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Quadratic Programming
A linearly constrained optimization problem with a quadratic objective function is called
a quadratic program (QP).  Because of its many applications, quadratic programming is
often viewed as a discipline in and of itself.  More importantly, though, it forms the basis
of several general nonlinear programming algorithms.  We begin this section by
examining the Karush-Kuhn-Tucker conditions for the QP and see that they turn out to be
a set of linear equalities and complementarity constraints.  Much like in separable
programming, a modified version of the simplex algorithm can be used to find solutions.

Problem Statement

The general quadratic program can be written as

Minimize f(x) = cx + 
1
2 xTQ x

subject to  Ax ≤ b and x ≥ 0

where c is an n-dimensional row vector describing the coefficients of the
linear terms in the objective function, and Q is an (n  × n) symmetric
matrix describing the coefficients of the quadratic terms.  If a constant
term exists it is dropped from the model.  As in linear programming, the
decision variables are denoted by the n-dimensional column vector x, and
the constraints are defined by an (m  ×  n) A matrix and an m-dimensional
column vector b of right-hand-side coefficients.  We assume that a
feasible solution exists and that the constraint region is bounded.

When the objective function f(x) is strictly convex for all feasible
points the problem has a unique local minimum which is also the global
minimum.  A sufficient condition to guarantee strictly convexity is for Q
to be positive definite.

Karush-Kuhn-Tucker Conditions

We now specialize the general first-order necessary conditions given in
Section 11.3 to the quadratic program.  These conditions are sufficient for
a global minimum when Q is positive definite; otherwise, the most we can
say is that they are necessary.

Excluding the nonnegativity conditions, the Lagrangian function
for the quadratic program is

L(x, µ) =  cx + 
1
2 xTQ x + µ(Ax – b),
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where  is an m-dimensional row vector.  The Karush-Kuhn-Tucker

conditions for a local minimum are given as follows.

∂L
∂xj

  ≥ 0,  j = 1, . . . , n c + xTQ + µA≥ 0 (12a)

∂L
∂µi

  ≤ 0,  i = 1, . . . , m Ax – b ≤ 0 (12b)

xj 
∂L
∂xj

  = 0,  j = 1, . . . , n xT(cT + Qx + ATµ) = 0 (12c)

µ 
igi(x) = 0,  i = 1, . . . , m µ(Ax – b) = 0 (12d)

x 
j ≥ 0,  j = 1, . . . , n x ≥ 0 (12e)

µ 
i ≥ 0,  i = 1, . . . , m µ ≥ 0 (12f)

To put (12a) – (12f) into a more manageable form we introduce

nonnegative surplus variables y ∈ ℜn to the inequalities in (12a) and

nonnegative slack variables v ∈ ℜm to the inequalities in (12b) to obtain

the equations

cT + Qx + ATµT – y = 0 and Ax – b + v = 0.

The KKT conditions can now be written with the constants moved to the
right-hand side.

Qx + ATµT – y = – cT (13a)

Ax + v = b (13b)

x ≥ 0, µ ≥ 0, y ≥ 0, v ≥ 0 (13c)

yTx = 0, µv = 0 (13d)

The first two expressions are linear equalities, the third restricts all the
variables to be nonnegative, and the fourth prescribes complementary
slackness.
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Solving for the Optimum

The simplex algorithm can be used to solve (13a) – (13d) by treating the
complementary slackness conditions (13d) implicitly with a restricted
basis entry rule.   The procedure for setting up the linear programming
model follows.

• Let the structural constraints be Eqs. (13a) and (13b) defined by the
KKT conditions.

•   If any of the right-hand-side values are negative, multiply the
corresponding equation by –1.

•   Add an artificial variable to each equation.

•   Let the objective function be the sum of the artificial variables.

•   Put the resultant problem into simplex form.

The goal is to find the solution to the linear program that
minimizes the sum of the artificial variables with the additional
requirement that the complementarity slackness conditions be satisfied at
each iteration.  If the sum is zero, the solution will satisfy (13a) – (13d).
To accommodate (13d), the rule for selecting the entering variable must be
modified with the following relationships in mind.

xj and yj are complementary for j = 1, . . . , n

µi and vi are complementary for i = 1, . . . , m

The entering variable will be the one whose reduced cost is most negative
provided that its complementary variable is not in the basis or would leave
the basis on the same iteration.  At the conclusion of the algorithm, the
vector x defines the optimal solution and the vector µ defines the optimal
dual variables.

This approach has been shown to work well when the objective
function is positive definite, and requires computational effort comparable
to a linear programming problem with m + n constraints, where m is the
number of constraints and n is the number of variables in the QP.  Positive
semi-definite forms of the objective function, though, can present
computational difficulties.  Van De Panne (1975) presents an extensive
discussion of the conditions that will yield a global optimum even when
f(x) is not positive definite.  The simplest practical approach to overcome
any difficulties caused by semi-definiteness is to add a small constant to
each of the diagonal elements of Q in such a way that the modified Q
matrix becomes positive definite.  Although the resultant solution will not
be exact, the difference will be insignificant if the alterations are kept
small.
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Example 14

Solve the following problem.

Minimize f(x) = – 8x1 – 16x2 + x
2
1 + 4x

2
2

subject to  x1 + x2 ≤ 5, x1 ≤ 3, x1 ≥ 0, x2 ≥ 0

Solution: The data and variable definitions are given below.  As can be
seen, the Q matrix is positive definite so the KKT conditions are necessary
and sufficient for a global optimum.

cT = 





 – 8

 – 16
,  Q =  






2 0

0 8
,  A = 






1 1

1 0
,  b = 






5

3

x = (x1, x2),  y = (y1, y2), µ = (µ1, µ2),  v = (v1, v2)

The linear constraints (13a) and (13b) take the following form.

2x1 + µ1 + µ2 – y1 = 8

8x2 + µ1 – y2 = 16

x1 + x2 + v1 = 5

x1 + v2 = 3

To create the appropriate linear program, we add artificial variables to
each constraint and minimize their sum.

  Minimize a1 + a2 + a3 + a4

  subject to 2x1 + µ1+ µ2 – y1 + a1 = 8

8x2+ µ1 – y2 + a2 = 16

x1 + x2 + v1 + a3 = 5

x1 + v2 + a4 = 3

all variables ≥ 0 and complementarity conditions

Applying the modified simplex technique to this example, yields the
sequence of iterations given in Table 7.  The optimal solution to the
original problem is (x*

1, x*
2) = (3, 2).
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Table 7. Simplex iterations for QP example

Iteratio
n

Basic variables Solution Objective
value

Entering
variable

Leaving
variable

1 (a1, a2, a3, a4) (8, 16, 5, 3) 32 x2 a2

2 (a1, x2, a3, a4) (8, 2, 3, 3) 14 x1 a3

3 (a1, x2, x1, a4) (2, 2, 3, 0) 2 µ1 a4

4 (a1, x2, x1, µ1) (2, 2, 3, 0) 2 µ1 a1

5 (µ2, x2, x1, µ1) (2, 2, 3, 0) 0 –– ––


