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11.7 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. Let y be the solution
of the linear system

(A− τ1) · y = b (11.7.1)

where b is a random vector and τ is close to some eigenvalue λ of A. Then the
solution y will be close to the eigenvector corresponding to λ. The procedure can
be iterated: Replace b by y and solve for a new y, which will be even closer to
the true eigenvector.

We can see why this works by expanding both y and b as linear combinations
of the eigenvectors xj of A:

y =
∑
j

αjxj b =
∑
j

βjxj (11.7.2)

Then (11.7.1) gives ∑
j

αj(λj − τ )xj =
∑
j

βjxj (11.7.3)

so that

αj =
βj

λj − τ
(11.7.4)

and

y =
∑
j

βjxj
λj − τ

(11.7.5)

If τ is close to λn, say, then provided βn is not accidentally too small, y will be
approximately xn, up to a normalization. Moreover, each iteration of this procedure
gives another power of λj − τ in the denominator of (11.7.5). Thus the convergence
is rapid for well-separated eigenvalues.

Suppose at the kth stage of iteration we are solving the equation

(A − τk1) · y = bk (11.7.6)

where bk and τk are our current guesses for some eigenvector and eigenvalue of
interest (let’s say, xn and λn). Normalize bk so that bk · bk = 1. The exact
eigenvector and eigenvalue satisfy

A · xn = λnxn (11.7.7)

so

(A− τk1) · xn = (λn − τk)xn (11.7.8)

Since y of (11.7.6) is an improved approximation to xn, we normalize it and set

bk+1 =
y
|y| (11.7.9)
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We get an improved estimate of the eigenvalue by substituting our improved guess
y for xn in (11.7.8). By (11.7.6), the left-hand side is bk, so calling λn our new
value τk+1, we find

τk+1 = τk +
1

bk · y
(11.7.10)

While the above formulas look simple enough, in practice the implementation
can be quite tricky. The first question to be resolved is when to use inverse iteration.
Most of the computational load occurs in solving the linear system (11.7.6). Thus
a possible strategy is first to reduce the matrix A to a special form that allows easy
solution of (11.7.6). Tridiagonal form for symmetric matrices or Hessenberg for
nonsymmetric are the obvious choices. Then apply inverse iteration to generate
all the eigenvectors. While this is an O(N3) method for symmetric matrices, it
is many times less efficient than the QL method given earlier. In fact, even the
best inverse iteration packages are less efficient than the QL method as soon as
more than about 25 percent of the eigenvectors are required. Accordingly, inverse
iteration is generally used when one already has good eigenvalues and wants only
a few selected eigenvectors.

You can write a simple inverse iteration routine yourself using LU decompo-
sition to solve (11.7.6). You can decide whether to use the general LU algorithm
we gave in Chapter 2 or whether to take advantage of tridiagonal or Hessenberg
form. Note that, since the linear system (11.7.6) is nearly singular, you must be
careful to use a version of LU decomposition like that in §2.3 which replaces a zero
pivot with a very small number.

We have chosen not to give a general inverse iteration routine in this book,
because it is quite cumbersome to take account of all the cases that can arise.
Routines are given, for example, in [1,2]. If you use these, or write your own routine,
you may appreciate the following pointers.

One starts by supplying an initial value τ0 for the eigenvalue λn of interest.
Choose a random normalized vector b0 as the initial guess for the eigenvector xn,
and solve (11.7.6). The new vector y is bigger than b0 by a “growth factor” |y|,
which ideally should be large. Equivalently, the change in the eigenvalue, which by
(11.7.10) is essentially 1/ |y|, should be small. The following cases can arise:

• If the growth factor is too small initially, then we assume we have made
a “bad” choice of random vector. This can happen not just because of
a small βn in (11.7.5), but also in the case of a defective matrix, when
(11.7.5) does not even apply (see, e.g., [1] or [3] for details). We go back
to the beginning and choose a new initial vector.

• The change |b1 − b0|might be less than some tolerance ε. We can use this
as a criterion for stopping, iterating until it is satisfied, with a maximum
of 5 – 10 iterations, say.

• After a few iterations, if |bk+1 − bk| is not decreasing rapidly enough,
we can try updating the eigenvalue according to (11.7.10). If τk+1 = τk
to machine accuracy, we are not going to improve the eigenvector much
more and can quit. Otherwise start another cycle of iterations with the
new eigenvalue.

The reason we do not update the eigenvalue at every step is that when we solve
the linear system (11.7.6) by LU decomposition, we can save the decomposition
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if τk is fixed. We only need do the backsubstitution step each time we update bk.
The number of iterations we decide to do with a fixed τk is a trade-off between the
quadratic convergence but O(N3) workload for updating τk at each step and the
linear convergence butO(N2) load for keeping τk fixed. If you have determined the
eigenvalue by one of the routines given earlier in the chapter, it is probably correct
to machine accuracy anyway, and you can omit updating it.

There are two different pathologies that can arise during inverse iteration. The
first is multiple or closely spaced roots. This is more often a problem with symmetric
matrices. Inverse iteration will find only one eigenvector for a given initial guess τ0.
A good strategy is to perturb the last few significant digits in τ0 and then repeat the
iteration. Usually this provides an independent eigenvector. Special steps generally
have to be taken to ensure orthogonality of the linearly independent eigenvectors,
whereas the Jacobi and QL algorithms automatically yield orthogonal eigenvectors
even in the case of multiple eigenvalues.

The second problem, peculiar to nonsymmetric matrices, is the defective case.
Unless one makes a “good” initial guess, the growth factor is small. Moreover,
iteration does not improve matters. In this case, the remedy is to choose random
initial vectors, solve (11.7.6) once, and quit as soon as any vector gives an acceptably
large growth factor. Typically only a few trials are necessary.

One further complication in the nonsymmetric case is that a real matrix can
have complex-conjugate pairs of eigenvalues. You will then have to use complex
arithmetic to solve (11.7.6) for the complex eigenvectors. For any moderate-sized
(or larger) nonsymmetric matrix, our recommendation is to avoid inverse iteration
in favor of a QR method that includes the eigenvector computation in complex
arithmetic. You will find routines for this in [1,2] and other places.
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