
Operations Research Models and Methods
Paul A. Jensen and Jonathan F. Bard

Network Methods.S1
Pure Minimum Cost Flow
Networks are especially convenient for modeling because of their simple nonmath-
ematical structure that can be easily depicted with a graph. This simplicity also reaps
benefits with regard to algorithmic efficiency. Although the simplex method of linear
programming is one of the primary solution techniques, we have already seen that its
implementation for network problems allows many procedural simplifications. Small
instances can be solved by hand and computer programs are available for solving very
large instances much faster than standard simplex codes. This section provides a solution
algorithm for the pure network flow programming problem on a directed graph. The
procedure for solving a generalized model that includes arc gains is similar but more
complicated.

Problem Statement

A pure network flow minimum cost flow problem is defined by a given set
of arcs and a given set of nodes, where each arc has a known capacity and
unit cost and each node has a fixed external flow. The optimization
problem is to determine the minimum cost plan for sending flow through
the network to satisfy supply and demand requirements. The arc flows
must be nonegative and be no greater than the arc capacities, and they
must satisfy conservation of flow at the nodes. For this section, it is
assumed that all arc lower bounds on flow are zero and all arc gains are
unity. The algorithms of this section can be extended to handle generalized
networks, where not all gains are unity, but the complexity is increased
and the discussion is beyond the scope of this book.

Formulation

We now formulate the problem as a linear program for a directed,
connected graph with m nodes and n arcs. It is assumed that there is at
least one supply node and one demand node. Regarding notation, recall
that in the formulation of the transportation problem in Section 7.1, the arc
connecting nodes i and j was denoted by (i, j) and the decision variable
associated with that arc was xij. Here we adopt the notation k(i, j), or

simply k, to denote the arc between nodes i and j. This is done primarily
to simplify the algorithmic presentation and the labeling of arcs in the
figures to follow. Accordingly, the decision variables are

xk = flow through arc k(i, j) from node i to node j

and the given data are

ck = unit cost of flow through arc k(i, j)

Pure Minimal Cost Flow Problem 2

bi = net supply (arc flow out – arc flow in) at node i

uk = capacity of arc k(i, j)

The value of bi is determined by the nature of node i. In particular,

bi > 0 if i is a supply node;

bi < 0 if i is a demand node;

bi = 0 if i is a transshipment node.

Also, let

KOi
 = set of arcs leaving node i

KTi = set of arcs terminating at node i.

The mathematical model is

Minimize ∑
k=1

n

 ckxk (4a)

subject to ∑
k∈KOi

 xk – ∑

k∈KTi

 xk = bi for all i = 1. . . m (4b)

0 ≤ xk ≤ uk for all k = 1. . . n (4c)

The objective function (4a) sums the arc costs over all arcs in the network.
Equation (4b) describes the flow balance or conservation of flow
constraints. The first summation represents the flow out of node i, and the
second is the flow in. The difference between the two represents the net
flow generated at node i. The right side values bi are positive if node i

supplies flow, negative if it consumes flow and zero otherwise. In some
applications, the lower bound in (4c) is not zero but some arbitrary value
lk. As we saw in the network modeling chapter, it is always possible to

transform such a lower bound to zero by introducing the variable

x̂k = xk – lk and substituting x̂k + lk for xk

throughout the model. The upper bound must also be changed to

ûk = uk – lk.

In the chapter on network modeling, models could have arcs with
only originating or terminating nodes. Arcs 6, 7 and 8 in Fig. 24 are

Pure Minimal Cost Flow Problem 3

examples. The arcs represent variable external flows at nodes 3, 2 and 1
respectively. For theoretical and algorithmic purposes we introduce an
additional node into the network called the slack node. Arcs representing
the variable external flows originate or terminate at the slack node as
shown in Fig. 25. Now all arcs have both originating and terminating
nodes. Generally we assign the index m to the slack node.

(5, 11)

(3,12)

(4, 18)

(4,16) (3, 13)

1

2

4

3

1

2

3

4

5

[fixed external flow]
(upper bound, cost)

[+2] [–5]

[+1]

[0]6

7

8

(3, 10)

(5, 11)

(5, -25)

Figure 24. A model with variable external flows

(5, 11)

(3,12)

(4, 18)

(4,16) (3, 13)

1

2

4

3

1

2

3

4

5

[+2] [–5]

[+1]

[0]6

7

8

(3, 10)

(5, 11)

(5, -25)

5

[+2]

Figure 25. A model with a slack node

For a pure network problem, flows are conserved in the arcs, so for
a feasible solution the external flows at the nodes must sum to zero.

Feasibility property: A necessary condition for a pure minimum cost
flow problem to have a feasible solution is

bi
i =1

m

∑ = 0.

In other words, the total flow being supplied at the nodes in the network
must equal the total demand being absorbed by the nodes in the network.

Pure Minimal Cost Flow Problem 4

The feasibility property will hold if we assign the external flow of
the slack node to be

bm = − bi
i =1

m−1

∑ .

The slack node external flow has been assigned in Fig. 25.

Because of the feasibility property, when we add the m
conservation of flow equations in 4b, we obtain 0 on both sides of the
equal sign. This means that one of the equations is redundant. In fact, there
are exactly m – 1 independent equations, and one of the equations may be
arbitrarily discarded without changing the solution to the problem.

The feasibility property is necessary, but not sufficient. Whether or
not a particular instance of model (4a) - (4c) has a feasible solution
depends on the network structure, arc capacities, and supply and demand
values.

In many applications, the flow on the arcs must take integer values.
This is implicitly the case for the assignment problem where one worker,
for example, must be assigned to a single job. In all the network examples
worked out earlier in the chapter we saw that the solutions were always
integral. This was not a coincidence but a direct result of the following
property.

Integrality property: For the pure minimum cost flow problem (4),
when all supply and demand values bi are integer and all upper bounds

on arc flows uk are integer, all basic solutions are integral.

The algebraic implication of this statement is that every basis inverse
matrix has components that are either 0, 1 or –1. If the standard simplex
algorithm were applied to problem (4) we would see that every pivot
element has a value of ±1 so fractions never appear in the tableau. In our

adaptation of the simplex method for solving problem (4), we will see that
when the integrality property holds the decision variables similarly never
become fractional.

Example

We use the network in Fig. 25 as an example. Upper bounds and costs are
given for each arc as shown in the figure. It is convenient to identify
vectors that represent the parameters of the problem. They are
respectively, x, for arc flows, u, for arc flow capacities or upper bounds, c,
for arc unit costs, and b, for node external flow. For the vectors for the
example are below.

Pure Minimal Cost Flow Problem 5

Arc flows: x = [x1, x2, x3, x4, x5, x6, x7, x8]

Upper bounds: u = [5, 4, 3, 4, 3, 5, 3, 5]
Unit costs: c = [11, 16, 12, 18, 13, -25, 10, 11]

External flows: b = [2, 1, 0, –5, 2]

Basic Solutions

Because an optimal solution must be among the finite set of bases, the
simplex algorithm only examines basic solutions as it iterates. When
applied to the minimum cost flow problem, the algorithm maintains the
needed information more efficiently and hence is able to access it more
quickly than when applied to a general linear programming problem. This
section describes basic solutions for the network flow programming
problem and provides procedures for computing the primal and dual
solutions associated with a given basis.

Basis Tree

We know that an optimal solution to the linear program, and to the
network flow problem by extension, is a basic solution. The basis is
defined by a selection of independent variables equal in number to the
number of linearly independent constraints. Since the network model
contains m – 1 independent conservation of flow constraints and the
variables are the arc flows, a basis is determined by selecting m – 1
independent arcs. These are identified by the arc indices of the basic
variables. Call the corresponding set nB. For the pure minimum cost flow

problem, we have the interesting characteristic that every basis defines a
spanning tree subnetwork. To illustrate, let nB = [2, 4, 7, 8] for the

network of Fig. 25. Drawing only the selected arcs forms the subnetwork
shown in Fig. 26. Node 5 is defined as the root node of the tree.

1

2

4

3

2

4

7

8
5

Figure 26. Basis tree for nB = [2, 4, 7, 8]

Pure Minimal Cost Flow Problem 6

Nonbasic Arcs

The arcs not selected as basic are, by definition, the nonbasic arcs. In the
bounded variable simplex method. of general linear programming,
nonbasic variables take the value 0 or the value of their upper bound when
defining a basic solution. We adapt this method to the network flow
problem.

In a basic solution, each nonbasic arc k, has its flow at 0 or uk, the

upper bound. Let n0 denoted the set of nonbasic arcs with 0 flow, and let

n1 denoted the set of arcs with upper bound flow. To represent a specific

case graphically we add the members of n1 to the basis tree as dotted lines.

To illustrate, Fig. 27 shows the basis tree representing nB = [2, 4, 7, 8], n1
= [5] and n0 = [1, 3, 6].

1

2

4

3

2

4

7

8
5

5

Figure 27. Basis tree with a nonbasic arc with a flow at its bound

Primal Basic Solution

Given a selection of basic arcs and an assignment of nonbasic arcs to
either n0 or n1, there is a unique assignment of flows to the basic arcs that

satisfies the conservation of flow requirement at the nodes. Let xB be the

vector of flows on the basic arcs and x1 be the flows on the arcs in n1.

The flows on the arcs in n0 are zero.

To solve for the basic arc flows we must first adjust the external
flows for the flows in the nonbasic arcs at their upper bounds. One way to
do this is to take each member of n1 in turn. Say arc k(i, j) is at its upper

bound. To accommodate the flow on arc k(i, j) for the following
calculations, we reduce the external flow at its origin node i by uk and

increase the external flow at its terminal node j by uk. For the network in

Fig. 25, we the external flow vector:

Pure Minimal Cost Flow Problem 7

b = [2, 1 , 0, – 5 , 2].

Arc 5 is in the set n1, so we adjust the external flows at both ends of the

arc: b3’ = b3 – u5, b4’ = b4 + u5. Since u5 = 3, the adjusted external flows
are

b' = [2, 1 , -3, - 2 , 2]

Equation (5) provides a general expression for the adjusted
external flow for node i, b 'i ; that is, the original external flow reduced by

the flow of the upper bound arcs leaving the node and increased by the
flow on the upper bound arcs entering the node. Once again, KOi is the set

of arcs leaving node i and KTi is the set of arcs terminating at node i.

b 'i = bi – ∑
k (KOi

∩ n1)

 uk + ∑
k (KTi

∩ n1)

 uk (5)

Given the adjusted external flows, there is a unique assignment of flows to
the basic arcs that satisfies conservation of flow at the nodes. The solution
for the basis in Fig. 27 is shown in Fig. 28. Comparison of the arc flows
to the upper and lower bounds for the basic arcs will show that the flows
fall within these limits. This is a feasible, primal basic solution.

1

2

4

3

2

4

7

8
5

5

(2)

(3)

[–2]

[+1]

[-3]

(1)

(1)
[+2] [+2]

[b']
(x)

Figure 28. Solution for the basic flows

b = [2, 1 , 0, – 5 , 2].

b' = [2, 1 , -3, - 2 , 2]

nB = [2, 4, 7, 8]

n1 = [5]
n0 = [1, 3, 6]

xB = [3, 2, 1, 1]

x1 = [3]

x0 = [0, 0, 0]

Dual Basic Solution

Dual variables, or alternatively the dual values, are used explicitly in the
solution algorithm for network flow programming. There is a dual
variable for each node i, denoted by i and interpreted as the cost of
bringing one unit of flow to node i from the slack node. Given a basis tree,

Pure Minimal Cost Flow Problem 8

the dual values are assigned using the requirement of complementary
slackness. For every basic arc k(i, j),

ck + i – j = 0

Since one of the conservation of flow constraints the linear
programming model is redundant, one of the dual variables is arbitrary.
We choose to set the dual value for the slack variable, node 5 for the
example to 0. The other dual variables are set to values that satisfy the
complementary slackness conditions. The values are computed in the
order shown below.

5 = 0, 1 = 5 + 11 = 11, 3 = 1 + 16 = 27,

2 = 5 + 10 = 10, 4 = 2 + 18 = 27.

There are a number of different orders that can be followed in this
computation, but they all must start at the slack node and work out. Fig. 29
shows the basis tree previously considered in Fig. 27 with costs shown on
the arcs and dual values shown adjacent to the nodes. The assignment of
nonbasic arcs to n0 and n1 does not affect the value of .

[-3]

1

2

4

3

2

4

7

8
5

[π]
(c)

(18)

(16)

[28]

[10]

[27]

(10)

(11)
[0]

[11]

Figure 29. Computation of dual variables

nB = [2, 4, 7, 8]

 = [1, 2, 3, 4, 5]
 = [11, 10, 27, 28, 0]

Solution Characteristics

Every selection of arcs, nB, that forms a spanning tree together with a

specification of n1 determines primal and dual basic solutions for the

network problem. The spanning tree determines a unique assignment of
dual variables () that satisfies complementary slackness. The spanning
tree and n1 determine in a unique primal solution (x) that satisfies

conservation of flow at each node.

Pure Minimal Cost Flow Problem 9

The requirement of conservation of flow assures that conservation
of flow is satisfied at each node.

∑
k∈KOi

 xk – ∑

k∈KTi

 xk = bi for all i = 1. . . m.

The process of assigning arc flows does not assure that the flow solution is
feasible, 0 ≤ x ≤ u. A basic solution may be feasible or infeasible. A
solution for which either xk = 0 or xk = uk for some basic arcs is called
primal degenerate. The solution of Fig. 28 is feasible because all the arc
flows are nonnegative and no greater than the arc capacities. The solution
is not primal degenerate.

There is a reduced cost, dk, that can be computed for each arc in
the network using the formula

dk = ck + i – j.

We will use the reduced costs for determining the optimality of a basic
solution.

The condition of complementary slackness assures that

dk = 0 for all k(i, j) ∈ nB

A solution for which dk = 0 for some nonbasic arcs is called dual

degenerate. For Fig. 29, the nonbasic arcs are 1, 3, 4, 6. Computing the
values of dk for these arcs we find: d1 = 12, d3 = –5, d5 = 12, d6 = 2. The
solution is not dual degenerate.

Simplified Computation of Primal Solutions

The tree structure of the basis subnetwork makes possible simplified
procedures for finding the primal and the dual basic solutions. Observe
again the example basis in Fig. 30 and note that there is a directed path
from node 5 to every other node in the tree. This is called a directed
spanning tree rooted at node 5. Node 5 is called the root node.

Pure Minimal Cost Flow Problem 10

1

2

4

3

2

4

7

8
5

[b']

[b']
(x)

4

[b']2

[b']3

[b']1
[b']5

(x)4

(x)7

(x)2

(x)8

Figure 30. A directed spanning tree used to compute the primal solution

The basic flows are easily determined by assigning flows to the
basic arcs in a sequential manner. At any time in the sequence there is
enough information to assign one or more basic flows. The process starts
at nodes at the extremes of the tree (the nodes incident to only one arc are
called the leaves of the tree). We assign flow to the arcs incident to the
leaves and work backward through the tree toward the root. The order in
which arc flows are assigned is not unique, but for a given basis tree and
set n1, there is a unique solution for the basic flows. For the example, we

find two leaves of the tree in Fig. 30, nodes 3 and 4. We assign the flows
to arcs 2 and 4 such that

x2 = –b’3 = –(–3) = 3, x4 = –b’4 = –(–2) = 2.

Now the flows for arcs 7 and 8 can be assigned.

x7 = –b’2 + x4 = –(1) + 2 = 1, x8 = –b’1 + x2 = –(2) + 3 = 1.

This completes the determination of the basic flows.

The arcs selected for the basis of Fig. 30 naturally forms a directed
spanning tree. Other selections may not. For instance consider the basis
consisting of arcs 2, 3, 5 and 6 as shown in Fig. 31. Although the
subnetwork defines a tree, it does not form a directed spanning tree. We
accomplish this result by reversing the direction of some of the arcs as in
Fig. 32.

Pure Minimal Cost Flow Problem 11

1

2

4

3

2

3

5

6

5

4

7

Figure 31. Solution for the basic flows

nB = [2, 3, 5, 6]

n1 = [4, 7]
n0 = [1, 8]

The reversed arcs are called mirror arcs, and they play a
considerable roll in the minimum cost flow algorithm. We call the arc with
a positive index a forward arc, and an arc with a negative index a mirror
arc. The forward arc has the direction and parameters given in the problem
statement. The parameters of the mirror arc are derived from the
parameters of the forward arc as follows:

l-k = -uk, u-k = -lk, c-k = -ck, and f-k = –fk.

It is always possible to construct a directed spanning tree by replacing
some forward arcs with mirror arcs. The tree is shown in Fig. 32. The
basic flows for this tree is easily obtained by following the tree backward
from its leaves. The flows in the forward arcs are found by negating the
flows in the mirror arcs.

For nB = [2, 3, 5, 6], xB = [2, 0, 1, 1].

Pure Minimal Cost Flow Problem 12

1

2

4

3

-2

-3

5

-6

5
(1)

[-1]

[0]

(-2)

[-1] [+2]

[b']
(x)

[0]

(0)

(-1)

4

7

Figure 32. Solution for the basic flows

b = [2, 1 , 0, – 5 , 2].

b' = [2, 0 , 0, - 1 , -1]

nB = [-2, -3, 5, -6]

n1 = [4, 7]
n0 = [1, 8]

xB = [-2, 0, 1, -1]

x1 = [4, 3]

x0 = [0, 0]

Simplified Computation of Dual Solutions

The directed spanning tree can also be used to compute the dual variables,
but here we start at the root and work outward toward the leaves. We use
basis of Fig. 33 to illustrate the approach. We continue to use the
parameters of the example problem.

1

2

4

3

2

4

7

8
5

[]

[]
(c)

4

[]2

[]3

[]1
[= 0]5

(c)4

(c)7

(c)2

(c)8

Figure 33. A directed spanning tree used to compute the dual solution

We begin by assigning the value of 5 to 0. When the dual variable
for a node on one end of a basic arc is known, the value for the node on
the other end can be computed using the complementary slackness
condition. Now we can compute the values of 1 and 2 using
complementary slackness.

1 = 5 + c8 = 0 + 11 = 11, 2 = 7 + c8 = 0 + 10 = 10.

Now the values of 3 and 4 can be calculated.

Pure Minimal Cost Flow Problem 13

3 = 1 + c2 = 11 + 16 = 27, 4 = 2 + c4 = 10 + 18 = 38.

The process of assigning the dual variables begins at the root node of the
tree and progresses out toward the branches. At each step one more dual
variable is assigned. The direction of the assignment process is the
reverse of the procedure for assigning the primal variables. The nature of
the spanning tree assures that the values of all the dual variables can be
computed in this manner.

When the basic arcs do not naturally define a spanning tree, mirror
arcs are used to construct one. For nB = [2, 3, 5, 6], we replace arcs 2, 3,

and 6 with mirror arcs. The relation, c-k = -ck, provides the unit costs for
the mirror arcs. The spanning tree and the computed dual variables are in
Fig. 34.

1

2

4

3

-2

-3

5

-6

5
(13)

[38]

[13]

(-16)

[0] [9]

[25]

(-12)

(25)

[]
(c)

Figure 34. Solution for the dual variables

nB = [-2, -3, 5, -6]

 = [1, 2, 3, 4, 5]

= [9, 13, 25, 38, 0]

Optimality Conditions

The minimum cost flow problem is to find solutions x and to the primal
and dual problems, respectively, that satisfy the following optimality
conditions.

1. Primal feasibility

a. x provides conservation of flow at all nodes except

the slack node and is basic;

b. 0 ≤ xk ≤ uk for all arcs k.

2. Complementary slackness

For each arc k, dk = ck + i – j is the reduced cost, and

a. if 0 < xk < uk, then dk = 0;

b. if xk = 0, then dk ≥ 0; or

Pure Minimal Cost Flow Problem 14

c. if xk = uk, then dk ≤ 0.

There is no guarantee that every arc flow in a basic solution is within the
range defined condition (1b). Primal solutions are termed feasible when
all flows are within the bounds and infeasible when some flows are
outside.

A primal solution is degenerate when a basic flow is either at zero
or at the upper bound for the arc. Degeneracy may affect the progress of
the solution algorithm toward the optimum.

Condition (2a) is only possible for basic variables; the method that
we use for computing the values of assures that it is satisfied. When one
of the last two conditions (2b) or (2c) holds for every nonbasic arc, both
primal and dual solutions are optimal. We describe presently an algorithm
that constructively finds x and satisfying both primal feasibility and

complementary slackness.

Examples

We illustrate the optimality conditions using the two examples previously
considered. Both are primal feasible and satisfy both parts of condition 1.
Condition 2a is satisfied for the basic variables, so the solution is optimal
if 2b or 2c is satisfied for each nonbasic arc. For the basic solution
illustrated in Figs. 28 and 29 we compute the results below.

nB = [2, 4, 7, 8]

xB = [x2, x4, x7, x8]

= [3, 2, 1, 1]

 = [1, 2, 3, 4, 5]
= [11, 10, 27, 28, 0]

Nonbasic arcs with flows at the lower bound: n0 = [1, 3, 6]

d1 = c1 + 1 – 2 = 11 + 11 – 10 = 12: Satisfies 2b

d3 = c3 + 2 – 3 = 12 + 10 – 27 = -5: Violates 2b

d6 = c6 + 3 – 5 = -25 + 27 – 0 = 2: Satisfies 2b

Nonbasic arcs with flows at the upper bound: n1 = [5]

d5 = c5 + 3 – 4 = 13 + 27 – 28 = 12: Violates 2c

The solution is evidently not optimum because arcs 3 and 6 violate the
optimality conditions. In fact, these two arcs are candidates to enter the
basis.

For the basic solution illustrated in Figs. 32 and 34 we compute the
results below. Since all the optimality conditions are satisfied, this is the
optimal solution.

For nB = [2, 3, 5, 6] Nonbasic arcs with flows at the lower bound: n0 = [1, 8]

Pure Minimal Cost Flow Problem 15

xB = [x2, x3, x5, x6]

= [2, 0, 1, 1].

 = [1, 2, 3, 4, 5]
= [9, 13, 25, 38, 0]

d1 = c1 + 1 – 2 = 11 + 9 – 13 = 7: Satisfies 2b

d8 = c8 + 5 – 1 = 11 + 0 – 9 = 2: Satisfies 2b

Nonbasic arcs with flows at the upper bound: n1 = [4, 7]

d4 = c4 + 2 – 4 = 18 + 13 – 38 = -7: Satisfies 2c

d7 = c7 + 5 – 2 = 10 + 0 – 13 = -3: Satisfies 2c

Summary

This section has illustrated how the primal and dual basic solutions are
computed directly from the graphical structure associated with the basis
spanning tree. Because it is not necessary to store a representation of the
basis inverse matrix as it is in general linear programming, a significant
savings in both time and memory requirements is achieved. This is the
source of the major computational advantage attending network flow
programming. For any variation of the pure network flow problem, when
the parameters are integral we also have the advantage of the integrality
property. Thus all computations can be carried out in integer arithmetic,
resulting in numerical stability and computational efficiency.

Primal Simplex Algorithm

This section describes the adaptation of the primal simplex algorithm for
solving a pure network flow program; that is, the problem of finding the
optimal flow distribution for the minimum cost flow network model given
by (4a) - (4c). We begin with a statement of the algorithm and then
provide an example to demonstrate how the computations are performed.

Algorithm

1. Start with a basis tree consisting of the arcs in the set nB and the sets

n0 and n1 corresponding to nonbasic arcs at their lower and upper

bounds, respectively. We require that the initial basis be feasible for
the primal problem. Compute the primal and dual solutions for the
initial basis.

2. Compute the reduced costs, dk = ck + i – j,, for all nonbasic arcs

k(i, j).

3. If for each nonbasic arc k one of the conditions below holds, stop with
the optimal solution.

Optimality conditions: if xk = 0, then dk ≥ 0

if xk = uk, then dk ≤ 0

Pure Minimal Cost Flow Problem 16

Otherwise, select some nonbasic arc that violates this condition and
call it the entering arc.

4. Find the increase or decrease in the entering arc that will either drive
it to its opposite bound or drive some basic arc to one of its bounds.
If the entering arc is driven to its bound, go to Step 3. If a basic arc is
driven to one of its bounds, let that be the leaving arc.

5. Change the basis by removing the leaving arc and adding the entering
arc. Compute the primal and dual solutions associated with the new
basis. Go to Step 2.

Initial Solution

As in general linear programming, we have the problem of finding an
initial basic feasible solution for the primal simplex method. We use a
two-phase approach where an artificial arc with unit cost is introduced for
every node but the slack node. The artificial arcs and their initial flows
are constructed in the following manner.

For each node i = 1 to m – 1.

a. If node i has bi > 0, introduce an artificial arc from node i to the
slack node and assign it the flow bi. The upper bound on the
artificial arc is also bi.

b. If node i has bi ≤ 0, introduce an artificial arc from the slack node
to node i and assign it the flow – bi. The upper bound on the
artificial arc is also –bi.

The costs on the artificial arcs depend on the phase of the solution
algorithm.

Fig. 35a shows the example network; Fig. 35b shows the spanning
tree created by introducing artificial arcs. The tree is rooted at slack node
5. During phase 1 the two networks in the figure are combined. The
resultant network consists of 12 arcs but only the unit arc costs on the
artificial arcs are used at this stage in the computations. The arcs in the
original network carry a unit cost of zero in phase 1.

Pure Minimal Cost Flow Problem 17

(5, 11)

(3,12)

(4, 18)

(4,16) (3, 13)

1

2

4

3

1

2

3

4

5

[+2] [–5]

[+1]

[0]6

7

8

(3, 10)

(5, 11)

(5, -25)

5

[+2]

[b]
(u, c)

1

2

4

3

12

[+2] [–5]

[+1]

[0]11

10

9

(1, 1, 1)

(2, 2, 1)

(0, 0,1)

5

[+2]

(5, 5, 1)

[b]
(x, u, c)

a. Example network b. Artificial arcs
Figure 35. Construction of artificial arcs for phase 1

As in general linear programming, we will apply the simplex
algorithm in two phases as follows.

Phase 1

1. Assign an arc cost of +1 to each of the artificial arcs and a cost of 0
to each of the original arcs.

2. Using the artificial arcs as the initial basis, solve the minimum cost
flow problem with the primal simplex algorithm. If the total cost
at optimality is greater than zero, an artificial arc has nonzero flow;
stop, there is no feasible solution. If the total cost at optimality is
zero, all the artificial arcs have zero flow and a feasible solution
has been found. Proceed with phase 2. If the total cost at
optimality is greater than zero, stop, the problem is infeasible.

Phase 2

3. Assign the original arc costs to the original arcs. Delete nonbasic
artificial arcs and assign 0 cost and 0 capacity to each artificial arc
remaining in the basis. Starting with the basic solution found in
phase 1, solve the network problem with the primal simplex algo-
rithm.

The two-phase procedure applies the primal simplex algorithm
twice. In phase 1, a basic feasible solution is found if one exists. Starting
with this solution, phase 2 works towards optimality. In most cases all the
artificial variables are driven from the basis during phase 1; however, it is
conceivable that some artificial arcs remain. Setting their capacity to zero
assures that the flows in these arcs remain at zero during phase 2.

Finding the Entering Arc

The reduced cost, dk, for a nonbasic arc k(i, j) is the cost of increasing the
flow on that arc by one unit, and can be expressed as:

Pure Minimal Cost Flow Problem 18

dk = ck + i – j (6)

The three terms on the right-hand side of Eq. (6) include: the unit cost of
flow on arc k, ck, the cost, i, of bringing a unit of flow to node i from the

slack node through a path defined by the basis tree, and the decrease in
cost, – j, achieved by reducing the flow through the basic path to node j.
For a nonbasic arc with flow at its upper bound, dk is the savings in cost

(marginal benefit) associated with reducing the flow on arc k by one unit.

If the solution is optimal, one of the following conditions must
hold for each nonbasic arc k(i, j):

if xk = 0, then dk > 0 (7a)

if xk = uk, then dk < 0 (7b)

Condition (7a) indicates that if the nonbasic flow is at zero, the cost of
increasing the flow on the arc must be nonnegative for the optimal
solution; otherwise increasing the flow would improve the solution.
Alternatively, if the flow on the nonbasic arc is at its upper bound as in
(7b), the cost of decreasing the flow on the arc must be nonnegative (the
cost of decreasing flow is –dk) for an optimal solution; otherwise
decreasing the flow would improve the solution. Values of dk = 0 imply
that changing the flow on the nonbasic arc will not change the objective
function. In the case of an optimal solution, this indicates the existence of
alternative optima.

When the simplex method is applied to the network flow problem,
a nonbasic arc with flow at zero or its upper bound may enter the basis
when it fails to satisfy the optimality condition. In our example, we select
the entering arc with the largest reduced cost dE. Thus we choose the

entering arc kE according to the rule

 dE = max

max{–dk : dk < 0 for k∈n0}

max{dk : dk > 0 for k∈n1}
(8)

For large networks, this rule is not efficient because it requires a search
over all nonbasic arcs at every iteration. Alternatives include choosing the
first nonbasic nonoptimal arc encountered or selecting an arc from some
list of candidates.

To illustrate this concept, consider the example network with the
basis nB = [1, 3, 4, 7] in Fig. 36. The arcs drawn with heavy lines depict

the tree representation of this basis. We call this the dual network
because, together with the original network structure, it shows the
variables and parameters primarily associated with the dual of the min-
cost flow problem, particularly the variables for the nodes, the reduced
arc costs, and the original arc costs. Arcs in n0 are shown with narrow

Pure Minimal Cost Flow Problem 19

solid lines, while arcs in n1 are shown with dashed lines. The structure

and basis information on the figure is sufficient to compute the vector
and the reduced costs. These can then be used to test the solution for
optimality and, if necessary, select an arc to enter the basis. From the
figure we note that arcs 2, 5 and 6 fail the optimality test and are
candidates to enter the basis. Using the rule stated in Eq. (8) either arc 2
or arc 5 would be selected to enter the basis. The choice is arbitrary and in
the following we will see the effects of both selections.

(0, 11)

(0,12)

(0, 18)

(-7,16) (7, 13)

1

2

4

3

1

2

3

4

5

[-1] [28]

[10]

[22]6

7

8

(0, 10)

(12, 11)

(-3, -25)

5

[0]

[]
(d, c)

Candidates to enter basis: [2, 5, 6]

Figure 36. Dual network with nB = [1, 3, 4, 7].

Finding the Leaving Arc

After an arc has been selected to enter the basis, we move to an adjacent
basic feasible solution by increasing or decreasing the flow in the entering
arc. In this operation, the flows in the basic arcs in the cycle formed by
the entering arc must also change in order to maintain conservation of
flow at the nodes. The flow changes in the entering arc by an amount that
just drives the flow on one of the basic arcs to zero or to its upper bound,
or drives the flow on the entering arc to zero or to its upper bound.

Constructing the Cycle

Call the entering arc kE and assume that it originates at node iE and

terminates at node jE. We must now construct a signed list of arcs that

describes the directed cycle formed by arc kE and the basic arcs. There are

two distinct cases.

a. Flow is increasing on the entering arc

Find the directed path in the basis tree from node jE to node iE with

arc signs indicated by the direction of arc traversal. Let C be the
set of arcs formed by adding arc kE to the path to create a cycle.

Pure Minimal Cost Flow Problem 20

b. Flow is decreasing on the entering arc

Find the directed path in the basis tree from node iE to node jE with

arc signs indicated by the direction of arc traversal. The addition
of arc – kE to the path forms the set C.

Figure 37 depicts another representation of the example problem
called the primal network. The figure describes the network structure and
information related to arc flows, particularly the external flow at the
nodes, the current arc flows, and the upper bounds on flow. The oval on
the figure shows the cycle formed when we select arc 2 as the entering arc.
The information in the primal and dual networks could be combined in a
single figure; however, the use of two separate diagrams simplifies the
presentation.

1

2

4

3

1

2

3 4

5

6

7

8
5

[b]
(x, u)

(2, 5)
(3, 3)

(2, 4)

(0, 4)
(3, 3)

[2] [–5]

(2, 3)

(0, 5)

(0, 5)

[2]

[1]

[0]

Figure 37. Primal network with nB = [1, 3, 4, 7] with arc 2 selected to enter the basis

Because the current flow on arc 2 is 0, it must enter the basis with
an increased flow. Thus kE = 2(1, 3) and the directed path from node 3 to

node 1 is [-3, –1]. The directed cycle identified as C = [2, -3, –1]. The
signs on the arc indices show the direction in which flow is to be changed
on the arcs as arc 2 enters the basis.

Computing the Flow Change and Selecting the Leaving Arc

In general terms, let the flow change in the entering arc by an amount ∆.
Arcs with positive signs in the set C experience a flow increase of ∆ , while

arcs with negative signs in C experience a flow decrease of ∆. The largest

flow change that results in a feasible solution is the smallest value that will
drive the flow on one of the cycle arcs to zero or to its upper bound.

 ∆ = min

min{uk – xk : k > 0 for k∈C }

min{x-k : k < 0 for k∈C }
(9)

Pure Minimal Cost Flow Problem 21

The leaving arc, kL, is the arc that provides the minimum value for Eq. (9).

In the event of ties, the selection is arbitrary. When kL ∈ C, the arc will

leave the basis with its flow at its upper bound. When – kL ∈ C, the arc

will leave the basis with its flow at zero.

In the example, when arc 2 enters the basis we have C = [2, -3, –1]
so the flow change is computed as follows:

∆ = min
min{u2 – x2}

min{x1, x3}

 = min
min{4 − 0}

min{2,3}

 = 2

Because the minimum is obtained for arc 1, it must leave the basis. Arc 2
enters and arc 1 leaves with flow a flow change around the cycle of 2.

Changing the Basis

Changing the Basis Tree and Computing the Dual Values

The new basis tree is constructed by deleting kL from the previous tree and
adding kE. The dual values can be computed directly from the tree
representation using the condition that j = ck + i for all arcs in the basis.
A more efficient computational procedure is recommended, however,
based on the observation that prior to adding kE, the deletion of kL from

the basis breaks the tree into two parts, one of which necessarily
containing the slack node. This is illustrated in Fig. 38. Call IL the set of

nodes separated from the slack node by deleting arc kL. In the figure, IL

consists of node 1.

(0, 11)

(0,12)

(0, 18)

(-7,16)

1

2

4

3

1

2

3

4[-1] [28]

[10]

[22]

7

(0, 10)

5

[0]

[]
(d, c)

Figure 38. Subtree formed by deleting the leaving arc

The values of will change for the nodes in IL by the reduced cost

of the entering arc. When the entering arc is kE(iE, jE), its reduced cost is

dE = ckE
+ iE

 – jE

Pure Minimal Cost Flow Problem 22

The revised dual costs, ' for the nodes i in IL depend on whether the

origin or the terminal node of kE is a member of IL.

i' =

 i + dE : for jE ∈ IL

i – dE : for iE ∈ IL
(10)

For the example when kE = 2 and kL = 1, the basis tree with dual

values assigned is shown in Fig. 39. Because the origin node of arc 2 is in
the set IL, we subtract –7 to the dual variables in IL. This changes 1 to 6

in the new basis tree.

(7, 11)

(0,12)

(0, 18)

(0,16) (7, 13)

1

2

4

3

1

2

3

4

5

[6] [28]

[10]

[22]6

7

8

(0, 10)

(5, 11)

(-3, -25)

5

[0]

[]
(d, c)

Figure 39. Dual network with nB = [2, 3, 4, 7]

Flow Change

Flow for the new basic solution is easily determined by adjusting the flows
on the cycle arcs –– increasing the flow on the arcs that have positive
indices in C and decreasing the flow on the arcs with negative indices in
C. The new flows on these arcs are computed with Eq. (11).

 x 'k =

xk + ∆ : k∈C and k > 0

x-k – ∆ : k∈C and k < 0
(11)

The values of x 'k become the basic flows in the next iteration. Fig. 40

illustrates the new flows after the basis change.

Pure Minimal Cost Flow Problem 23

1

2

4

3

1

2

3

4

5

6

7

8
5

[b]
(x, u)

(0, 5)

(1, 3)

(2, 4)

(2, 4) (3, 3)

[2] [–5]

(2, 3)

(0, 5)

(0, 5)

[2]

[1]

[0]

Figure 40. Primal network with nB = [2, 3, 4, 7]

Continuing the Algorithm

After changing the dual values, arc flows and basis tree, the algorithm
continues by returning to Step 2 and computing the reduced costs for the
nonbasic arcs. From Fig. 39, we see that arcs 5 and 6 are candidates to
enter the basis, with arc 5 as most violating the optimality condition. Since
arc 5 has flow at the upper bound, it must enter the basis with flow
decreasing. The cycle formed be arc 5 and the basis arcs is C = [–5, –3, 4].
The maximum flow change on the cycle is 1 with arc 3 leaving the basis.
Deleting arc 3 from the basis forms the subtree consisting of nodes IL =
{1, 3}. According to Eq. 10, the dual values for these nodes will decrease
by 7. The resulting dual and primal networks appear in Figs. 41 and 42.

(0, 11)

(7, 12)

(0, 18)

(0,16) (0, 13)

1

2

4

3

1

2

3

4

5

[-1] [28]

[10]

[15]6

7

8

(0, 10)

(12, 11)

(-10, -25)

5

[0]

[]
(d, c)

Figure 41. The dual network with nB = [2, 4, 5, 7]

Pure Minimal Cost Flow Problem 24

1

2

4

3

1

2

3

4

5

6

7

8
5

[b]
(x, u)

(0, 5)

(0, 3)

(3, 4)

(2, 4) (2, 3)

[2] [–5]

(2, 3)

(0, 5)

(0, 5)

[2]

[1]

[0]

Figure 42. The primal network with nB = [2, 4, 5, 7]

The solution is still not optimal because arc 6 violates the optimality
condition. The process will eventually terminate with the optimal solution.
At each iteration, the basis changes with the deletion of one arc and the
addition of another. Except when degeneracy causes a 0 flow change, the
objective function decreases by the product of the reduced cost and the
flow change. When an iteration begins with a primal feasible solution, the
rules for changing the flow assure that the solution remains primal
feasible.

Complete Example

We now provide a complete solution to the example problem introduced
in Fig. 23 starting with phase 1 and a basis consisting of artificial arcs.
Fig. 43 repeats the example for easy reference. Each iteration of the
primal simplex algorithm is illustrated in Fig. 44. We have combined the
primal and dual networks for a more compact representation.

Nonlinear Objective Function 25

(5, 11)

(3,12)

(4, 18)

(4,16) (3, 13)

1

2

4

3

1

2

3

4

5

[+2] [–5]

[+1]

7

8

(3, 10)

(5, 11)

(5, -25)

5

[+2]

[b]
(u, c)

Figure 43. Example network.

[fixed external flow, dual value]
(flow, upper bound, arc cost)

1

2

4

3

12

[2, -1] [-5, 1]

[1,-1]

[0, 1]

11

10

9

(1, 1, 1)

(2, 2, 1)

(0, 0,1)

5

(5, 5, 1)

[2, 0]

Iteration 1, Phase 1
nB = [9, 10, 11, 12]

n1 = ∅
d1 = 0

d2 = –2

d3 = –2

d4 = –2

d5 = 0

d6 = 1

d7 = 1

d8 = 1

dE = –2, kE = 2

C = [2, –11, –9]
∆ = 0, kL = 11

Nonlinear Objective Function 26

1

2

4

3

12

[2, -1] [-5, 1]

[1,-1]

[0, -1]

10

9

(1, 1, 1)

(2, 2, 1)
5

(5, 5, 1)

2

(0, 4, 0)

[2, 0]

Iteration 2, Phase 1
nB = [2, 9, 11, 12]

n1 = ∅
d1 = 0

d3 = 0

d4 = –2

d5 = –2

d6 = –1

d7 = 1

d8 = 1

dE = 4, kE = 2

C = [4,–10, –12]
∆ = 1, kL = 10

1

2

4

3

12

[2, -1] [-5, 1]

[1, 1]

[0, -1]

9

(2, 2, 1)
5

(4, 5, 1)

2

(0, 4, 0)

(1, 4, 0)

4[2, 0]

Iteration 3, Phase 1

nB = [2, 4, 9, 12]

n1 = ∅
d1 = –2

d3 = 2

d5 = –2

d6 = –1

d7 = –1
d8 = 1

dE = –2, kE = 1

C = [1, 4, –12, –9]
∆ = 2, kL = 9

Nonlinear Objective Function 27

1

2

4

3

12

[2, 1] [-5, 1]

[1, 1]

[0, 1]

5

(2, 5, 1)

2

(0, 4, 0)

(3, 4, 0)

4

(2, 5, 0)

1[2, 0]

Iteration 4, Phase 1

nB = [1, 2, 4, 12]

n1 = ∅
d3 = 0

d5 = 0

d6 = 1

d7 = –1

d8 = –1
dE = –1, kE = 7

C = [7, 4, –12]
∆ = 1, kL = 4

1

2

4

3

12

[2, 0] [-5, 1]

[1, 0]

[0, 0]

5

(1, 5, 1)

2

(0, 4, 0)

(4, 4, 0)

4

(2, 5, 0)

1

7

(1, 3, 0)

[2, 0]

Iteration 5, Phase 1

nB = [1, 2, 7, 12]

n1 = [4]

d3 = 0

d4 = –1

d5 = –1
d6 = 0
d8 = 0
dE = 5, kE = 7
C = [5, –12, 7, –1, 2]
_ = 1, kL = 12

1

2

4

3

[2, 0] [-5, 0]

[1, 0]

[0, 0]

5

2

(1, 4, 0)

(4, 4, 0)

4

(1, 5, 0)

1

7

(2, 3, 0)

(1, 3, 13)

5

[2, 0]

Iteration 6, Phase 1

nB = [1, 2, 5, 7]

n1 = [4]

d3 = 0

d4 = 0

d6 = 0

d8 = 0

Optimal for Phase 1
Switch to Phase 2

Nonlinear Objective Function 28

1

2

4

3

[2, -1] [-5, 28]

[1, 10]

[0, 15]

5

[2, 0]

2

(1, 4, 15)

(4, 4, 18)

4

(1, 5, 11)

1

7

(2, 3, 10)

(1, 3, 13)

5

Iteration 7, Phase 2

nB = [1, 2, 5, 7]

n1 = [4]

d3 = 7

d4 = 0

d6 = –10

d8 = 12

dE = –10, kE = 6

C = [6, 7, –1, 2]
∆ = 1, kL = 1

1

2

4

3

[2, 9] [-5, 38]

[1, 10]

[0, 25]

5

[2, 0]

2

(2, 4, 15)

(4, 4, 18)

4

7

(3, 3, 10)

(1, 3, 13)

5

6

(1, -25)

Iteration 8, Phase 2

nB = [2, 5, 6, 7]

n1 = [4]

d1 = 10

d3 = –3

d4 = –10

d8 = 2

dE = –3, kE = 3

C = [3, 6, 7]

∆ = 0, kL = 7

Nonlinear Objective Function 29

1

2

4

3

[2, 9] [-5, 38]

[1, 13]

[0, 25]

5

[2, 0]

2

(2, 4, 15)

(4, 4, 18)

4

7

(3, 3, 10)

(1, 3, 13)

5

6

(1, -25)

(0, 3,12) 3

Iteration 9, Phase 2

nB = [2, 3, 5, 6]

n1 = [4, 7]

d1 = 7

d4 = –7

d7 = –3

d8 = 2

Optimal for Phase 2

Stop

Figure 44. Simplex iterations for example network

