from the conjugate gradient in the way that it stores
and updates the information that is accumulated. Instead of requiring intermediate
storage on the order of N , the number of dimensions, it requires a matrix of size
N ×N . Generally, for any moderate N , this is an entirely trivial disadvantage.

On the other hand, there is not, as far as we know, any overwhelming advantage
that the variable metric methods hold over the conjugate gradient techniques, except
perhaps a historical one. Developed somewhat earlier, and more widely propagated,
the variable metric methods have by now developed a wider constituency of satisfied
users. Likewise, some fancier implementations of variable metric methods (going
beyond the scope of this book, see below) have been developed to a greater level of
sophistication on issues like the minimization of roundoff error, handling of special
conditions, and so on. We tend to use variable metric rather than conjugate gradient,
but we have no reason to urge this habit on you.

Variable metric methods come in two main flavors. One is theDavidon-Fletcher-
Powell (DFP) algorithm (sometimes referred to as simply Fletcher-Powell). The
other goes by the name Broyden-Fletcher-Goldfarb-Shanno (BFGS). The BFGS and
DFP schemes differ only in details of their roundoff error, convergence tolerances,
and similar “dirty” issues which are outside of our scope [1,2]. However, it has
become generally recognized that, empirically, the BFGS scheme is superior in these
details. We will implement BFGS in this section.

As before, we imagine that our arbitrary function f(x) can be locally approx-
imated by the quadratic form of equation (10.6.1). We don’t, however, have any
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information about the values of the quadratic form’s parameters A and b, except
insofar as we can glean such information from our function evaluations and line
minimizations.

The basic idea of the variable metric method is to build up, iteratively, a good
approximation to the inverse Hessian matrix A−1, that is, to construct a sequence
of matrices Hi with the property,

lim
i→∞

Hi = A−1 (10.7.1)

Even better if the limit is achieved after N iterations instead of ∞.
The reason that variable metric methods are sometimes called quasi-Newton

methods can now be explained. Consider finding a minimum by using Newton’s
method to search for a zero of the gradient of the function. Near the current point
xi, we have to second order

f(x) = f(xi) + (x− xi) · ∇f(xi) + 1
2
(x− xi) · A · (x− xi) (10.7.2)

so
∇f(x) = ∇f(xi) + A · (x− xi) (10.7.3)

In Newton’s method we set ∇f(x) = 0 to determine the next iteration point:

x− xi = −A−1 · ∇f(xi) (10.7.4)

The left-hand side is the finite step we need take to get to the exact minimum; the
right-hand side is known once we have accumulated an accurate H ≈ A−1.

The “quasi” in quasi-Newton is because we don’t use the actual Hessian matrix
of f , but instead use our current approximation of it. This is often better than
using the true Hessian. We can understand this paradoxical result by considering the
descent directions of f at xi. These are the directions p along which f decreases:
∇f ·p < 0. For the Newton direction (10.7.4) to be a descent direction, we must have

∇f(xi) · (x− xi) = −(x− xi) ·A · (x − xi) < 0 (10.7.5)

that is, A must be positive definite. In general, far from a minimum, we have no
guarantee that the Hessian is positive definite. Taking the actual Newton step with
the real Hessian can move us to points where the function is increasing in value.
The idea behind quasi-Newton methods is to start with a positive definite, symmetric
approximation to A (usually the unit matrix) and build up the approximating Hi’s
in such a way that the matrix Hi remains positive definite and symmetric. Far from
the minimum, this guarantees that we always move in a downhill direction. Close to
the minimum, the updating formula approaches the true Hessian and we enjoy the
quadratic convergence of Newton’s method.

When we are not close enough to the minimum, taking the full Newton step
p even with a positive definite A need not decrease the function; we may move
too far for the quadratic approximation to be valid. All we are guaranteed is that
initially f decreases as we move in the Newton direction. Once again we can use
the backtracking strategy described in §9.7 to choose a step along the direction of
the Newton step p, but not necessarily all the way.
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We won’t rigorously derive the DFP algorithm for taking Hi into Hi+1; you
can consult [3] for clear derivations. Following Brodlie (in [2]), we will give the
following heuristic motivation of the procedure.

Subtracting equation (10.7.4) at xi+1 from that same equation at xi gives

xi+1 − xi = A−1 · (∇fi+1 −∇fi) (10.7.6)

where ∇fj ≡ ∇f(xj). Having made the step from xi to xi+1, we might reasonably
want to require that the new approximation Hi+1 satisfy (10.7.6) as if it were
actually A−1, that is,

xi+1 − xi = Hi+1 · (∇fi+1 −∇fi) (10.7.7)

We might also imagine that the updating formula should be of the form Hi+1 =
Hi + correction.

What “objects” are around out of which to construct a correction term? Most
notable are the two vectors xi+1 − xi and ∇fi+1 − ∇fi; and there is also Hi.
There are not infinitely many natural ways of making a matrix out of these objects,
especially if (10.7.7) must hold! One such way, the DFP updating formula, is

Hi+1 = Hi +
(xi+1 − xi)⊗ (xi+1 − xi)

(xi+1 − xi) · (∇fi+1 −∇fi)

− [Hi · (∇fi+1 −∇fi)]⊗ [Hi · (∇fi+1 −∇fi)]
(∇fi+1 −∇fi) ·Hi · (∇fi+1 −∇fi)

(10.7.8)

where ⊗ denotes the “outer” or “direct” product of two vectors, a matrix: The ij
component of u⊗v isuivj . (You might want to verify that 10.7.8 does satisfy 10.7.7.)

The BFGS updating formula is exactly the same, but with one additional term,

· · · + [(∇fi+1 −∇fi) ·Hi · (∇fi+1 −∇fi)] u ⊗ u (10.7.9)

where u is defined as the vector

u ≡ (xi+1 − xi)
(xi+1 − xi) · (∇fi+1 −∇fi)

− Hi · (∇fi+1 −∇fi)
(∇fi+1 −∇fi) ·Hi · (∇fi+1 −∇fi)

(10.7.10)

(You might also verify that this satisfies 10.7.7.)
You will have to take on faith — or else consult [3] for details of — the “deep”

result that equation (10.7.8), with or without (10.7.9), does in fact converge to A−1

in N steps, if f is a quadratic form.
Here now is the routine dfpmin that implements the quasi-Newton method, and

uses lnsrch from §9.7. As mentioned at the end of newt in §9.7, this algorithm
can fail if your variables are badly scaled.
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SUBROUTINE dfpmin(p,n,gtol,iter,fret,func,dfunc)
INTEGER iter,n,NMAX,ITMAX
REAL fret,gtol,p(n),func,EPS,STPMX,TOLX
PARAMETER (NMAX=50,ITMAX=200,STPMX=100.,EPS=3.e-8,TOLX=4.*EPS)
EXTERNAL dfunc,func

C USES dfunc,func,lnsrch
Given a starting point p(1:n) that is a vector of length n, the Broyden-Fletcher-Goldfarb-
Shanno variant of Davidon-Fletcher-Powell minimization is performed on a function func,
using its gradient as calculated by a routine dfunc. The convergence requirement on zeroing
the gradient is input as gtol. Returned quantities are p(1:n) (the location of the mini-
mum), iter (the number of iterations that were performed), and fret (the minimum value
of the function). The routine lnsrch is called to perform approximate line minimizations.
Parameters: NMAX is the maximum anticipated value of n; ITMAX is the maximum allowed
number of iterations; STPMX is the scaled maximum step length allowed in line searches;
TOLX is the convergence criterion on x values.

INTEGER i,its,j
LOGICAL check
REAL den,fac,fad,fae,fp,stpmax,sum,sumdg,sumxi,temp,test,

* dg(NMAX),g(NMAX),hdg(NMAX),hessin(NMAX,NMAX),
* pnew(NMAX),xi(NMAX)

fp=func(p) Calculate starting function value and gradient,
call dfunc(p,g)
sum=0.
do 12 i=1,n and initialize the inverse Hessian to the unit matrix.

do 11 j=1,n
hessin(i,j)=0.

enddo 11

hessin(i,i)=1.
xi(i)=-g(i) Initial line direction.
sum=sum+p(i)**2

enddo 12

stpmax=STPMX*max(sqrt(sum),float(n))
do 27 its=1,ITMAX Main loop over the iterations.

iter=its
call lnsrch(n,p,fp,g,xi,pnew,fret,stpmax,check,func)

The new function evaluation occurs in lnsrch; save the function value in fp for the next
line search. It is usually safe to ignore the value of check.

fp=fret
do 13 i=1,n

xi(i)=pnew(i)-p(i) Update the line direction,
p(i)=pnew(i) and the current point.

enddo 13

test=0. Test for convergence on ∆x.
do 14 i=1,n

temp=abs(xi(i))/max(abs(p(i)),1.)
if(temp.gt.test)test=temp

enddo 14

if(test.lt.TOLX)return
do 15 i=1,n Save the old gradient,

dg(i)=g(i)
enddo 15

call dfunc(p,g) and get the new gradient.
test=0. Test for convergence on zero gradient.
den=max(fret,1.)
do 16 i=1,n

temp=abs(g(i))*max(abs(p(i)),1.)/den
if(temp.gt.test)test=temp

enddo 16

if(test.lt.gtol)return
do 17 i=1,n Compute difference of gradients,

dg(i)=g(i)-dg(i)
enddo 17

do 19 i=1,n and difference times current matrix.
hdg(i)=0.



422 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

do 18 j=1,n
hdg(i)=hdg(i)+hessin(i,j)*dg(j)

enddo 18

enddo 19

fac=0. Calculate dot products for the denominators.
fae=0.
sumdg=0.
sumxi=0.
do 21 i=1,n

fac=fac+dg(i)*xi(i)
fae=fae+dg(i)*hdg(i)
sumdg=sumdg+dg(i)**2
sumxi=sumxi+xi(i)**2

enddo 21

if(fac.gt.sqrt(EPS*sumdg*sumxi))then Skip update if fac not sufficiently positive.
fac=1./fac
fad=1./fae
do 22 i=1,n The vector that makes BFGS different from DFP:

dg(i)=fac*xi(i)-fad*hdg(i)
enddo 22

do 24 i=1,n The BFGS updating formula:
do 23 j=i,n

hessin(i,j)=hessin(i,j)+fac*xi(i)*xi(j)
* -fad*hdg(i)*hdg(j)+fae*dg(i)*dg(j)

hessin(j,i)=hessin(i,j)
enddo 23

enddo 24

endif
do 26 i=1,n Now calculate the next direction to go,

xi(i)=0.
do 25 j=1,n

xi(i)=xi(i)-hessin(i,j)*g(j)
enddo 25

enddo 26

enddo 27 and go back for another iteration.
pause ’too many iterations in dfpmin’
return
END

Quasi-Newton methods like dfpmin work well with the approximate line
minimization done by lnsrch. The routines powell (§10.5) and frprmn (§10.6),
however, need more accurate line minimization, which is carried out by the routine
linmin.

Advanced Implementations of Variable Metric Methods

Although rare, it can conceivably happen that roundoff errors cause the matrix Hi to
become nearly singular or non-positive-definite. This can be serious, because the supposed
search directions might then not lead downhill, and because nearly singular Hi’s tend to give
subsequent Hi’s that are also nearly singular.

There is a simple fix for this rare problem, the same as was mentioned in §10.4: In case
of any doubt, you should restart the algorithm at the claimed minimum point, and see if it
goes anywhere. Simple, but not very elegant. Modern implementations of variable metric
methods deal with the problem in a more sophisticated way.

Instead of building up an approximation to A−1, it is possible to build up an approximation
of A itself. Then, instead of calculating the left-hand side of (10.7.4) directly, one solves
the set of linear equations

A · (xm − xi) = −∇f(xi) (10.7.11)

At first glance this seems like a bad idea, since solving (10.7.11) is a process of order
N3 — and anyway, how does this help the roundoff problem? The trick is not to store A but
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rather a triangular decomposition of A, its Cholesky decomposition (cf. §2.9). The updating
formula used for the Cholesky decomposition of A is of order N2 and can be arranged to
guarantee that the matrix remains positive definite and nonsingular, even in the presence of
finite roundoff. This method is due to Gill and Murray [1,2].
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10.8 Linear Programming and the Simplex
Method

The subject of linear programming, sometimes called linear optimization,
concerns itself with the followingproblem: ForN independent variables x1, . . . , xN ,
maximize the function

z = a01x1 + a02x2 + · · ·+ a0NxN (10.8.1)

subject to the primary constraints

x1 ≥ 0, x2 ≥ 0, . . . xN ≥ 0 (10.8.2)

and simultaneously subject to M = m1 + m2 + m3 additional constraints, m1 of
them of the form

ai1x1 + ai2x2 + · · ·+ aiNxN ≤ bi (bi ≥ 0) i = 1, . . . , m1 (10.8.3)

m2 of them of the form

aj1x1 + aj2x2 + · · ·+ ajNxN ≥ bj ≥ 0 j = m1 + 1, . . . , m1 +m2 (10.8.4)

and m3 of them of the form

ak1x1 + ak2x2 + · · ·+ akNxN = bk ≥ 0

k = m1 +m2 + 1, . . . , m1 + m2 + m3
(10.8.5)

The various aij’s can have either sign, or be zero. The fact that the b’s must all be
nonnegative (as indicated by the final inequality in the above three equations) is a
matter of convention only, since you can multiply any contrary inequality by −1.
There is no particular significance in the number of constraints M being less than,
equal to, or greater than the number of unknowns N .


