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4.3 Romberg Integration

We can view Romberg's method as the natural generaization of the routine
gsimp in the last section to integration schemes that are of higher order than
Simpson’srule. The basic idea is to use the results from & successive refinements
of the extended trapezoida rule (implemented in trapzd) to remove al termsin
the error series up to but not including O(1/N?*). The routine gsimp is the case
of k = 2. This is one example of a very genera idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical agorithm for
various values of a parameter h, and then extrapolate the result to the continuum
limit A = 0.

Equation (4.2.4), which subtracts off the leading error term, is aspecia case of
polynomial extrapolation. In the more general Romberg case, we can use Neville's
algorithm (see §3.1) to extrapolate the successive refinements to zero stepsize.
Neville sagorithm can infact be coded very concisely withina Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation
by subroutine call to polint, aready given in §3.1.

SUBROUTINE gqromb(func,a,b,ss)

INTEGER JMAX,JMAXP,K,KM

REAL a,b,func,ss,EPS

EXTERNAL func

PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

USES polint, trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg’'s method of order 2K, where, e.g., K=2 is Simpson'’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations
h(1)=1. and their relative stepsizes.

dou j=1,JMAX
call trapzd(func,a,b,s(j),j)
if (j.ge.K) then
call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+1)=s(j)

h(j+1)=0.25%h(j) This is a key step: The factor is 0.25 even though
enddo 11 the stepsize is decreased by only 0.5. This makes
pause ’too many steps in qromb’ the extrapolation a polynomial in h? as allowed
END by equation (4.2.1), not just a polynomial in h.

The routine qromb, aong with its required trapzd and polint, iS quite
powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals
which contain no singularities, and where the endpointsare al so nonsingular. gromb,
in such circumstances, takes many, many fewer function evaluations than either of
the routines in §4.2. For example, the integral
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converges (with parameters as shown above) on the very first extrapolation, after
just 5 callsto trapzd, while gsimp requires 8 calls (8 times as many eva uations of
the integrand) and qtrap requires 13 calls (making 256 times as many evauations
of the integrand).
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4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

e itsintegrand goesto afinitelimiting value at finite upper and lower limits,

but cannot be evaluated right on one of thoselimits(e.g., sinz/z ax = 0)

e itsupper limitis oo , or its lower limit is —oco

e it has an integrable singularity at either limit (e.g., z~ /% a = = 0)

e it has an integrable singularity at a known place between its upper and

lower limits

e it has an integrable singularity at an unknown place between its upper

and lower limits

If an integrd isinfinite (e.q., floo x~1dx), or does not exist in a limiting sense
(eq., ffooo cos zdx), wedo not call it improper; wecall it impossible. No amount of
clever agorithmicswill return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably §18.3. The
fifth problem, singularity a unknown location, can redly only be handled by the
use of avariable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
onewhichisan open formulain the sense of §4.1, i.e., does not require theintegrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason isthat (4.1.19) shares with (4.1.11) the “deep” property
of having an error series that is entirely even in h. Indeed thereis aformula, not as
well known asit ought to be, called the Second Euler-Maclaurin summation formula,

/ ’ f(x)dx = h[fs/o+ fs)2 + fr2 + -+ fn—3/2 + fn—1/2]
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