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compared to N2 for Levinson’s method. These methods are too complicated to include here.
Papers by Bunch [6] and de Hoog [7] will give entry to the literature.
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2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that aij = aji for
i, j = 1, . . . , N , while positive definite means that

v · A · v > 0 for all vectors v (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs a lower triangular matrix L whose transpose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A. The
components of LT are of course related to those of L by

LTij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(
aii −

i−1∑
k=1

L2
ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(
aij −

i−1∑
k=1

LikLjk

)
j = i+ 1, i+ 2, . . . , N (2.9.5)
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If you apply equations (2.9.4) and (2.9.5) in the order i = 1, 2, . . . , N , you will see
that the L’s that occur on the right-hand side are already determined by the time they are
needed. Also, only components aij with j ≥ i are referenced. (Since A is symmetric,
these have complete information.) It is convenient, then, to have the factor L overwrite the
subdiagonal (lower triangular but not including the diagonal) part of A, preserving the input
upper triangular values of A. Only one extra vector of lengthN is needed to store the diagonal
part of L. The operations count is N3/6 executions of the inner loop (consisting of one
multiply and one subtract), with also N square roots. As already mentioned, this is about a
factor 2 better than LU decomposition of A (where its symmetry would be ignored).

A straightforward implementation is

SUBROUTINE choldc(a,n,np,p)
INTEGER n,np
REAL a(np,np),p(n)

Given a positive-definite symmetric matrix a(1:n,1:n), with physical dimension np, this
routine constructs its Cholesky decomposition, A = L·LT . On input, only the upper triangle
of a need be given; it is not modified. The Cholesky factor L is returned in the lower triangle
of a, except for its diagonal elements which are returned in p(1:n).

INTEGER i,j,k
REAL sum
do 13 i=1,n

do 12 j=i,n
sum=a(i,j)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*a(j,k)
enddo 11

if(i.eq.j)then
if(sum.le.0.)pause ’choldc failed’ a, with rounding errors, is not

positive definite.p(i)=sqrt(sum)
else

a(j,i)=sum/p(i)
endif

enddo 12

enddo 13

return
END

You might at this point wonder about pivoting. The pleasant answer is that Cholesky
decomposition is extremely stable numerically, without any pivoting at all. Failure of choldc
simply indicates that the matrix A (or, with roundoff error, another very nearby matrix) is
not positive definite. In fact, choldc is an efficient way to test whether a symmetric matrix
is positive definite. (In this application, you will want to replace the pause with some less
drastic signaling method.)

Once your matrix is decomposed, the triangular factor can be used to solve a linear
equation by backsubstitution. The straightforward implementation of this is

SUBROUTINE cholsl(a,n,np,p,b,x)
INTEGER n,np
REAL a(np,np),b(n),p(n),x(n)

Solves the set of n linear equations A · x = b, where a is a positive-definite symmetric
matrix with physical dimension np. a and p are input as the output of the routine choldc.
Only the lower triangle of a is accessed. b(1:n) is input as the right-hand side vector. The
solution vector is returned in x(1:n). a, n, np, and p are not modified and can be left
in place for successive calls with different right-hand sides b. b is not modified unless you
identify b and x in the calling sequence, which is allowed.

INTEGER i,k
REAL sum
do 12 i=1,n Solve L · y = b, storing y in x.

sum=b(i)
do 11 k=i-1,1,-1

sum=sum-a(i,k)*x(k)
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enddo 11

x(i)=sum/p(i)
enddo 12

do 14 i=n,1,-1 Solve LT · x = y.
sum=x(i)
do 13 k=i+1,n

sum=sum-a(k,i)*x(k)
enddo 13

x(i)=sum/p(i)
enddo 14

return
END

A typical use of choldc and cholsl is in the inversion of covariancematrices describing
the fit of data to a model; see, e.g., §15.6. In this, and many other applications, one often needs
L−1. The lower triangle of this matrix can be efficiently found from the output of choldc:

do 13 i=1,n
a(i,i)=1./p(i)
do 12 j=i+1,n

sum=0.
do 11 k=i,j-1

sum=sum-a(j,k)*a(k,i)
enddo 11

a(j,i)=sum/p(j)
enddo 12

enddo 13

CITED REFERENCES AND FURTHER READING:
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putation (New York: Springer-Verlag), Chapter I/1.

Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley), §4.9.2.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§5.3.5.

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), §4.2.

2.10 QR Decomposition

There is another matrix factorization that is sometimes very useful, the so-called QR
decomposition,

A = Q · R (2.10.1)

Here R is upper triangular, while Q is orthogonal, that is,

QT ·Q = 1 (2.10.2)

where QT is the transpose matrix of Q. Although the decomposition exists for a general
rectangular matrix, we shall restrict our treatment to the case when all the matrices are square,
with dimensions N × N .


