16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equations to solve it is best to reformulate them as a system of first-order equations, as discussed in §16.0. There is a particular class of equations that occurs quite frequently in practice where you can gain about a factor of two in efficiency by differencing the equations directly. The equations are second-order systems where the derivative does not appear on the right-hand side:

$$
\begin{equation*}
y^{\prime \prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=z_{0} \tag{16.5.1}
\end{equation*}
$$

As usual, y can denote a vector of values.
Stoermer's rule, dating back to 1907, has been a popular method for discretizing such systems. With $h=H / m$ we have

$$
\begin{align*}
& y_{1}=y_{0}+h\left[z_{0}+\frac{1}{2} h f\left(x_{0}, y_{0}\right)\right] \\
& y_{k+1}-2 y_{k}+y_{k-1}=h^{2} f\left(x_{0}+k h, y_{k}\right), \quad k=1, \ldots, m-1 \tag{16.5.2}\\
& z_{m}=\left(y_{m}-y_{m-1}\right) / h+\frac{1}{2} h f\left(x_{0}+H, y_{m}\right)
\end{align*}
$$

Here z_{m} is $y^{\prime}\left(x_{0}+H\right)$. Henrici showed how to rewrite equations (16.5.2) to reduce roundoff error by using the quantities $\Delta_{k} \equiv y_{k+1}-y_{k}$. Start with

$$
\begin{align*}
\Delta_{0} & =h\left[z_{0}+\frac{1}{2} h f\left(x_{0}, y_{0}\right)\right] \\
y_{1} & =y_{0}+\Delta_{0} \tag{16.5.3}
\end{align*}
$$

Then for $k=1, \ldots, m-1$, set

$$
\begin{align*}
\Delta_{k} & =\Delta_{k-1}+h^{2} f\left(x_{0}+k h, y_{k}\right) \tag{16.5.4}\\
y_{k+1} & =y_{k}+\Delta_{k}
\end{align*}
$$

Finally compute the derivative from

$$
\begin{equation*}
z_{m}=\Delta_{m-1} / h+\frac{1}{2} h f\left(x_{0}+H, y_{m}\right) \tag{16.5.5}
\end{equation*}
$$

Gragg again showed that the error series for equations (16.5.3)-(16.5.5) contains only even powers of h, and so the method is a logical candidate for extrapolation à la Bulirsch-Stoer. We replace mmid by the following routine stoerm:

```
SUBROUTINE stoerm(y,d2y,nv,xs,htot,nstep,yout,derivs)
INTEGER nstep,nv,NMAX
REAL htot,xs,d2y(nv),y(nv),yout(nv)
EXTERNAL derivs
PARAMETER (NMAX=50) Maximum value of nv
```

C USES derivs

Stoermer's rule for integrating $y^{\prime \prime}=f(x, y)$ for a system of $n=\mathrm{nv} / 2$ equations. On input y (1:nv) contains y in its first n elements and y^{\prime} in its second n elements, all evaluated at xs. $\mathrm{d} 2 \mathrm{y}(1: \mathrm{nv})$ contains the right-hand side function f (also evaluated at xs) in its first n elements. Its second n elements are not referenced. Also input is htot, the total step to be taken, and nstep, the number of substeps to be used. The output is returned as yout (1:nv), with the same storage arrangement as y. derivs is the user-supplied subroutine that calculates f.

REAL h,h2,halfh, $\mathrm{x}, \mathrm{ytemp}(\mathrm{NMAX})$
h=htot/nstep
halfh=0.5*h
neqns=nv/2 Number of equations.
do 11 i=1, neqns First step.
n=neqns+i
$\operatorname{ytemp}(n)=h *(y(n)+h a l f h * d 2 y(i))$

```
    ytemp(i)=y(i)+ytemp(n)
enddo 11
x=xs+h
call derivs(x,ytemp,yout) Use yout for temporary storage of derivatives.
h2=h*h
do }13\textrm{nn=2,nstep General step.
    do 12 i=1,neqns
        n=neqns+i
        ytemp(n)=ytemp(n)+h2*yout(i)
        ytemp(i)=ytemp(i)+ytemp(n)
    enddo 12
    x=x+h
    call derivs(x,ytemp,yout)
enddo }1
do }14\textrm{i}=1\mathrm{ ,neqns Last step.
    n=neqns+i
    yout(n)=ytemp(n)/h+halfh*yout (i)
    yout(i)=ytemp(i)
enddo }1
return
END
```

Note that for compatibility with bsstep the arrays y and d2y are of length $2 n$ for a system of n second-order equations. The values of y are stored in the first n elements of y , while the first derivatives are stored in the second n elements. The right-hand side f is stored in the first n elements of the array d 2 y ; the second n elements are unused. With this storage arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm using the same arguments; just be sure that the argument nv of bsstep is set to $2 n$. You should also use the more efficient sequence of stepsizes suggested by Deuflhard:

$$
\begin{equation*}
n=1,2,3,4,5, \ldots \tag{16.5.6}
\end{equation*}
$$

and set KMAXX $=12$ in bsstep.

CITED REFERENCES AND FURTHER READING:
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535.

16.6 Stiff Sets of Equations

As soon as one deals with more than one first-order differential equation, the possibility of a stiff set of equations arises. Stiffness occurs in a problem where there are two or more very different scales of the independent variable on which the dependent variables are changing. For example, consider the following set of equations [1]:

$$
\begin{aligned}
& u^{\prime}=998 u+1998 v \\
& v^{\prime}=-999 u-1999 v
\end{aligned}
$$

