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Interior Point Methods
All forms of the simplex method reach the optimum by traversing a series of basic
solutions.  Since each basic solution represents an extreme point of the feasible region,
the track followed by the algorithm moves around the boundary of the feasible region.  In
the worst case, it may be necessary to examine most if not all of the extreme points.  This
can be cripplingly inefficient given that the number of extreme points grows
exponentially with n for m fixed.

The running time of an algorithm as a function of the problem size is known as its
computational complexity.  In practice, the simplex methods works surprisingly well,
exhibiting linear complexity; i.e., proportional to n + m.  Researchers, however, have
long tried to develop solution algorithms whose worst-case running times are polynomial
functions of the problem size.  The first success was attributed to the Russian
mathematician, Khachian, who proposed the ellipsoid method which has a running time
proportional to n6 (see Bertsimas and Tsitliklis (1997) for a full discussion of the
approach).  Though theoretically efficient, code developers were never able to realize an
implementation that matched the performance of concurrent simplex codes.

Just about the time when interest in the ellipsoid method was waning, a new
technique to solve linear programs was proposed by Karmarkar (1984).  His idea was to
approach the optimal solution from the strict interior of the feasible region.  This led to a
series of interior point methods (IPMs) that combined the advantages of the simplex
algorithm with the geometry of the ellipsoid algorithm.  IPMs are of interest from a
theoretical point of view because they have polynomial complexity, and from a practical
point of view because they have produced solutions to many industrial problems that
were hitherto intractable.

There are at least three major types of IPMs: (1) the potential reduction algorithm
which most closely embodies the constructs of Karmarkar, (2) the affine scaling
algorithm which is perhaps the simplest to implement, and (3) path following algorithms
which arguably combine excellent behavior in theory and practice.  In this section, we
highlight a member of the third category known as the primal-dual path following
algorithm which has become the method of choice in large scale implementations.

The primal-dual path following algorithm is an example of an IPM that operates
simultaneously on the primal and dual linear programming problems.  Consider the
following example where the slack variables in the dual are denoted by the vector z to
correspond to the notation in the literature.
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Primal model

Maximize  zP = 2x1 + 3x2

subject to 2x1 + x2 + x3 = 8

x1 + 2x2 + x4 = 6

xj ≥ 0, j = 1, … , 4

Dual model

Minimize  zD = 8π1 + 6π2

subject to 2π1 + π2 – z1  = 2

π1 + 2π2 – z2 = 3

π1 – z3  = 0

π2 – z4 = 0

zj ≥ 0, j = 1, … , 4

Fig. 3 and 4 shown the progress of such an algorithm starting at point #1 which is seen to
be in the interior of the feasible region. In general, the algorithm iteratively modifies the
primal and dual solutions until the optimality conditions of primal feasibility, dual
feasibility and complementary slackness are satisfied to a sufficient degree.  This event is
signaled when the duality gap, the difference between the primal and dual objective
functions, is sufficiently small.  For purposes of discussion, “interior of the feasible
region” is taken to mean that the values of the primal and dual variables are always
strictly greater than zero.
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Figure 3.  Path of the primal solution for the interior point algorithm



Interior Point Methods 3

0 1 2 3 4
0

1

2

3

#1

π2

π
1

#2

#3#4

Figure 4.  Path of the dual solution for the interior point algorithm

The Primal and Dual Problems

In developing the algorithm, we will work with the primal and dual
problems as defined in Table 9.  The primal problem is assumed to consist
of m nonredundant equations in n variables, and is given in equality form.
This means that the n dual variables  are unrestricted in sign.  The m-
dimensional vector of nonnegative slack variables, z, transforms the dual
inequalities to equations.

Table 9.  Primal and dual problems for IPM

(P) Maximize zP = cx (D) Minimize zD = b

subject to Ax = b subject to A – z = c

x ≥ 0

Basic Ideas

The use of path following algorithms to solve linear programs is based on
three ideas:

(i) the application of the Lagrange multiplier method of classical
calculus to transform an equality constrained optimization problem
into an unconstrained one;
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(ii) the transformation of an inequality constrained optimization
problem into a sequence of unconstrained problems by
incorporating the constraints in a logarithmic barrier function that
imposes a growing penalty as the boundary (xj = 0, zj = 0 for all j)

is approached;

(iii) the solution of a set of nonlinear equations using Newton’s
method, thereby arriving at a solution to the unconstrained
optimization problem.

When solving the sequence of unconstrained problems, as the strength of
the barrier function is decreased, the optimum follows a well-defined path
(hence the term “path following”) that ends at the optimal solution to the
original problem.  In subsequent sections, we outline the three components
of the algorithm.

The Lagrangian Approach

A well known procedure for determining the minimum or maximum of a
function subject to equality constraints is the Lagrange multiplier method.
The details are given in Chapter 11, Nonlinear Programming Methods.
For now, consider the general problem

Maximize  f(x)

subject to  gi(x) = 0,  i = 1, … , m

where f(x) and gi(x) are scalar functions of the n-dimensional vector x.

The Lagrangian for this problem is

L(x, ) = f(x) – ∑
i=1

m
 πigi(x)

where the variables  = (π1, 2, … , πm) are the Lagrange multipliers.

Necessary conditions for a stationary point (maximum or
minimum) of the constrained optimization of f(x) are that the partial
derivatives of the Lagrangian with respect to the components of x and  be

zero; i.e.,

∂L

∂xj
  = 0, j = 1, … , n  and  

∂L

∂πi
  = 0, i = 1, … , m

For linear constraints (aix – bi = 0), the conditions are sufficient for a

maximum if the function f(x) is concave and sufficient for a minimum if
f(x) is convex.
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The Barrier Approach

 For the primal-dual pair of LPs in Table 9, the only essential inequalities
are the nonnegativity conditions.  The idea of the barrier approach, as
developed by Fiacco and McCormick (1968), is to start from a point in the
strict interior of the inequalities (xj > 0, zj > 0 for all j) and construct a

barrier that prevents any variable from reaching a boundary (e.g., xj = 0).

Adding “log(xj)” to the objective function of the primal, for example, will

cause the objective to decrease without bound as xj approaches 0.  The

difficulty with this idea is that if the constrained optimum is on the
boundary (that is, one or more x*

j  = 0, which is always the case in linear

programming), then the barrier will prevent us from reaching it.  To get
around this difficulty, we use a barrier parameter µ that balances the

contribution of the true objective function with that of the barrier term.
The modified problems are given in Table 10.

Table 10. Primal and dual barrier problems

(P) Maximize  BP(µ) = cx + µ∑
j=1

n
 log(xj)

subject to  Ax = b

(D) Minimize  BD(µ) = b – µ∑
j=1

n
 log(zj)

subject to A – z = c

The parameter µ is required to be positive and controls the
magnitude of the barrier term.  Because function log(x) takes on very large
negative values as x approaches zero from above, as long as x remains
positive the optimal solution to the barrier problems will be interior to the
nonnegative orthants (xj > 0 and zj > 0 for all j).  The barrier term is added

to the objective function for a maximization problem and subtracted for a
minimization problem.  The new formulations have nonlinear objective
functions with linear equality constraints, and can be solved with the
Lagrangian technique for µ > 0 fixed.  The solution to these problems will

approach the solution to the original problem as µ approaches zero.

Table 11 shows the development of the necessary optimal
conditions for the barrier problems.  These conditions are also sufficient
because the primal Lagrangian is concave and the dual Lagrangian is
convex.  Note that the dual variables  are the Lagrange multipliers of the

primal, and the primal variables x are the Lagrange multipliers of the dual.

Table 11. Necessary conditions for the barrier problems
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Lagrangian

LP = cx + µ∑
j=1

n
 log(xj) – (Ax – b)

Lagrangian

LD = b – µ∑
j=1

n
 log(zj) – ( A – z – c)x

∂LP

∂xj
 = 0

cj  – ∑
i=1

m
 aijπj + 

µ
xj

  = 0

– zj + 
µ
xj

  = 0

zjxj = µ,  j = 1, … , n

(µ-complementary slackness)

∂LD

∂zj
 = 0

 – 
µ
zj

  + xj = 0

zjxj = µ,  j = 1, … , n

(µ-complementary slackness)

∂LP

∂πi
 = 0

∑
j=1

n
 aijxj = bi,  i = 1, … , m

(primal feasibility)

∂LD

∂πi
 = 0

∑
j=1

n
 aijxj = bi,  i = 1, … , m

(primal feasibility)

∂LD

∂xj
 = 0

∑
i=1

m
 aijπj – zj = cj,  j = 1, … , n

(dual feasibility)

Thus the optimal conditions are nothing more than primal feasibility, dual
feasibility, and complementary slackness satisfied to within a tolerance of
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µ.  Theory tells us that when µ goes to zero we get the solution to the

original problem; however, we can’t just set µ to zero because that would

destroy the convergence properties of the algorithm.

To facility the presentation, we define two n × n diagonal matrices
containing the components of x and z, respectively; i.e.,

X = diag{x1, x2, … , xn}

Z = diag{z1, z2, … , zn}

Also, let e = (1, 1, … , 1)T be a column vector of size n.  Using this
notation, the necessary and sufficient conditions derived in Table 11 for
the simultaneous solution of both the primal and dual barrier problems can
be written as

Primal feasibility:Ax – b = 0 (m linear equations)

Dual feasibility:AT T – z – cT = 0 (n linear equations)

µ-Complementary slackness: XZe – µe = 0 (n nonlinear equations)

We must now solve this set of nonlinear equations for the variables (x, ,
z).

Stationary Solutions Using Newton's Method

Newton's method is an iterative procedure for numerically solving a set of
nonlinear equations.  To motivate the discussion, consider the single
variable problem of finding y to satisfy the nonlinear equation

f(y) = 0

where f is once continuously differentiable.  Let y* be the unknown

solution.  At some point yk, one can calculate the functional value, f(yk),
and the first derivative, f '(yk).  Using the derivative as a first order
approximation for how the function changes with y, we can predict the

amount of change ∆ = yk+1 – yk required to bring the function to zero.

This idea is illustrated in Fig. 5.
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Figure 5. Newton's method for function of a single variable

Taking the first order Taylor series expansion of f(y) around yk gives

f(yk+1) ≈ f(yk) + ∆f '(yk)

Setting the approximation of f(yk+1) to zero and solving for ∆ gives

∆ =  
– f(yk)

f '(yk)

The point yk+1 = yk + ∆ is an approximate solution to the equation.  It can

be shown that if one starts at a point y0 sufficiently close to y*, the value

of yk will approach y* as k à ∞.

The method extends to multidimensional functions.  Consider the
general problem of finding the r-dimensional vector y that solves the set of
r equations

fi(y) = 0,  i = 1, … , r

or  f(y) = 0

Let the unknown solution to the equations be y*.  The n × n Jacobian
matrix describes the first order variations of these functions with the
components of y.  The Jacobian at yk is
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J(yk) =  











∂f1
∂y1

∂f1
∂y2

. . .
∂f1
∂yn

∂f2
∂y1

∂f2
∂y2

. . .
∂f2
∂yn

: :  :

∂fn
∂y1

∂fn
∂y2

. . .
∂fn
∂yn

 

All the partial derivatives are evaluated at yk.  Now, taking the first order

Taylor series expansion around the point yk, and setting it to zero gives

f(yk) + J(yk)d = 0

where d = yk+1 – yk is an n-dimensional vector whose components
represent the change of position for the k+1st iteration.  Solving for d leads
to

d = – J(yk)–1f(yk)

The point yk+1 = yk + d is an approximation for the solution to the set of

equations.  Once again, if one starts at an initial point y0 sufficiently close

to y*, the value of yk will approach y* for large values of k.

Newton's Method for Solving Barrier Problems

We are now ready to use Newton’s method to solve the optimality
conditions for the barrier problems given in Table 11 for a fixed value of
µ.  For y = (x, , z) and r = 2n+m, the corresponding equations and

Jacobian are

Ax – b = 0

AT T – z – cT = 0 J(y) = 






A 0 0

0 AT –I

Z 0 X
XZe – µe = 0

Assume that we have a starting point (x0, 0, z0) satisfying x0 > 0 and z0 >

0, and denote by

P = b – Ax0

D = cT – AT( 0)T + z0
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the primal and dual residual vectors at this starting point.  The optimality
conditions can be written as

J(y)d = – f(y)







A 0 0

0 AT –I

Z 0 X

 






dx

dπ
dz

  =  






P

D

µe – XZe

(7)

where the (2n+m)-dimensional vector d ≡ (dx, dπ, dz)T in (7) is called the

Newton direction.  We must now solve for the individual components of
d.

In explicit form, the above system is

Adx = P

ATdπ – dz = D

Zdx + Xdz = µe – XZe

The first step is to find dπ.  With some algebraic manipulation, left as an

exercise, we get

 (AZ–1XAT)dπ  =  – b + µAZ–1e + AZ–1XδD

or dπ  =  (AZ–1XAT)–1(– b + µAZ–1e + AZ–1XδD) (8)

Note that Z–1 = diag{1/z1, 1/z2, … , 1 / zn} and is trivial to compute.  Further

multiplications and substitutions give

dz = – δD + ATdπ (9)

and dx = Z–1(µe – XZe – Xdz) (10)

From these results, we can see in part why it is necessary to remain

in the interior of the feasible region.  In particular, if either Z–1 or X–1

does not exist the procedure breaks down.

Once the Newton direction has been computed, dx is used as a

search direction in the x-space and (dπ, dz) as a search direction in the (π,

z)-space.  That is, we move from the current point (x0, 0, z0) to a new

point (x1,  1, z1) by taking a step in the direction (dx, dπ, dz).  The step
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sizes, αP and αD, are chosen in the two spaces to preserve x > 0 and  > 0.

This requires a ratio test similar to that performed in the simplex
algorithm.  The simplest approach is to use

αP = γ 
 

min
j

 





– xj

(dx)j
 : (dx)j < 0

αD = γ 
 

min
j

 





– zj

(dz)j
 : (dz)j < 0

where γ is the step size factor that keeps us from actually touching the

boundary.  Typically, γ = 0.995.  The notation (dx)j refers to the jth

component of the vector dx.  The new point is

x1 = x0 + αPdx

1 = 0 + αDdπ

z1 = z0 + αDdz

which completes one iteration.  Ordinarily, we would now resolve Eqs. (8)

- (10) at (x1,  1, z1) to find a new Newton direction and hence a new

point.  Rather than iterating in this manner until the system converged for
the current value of µ, it is much more efficient to reduce µ at every

iteration.  The primal-dual method itself suggests how to update µ.

It is straightforward to show that the Newton step reduces the
duality gap –– the difference between the dual and primal objective values

at the current point.  Assume that x0 is primal feasible and ( 0, z0) is dual
feasible (Lustig et. al (1989) discuss the more general case).  Let “gap(0)”
denote the current duality gap.

gap(0) = 0b – cx0

= 0(Ax0) – ( 0A – z0)Tx0 (primal and dual
feasibility)

= (z0)Tx0

If we let α = min{αP, αD} then

gap(α) = (z0 + αdz)T(x0 + αdx)
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and with a little algebra, it can be shown that gap(α) < gap(0) as long as

µ <  
gap(0)

n
(11)

In our computations we have used

k =
gap( k )

n2 =
(zk )T xk

n2

which indicates that the value of µk is proportional to the duality gap.

Termination occurs when the gap is sufficiently small, say, less than 10–8.

Iterative Primal-Dual Interior Point Algorithm

We now summarize the basic steps of the algorithm.  The following inputs
are assumed:

(i) the data of the problem (A, b, c), where the m × n matrix A has full
row rank;

(ii) initial primal and dual feasible solutions x0 > 0, z0 > 0, 0;

(iii) the optimality tolerance ε > 0 and the step size parameter γ ∈ (0, 1).

Step 1 (Initialization) Start with some feasible point x0 > 0, z0 > 0, 0 and
set the iteration counter k = 0.

Step 2 (Optimality test) If (zk)Txk < ε stop; otherwise, go to Step 3.

Step 3 (Compute Newton directions) let

Xk = diag



xk

1, xk
2, … , xk

n

Zk = diag



zk

1, zk
2, … , zk

n

µk =  
(zk)Txk

n

Solve the following linear system equivalent to (7) to get dk
x, dk

π, and dk
z.

Adx = 0
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ATdπ – dz = 0

Zdx + Xdz = µe – XZe

Note that P = 0 and D = 0 due to the feasibility of the initial point.

Step 4 (Find step lengths) Let

αP = γ 
 

min
j

 






– xk

j

(dk
x)j

 : (dk
x)j < 0

αD = γ 
 

min
j

 






– zk

j

(dk
z)j

 : (dk
z)j < 0

Step 5 (Update solution)  Take a step in the Newton direction to get

xk+1 = xk + αPdk
x

k+1 = k + αDdk
π

zk+1 = zk + αDdk
z

Put k ← k + 1 and go to Step 2.

Implementation Issues

From a theoretical point of view, it has been shown that for a slightly different

choice of µk and the step length, the algorithm takes about

n log(ε0/ε)

iterations to reduce the duality gap from ε0 to ε in the worst case.  The

observed average behavior is closer to O(log(n)log(ε0/ε)).  In fact, extensive

testing indicates that IPMs are surprisingly insensitive to problem size.
Convergence usually takes between 20 and 80 iterations.  Most of the work is
at Step 2 where the system of linear equations has to be solved.  The most
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computationally intensive component of this step involves forming the matrix

(AZ–1XAT) and then inverting it to get dπ as indicated in Eq. (8).  This

consumes about 90% of the overall effort.  It should be mentioned that one
iteration of an IPM is much more time consuming than one iteration of a
simplex-type algorithm as measured by a pivot.

Virtually all interior point methods, whether path following, affine
scaling, or potential reduction, require the solution of a linear system similar
to that in Step 2.  Much research has gone into figuring out how to do this
efficiently.  In today’s codes, the matrix AZ–1XAT is never inverted
explicitly; Cholesky factorization and back substitution are used to solve a
series of related triangular linear systems.  Specifically, this involves finding

the lower triangular n × n matrix L such that AZ–1XAT = LLT and then
solving

LLTdπ = r

where r is the right-hand side of Eq. (8).  This can be done by first solving Lg
= r for g and then solving LTdπ = g for dπ, both by simple substitution.  This

approach can be implemented in a highly efficient manner when AZ–1XAT is
a large sparse matrix.  Although the matrix changes from iteration to iteration,
the pattern of zeros remains the same implying that the calculations can be
streamed by eliminating almost all multiplications by zero.

In the presentation of the path following algorithm, it was assumed
that an initial feasible point was available.  Surprisingly, this need not be the
case for the primal-dual approach.  The algorithm can be started at any interior
point with the values of P and D in Step 2 set appropriately.  Other IPMs,

including the primal (only) path following method, require the equivalent of a
phase 1 step to find a feasible point.  Rather than explicitly solving a phase 1
problem, though, they generally take a big-M approach that involves the
introduction of one artificial variable, xn+1, in the primal problem.

To conclude this section, we offer a few comments on the relative
performance of simplex-based methods versus interior point methods.
Although the determination of which is better depends on the problem and
the particular instance, some qualitative insights are available.  In
particular, simplex methods tend to bog down when solving large,
massively degenerate problems.  Such problems typically arise in
transportation and scheduling applications that have network models at
their core.  The accompanying formulations are often very sparse thus
making them prime candidates for IPMs.

When the formulations are dense, or in some cases when only a
few columns are of the A matrix are dense, IPMs are not likely to perform
well.  Such problems give rise to dense Cholesky factors, L, which nullify
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the efficiencies associated with solving triangular systems.  Dense
problems, however, are not in general degenerate so simplex-type methods
are the better choice.

Example

As an example, consider the problem that started this section. In general
terms we repeat the primal and dual problems from Table 9.

(P) Maximize zP = cx (D) Minimize zD = b

subject to Ax = b subject to A – z = c

x ≥ 0

For the specific case of the example we have n = 4 and m = 2.

c = [2, 3, 0, 0], c = [ 2 , 3 , 0 , 0 ] , A =
2 1 1 0

1 2 0 1
 
 
 

 
 
 ,  b =

8

6
 
 
 

 
 
 

x =

x1

x2

x3

x4

 

 

 
 
 
 
 

 

 

 
 
 
 
 

,  z =

z1

z2

z3

z4

 

 

 
 
 
 
 

 

 

 
 
 
 
 

,  = 1, 2[ ]

For the initial solution we select the interior solutions shown in Table 121.
The primal feasibility vector is P and the dual feasibility vector is D.

Both are zero since the x and z are interior to their respective problems.
The vector labeled “Comp. Slack.” is the µ-Complementary slackness
vectore computed as

XZe – µe.

Since this vector is not zero, the solution is not optimum.

Table 12. Initial solution for the example

                                                
1 The tables in the section were constructed by the Interior Point demonstration in the Teach LP add-in.
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Current Solution Pi
X Z 1 2

1 1 4 2 2

2 1 3

3 5 2 Iter.: 1

4 3 2 Gap 23

Mu 1.4375

Feasibility Vectors
Primal Dual Comp. Slack.

1 0 1 0 1 -2.563
2 0 2 0 2 -1.563

3 0 3 -8.563
4 0 4 -4.563

We solve the set of equations in step 3 of the algorithm to find the
direction vectors shown in Table 13. The first three columns refer to the
directions: dπ, dz, and dx. The last two columns are the ratio vectors that

determine the maximum flow change in the z and x vectors to remain
interior to the region. We use γ = 0.8, so the example does not move too

close to the boundaries of the region. This factor multiplies the minimum
of each ratio to find the step size for the dual and primal variables. The
cell labeled Z Step is the value of αD and the cell labeled X Step is αP.

Table 13 The direction and ratio vectors for the initial solution

Direction Vectors Ratio Vectors
d(Pi) d(Z) d(X) Ratio(Z) Ratio(X)

1 -1.351 1 -3.477 1 0.2286 1 1.1505 1  - --
2 -0.774 2 -2.9 2 0.4457 2 1.0346 2  - --

3 -1.351 3 -0.903 3 1.48 3 5.5378
4 -0.774 4 -1.12 4 2.5835 4 2.6785

Min 1.0346 Min 2.6785

Z Step 0.8277 X Step 2.1428

Table 14 shows next solution obtained by multiplying dπ and dz by αD,

and dx  by αP and adding the change to the vectors , z and x. The primal

and dual solutions remain interior and the gap is reduced.

Table 14. The solution at the 2nd iteration
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Current Solution Pi
X Z 1 2

1 1.4898 1.1223 0.8815 1.3592

2 1.9551 0.6

3 3.0653 0.8815 Iter.: 2

4 0.6 1.3592 Gap 6.3626

Mu 0.3977

Feasibility Vectors
Primal Dual Comp. Slack.

1 -2E-15 1 4E-16 1 -1.274
2 -2E-15 2 3E-16 2 -0.775

3 0 3 -2.304
4 0 4 -0.418

Table 15 shows the nine iterations necessary to obtain a gap of
0.001. Observe that zP increases from its initial value while zD decreases

from its initial value. The converge to the same value at the optimal. The
optimal solution is at intersection of the two constraints, where the slack
variables x3 and x4 are both zero. The interior method never really reaches

the intersection, but it comes as close as desired.
Table 15. The sequence of solutions

Primal Solution Dual Solution
Iteration zP x1 x2 x3 x4 zD 1 2

1 5 1 1 5 3 28 2 2
2 8.845 1.4898 1.9551 3.0653 0.6 15.208 0.8815 1.3592
3 9.764 1.8872 1.9964 2.2292 0.12 11.761 0.3964 1.4317
4 10.419 3.0608 1.4325 0.4458 0.0741 11.025 0.3111 1.4228
5 10.598 3.2836 1.3437 0.0892 0.029 10.744 0.3276 1.3538
6 10.651 3.3201 1.337 0.0227 0.0058 10.685 0.3328 1.3371
7 10.664 3.3306 1.3341 0.0046 0.0012 10.67 0.3332 1.3341
8 10.666 3.3328 1.3335 0.0009 0.0002 10.667 0.3333 1.3335
9 10.667 3.3332 1.3334 0.0002 5E-05 10.667 0.3333 1.3334


