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large as ±K, then you must append a buffer zone of K zeros at the end of both
input data sets. If you want all possible lags from N data points (not a usual thing),
then you will need to pad the data with an equal number of zeros; this is the extreme
case. So here is the program:

SUBROUTINE correl(data1,data2,n,ans)
INTEGER n,NMAX
REAL data1(n),data2(n)
COMPLEX ans(n)
PARAMETER (NMAX=4096) Maximum anticipated FFT size.

C USES realft,twofft
Computes the correlation of two real data sets data1(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans
must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if data1 lags data2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2
COMPLEX fft(NMAX)
call twofft(data1,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no2+1

ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
lation.enddo 11

ans(1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

As in convlv, it would be better to substitute two calls to realft for the one
call to twofft, if data1 and data2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelation of a sampled function gj is just the discrete
correlation of the function with itself. Obviously this is always symmetric with
respect to positive and negative lags. Feel free to use the above routine correl

to obtain autocorrelations, simply calling it with the same data vector in both
arguments. If the inefficiency bothers you, routine realft can, of course, be used
to transform the data vector instead.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13–2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
from a “corrupted” signal. The particular situation we consider is this: There is some
underlying, uncorrupted signal u(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement device is a
corrupted signal c(t). The signal c(t) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,
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so that the true signal u(t) is convolved with (smeared out by) some known response
function r(t) to give a smeared signal s(t),

s(t) =

∫ ∞
−∞

r(t− τ )u(τ ) dτ or S(f) = R(f)U(f) (13.3.1)

where S, R, U are the Fourier transforms of s, r, u, respectively. Second, the
measured signal c(t) may contain an additional component of noise n(t),

c(t) = s(t) + n(t) (13.3.2)

We already know how to deconvolve the effects of the response function r in
the absence of any noise (§13.1); we just divideC(f) by R(f) to get a deconvolved
signal. We now want to treat the analogous problem when noise is present. Our
task is to find the optimal filter, φ(t) or Φ(f), which, when applied to the measured
signal c(t) or C(f), and then deconvolved by r(t) or R(f), produces a signal ũ(t)

or Ũ(f) that is as close as possible to the uncorrupted signal u(t) or U(f). In other
words we will estimate the true signal U by

Ũ(f) =
C(f)Φ(f)

R(f)
(13.3.3)

In what sense is Ũ to be close to U? We ask that they be close in the
least-square sense∫ ∞

−∞
|ũ(t) − u(t)|2 dt =

∫ ∞
−∞

∣∣∣Ũ(f) − U(f)
∣∣∣2 df is minimized. (13.3.4)

Substituting equations (13.3.3) and (13.3.2), the right-hand side of (13.3.4) becomes∫ ∞
−∞

∣∣∣∣ [S(f) +N(f)]Φ(f)

R(f)
− S(f)

R(f)

∣∣∣∣2 df

=

∫ ∞
−∞
|R(f)|−2

{
|S(f)|2 |1− Φ(f)|2 + |N(f)|2 |Φ(f)|2

}
df

(13.3.5)

The signal S and the noise N are uncorrelated, so their cross product, when
integrated over frequency f , gave zero. (This is practically the definition of what we
mean by noise!) Obviously (13.3.5) will be a minimum if and only if the integrand
is minimized with respect to Φ(f) at every value of f . Let us search for such a
solution where Φ(f) is a real function. Differentiating with respect to Φ, and setting
the result equal to zero gives

Φ(f) =
|S(f)|2

|S(f)|2 + |N(f)|2
(13.3.6)

This is the formula for the optimal filter Φ(f).
Notice that equation (13.3.6) involves S, the smeared signal, and N , the noise.

The two of these add up to be C , the measured signal. Equation (13.3.6) does not
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containU , the “true” signal. This makes for an important simplification: The optimal
filter can be determined independently of the determination of the deconvolution
function that relates S and U .

To determine the optimal filter from equation (13.3.6) we need some way
of separately estimating |S|2 and |N |2. There is no way to do this from the
measured signal C alone without some other information, or some assumption or
guess. Luckily, the extra information is often easy to obtain. For example, we
can sample a long stretch of data c(t) and plot its power spectral density using
equations (12.0.14), (12.1.8), and (12.1.5). This quantity is proportional to the sum
|S|2 + |N |2, so we have

|S(f)|2 + |N(f)|2 ≈ Pc(f) = |C(f)|2 0 ≤ f < fc (13.3.7)

(More sophisticated methods of estimating the power spectral density will be
discussed in §13.4 and §13.7, but the estimation above is almost always good enough
for the optimal filter problem.) The resulting plot (see Figure 13.3.1) will often
immediately show the spectral signature of a signal sticking up above a continuous
noise spectrum. The noise spectrum may be flat, or tilted, or smoothly varying; it
doesn’t matter, as long as we can guess a reasonable hypothesis as to what it is.
Draw a smooth curve through the noise spectrum, extrapolating it into the region
dominated by the signal as well. Now draw a smooth curve through the signal plus
noise power. The difference between these two curves is your smooth “model” of
the signal power. The quotient of your model of signal power to your model of
signal plus noise power is the optimal filter Φ(f). [Extend it to negative values of f
by the formula Φ(−f) = Φ(f).] Notice that Φ(f) will be close to unity where the
noise is negligible, and close to zero where the noise is dominant. That is how it
does its job! The intermediate dependence given by equation (13.3.6) just turns out
to be the optimal way of going in between these two extremes.

Because the optimal filter results from a minimization problem, the quality of
the results obtained by optimal filtering differs from the true optimum by an amount
that is second order in the precision to which the optimal filter is determined. In other
words, even a fairly crudely determined optimal filter (sloppy, say, at the 10 percent
level) can give excellent results when it is applied to data. That is why the separation
of the measured signal C into signal and noise components S and N can usefully be
done “by eye” from a crude plot of power spectral density. All of this may give you
thoughts about iterating the procedure we have just described. For example, after
designing a filter with response Φ(f) and using it to make a respectable guess at the
signal Ũ(f) = Φ(f)C(f)/R(f), you might turn about and regard Ũ(f) as a fresh
new signal which you could improve even further with the same filtering technique.
Don’t waste your time on this line of thought. The scheme converges to a signal of
S(f) = 0. Converging iterative methods do exist; this just isn’t one of them.

You can use the routine four1 (§12.2) or realft (§12.3) to FFT your data
when you are constructing an optimal filter. To apply the filter to your data, you
can use the methods described in §13.1. The specific routine convlv is not needed
for optimal filtering, since your filter is constructed in the frequency domain to
begin with. If you are also deconvolving your data with a known response function,
however, you can modify convlv to multiply by your optimal filter just before it
takes the inverse Fourier transform.
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 S 2 (deduced)

 N 2 (extrapolated)

 C 2 (measured)
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Figure 13.3.1. Optimal (Wiener) filtering. The power spectrum of signal plus noise shows a signal peak
added to a noise tail. The tail is extrapolated back into the signal region as a “noise model.” Subtracting
gives the “signal model.” The models need not be accurate for the method to be useful. A simple
algebraic combination of the models gives the optimal filter (see text).

CITED REFERENCES AND FURTHER READING:

Rabiner, L.R., and Gold, B. 1975, Theory and Application of Digital Signal Processing (Englewood
Cliffs, NJ: Prentice-Hall).

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

13.4 Power Spectrum Estimation Using the FFT

In the previous section we “informally” estimated the power spectral density of a
function c(t) by taking the modulus-squared of the discrete Fourier transform of some
finite, sampled stretch of it. In this section we’ll do roughly the same thing, but with
considerably greater attention to details. Our attention will uncover some surprises.

The first detail is power spectrum (also called a power spectral density or
PSD) normalization. In general there is some relation of proportionality between a
measure of the squared amplitude of the function and a measure of the amplitude
of the PSD. Unfortunately there are several different conventions for describing
the normalization in each domain, and many opportunities for getting wrong the
relationship between the two domains. Suppose that our function c(t) is sampled at
N points to produce values c0 . . . cN−1, and that these points span a range of time
T , that is T = (N − 1)∆, where ∆ is the sampling interval. Then here are several


