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(Don't let this notation mislead you into inverting the full matrix W (z) + AS. You
only need to solve for some y the linear system (W (z) + AS) -y = R, and then
substitutey into both the numerators and denominators of 18.6.12 or 18.6.13.)

Equations (18.6.12) and (18.6.13) have a completely different character from
thelinearly regularized solutionsto (18.5.7) and (18.5.8). Thevectorsand matricesin
(18.6.12) dl have size N, the number of measurements. There isno discretization of
theunderlying variable x, so M does not comeintoplay at al. One solves adifferent
N x N set of linear equationsfor each desired value of z. By contrast, in (18.5.8),
onesolvesan M x M linear set, but only once. In general, the computational burden
of repeatedly solving linear systems makes the Backus-Gilbert method unsuitable
for other than one-dimensional problems.

How does one choose A within the Backus-Gilbert scheme? As aready
mentioned, you can (in some cases should) make the choice before you see any
actua data. For a given tria value of A, and for a sequence of x's, use egquation
(18.6.12) to calculate q(«); then use equation (18.6.6) to plot the resolution functions

~

6(x,2") as afunction of z’. These plots will exhibit the amplitude with which
different underlying values =’ contributeto the point u(x) of your estimate. For the
same value of \, dso plot the function /Var|[u(z)] using equation (18.6.8). (You
need an estimate of your measurement covariance matrix for this.)

As you change A you will see very explicitly the trade-off between resolution
and stability. Pick the value that meets your needs. You can even choose A to be a
function of z, A = A\(x), in equations (18.6.12) and (18.6.13), should you desire to
do so. (Thisis one benefit of solving a separate set of equations for each x.) For
the chosen value or values of A, you now have a quantitative understanding of your
inverse solution procedure. This can proveinvaluableif — once you are processing
real data — you need to judge whether a particular feature, a spike or jump for
example, is genuine, and/or is actualy resolved. The Backus-Gilbert method has
found particul ar success among geophysicists, who useit to obtaininformation about
the structure of the Earth (e.g., density run with depth) from seismic travel time data.
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18.7 Maximum Entropy Image Restoration

Above, we commented that the association of certain inversion methods
with Bayesian arguments is more historical accident than intellectual imperative.
Maximum entropy methods, so-called, are notorious in this regard; to summarize
these methods without some, at least introductory, Bayesian invocations would be
to serve a steak without the sizzle, or a sundae without the cherry. We should
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810 Chapter 18.  Integral Equations and Inverse Theory

also comment in passing that the connection between maximum entropy inversion
methods, considered here, and maximum entropy spectral estimation, discussed in
§13.7, is rather abstract. For practical purposes the two techniques, though both
named maximum entropy method or MEM, are unrelated.

Bayes Theorem, which followsfrom the standard axioms of probability, rel ates
the conditiona probabilities of two events, say A and B:

Prob(B]|A)

Prob(A|B) = Prob(A) Prob(E)

(18.7.1)

Here Prob( A| B) isthe probability of A giventhat B has occurred, and similarly for
Prob(B|A), while Prob(A) and Prob(B) are unconditional probabilities.

“Bayesians’ (so-called) adopt a broader interpretation of probabilitiesthan do
so-called “frequentists.” To a Bayesian, P(A|B) is a measure of the degree of
plausibility of A (given B) onascale ranging from zero to one. In thisbroader view,
A and B need not be repeatable events; they can be propositions or hypotheses.
The equations of probability theory then become a set of consistent rules for
conducting inference[1,2]. Since plausibility is itself aways conditioned on some,
perhaps unarticulated, set of assumptions, all Bayesian probabilities are viewed as
conditional on some collective background information 1.

Suppose H is some hypothesis. Even before there exist any explicit data,
a Bayesian can assign to H some degree of plausibility Prob(H|I), caled the
“Bayesian prior.” Now, when some data D; comes aong, Bayes theorem tells how
to reassess the plausibility of H,

Prob(D, | H 1)

Prob(H| D11) = Prob(H|1) -5t

(18.7.2)

The factor in the numerator on the right of eguation (18.7.2) is caculable as the
probability of a data set given the hypothesis (compare with “likelihood” in §15.1).
The denominator, called the “prior predictive probability” of the data, isin thiscase
merely a normalization constant which can be calculated by the requirement that
the probability of all hypotheses should sum to unity. (In other Bayesian contexts,
the prior predictive probabilities of two qualitatively different models can be used
to assess their relative plausibility.)

If some additiona data D, comes along tomorrow, we can further refine our
estimate of H's probability, as

PI'Ob(DQ |HD1])

Prob(H| D, D, 1) = Prob(H| D) 5 o5 s

(18.7.3)
Using the product rule for probabilities, Prob(AB|C) = Prob(A|C)Prob(B|AC),
we find that equations (18.7.2) and (18.7.3) imply

PI'Ob(DQDl |HI)

Prob(H | Dy D1 1) = Prob(H |I) Prob(D2 D1 |1)

(18.7.4)

which shows that we would have gotten the same answer if dl the data D1 D,
had been taken together.
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18.7 Maximum Entropy Image Restoration 811

From a Bayesian perspective, inverse problems are inference problems(3.4].
Theunderlying parameter set u isahypothesi swhose probability, given the measured
data values c, and the Bayesian prior Prob(u|I) can be calculated. We might want
to report a single “best” inverse u, the one that maximizes

Prob(u|I)
Prob(c|I)

over dl possible choices of u. Bayesian analysis also admits the possibility of
reporting additional information that characterizes the region of possible u’'s with
high relative probability, the so-called “posterior bubble”’ in u.

The cal culation of the probability of the datac, given the hypothesisu proceeds
exactly asinthemaximum likelihood method. For Gaussian errors, e.g., itisgiven by

Prob(u|cI) = Prob(c|ul) (18.7.5)

1
Prob(c|ul) = 0Xp(—§X2)Au1Au2 Ay (18.7.6)

where x? is calculated from u and ¢ using equation (18.4.9), and the Au,,’s are
constant, small ranges of the components of u whose actual magnitudeisirrelevant,
because they do not depend on u (compare equations 15.1.3 and 15.1.4).

In maximum likelihood estimation we, in effect, chose the prior Prob(ul|l) to
be constant. That was aluxury that we could afford when estimating a small number
of parameters from a large amount of data. Here, the number of “parameters’
(components of u) is comparable to or larger than the number of measured values
(components of c); we need to have a nontrivia prior, Prob(u|l), to resolve the
degeneracy of the solution.

In maximum entropy image restoration, that is where entropy comes in. The
entropy of a physical system in some macroscopic state, usualy denoted S, is the
logarithm of the number of microscopically distinct configurations that al have
the same macroscopic observables (i.e., consistent with the observed macroscopic
state). Actualy, we will find it useful to denote the negative of the entropy, aso
called the negentropy, by H = —S (a notation that goes back to Boltzmann). In
situations where there is reason to believe that the a priori probabilities of the
mi croscopic configurationsare al the same (these situationsare called ergodic), then
the Bayesian prior Prob(u|I) for a macroscopic state with entropy S is proportional
to exp(S) or exp(—H).

MEM uses this concept to assign a prior probability to any given underlying
function u. For example[5-7], suppose that the measurement of luminance in each
pixel is quantized to (in some units) an integer value. Let

M
U=> u, (18.7.7)
pn=1

be the total number of luminance quantain the wholeimage. Then we can base our
“prior” on the notion that each luminance quantum has an equal a priori chance of
beingin any pixd. (See[8] for amore abstract justification of thisidea.) The number
of ways of getting a particular configuration u is

U! 1
S — 1 U — | InU — 1 18.7.8
RIS X exp 21@ n(u,/ )—|—2 <n ; nuﬂ>] ( )
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812 Chapter 18.  Integral Equations and Inverse Theory

Here the left side can be understood as the number of distinct orderings of al
the luminance quanta, divided by the numbers of equivaent reorderings within
each pixel, while the right side follows by Stirling’s approximation to the factoria
function. Taking the negative of the logarithm, and neglecting terms of order log U
in the presence of terms of order U, we get the negentropy

M
H(u) =Y w,In(u,/U) (18.7.9)
pn=1
From equations (18.7.5), (18.7.6), and (18.7.9) we now seek to maximize
Prob(u|c) o exp [_%Xz] exp[—H (u)] (18.7.10)

or, equivaently,

M
minimize: — In [Prob(u|c) ] = %Xz[u] + H(u) = %X2[u] + Z“# In(u,/U)
= (18.7.11)

This ought to remind you of equation (18.4.11), or equation (18.5.6), or in fact any of
our previous minimization principles along the linesof A + AB, where \B = H(u)
is aregularizing operator. Whereis A? We need to put it in for exactly the reason
discussed following equation (18.4.11): Degenerate inversions are likely to be able
to achieve unrealistically small values of 2. We need an adjustable parameter to
bring x? into its expected narrow statistical range of N + (2N)!/2. The discussion at
the beginning of §18.4 showed that it makes no difference which term we attach the
A to. For consistency in notation, we absorb afactor 2 into A and put it on the entropy
term. (Another way to see the necessity of an undetermined A factor isto note that it
is necessary if our minimization principleisto be invariant under changing the units
in which u is quantized, e.g., if an 8-bit analog-to-digital converter isreplaced by a
12-bit one.) We can now aso put “hats’ back to indicate that thisis the procedure
for obtaining our chosen statistical estimator:

M
minimize: A+ M8 = \*[U] + AH(G) = *[W + A > _ 4, In(@,) (18.7.12)

p=1

(Formally, we might also add a second Lagrange multiplier AU, to constrain the
total intensity U to be constant.)

Itisnot hard to see that the negentropy, H (), isin fact aregularizing operator,
similar to U - U (equation 18.4.11) or U - H - U (equation 18.5.6). The following of
its properties are noteworthy:

1. When U is held constant, H (U) is minimized for u,, = U/M = constant, so it
smoothsin the sense of trying to achieve a constant solution, similar to equation
(18.5.4). Thefact that the constant solutionis a minimum followsfrom the fact
that the second derivative of uInwu is positive.
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18.7 Maximum Entropy Image Restoration 813

2. Unlike equation (18.5.4), however, H(U) islocal, in the sense that it does not
difference neighboring pixels. It ssimply sums some function f, here

fu) =ulnu (18.7.13)

over all pixdls; itisinvariant, in fact, under acomplete scrambling of the pixels

in an image. This form implies that A (U) is not seriously increased by the

occurrence of a small number of very bright pixels (point sources) embedded
in a low-intensity smooth background.

3. H(U) goes to infinite slope as any one pixel goes to zero. This causes it to
enforce positivity of theimage, without the necessity of additiona deterministic
constraints.

4. The biggest difference between H (U) and the other regularizing operators that
we have met is that H (U) is not a quadratic functional of U, so the equations
obtained by varying equation (18.7.12) are nonlinear. Thisfact isitself worthy
of some additional discussion.

Nonlinear equations are harder to solve than linear equations. For image
processing, however, the large number of equations usualy dictates an iterative
solution procedure, evenfor linear equations, so the practical effect of thenonlinearity
is somewhat mitigated. Below, we will summarize some of the methods that are
successfully used for MEM inverse problems.

For some problems, notably the problem in radio-astronomy of image recovery
from an incomplete set of Fourier coefficients, the superior performance of MEM
inversion can be, in part, traced to the nonlinearity of H (U). One way to see this[5]
isto consider the limit of perfect measurements o; — 0. In thiscase the x? termin
the minimization principle (18.7.12) gets replaced by a set of constraints, each with
its own Lagrange multiplier, requiring agreement between model and data; that is,

minimize: Z Aj lcj - Z R;,u,
J

m

+ H(Q) (18.7.14)

(cf. equation 18.4.7). Setting theformal derivativewith respect to u,, to zero gives

OH R
57 = (@) = > AR (18.7.15)
w X
J

or defining a function G as the inverse function of f”,

Uy =G | Y NRju (18.7.16)
J

Thissolutionisonly formal, since the A;’s must be found by requiring that equation
(18.7.16) satisfy dl the constraints built into equation (18.7.14). However, equation
(18.7.16) does show thecrucial fact that if G islinear, then the solution G containsonly
alinear combination of basis functions R;,, corresponding to actual measurements
j. Thisis equivaent to setting unmessured c;'s to zero. Notice that the principal
solution obtained from equation (18.4.11) in fact has a linear G.
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814 Chapter 18.  Integral Equations and Inverse Theory

In the problem of incomplete Fourier image reconstruction, the typical R;,
has the form exp(—2mik; - x,,), where x,, is atwo-dimensional vector in the image
space and k,, is a two-dimensional wave-vector. If an image contains strong point
sources, then the effect of setting unmeasured ¢;’s to zero is to produce sidelobe
ripples throughout the image plane. These ripples can mask any actua extended,
low-intensity image features lying between the point sources. If, however, the dope
of G issmaller for small values of itsargument, larger for large values, then ripples
in low-intensity portions of the image are relatively suppressed, while strong point
sources will be relatively sharpened (“superresolution”). This behavior on the slope
of G is eguivaent to requiring f(u) < 0. For f(u) = wlnu, we in fact have
f"(u) = —1/u? < 0.

In more picturesgue language, the nonlinearity acts to “create” nonzero values
for the unmeasured ¢;’s, so as to suppress the low-intensity ripple and sharpen the
point sources.

Is MEM Really Magical?

How unique is the negentropy functional (18.7.9)? Recall that that equationis
based on the assumption that luminance elements are a priori distributed over the
pixelsuniformly. If we instead had some other preferred a priori image in mind, one
with pixel intensitiesm,,, then it is easy to show that the negentropy becomes

M
H(u) = u,In(u,/m,,) + constant (18.7.17)

p=1

(the constant can then be ignored). All the rest of the discussion then goes through.

More fundamentally, and despite statements by zealots to the contrary [7], there
is actually nothing universal about the functional form f(u) = wlnwu. In some
other physical situations (for example, the entropy of an electromagnetic field in the
limit of many photons per mode, as in radio-astronomy) the physical negentropy
functiona is actually f(u) = —Inwu (seel5] for other examples). In genera, the
question, “Entropy of what?’ isnot uniquely answerable in any particular situation.
(Seereference [9] for an attempt at articulating a more general principlethat reduces
to one or another entropy functional under appropriate circumstances.)

The four numbered properties summarized above, plus the desirable sign for
nonlinearity, f”'(u) < 0, areal astruefor f(u) = —Ilnwasfor f(u) = wlnw. In
fact these properties are shared by a nonlinear function as simple as f(u) = —/u,
which has no information theoretic justification a all (no logarithms!). MEM
reconstructions of test images using any of these entropy forms are virtualy
indistinguishablels].

By dl available evidence, MEM seems to be neither more nor less than one
usefully nonlinear version of thegeneral regularization scheme A + A\B that we have
by now considered in many forms. Its peculiarities become strengths when applied
to the reconstruction from incomplete Fourier data of images that are expected
to be dominated by very bright point sources, but which aso contain interesting
low-intensity, extended sources. For images of some other character, there is no
reason to suppose that MEM methods will generally dominate other regularization
schemes, either ones already known or yet to be invented.
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18.7 Maximum Entropy Image Restoration 815

Algorithms for MEM

The god isto find the vector U that minimizes A + A\B where in the notation
of equations (18.5.5), (18.5.6), and (18.7.13),

A=lo—A-T°> B=)> f(i,) (18.7.18)
w
Compared with a “general” minimization problem, we have the advantage that

we can compute the gradients and the second partial derivative matrices (Hessian
matrices) explicitly,

2
VA=2AT.A.G—-AT.b) oA =[2AT. A},
O 0%, (18.7.19)
R 0’8 i~ o
[VB]u:f (uu) PR =bupf (uu)
ou,,0u,

It is important to note that while A’s second partial derivative matrix cannot be
stored (its sizeisthe square of the number of pixels), it can be applied to any vector
by first applying A, then AT In the case of reconstruction from incomplete Fourier
data, or in the case of convolution with a trandation invariant point spread function,
these applicationswill typically involve severa FFTs. Likewise, the calculation of
the gradient V.4 will involve FFTs in the application of A and A”.

While some success has been achieved with the classical conjugate gradient
method (§10.6), it is often found that the nonlinearity in f(u) = wlnu causes
problems. Attempted steps that give U with even one negative value must be cut in
magnitude, sometimes so severely asto slow the solutionto acrawl. The underlying
problem is that the conjugate gradient method develops its information about the
inverse of the Hessian matrix abit at atime, while changing itslocation in the search
space. When anonlinear function is quite different from a pure quadratic form, the
old information becomes obsolete before it gets usefully exploited.

Skilling and collaborators[6,7,10,11] developed a complicated but highly suc-
cessful scheme, wherein a minimum is repeatedly sought not along a single search
direction, but in asmall- (typically three-) dimensional subspace, spanned by vectors
that are calculated anew a each landing point. The subspace basis vectors are
chosen in such away as to avoid directions leading to negative values. One of the
most successful choices is the three-dimensional subspace spanned by the vectors
with components given by

6&1) = uu[VA],
6&2) = uu[VB],
U 32, (0% A) 00,00, ), VB, Ty 3, (0% A/ 01,0, )i, VA,

>, 4, ([VB],)? >, 0 (VAL
(18.7.20)

o)

(Inthese equationsthereisno sumover 12.) Theformof thee(®) has somejustification
if one views dot products as occurring in a space with the metric g, = 6, /u,,
chosen to make zero values “far away”; seel6].
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816 Chapter 18.  Integral Equations and Inverse Theory

Within the three-dimensional subspace, the three-component gradient and nine-
component Hessian matrix are computed by projection from the large space, and
the minimum in the subspace is estimated by (trivialy) solving three simultaneous
linear equations, as in §10.7, equation (10.7.4). The size of a step AU is required
to be limited by the inequality

> (AG,)? /i, < (0.1t00.5)U (18.7.21)
w
Because the gradient directions V.A and VB are separately available, it is possible
to combine the minimum search with a simultaneous adjustment of A\ so asfinaly to
satisfy the desired constraint. There are various further tricks employed.

A less general, but in practice often equally satisfactory, approach is due to
Cornwell and Evans[12]. Here, noting that 5's Hessian (second partia derivative)
matrix is diagonal, one asks whether there is a useful diagona approximation to
A’s Hessian, namely 2AT - A, If A, denotes the diagona components of such an
approximation, then a useful step in G would be

1
CAL (U
(again compare equation 10.7.4). Even more extreme, one might seek an approx-
imation with constant diagona elements, A, = A, so that
1
A+ Xf"(uy,)
Since AT - A has something of the nature of a doubly convolved point spread
function, and since in real cases one often has a point spread function with a sharp

central peak, even the more extreme of these approximationsis often fruitful. One
starts with a rough estimate of A obtained from the 4;,,’s, eg.,

A~ <Z[Aw]2> (18.7.24)

%

AT, = (VA+ AVB) (18.7.22)

AT, = (VA+ AVB) (18.7.23)

An accurate value is not important, since in practice A is adjusted adaptively: If A
istoo large, then equation (18.7.23)'s steps will be too small (that is, larger stepsin
the same direction will produce even greater decrease in A + AB). If A istoo small,
then attempted steps will [and in an unfeasibleregion (negative values of ,,), or will
resultinanincreased A+ A\B. Thereisan obvioussimilarity between the adjustment
of A here and the Levenberg-Marquardt method of §15.5; this should not be too
surprising, since MEM s closaly akin to the problem of nonlinear least-squares
fitting. Reference(12] also discusses how the value of A + A\ f” (%, ) can be used to
adjust the Lagrange multiplier A so as to converge to the desired value of 2.

All practicd MEM agorithms are found to require on the order of 30 to 50
iterations to converge. This convergence behavior is not now understood in any
fundamental way.

“Bayesian” versus “Historic” Maximum Entropy

Several more recent developments in maximum entropy image restoration
go under the rubric “Bayesian” to distinguish them from the previous “historic”
methods. See[13] for details and references.
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o Better priors: We aready noted that the entropy functional (equation
18.7.13) is invariant under scrambling all pixels and has no notion of
smoothness. The so-called “intrinsic correlation function” (ICF) model
(Ref. [13], where it is called “New MaxEnt”) is similar enough to the
entropy functional to alow similar algorithms, but it makes the values of
neighboring pixels correlated, enforcing smoothness.

o Better estimation of \: Above we chose ) to bring x? into its expected
narrow statistical range of N 4 (2V)'/2. Thisin effect overestimates 2,
however, since some effective number v of parameters are being “fitted”
indoing thereconstruction. A Bayesian approach |eads to a self-consistent
estimate of this~ and an objectively better choice for A.
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