compared to N^{2} for Levinson's method. These methods are too complicated to include here. Papers by Bunch [6] and de Hoog [7] will give entry to the literature.

CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins University Press), Chapter 5 [also treats some other special forms].
Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Englewood Cliffs, NJ: Prentice-Hall), §19. [1]
Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations (New York: Wiley). [2]
von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), pp. 394ff. [3]
Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of Stationary Time Series (New York: Wiley). [4]
Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: PrenticeHall), pp. 163ff. [5]
Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349-364. [6] de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123-138. [7]

2.9 Cholesky Decomposition

If a square matrix \mathbf{A} happens to be symmetric and positive definite, then it has a special, more efficient, triangular decomposition. Symmetric means that $a_{i j}=a_{j i}$ for $i, j=1, \ldots, N$, while positive definite means that

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{A} \cdot \mathbf{v}>0 \quad \text { for all vectors } \mathbf{v} \tag{2.9.1}
\end{equation*}
$$

(In Chapter 11 we will see that positive definite has the equivalent interpretation that \mathbf{A} has all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they occur quite frequently in some applications, so their special factorization, called Cholesky decomposition, is good to know about. When you can use it, Cholesky decomposition is about a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors \mathbf{L} and \mathbf{U}, Cholesky decomposition constructs a lower triangular matrix \mathbf{L} whose transpose \mathbf{L}^{T} can itself serve as the upper triangular part. In other words we replace equation (2.3.1) by

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{L}^{T}=\mathbf{A} \tag{2.9.2}
\end{equation*}
$$

This factorization is sometimes referred to as "taking the square root" of the matrix \mathbf{A}. The components of \mathbf{L}^{T} are of course related to those of \mathbf{L} by

$$
\begin{equation*}
L_{i j}^{T}=L_{j i} \tag{2.9.3}
\end{equation*}
$$

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations (2.3.12)-(2.3.13),

$$
\begin{equation*}
L_{i i}=\left(a_{i i}-\sum_{k=1}^{i-1} L_{i k}^{2}\right)^{1 / 2} \tag{2.9.4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{j i}=\frac{1}{L_{i i}}\left(a_{i j}-\sum_{k=1}^{i-1} L_{i k} L_{j k}\right) \quad j=i+1, i+2, \ldots, N \tag{2.9.5}
\end{equation*}
$$

If you apply equations (2.9.4) and (2.9.5) in the order $i=1,2, \ldots, N$, you will see that the L 's that occur on the right-hand side are already determined by the time they are needed. Also, only components $a_{i j}$ with $j \geq i$ are referenced. (Since \mathbf{A} is symmetric, these have complete information.) It is convenient, then, to have the factor \mathbf{L} overwrite the subdiagonal (lower triangular but not including the diagonal) part of \mathbf{A}, preserving the input upper triangular values of \mathbf{A}. Only one extra vector of length N is needed to store the diagonal part of \mathbf{L}. The operations count is $N^{3} / 6$ executions of the inner loop (consisting of one multiply and one subtract), with also N square roots. As already mentioned, this is about a factor 2 better than $L U$ decomposition of \mathbf{A} (where its symmetry would be ignored).

A straightforward implementation is

```
SUBROUTINE choldc ( \(\mathrm{a}, \mathrm{n}, \mathrm{np}, \mathrm{p}\) )
INTEGER \(\mathrm{n}, \mathrm{np}\)
REAL a ( \(n p, n p\) ), \(p(n)\)
    Given a positive-definite symmetric matrix \(\mathrm{a}(1: \mathrm{n}, 1: \mathrm{n})\), with physical dimension np , this
    routine constructs its Cholesky decomposition, \(\mathbf{A}=\mathbf{L} \cdot \mathbf{L}^{T}\). On input, only the upper triangle
    of a need be given; it is not modified. The Cholesky factor \(\mathbf{L}\) is returned in the lower triangle
    of \(a\), except for its diagonal elements which are returned in \(p(1: n)\).
INTEGER i,j,k
REAL sum
do \(13 \mathrm{i}=1, \mathrm{n}\)
    do \(12 \mathrm{j}=\mathrm{i}, \mathrm{n}\)
        sum=a(i,j)
        do \(11 \mathrm{k}=\mathrm{i}-1,1,-1\)
            sum=sum-a(i,k)*a(j,k)
        enddo 11
        if(i.eq.j)then
            if (sum.le.0.) pause 'choldc failed' a, with rounding errors, is not
            p(i)=sqrt (sum)
        else
            \(a(j, i)=s u m / p(i)\)
        endif
    enddo 12
enddo 13
return
END
```

You might at this point wonder about pivoting. The pleasant answer is that Cholesky decomposition is extremely stable numerically, without any pivoting at all. Failure of choldc simply indicates that the matrix \mathbf{A} (or, with roundoff error, another very nearby matrix) is not positive definite. In fact, choldc is an efficient way to test whether a symmetric matrix is positive definite. (In this application, you will want to replace the pause with some less drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a linear equation by backsubstitution. The straightforward implementation of this is

```
SUBROUTINE cholsl(a,n,np,p,b,x)
INTEGER n,np
REAL a(np,np),b(n),p(n),x(n)
    Solves the set of n linear equations A}\cdot\mathbf{x}=\mathbf{b}\mathrm{ , where a is a positive-definite symmetric
    matrix with physical dimension np. a and p are input as the output of the routine choldc.
    Only the lower triangle of a is accessed. b (1:n) is input as the right-hand side vector. The
    solution vector is returned in x(1:n).a, n, np, and p are not modified and can be left
    in place for successive calls with different right-hand sides b. b is not modified unless you
    identify b and x in the calling sequence, which is allowed.
INTEGER i,k
REAL sum
do 12 i=1,n Solve L}\mathbf{L}\cdot\mathbf{y}=\mathbf{b}\mathrm{ , storing }\mathbf{y}\mathrm{ in }\mathbf{x}\mathrm{ .
    sum=b(i)
    do 11 k=i-1,1,-1
        sum=sum-a(i,k)*x(k)
```

```
    enddo }1
    x(i)=sum/p(i)
enddo }1
do 14 i=n,1,-1 Solve L}\mp@subsup{\mathbf{L}}{}{T}\cdot\mathbf{x}=\mathbf{y
    sum=x(i)
    do 13 k=i+1,n
        sum=sum-a(k,i)*x(k)
    enddo }1
    x(i)=sum/p(i)
enddo }1
return
END
```

A typical use of choldc and cholsl is in the inversion of covariance matrices describing the fit of data to a model; see, e.g., $\S 15.6$. In this, and many other applications, one often needs \mathbf{L}^{-1}. The lower triangle of this matrix can be efficiently found from the output of choldc:

```
do 13 i=1,n
    a(i,i)=1./p(i)
    do 12 j=i+1,n
        sum=0.
        do 11 k=i,j-1
            sum=sum-a(j,k)*a(k,i)
        enddo 11
        a(j,i)=sum/p(j)
    enddo }1
enddo }1
```


CITED REFERENCES AND FURTHER READING:

Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Computation (New York: Springer-Verlag), Chapter I/1.
Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1 (Redwood City, CA: Addison-Wesley), §4.9.2.
Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall), §5.3.5.
Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-called $Q R$ decomposition,

$$
\begin{equation*}
\mathbf{A}=\mathbf{Q} \cdot \mathbf{R} \tag{2.10.1}
\end{equation*}
$$

