14.3 Are Two Distributions Different?

Given two sets of data, we can generalize the questions asked in the previous section and ask the single question: Are the two sets drawn from the same distribution function, or from different distribution functions? Equivalently, in proper statistical language, "Can we disprove, to a certain required level of significance, the null hypothesis that two data sets are drawn from the same population distribution function?" Disproving the null hypothesis in effect proves that the data sets are from different distributions. Failing to disprove the null hypothesis, on the other hand, only shows that the data sets can be consistent with a single distribution function. One can never prove that two data sets come from a single distribution, since (e.g.) no practical amount of data can distinguish between two distributions which differ only by one part in 10^{10}.

Proving that two distributions are different, or showing that they are consistent, is a task that comes up all the time in many areas of research: Are the visible stars distributed uniformly in the sky? (That is, is the distribution of stars as a function of declination - position in the sky - the same as the distribution of sky area as a function of declination?) Are educational patterns the same in Brooklyn as in the Bronx? (That is, are the distributions of people as a function of last-grade-attended the same?) Do two brands of fluorescent lights have the same distribution of burn-out times? Is the incidence of chicken pox the same for first-born, second-born, third-born children, etc.?

These four examples illustrate the four combinations arising from two different dichotomies: (1) The data are either continuous or binned. (2) Either we wish to compare one data set to a known distribution, or we wish to compare two equally unknown data sets. The data sets on fluorescent lights and on stars are continuous, since we can be given lists of individual burnout times or of stellar positions. The data sets on chicken pox and educational level are binned, since we are given tables of numbers of events in discrete categories: first-born, second-born, etc.; or 6th Grade, 7th Grade, etc. Stars and chicken pox, on the other hand, share the property that the null hypothesis is a known distribution (distribution of area in the sky, or incidence of chicken pox in the general population). Fluorescent lights and educational level involve the comparison of two equally unknown data sets (the two brands, or Brooklyn and the Bronx).

One can always turn continuous data into binned data, by grouping the events into specified ranges of the continuous variable(s): declinations between 0 and 10 degrees, 10 and 20, 20 and 30, etc. Binning involves a loss of information, however. Also, there is often considerable arbitrariness as to how the bins should be chosen. Along with many other investigators, we prefer to avoid unnecessary binning of data.

The accepted test for differences between binned distributions is the chi-square test. For continuous data as a function of a single variable, the most generally accepted test is the Kolmogorov-Smirnov test. We consider each in turn.

Chi-Square Test

Suppose that N_{i} is the number of events observed in the i th bin, and that n_{i} is the number expected according to some known distribution. Note that the N_{i} 's are
integers, while the n_{i} 's may not be. Then the chi-square statistic is

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(N_{i}-n_{i}\right)^{2}}{n_{i}} \tag{14.3.1}
\end{equation*}
$$

where the sum is over all bins. A large value of χ^{2} indicates that the null hypothesis (that the N_{i} 's are drawn from the population represented by the n_{i} 's) is rather unlikely.

Any term j in (14.3.1) with $0=n_{j}=N_{j}$ should be omitted from the sum. A term with $n_{j}=0, N_{j} \neq 0$ gives an infinite χ^{2}, as it should, since in this case the N_{i} 's cannot possibly be drawn from the n_{i} 's!

The chi-square probability function $Q\left(\chi^{2} \mid \nu\right)$ is an incomplete gamma function, and was already discussed in $\S 6.2$ (see equation 6.2 .18). Strictly speaking $Q\left(\chi^{2} \mid \nu\right)$ is the probability that the sum of the squares of ν random normal variables of unit variance (and zero mean) will be greater than χ^{2}. The terms in the sum (14.3.1) are not individually normal. However, if either the number of bins is large ($\gg 1$), or the number of events in each bin is large $(\gg 1)$, then the chi-square probability function is a good approximation to the distribution of (14.3.1) in the case of the null hypothesis. Its use to estimate the significance of the chi-square test is standard.

The appropriate value of ν, the number of degrees of freedom, bears some additional discussion. If the data are collected with the model n_{i} 's fixed - that is, not later renormalized to fit the total observed number of events ΣN_{i} — then ν equals the number of bins N_{B}. (Note that this is not the total number of events!) Much more commonly, the n_{i} 's are normalized after the fact so that their sum equals the sum of the N_{i} 's. In this case the correct value for ν is $N_{B}-1$, and the model is said to have one constraint (knstrn=1 in the program below). If the model that gives the n_{i} 's has additional free parameters that were adjusted after the fact to agree with the data, then each of these additional "fitted" parameters decreases ν (and increases knstrn) by one additional unit.

We have, then, the following program:

```
SUBROUTINE chsone(bins,ebins,nbins,knstrn,df,chsq,prob)
INTEGER knstrn,nbins
REAL chsq,df,prob,bins(nbins),ebins(nbins)
C USES gammq
    Given the array bins(1:nbins) containing the observed numbers of events, and an array
    ebins(1:nbins) containing the expected numbers of events, and given the number of
    constraints knstrn (normally one), this routine returns (trivially) the number of degrees of
    freedom df, and (nontrivially) the chi-square chsq and the significance prob. A small value
    of prob indicates a significant difference between the distributions bins and ebins. Note
    that bins and ebins are both real arrays, although bins will normally contain integer
    values.
INTEGER j
REAL gammq
df=nbins-knstrn
chsq=0.
do 11 j=1,nbins
    if(ebins(j).le.0.)pause 'bad expected number in chsone'
    chsq=chsq+(bins(j)-ebins(j))**2/ebins(j)
enddo }1
prob=gammq(0.5*df,0.5*chsq) Chi-square probability function. See §6.2.
return
END
```

Next we consider the case of comparing two binned data sets. Let R_{i} be the number of events in bin i for the first data set, S_{i} the number of events in the same bin i for the second data set. Then the chi-square statistic is

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(R_{i}-S_{i}\right)^{2}}{R_{i}+S_{i}} \tag{14.3.2}
\end{equation*}
$$

Comparing (14.3.2) to (14.3.1), you should note that the denominator of (14.3.2) is not just the average of R_{i} and S_{i} (which would be an estimator of n_{i} in 14.3.1). Rather, it is twice the average, the sum. The reason is that each term in a chi-square sum is supposed to approximate the square of a normally distributed quantity with unit variance. The variance of the difference of two normal quantities is the sum of their individual variances, not the average.

If the data were collected in such a way that the sum of the R_{i} 's is necessarily equal to the sum of S_{i} 's, then the number of degrees of freedom is equal to one less than the number of bins, $N_{B}-1$ (that is, knstrn $=1$), the usual case. If this requirement were absent, then the number of degrees of freedom would be N_{B}. Example: A birdwatcher wants to know whether the distribution of sighted birds as a function of species is the same this year as last. Each bin corresponds to one species. If the birdwatcher takes his data to be the first 1000 birds that he saw in each year, then the number of degrees of freedom is $N_{B}-1$. If he takes his data to be all the birds he saw on a random sample of days, the same days in each year, then the number of degrees of freedom is N_{B} (knstrn $=0$). In this latter case, note that he is also testing whether the birds were more numerous overall in one year or the other: That is the extra degree of freedom. Of course, any additional constraints on the data set lower the number of degrees of freedom (i.e., increase knstrn to more positive values) in accordance with their number.

The program is

```
    SUBROUTINE chstwo(bins1,bins2,nbins,knstrn,df,chsq,prob)
    INTEGER knstrn,nbins
    REAL chsq,df,prob,bins1(nbins),bins2(nbins)
C USES gammq
    Given the arrays bins1(1:nbins) and bins2(1:nbins), containing two sets of binned
    data, and given the number of constraints knstrn (normally 1 or 0), this routine returns
    the number of degrees of freedom df, the chi-square chsq, and the significance prob.
    A small value of prob indicates a significant difference between the distributions bins1
    and bins2. Note that bins1 and bins2 are both real arrays, although they will normally
    contain integer values.
INTEGER j
REAL gammq
df=nbins-knstrn
chsq=0.
do 11 j=1,nbins
    if(bins1(j).eq.0..and.bins2(j).eq.0.)then
        df=df-1. No data means one less degree of freedom.
    else
        chsq=chsq+(bins1(j)-bins2(j))**2/(bins1(j)+bins2(j))
    endif
enddo }1
prob=gammq(0.5*df,0.5*chsq) Chi-square probability function. See §6.2.
return
END
```

Equation (14.3.2) and the routine chstwo both apply to the case where the total number of data points is the same in the two binned sets. For unequal numbers of data points, the formula analogous to (14.3.2) is

$$
\begin{equation*}
\chi^{2}=\sum_{i} \frac{\left(\sqrt{S / R} R_{i}-\sqrt{R / S} S_{i}\right)^{2}}{R_{i}+S_{i}} \tag{14.3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
R \equiv \sum_{i} R_{i} \quad S \equiv \sum_{i} S_{i} \tag{14.3.4}
\end{equation*}
$$

are the respective numbers of data points. It is straightforward to make the corresponding change in chstwo.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (or $K-S$) test is applicable to unbinned distributions that are functions of a single independent variable, that is, to data sets where each data point can be associated with a single number (lifetime of each lightbulb when it burns out, or declination of each star). In such cases, the list of data points can be easily converted to an unbiased estimator $S_{N}(x)$ of the cumulative distribution function of the probability distribution from which it was drawn: If the N events are located at values $x_{i}, i=1, \ldots, N$, then $S_{N}(x)$ is the function giving the fraction of data points to the left of a given value x. This function is obviously constant between consecutive (i.e., sorted into ascending order) x_{i} 's, and jumps by the same constant $1 / N$ at each x_{i}. (See Figure 14.3.1.)

Different distribution functions, or sets of data, give different cumulative distribution function estimates by the above procedure. However, all cumulative distribution functions agree at the smallest allowable value of x (where they are zero), and at the largest allowable value of x (where they are unity). (The smallest and largest values might of course be $\pm \infty$.) So it is the behavior between the largest and smallest values that distinguishes distributions.

One can think of any number of statistics to measure the overall difference between two cumulative distribution functions: the absolute value of the area between them, for example. Or their integrated mean square difference. The KolmogorovSmirnov D is a particularly simple measure: It is defined as the maximum value of the absolute difference between two cumulative distribution functions. Thus, for comparing one data set's $S_{N}(x)$ to a known cumulative distribution function $P(x)$, the K-S statistic is

$$
\begin{equation*}
D=\max _{-\infty<x<\infty}\left|S_{N}(x)-P(x)\right| \tag{14.3.5}
\end{equation*}
$$

Figure 14.3.1. Kolmogorov-Smirnov statistic D. A measured distribution of values in x (shown as N dots on the lower abscissa) is to be compared with a theoretical distribution whose cumulative probability distribution is plotted as $P(x)$. A step-function cumulative probability distribution $S_{N}(x)$ is constructed, one that rises an equal amount at each measured point. D is the greatest distance between the two cumulative distributions.

What makes the $\mathrm{K}-\mathrm{S}$ statistic useful is that its distribution in the case of the null hypothesis (data sets drawn from the same distribution) can be calculated, at least to useful approximation, thus giving the significance of any observed nonzero value of D. A central feature of the $\mathrm{K}-\mathrm{S}$ test is that it is invariant under reparametrization of x; in other words, you can locally slide or stretch the x axis in Figure 14.3.1, and the maximum distance D remains unchanged. For example, you will get the same significance using x as using $\log x$.

The function that enters into the calculation of the significance can be written as the following sum:

$$
\begin{equation*}
Q_{K S}(\lambda)=2 \sum_{j=1}^{\infty}(-1)^{j-1} e^{-2 j^{2} \lambda^{2}} \tag{14.3.7}
\end{equation*}
$$

which is a monotonic function with the limiting values

$$
\begin{equation*}
Q_{K S}(0)=1 \quad Q_{K S}(\infty)=0 \tag{14.3.8}
\end{equation*}
$$

In terms of this function, the significance level of an observed value of D (as a disproof of the null hypothesis that the distributions are the same) is given approximately [1] by the formula

$$
\begin{equation*}
\operatorname{Probability}(D>\text { observed })=Q_{K S}\left(\left[\sqrt{N_{e}}+0.12+0.11 / \sqrt{N_{e}}\right] D\right) \tag{14.3.9}
\end{equation*}
$$

where N_{e} is the effective number of data points, $N_{e}=N$ for the case (14.3.5) of one distribution, and

$$
\begin{equation*}
N_{e}=\frac{N_{1} N_{2}}{N_{1}+N_{2}} \tag{14.3.10}
\end{equation*}
$$

for the case (14.3.6) of two distributions, where N_{1} is the number of data points in the first distribution, N_{2} the number in the second.

The nature of the approximation involved in (14.3.9) is that it becomes asymptotically accurate as the N_{e} becomes large, but is already quite good for $N_{e} \geq 4$, as small a number as one might ever actually use. (See [1].)

So, we have the following routines for the cases of one and two distributions:

```
SUBROUTINE ksone(data,n,func,d,prob)
INTEGER n
REAL d,data(n),func,prob
EXTERNAL func
C USES probks,sort
    Given an array data(1:n), and given a user-supplied function of a single variable func
    which is a cumulative distribution function ranging from 0 (for smallest values of its argu-
    ment) to 1 (for largest values of its argument), this routine returns the K-S statistic d, and
    the significance level prob. Small values of prob show that the cumulative distribution
    function of data is significantly different from func. The array data is modified by being
    sorted into ascending order.
INTEGER j
REAL dt,en,ff,fn,fo,probks
call sort(n,data) If the data are already sorted into ascending or-
en=n der, then this call can be omitted.
d=0.
fo=0.
do 11 j=1,n
    fn=j/en
    ff=func(data(j))
    dt=max(abs(fo-ff),abs(fn-ff))
    if(dt.gt.d)d=dt
    fo=fn
enddo }1
en=sqrt(en)
prob=probks ((en+0.12+0.11/en)*d) Compute significance.
return
END
SUBROUTINE kstwo(data1,n1,data2,n2,d,prob)
INTEGER n1,n2
REAL d,prob,data1(n1), data2(n2)
C USES probks,sort
Given an array data1 (1:n1), and an array data2(1:n2), this routine returns the K-
S statistic d, and the significance level prob for the null hypothesis that the data sets are drawn from the same distribution. Small values of prob show that the cumulative distribution function of data1 is significantly different from that of data2. The arrays data1 and data2 are modified by being sorted into ascending order.
INTEGER j1,j2
REAL d1,d2,dt,en1,en2,en,fn1,fn2,probks
call sort(n1,data1)
call sort(n2,data2)
en1=n1
en2=n2
j1=1 Next value of data1 to be processed.
j2=1 Ditto, data2.
```

```
fn1=0.
fn2=0.
d=0.
```

```
(j1.le.n1.and.j2.le.n2)then
```

(j1.le.n1.and.j2.le.n2)then
d1=data1(j1)
d1=data1(j1)
d2=data2(j2)
d2=data2(j2)
if(d1.le.d2)then Next step is in data1.
if(d1.le.d2)then Next step is in data1.
fn1=j1/en1
fn1=j1/en1
j1=j1+1
j1=j1+1
endif
endif
if(d2.le.d1)then Next step is in data2.
if(d2.le.d1)then Next step is in data2.
fn2=j2/en2
fn2=j2/en2
j2=j2+1
j2=j2+1
endif
endif
dt=abs(fn2-fn1)
dt=abs(fn2-fn1)
if(dt.gt.d)d=dt
if(dt.gt.d)d=dt
goto 1
goto 1
endif
endif
en=sqrt(en1*en2/(en1+en2))
en=sqrt(en1*en2/(en1+en2))
prob=probks((en+0.12+0.11/en)*d) Compute significance.
prob=probks((en+0.12+0.11/en)*d) Compute significance.
return
return
END

```
END
```

Both of the above routines use the following routine for calculating the function $Q_{K S}$:
FUNCTION probks(alam)
REAL probks, alam, EPS1, EPS2
PARAMETER (EPS1=0.001, EPS2=1.e-8)
Kolmogorov-Smirnov probability function.
INTEGER j
REAL a2,fac,term,termbf
a2=-2.*alam**2
fac=2.
probks=0.
termbf=0. Previous term in sum.
do $11 \mathrm{j}=1,100$
term=fac*exp (a2*j**2)
probks=probks+term
if (abs (term).le.EPS1*termbf.or.abs(term).le.EPS2*probks)return
$\mathrm{fac}=-\mathrm{fac} \quad$ Alternating signs in sum.
termbf=abs (term)
enddo 11
probks=1. Get here only by failing to converge.
return
END

Variants on the K-S Test

The sensitivity of the K-S test to deviations from a cumulative distribution function $P(x)$ is not independent of x. In fact, the $\mathrm{K}-\mathrm{S}$ test tends to be most sensitive around the median value, where $P(x)=0.5$, and less sensitive at the extreme ends of the distribution, where $P(x)$ is near 0 or 1 . The reason is that the difference $\left|S_{N}(x)-P(x)\right|$ does not, in the null hypothesis, have a probability distribution that is independent of x. Rather, its variance is proportional to $P(x)[1-P(x)]$, which is largest at $P=0.5$. Since the K-S statistic (14.3.5) is the maximum difference over all x of two cumulative distribution functions, a deviation that might be statistically significant at its own value of x gets compared to the expected chance deviation at $P=0.5$, and is thus discounted. A result is that, while the $\mathrm{K}-\mathrm{S}$ test is good at
finding shifts in a probability distribution, especially changes in the median value, it is not always so good at finding spreads, which more affect the tails of the probability distribution, and which may leave the median unchanged.

One way of increasing the power of the K-S statistic out on the tails is to replace D (equation 14.3.5) by a so-called stabilized or weighted statistic [2-4], for example the Anderson-Darling statistic,

$$
\begin{equation*}
D^{*}=\max _{-\infty<x<\infty} \frac{\left|S_{N}(x)-P(x)\right|}{\sqrt{P(x)[1-P(x)]}} \tag{14.3.11}
\end{equation*}
$$

Unfortunately, there is no simple formula analogous to equations (14.3.7) and (14.3.9) for this statistic, although Noé [5] gives a computational method using a recursion relation and provides a graph of numerical results. There are many other possible similar statistics, for example

$$
\begin{equation*}
D^{* *}=\int_{P=0}^{1} \frac{\left|S_{N}(x)-P(x)\right|}{\sqrt{P(x)[1-P(x)]}} d P(x) \tag{14.3.12}
\end{equation*}
$$

which is also discussed by Anderson and Darling (see [3]).
Another approach, which we prefer as simpler and more direct, is due to Kuiper [6,7]. We already mentioned that the standard $\mathrm{K}-\mathrm{S}$ test is invariant under reparametrizations of the variable x. An even more general symmetry, which guarantees equal sensitivities at all values of x, is to wrap the x axis around into a circle (identifying the points at $\pm \infty$), and to look for a statistic that is now invariant under all shifts and parametrizations on the circle. This allows, for example, a probability distribution to be "cut" at some central value of x, and the left and right halves to be interchanged, without altering the statistic or its significance.

Kuiper's statistic, defined as

$$
\begin{equation*}
V=D_{+}+D_{-}=\max _{-\infty<x<\infty}\left[S_{N}(x)-P(x)\right]+\max _{-\infty<x<\infty}\left[P(x)-S_{N}(x)\right] \tag{14.3.13}
\end{equation*}
$$

is the sum of the maximum distance of $S_{N}(x)$ above and below $P(x)$. You should be able to convince yourself that this statistic has the desired invariance on the circle: Sketch the indefinite integral of two probability distributions defined on the circle as a function of angle around the circle, as the angle goes through several times 360°. If you change the starting point of the integration, D_{+}and D_{-}change individually, but their sum is constant.

Furthermore, there is a simple formula for the asymptotic distribution of the statistic V, directly analogous to equations (14.3.7)-(14.3.10). Let

$$
\begin{equation*}
Q_{K P}(\lambda)=2 \sum_{j=1}^{\infty}\left(4 j^{2} \lambda^{2}-1\right) e^{-2 j^{2} \lambda^{2}} \tag{14.3.14}
\end{equation*}
$$

which is monotonic and satisfies

$$
\begin{equation*}
Q_{K P}(0)=1 \quad Q_{K P}(\infty)=0 \tag{14.3.15}
\end{equation*}
$$

In terms of this function the significance level is [1]

$$
\begin{equation*}
\text { Probability }(V>\text { observed })=Q_{K P}\left(\left[\sqrt{N_{e}}+0.155+0.24 / \sqrt{N_{e}}\right] D\right) \tag{14.3.16}
\end{equation*}
$$

Here N_{e} is N in the one-sample case, or is given by equation (14.3.10) in the case of two samples.

Of course, Kuiper's test is ideal for any problem originally defined on a circle, for example, to test whether the distribution in longitude of something agrees with some theory, or whether two somethings have different distributions in longitude. (See also [8].)

We will leave to you the coding of routines analogous to ksone, kstwo, and probks, above. (For $\lambda<0.4$, don't try to do the sum 14.3.14. Its value is 1 , to 7 figures, but the series can require many terms to converge, and loses accuracy to roundoff.)

Two final cautionary notes: First, we should mention that all varieties of K-S test lack the ability to discriminate some kinds of distributions. A simple example is a probability distribution with a narrow "notch" within which the probability falls to zero. Such a distribution is of course ruled out by the existence of even one data point within the notch,
but, because of its cumulative nature, a $\mathrm{K}-\mathrm{S}$ test would require many data points in the notch before signaling a discrepancy.

Second, we should note that, if you estimate any parameters from a data set (e.g., a mean and variance), then the distribution of the $\mathrm{K}-\mathrm{S}$ statistic D for a cumulative distribution function $P(x)$ that uses the estimated parameters is no longer given by equation (14.3.9). In general, you will have to determine the new distribution yourself, e.g., by Monte Carlo methods.

CITED REFERENCES AND FURTHER READING:

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic Press), Chapters IX(C) and IX(E).
Stephens, M.A. 1970, Journal of the Royal Statistical Society, ser. B, vol. 32, pp. 115-122. [1]
Anderson, T.W., and Darling, D.A. 1952, Annals of Mathematical Statistics, vol. 23, pp. 193-212. [2]
Darling, D.A. 1957, Annals of Mathematical Statistics, vol. 28, pp. 823-838. [3]
Michael, J.R. 1983, Biometrika, vol. 70, no. 1, pp. 11-17. [4]
Noé, M. 1972, Annals of Mathematical Statistics, vol. 43, pp. 58-64. [5]
Kuiper, N.H. 1962, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, ser. A., vol. 63, pp. 38-47. [6]
Stephens, M.A. 1965, Biometrika, vol. 52, pp. 309-321. [7]
Fisher, N.I., Lewis, T., and Embleton, B.J.J. 1987, Statistical Analysis of Spherical Data (New York: Cambridge University Press). [8]

14.4 Contingency Table Analysis of Two Distributions

In this section, and the next two sections, we deal with measures of association for two distributions. The situation is this: Each data point has two or more different quantities associated with it, and we want to know whether knowledge of one quantity gives us any demonstrable advantage in predicting the value of another quantity. In many cases, one variable will be an "independent" or "control" variable, and another will be a "dependent" or "measured" variable. Then, we want to know if the latter variable is in fact dependent on or associated with the former variable. If it is, we want to have some quantitative measure of the strength of the association. One often hears this loosely stated as the question of whether two variables are correlated or uncorrelated, but we will reserve those terms for a particular kind of association (linear, or at least monotonic), as discussed in $\S 14.5$ and $\S 14.6$.

Notice that, as in previous sections, the different concepts of significance and strength appear: The association between two distributions may be very significant even if that association is weak - if the quantity of data is large enough.

It is useful to distinguish among some different kinds of variables, with different categories forming a loose hierarchy.

- A variable is called nominal if its values are the members of some unordered set. For example, "state of residence" is a nominal variable that (in the U.S.) takes on one of 50 values; in astrophysics, "type of galaxy" is a nominal variable with the three values "spiral," "elliptical," and "irregular."

