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Sensitivity Analysis
Generally speaking, the basic assumption that all the coefficients of a linear programming
model are known with certainty rarely holds in practice.  Moreover, it may be expedient
to simplify causal relationships and to omit certain variables or constraints at the
beginning of the analysis to achieve tractability.  We have already explained how the dual
simplex method can be used to reoptimize a model when a new constraint is added to the
formulation.  Adding a new variable can also be handled efficiently by simply pricing out
the new column and seeing if its reduced cost is nonnegative.  If so, the new variable has
no affect on the optimum; if not, it becomes the entering variable and the algorithm
continues until all reduced costs are nonnegative.

In this section, we deal implicitly with the issue of uncertainty in the data
elements cj, aij and bi, by determining the bounds over which each such element can

range without effecting a change in either the optimal solution or optimal basis.  Such
investigations fall under the heading of sensitivity analysis.  For the most part, we deal
with the simple case of perturbing one coefficient at a time.  This allows us to derive
closed-form solutions.  When two coefficients are varied simultaneously, the analysis is
much more complex because the “range” is described by a 2-dimensional polyhedron
rather than an interval on the real line.  When k coefficients are varied simultaneously, a
k-dimensional polyhedron results.  The only exception is proportional ranging which
allows all elements of the original vector to vary simultaneously but in fixed proportion
as defined by a second vector.  This topic falls under the more general heading of post-
optimality analysis.

Sensitivity to Variation in the Right-Hand Side

We have seen that for every basis B associated with an LP, there is a
corresponding set of m dual variables , one for each row.  The optimal

values of the dual variables can be interpreted as prices.  In this section,
this interpretation is explored in further detail starting with an LP in
standard equality form.

maximize{cx : Ax = b, x ≥ 0}

Suppose the optimal basis is B with solution (xB, 0), where xB =

B–1b and  = cBB–1 is unrestricted in sign.  Now, assuming

nondegeneracy, small changes in the vector b will not cause the optimal
basis to change.  Thus for b + ∆b the optimal solution is

x = (xB + ∆xB, 0)

where ∆xB = B–1∆b.  Thus the corresponding increment in the objective

function is
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∆z = cB∆xB = ∆b.

This equation shows that  gives the sensitivity of the optimal payoff with

respect to small changes in the vector b.  In other words, if a new problem
were solved with b changed to b + ∆b, the change in the optimal value of

the objective function would be ∆b.

For a maximization problem, this interpretation says that πi
directly reflects the change in profit due to a change in the ith component
of the vector b.  Thus πi may be viewed equivalently as the marginal price

of bi, since if bi is changed to bi, + ∆bi, the value of the optimal solution

changes by πi∆bi.  When the constraints Ax = b are written as Ax ≤ b, the

dual variables are nonnegative implying that for πi positive, a positive

change in bi will produce an increase in the objective function value.  In

economic terms, it is common to refer to the dual variables as shadow
prices.

Example 1

The shadow prices are associated with constraints but they are often used
to evaluate prices or cost coefficients associated with variables of the
primal problem.  As an example, suppose we have an A matrix
representing the daily operation of an oil refinery, and a particular variable
xj representing the purchase of crude oil feedstock, with a cost of

$22.65/barrel (cj = 22.65).  The refinery wants to minimize its costs.

There is an upper limit on the purchase of this oil of 50,000 barrels/day at
this price.  This is represented by the constraint

xj + xs = 50,000

where xs is the associated slack variable.  Assume at the optimum xs has a

reduced cost of –$2.17/barrel: what does this mean?

As we shall see, the shadow price on the constraint is also
– $2.17/barrel.  This does not mean, however, that we should only pay
$2.17 for another barrel of crude.  It means we should be prepared to pay
another $2.17/barrel for an opportunity to purchase extra supplies given
that any further purchases would cost $22.65/barrel; i.e., the objective
function will decrease by $2.17 for every extra barrel we can purchase at
the price cj already in the cost row.  This means we should be prepared to

bid up to 22.65 + 2.17 = $25.82/barrel on the spot market for extra
supplies of that crude.  Note that $25.82/barrel is the breakeven price, in
that we decrease our objective function z if we can purchase a barrel for
less than this price, increase z if we purchase for more, and make no
change at all to z if we purchase for exactly $25.82/barrel.
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Reduced Cost

The reduced cost of a nonbasic variable at its lower bound is often referred
to as the opportunity cost of that variable.  If management made the
(nonoptimal) decision of increasing that nonbasic variable from its lower
bound, for a maximization problem the reduced cost gives the decrease in
z per unit increase in the variable (for a certain range).  This represents the
opportunity loss in departing from the optimal solution.

Ranging

For reasons that practitioners understand implicitly, it is often said that
postoptimality analysis is the most important part of the LP calculations.
The majority of the coefficients that appear in an LP are rarely known
with certainty and so have to be estimated from historical or empirical
data.  Under these circumstances we would like to know the range of
variation of these coefficients for which the optimal solution remains
optimal; i.e., the basis does not change.  Three categories are investigated
below: objective coefficients cj, right-hand-side terms bi, and matrix
coefficients aij.

Changes in the objective row

 (a) Nonbasic variable  The change in the objective coefficient of a
nonbasic variable affects the reduced cost of that variable only, and the
change is in direct proportion.  If δ is a perturbation associated with the

original objective coefficient cq, for some q ∈ Q, then at optimality we can

write the reduced cost coefficient of nonbasic variable xq as -cq(δ) = Aq –

(cq + δ).  In order for the current basis B to remain optimal, we must have

-cq(δ) ≥ 0.  This means

δ ≤ Aq – cq = -cq

Not surprisingly, there is no lower bound on δ.  Reducing the value of an

objective coefficient associated with a nonbasic variable cannot make the
variable more attractive.

The reduced costs of all the other variables are independent of cq

and so will remain nonnegative.  If a δ is chosen that violates the above

inequality, xq would be identified as the entering variable and we would
continue the application of the simplex method until an optimal basis for
the modified problem was found.
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It is worth mentioning that in most commercial LP codes there is a
second range given as well –– the range over which xq can be increased

from zero before a change of basis occurs.  When δ = -cq, the reduced cost

is zero implying that xq can be increased without affecting the value of the
objective function; alternatively, it would imply that there are multiple
optima.  The maximum value xq can take without effecting a change in

basis is given by mini
 

-
bi /

-aiq : -aiq > 0  which is the minimum ratio test in

Step 4 of the revised simplex algorithm.

 (b) Basic variable  A change in the objective coefficient of a basic
variable may affect the reduced cost of all the nonbasic variables.  Let ei
be the ith unit vector of length m and suppose we increment the objective

coefficient of the ith basic variable xB(i) by δ; i.e., cB ← cB + δeT
i .  This

gives (δ) = (cB + δeT
i )B

–1 so the dual vector is an affine function of δ.

The reduced cost of the qth nonbasic variable is now

-cq(δ) = (cB + δeT
i )B

–1Aq – cq

= cBB–1Aq + δeT
i B

–1Aq – cq

= -cq + δ-aiq

where -aiq = (B–1Aq)i is the ith component of the updated column of Aq.

This value can be found for the nonbasic variable xq by solving BTy = ei

for y, then computing -aiq = yTAq.  (Obviously, if -aiq = 0 for any xq, the

reduced cost does not change.)

For a solution to remain optimal, we must have -cq(δ) ≥ 0, or

-cq + δ-aiq  ≥  0  for all q ∈ Q (1)

where -cq is the reduced cost at the current optimum.  This constraint

produces bounds on δ.  For a basic variable, the range over which ci can

vary and the current solution remain optimal is given by ci + δ, where

 
max
q∈Q

 






– -cq

 -aiq

 : -aiq > 0   ≤  δ  ≤  
 

min
q∈Q

 






– -cq

 -aiq

 : -aiq < 0
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since this is the range for which (1) is satisfied.  If there is no -aiq > 0, then

δ < ∞; likewise if there is no -aij  < 0, then δ > – ∞.

Note that perturbing the value ci for the ith basic variable has no

effect on the reduced costs of any of the basic variables.  All reduced costs

will remain zero.  This can be seen from the definition -cB ≡ cBB–1B – cB =

0 at optimality so if any of the components of cB are perturbed by δ, the

effect cancels itself out.

Example 2

Suppose we have an optimal solution to an LP given in tableau form with
attached variables

Maximize z   = 4.9 – 0.1x3– 2.5x4– 0.2x5

subject to x1  = 3.2– 0.5x3– l.0x4– 0.6x5

x2  = 1.5+ 1.0x3+ 0.5x4– 1.0x5

x6  = 5.6– 0.5x3– 2.0x4– 1.0x5

The set of nonbasic variables Q = {3, 4, 5} so the current basis remains

optimal as long as δ ≤ -cq for all q ∈ Q.  When q = 3, for instance, this

means δ ≤ 0.1.  If the original coefficient c3 = 1, then the current basis

remains optimal for c3 ≤ 1.1.

If the objective coefficient of the basic variable x2 becomes c2 + δ,
the reduced costs of the nonbasic variables become

x3:  -c3(δ)  =  0.1 + δ(–1.0)

x4:  -c4(δ)  =  2.5 + δ(– 0.5)

x5:  -c5(δ)  =  0.2 + δ(+1.0)

Note that xB(i) = 
-
bi  – ∑

j∈{3,4,5}

 -aijxj  for i = 1, 2, 6, so -aij is the negative of the

number appearing in the above equations.  The range that δ can take is

given by
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max 





– 0.2

 1.0
  ≤  δ  ≤  min 






– 2.5

– 0.5
 , 
– 0.1
–1.0

 – 0.2  ≤  δ  ≤  0.1

When δ  assumes one of the limits of its range, a reduced cost becomes

zero.  In this example, for δ = 0.1 the reduced cost of x3 is zero, so that if

the objective coefficient of x2 increases by more than 0.1 it becomes

advantageous for x3 to become active.  The minimum ratio test: min 



3.2

0.5 , 
5.6
0.5

= 6.4, indicates that x3 can be increased to 6.4 before x1 becomes zero and

a change of basis is required.  Analogously, for δ = – 0.2, the reduced cost

for x5 is zero and any further decrease in c2 will require a basis change to

remain optimal.  In this case, the ratio test indicates that x2 would be the

leaving variable.

The above analysis can be generalized without too much difficulty
to allow proportional chances in the vector c rather than changes in only
one coefficient at a time.  To perform proportional ranging, we must
stipulate an n-dimensional row vector c* and consider the new vector c(δ)

= c + δc*.  The analysis would proceed as in part (b) above but with ei

replaced by c* (see Exercise 3).

Changes in the right-hand-side vector

We wish to investigate the effect of a change bi ß bi + δ  for some 1 ≤ i ≤
m.  It is usual to consider the case where bi is the right-hand side of an

inequality constraint, which therefore has a slack variable associated with
it.  The goal is to determine the range over which the current solution
remains optimal.  If the constraint is an equality, it can be analyzed by
regarding its associated artificial variable as a positive slack (which must
be nonbasic for a feasible solution).

(a) Basic slack variable  If the slack variable associated with the ith
constraint is basic the constraint is not binding at the optimum.  The
analysis is simple: the value of the slack gives the range over which the
right-hand-side bi can be reduced for a ≤ constraint or increased for a ≥
constraint.  The solution remains feasible and optimal for the range bi + δ,

where

– ̂xs  ≤  δ  <  ∞ for ≤  type constraint
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– ∞  <  δ  ≤  x̂s for ≥ type constraint

where x̂s is the value of the associated slack variable.

(b) Nonbasic slack variable  If a slack variable is nonbasic at zero, then
the original inequality constraint is binding at the optimum.  At first
glance it would seem that because the constraint is binding, there is no
possibility of changing the right-hand-side term, particularly in decreasing
the value of bi (for ≤ type constraints).  It turns out that by changing the

vector b we also change xB (= B–1b = 
-
b) so there is a range over which xB

remains nonnegative.  For the associated values we still retain an optimal
feasible solution in the sense that the basis does not change. (Note that
both xB and z = cBxB change value.)

Consider the kth constraint

ak1x1 + ak2x2 + • • • + aknxn + xs = bk

where xs is the slack variable.  If the right-hand side becomes bk + δ,

rearranging this equation gives

ak1x1 + ak2x2 + • • • + aknxn + (xs – δ) = bk (2)

so that (xs – δ) replaces xs.  Thus if xs is nonbasic at zero in the final

tableau, we have the expression

xB  =  
-
b – 

-
As(– δ)

where 
-
As is the updated column in the tableau corresponding to xs.

Because xB must remain nonnegative, we have 
-
b + δ

-
As ≥ 0 which is used

to solve for the range over which δ can vary.

 
max

i
 






-

bi

–-ais

 : -ais > 0   ≤  δ  ≤  
 

min
i

 






-

bi

–-ais

 : -ais < 0

If there is no -ais > 0, then δ > – ∞; if there is no -ais < 0, then δ < ∞.

For ≥ type constraints, δ changes sign.  This follows because we

can analyze Σn
j=1 aijxj  ≥  bi in the form – Σn

j=1 aijxj  ≤  – bi, so that – (xs +

δ) replaces (xs – δ) in Eq. (2).  Another way of seeing this is to consider

the change to the right-hand side in the form



Sensitivity Analysis 8

b(δ) = b + δek

Thus the new value of xB is given by

xB(δ) = B–1b(δ) = B–1b + δB–1ek

= 
-
b + δB–1ek

However,  
-
As= B–1ek for a ≤ type constraint

and 
-
As= – B–1ek for a ≥ type constraint

since the column corresponding to the slack variable is + ek for a ≤
constraint and – ek for a ≥ constraint.  Thus we have

-
b – 

-
As(–δ) ≥ 0 for a ≤ type constraint, and

-
b – 

-
As(+δ) ≥ 0 for a ≥ type constraint.

Example 3

Consider Example 2 again and suppose x4 represents a slack variable for

constraint 1 (≤ type).  If the coefficient b1 is varied by an amount δ, for the

following data

-
b = (3.2, 1.5, 5.6)T and 

-
As = 

-
A4 = (1.0, – 0.5, 2.0)T

we have

x1(δ)  =  3.2 – 1.0(– δ)

x2(δ)  =  1.5 + 0.5(– δ)

x6(δ)  =  5.6 – 2.0(– δ)

Thus

x1(δ) ≥ 0  for  3.2 – 1.0(– δ)  ≥  0, that is,  δ  ≥    3.2
– 1.0

x2(δ) ≥ 0  for  1.5 + 0.5(– δ) ≥ 0, that is,  δ  ≤   1.5
0.5
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x6(δ) ≥ 0  for  5.6 – 2.0(– δ) ≥ 0, that is,  δ  ≥    5.6
– 2.0

Therefore, δ can vary in the range

max 





 3.2

– 1.0
 , 

 5.6
– 2.0

  ≤  δ  ≤  min 





1.5

0.5

 – 2.8  ≤  δ  ≤  3.0

When it is desirable to perform proportional ranging on the vector
b, the above analysis is the same but the unit vector ek is replaced with b*

giving b(δ) = b + δb*.  The current basis B will remain optimal as long as

xB(δ) = B–1b(δ) ≥ 0.  This inequality gives rise to a range on δ within

which primal feasibility is preserved (see Exercise 4).

Changes in matrix coefficients

The structural coefficients aij are usually known with much more certainty

than the objective row or right-hand-side vector, since they customarily
represent some physical interaction between variables and are not subject
to the same market fluctuations as costs and demands.  We shall consider
changes to the coefficients of nonbasic variables only; changes to basic
variables coefficients alter the basis matrix B and are rather complicated to
analyze (see Murty 1983).

Consider the jth nonbasic variable with corresponding column Aj.
If the ith element of Aj is changed by an amount δ, this affects the reduced

cost -cj as follows.

IfAj(δ) =  Aj + δei

then  -cj(δ) = (Aj + δei) – cj

=  -cj + δ ei

=  -cj + δπi

where   (= cBB–1) is the dual vector.  Thus the solution remains optimal

as long as -cj(δ) ≥ 0.  The corresponding range for δ is
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δ  ≥  – 
-cj

πi
  for  πi > 0

δ  ≤ – 
-cj

πi
  for  πi < 0


