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we invited well-known specialists to join the Editorial Board. All of them
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A. Balkema (University of Amsterdam, the Netherlands)
W. Hazod (University of Dortmund, Germany)
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We hope that the books of this series will be interesting and useful to both
specialists in probability theory, mathematical statistics and those profession-
als who apply the methods and results of these sciences to solving practical
problems.

In our opinion, the present book to a great extent meets these require-
ments. An outbreak of interest to stable distributions is due to both their
analytical properties and important role they play in various applications in-
cluding so different fields as, say, physics and finance. This book, written by
mathematician V. Zolotarev and physicist V. Uchaikin, can be regarded as a
comprehensive introduction to the theory of stable distributions and their ap-
plications. It contains a modern outlook of the mathematical aspects of this
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theory which, as we hope, will be interesting to mathematicians. On the other
hand, the authors of this book made an attempt to explain numerous peculiar-
ities of stable distributions using the language which is understandable not
only to professional mathematicians and supplied the basic material of this
monograph with a description of the principal concepts of probability theory
and function analysis. A significant part of the book is devoted to applications
of stable distributions. A very attractive feature of the book is the materi-
al on the interconnection of stable laws with fractals, chaos, and anomalous
transport processes.

V. Yu. Korolev,
V. M. Zolotarev,
Editors-in-Chief

Moscow, January 1999.
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Introduction

In our everyday practice, we usually call random such events which we can-
not completely control, for one reason or another, and therefore we cannot
forecast their occurrence. If the events are connected with some numerical
characteristics, then these values are spoken about as random variables. With
a desire to make a theoretical basis for the study of random variables, the
probability theory formalizes all possible situations with the help of a great
body of mathematical models, the simplest of which is the summation of inde-
pendent random variables X1, X2, …, Xn. One easily apprehends the origin of
this construction by considering a smooth function

Y = ƒ(X1, X2, …, Xn)

of random variables X1, X2, …, Xn representing small and independent actions
on the system under consideration. If ƒ(0, …, 0) = 0, then, in the first approxi-
mation,

Y =
n∑

i=1

ciXi,

where ci = ∂ƒ/∂xi for x1 = x2 = … = xn = 0. If all

c1 = c2 = … = cn = c,

then

Y = c
n∑

i=1

Xi.

Similar situations take place while analyzing observational errors arising in
experiments.

P.S. Laplace and C.F. Gauss, who developed the theory of observational
errors in the beginning of the XIX century, understood this well, and exactly
for this reason associated the error distribution with the scheme of summation
of random variables. If one assumes nothing except their smallness, the the-
ory gives nothing interesting concerning the distribution of the sum of these
variables. However, the situation changes abruptly if one supposes that the
terms are independent.
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The first results concerning the scheme of summation of independent ran-
dom variables appeared in the famous Jacob Bernoulli’s book Ars Conjectandi
published in 1713. J. Bernoulli considered the sequence of normalized sums
1
n
∑n

i=1 Xi where independent random variables Xi take the value one with
probability p and the value zero with probability 1− p. According to Bernoul-
li’s theorem, for any arbitrary small but fixed ε > 0 the probability

P

{∣∣∣∣∣
1
n

n∑

i=1

Xi − p

∣∣∣∣∣ > ε

}
→ 0 n →∞.

It is hard to over-estimate the practical meaning of this theorem called now
the Bernoulli’s form of the law of large numbers. Indeed, if we perform an
experiment with a random event and want to know the probability p = P{A}
of some event A interesting for us, then, generally speaking, it is impossible to
obtain p from theoretical considerations. The Bernoulli theorem establishes
that the value of p can be estimated experimentally to an arbitrary accuracy
if one observes the frequency of occurrence of the event A in a large enough
number of independent and identically performed experiments.

The law of large numbers and its various generalizations and strengthen-
ings connect together the theory and practice and help to deduce from experi-
ments the information sought for.

The second significant result of the XVIII century was the Moivre–Laplace
theorem that extends the Bernoulli theorem. It is a particular case (related
to the random variables of Bernoulli’s theorem) of the central limit theorem of
probability theory. We do not give it here in the general form known nowadays,
and dwell only upon a special case.

Let us consider a sequence of independent random variables X1, X2, …
possessing one and the same distribution function (in this case the variables
are referred to as identically distributed). Assuming that the mathematical
expectation a = EXi and the variance σ2 = Var Xi of these variables are finite,
we construct the corresponding sequence of the normalized sums Z1, Z2, …:

Zn =
∑n

i=1 Xi − na
σ
√

n
. (I1)

Then for any x1 < x2

P {x1 < Zn < x2} ⇒
∫ x2

x1

pG(x) dx, n →∞, (I2)

where1

pG(x) =
1√
2π

exp(−x2/2). (I3)

1The symbol ⇒ stands for the weak convergence, pG(x) is the density of the standard normal,
or Gauss, law.
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Turning back to the above-discussed observational errors problem, we see
that the central limit theorem forms the basis which the rigorous error theory
can be erected on. This was well understood by the founders of the theo-
ry Laplace and Gauss, as well as by their successors. We can be proud of
the fact that great achievements in the theory of limit theorems for sums
of random variables (both independent and obeying some kinds of depen-
dence) is associated primarily, with the names of our outstanding compatriots
P.L. Chebychov, A.A. Markov, A.M. Lyapunov, S.N. Bernstein, A.N. Kolmogorov,
A.Ya. Khinchin, B.V. Gnedenko, and others.

The central limit theorem has been extended into various directions. One
of them was aimed to extend the understanding of the central limit theorem
with the use of not only the normal law as a limiting approximation but also
some other distributions of a certain analytical structure.

The formulation looks like follows. A sequence of independent and iden-
tically distributed random variables X1, X2, … is considered, without any pre-
liminary assumptions about their distribution. With the use of sequences of
real-valued constants a1, a2, … and positive constants b1, b2, …, the sums

Zn =
∑n

i=1 Xi − an

bn
(I4)

are introduced. We assume now that the constants an and bn are chosen in
an appropriate way so that the distribution functions of Zn weakly converge to
some limit distribution function G(x), that is,

P {Zn < x} ⇒ G(x), n →∞ (I5)

for any x which is a continuity point of the function G(x). A problem thus
arises: how wide is the class of the distribution functions that can play the
role of the limiting law?

The class, referred to as the stable law family later on, includes the stan-
dard normal law (I3) and, generally speaking, the whole family of normal laws
with different expectations and variances.

If in sums (I4) the random variables Xi are supposed to be equal to one and
the same constant c with probability one and the normalizing constants are
an = (n− 1)c, bn = 1, then the sums Zn for any n also turn out to be equal to
the constant c with probability one. The distribution function of such random
variables, expressed in terms of the step function e(x)

e(x− c) =

{
0, x ≤ 0,
1, x > 0,

is called degenerate at the point c and its graph resembles the form of the step
function. Moreover, a random variable taking a single value with probability
one does not depend on any other random variable. Therefore, all the random
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variables Xj in the case under consideration are mutually independent and
the limit distribution for the sums Zn, by definition, is to belong to the stable
law family. In other words, the family includes all degenerate distribution
functions.

We arrive at the same conclusion if we begin with the law of large numbers,
since it states nothing but the weak convergence of arithmetical means of
independent random variables to the degenerate distribution concentrated at
the point x = p. So, the two most known and important limit theorems—the
law of large numbers and the central limit theorem—are proven to be related
to the stable laws. This explains the interest to the stable laws as to ‘kins’ of
normal and degenerate distributions.

The problem to describe the class of stable laws appears to be not so sim-
ple. The first results concerning the problem were obtained by the eminent
Hungarian mathematician G. Polya at the same time when A.A. Markov was
creating the concept of the chain dependence of random variables. Among the
facts collected by Polya, one is worthwhile to notice: only the normal law (ex-
cepting, of course, the degenerate law) possesses a finite variance; the variance
of any other non-degenerate stable distribution is infinite.

The next considerable step forward was made by the French mathematician
P. Lévy in 1925. In his book Calcul des Probabilites, a special chapter was
devoted to this problem. P. Lévy separated the stable law family and described
its large subclass of the so-called strictly stable laws. As limit laws, they
appear in (I4) while the centering constants an can be chosen as an = nc with
some c. While describing this subclass, some delicate analytical properties of
its elements, some intrinsic properties, etc., were exposed. P. Lévy reveal a
functional equation which the strictly stable laws should satisfy. We briefly
cite here the idea.

The degenerate distributions are not of interest for us while describing the
stable laws, and we do not discuss them. Thus, we assume the distribution
function G(x) in (I5) to be non-degenerate. Recalling that an = nc, we divide
the sum Zn (I4) into two parts containing k and l terms (n = k + l), respectively,
and rewrite it as

Zn =
bk

bn
Zk +

bl

bn
Z′l (I6)

where
Z′l = (Xk+1 + … + Xk+l − lc)/bl

is a random variable that does not depend on Zk and is distributed by the same
law as the sum Zl. It is convenient to rewrite this as

Z′l
d= Zl.

We assume that k, l, and consequently, n = k + l increase without bound.

xiv



By the initial assumption,

Zn
d

→ Y, n →∞. (I7)

This notation means that the distribution functions of the random variables
Zn weakly converge to the distribution function G(x) of the random variable Y.
Denoting by Y1 and Y2 the independent random variables distributed by the
same law as Y, we obtain, on the strength of (I7),

Zk
d

→ Y1, Z′l
d= Zl

d
→ Y2. (I8)

>From the sequences of k and l, one can choose subsequences such that the
constant factors bk/bn and bl/bn converge to non-negative c1 and c2 respectively.
Passing to the limit in (I6), in view of (I7) and (I8), we obtain

Y d= c1Y1 + c2Y2. (I9)

The partition of the summands into two groups can be made in an arbitrary
way. This means that one can exclude the non-interesting cases where either c1
or c2 is equal to zero. The detailed analysis of the behavior of the normalizing
constants reveals that the constants c1 and c2 can take any values with the
only constraint

cα
1 + cα

2 = 1,

where 0 < α ≤ 2; α is one of the characteristic parameters of a stable law.
The right-hand side of (I9) is the sum of independent random variables;

hence its distribution function is a convolution of the distribution functions of
the summands

G(x) = G(x/c1) ∗ G(x/c2). (I10)

This equality is the functional equation for strictly stable distribution func-
tions; its peculiarity consists in the fact that it does not identify separate laws
G but, while α, c1, c2 vary under the above constraints, the equality separates
the strictly stable laws from the whole family of distribution laws in a quite
obvious way.

The description of the remaining part of the stable laws was finished more
than a decade later in the middle of thirties. It was made by P. Lévy himself
and the Soviet mathematician A.Ya. Khinchin independently of each other
and almost simultaneously. The functional equation whose solutions form the
family of stable laws was not difficult to derive; it is obtained in the same way
as functional equation (I10), and differs from (I10) but little:

G(x− h) = G(x/c1) ∗ G(x/c2). (I11)

Here c1, c2 obey the above constraints, and h is a real-valued constant.
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All the stable laws, except the degenerate ones, are absolutely continuous,
i.e., the corresponding distribution functions G(x) possess the densities

q(x) = G′(x),

but, for a few exceptions, neither the distribution functions nor the densities
can be explicitly expressed in terms of elementary functions.

The stable laws are adequately described in terms of the corresponding
characteristic functions

g(k) =
∫ ∞

−∞
eikxdG(x) =

∫ ∞

−∞
eikxq(x) dx.

While looking at functional equations (I10) and (I11), a suspicion arises
that they become more simple in terms of characteristic functions. For exam-
ple, (I11) takes the form

g(k) exp(ikh) = g(c1k)g(c2k).

While solving this equation, it appears that the set G is a four-parametric
family of functions. Each stable law is defined by four parameters: the charac-
teristic 0 < α ≤ 2, the skew parameter −1 ≤ β ≤ 1, the shift parameter λ > 0,
and the scale parameter −∞ < γ < ∞. The corresponding characteristic
function can be written in the following simple form:

g(k) = exp {λ [ikγ − |k|αω(k; α, β)]}
where

ω(k; α, β) =

{
exp[−iβΦ(α) sign k], α ≠ 1,
π/2 + iβ ln |k| sign k, α = 1,

Φ(α) =

{
απ/2, α < 1,
(α − 2)π/2, α > 1,

sign k =





−1, k < 0,
0, k = 0,
1, k > 0.

After the works due to P. Lévy and A.Ya. Khinchin, many works appeared
that were devoted to investigation of stable laws; now we know much more
about their peculiarities. During last decades, a bulk of new ideas become evi-
dent. The concept of stable laws was extended to the case of multidimensional
and even infinite-dimensional distributions.

The multidimensional analogues of stable laws turn out to be much more
sophisticated than its one-dimensional predecessors. First of all, in the prob-
lem of limit approximation of distributions of the sequences

∑n
i=1 Xi of inde-

pendent and identically distributed m-dimensional random vectors, the two
problem formulations are possible.
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The first is the same as in the one-dimensional case, i.e., the sequence Sn
is preliminary normalized by subtracting some constant m-dimensional vector
an divided by a positive bn. In other words, the distributions of the sums

Zn =

( n∑

i=1

Xi − an

)/
bn

are considered, and the problem is to describe all possible limit distributions
of such sums as n → ∞. The resulting laws form the family of the Lévy–
Feldheim distributions. P. Lévy was the first who investigated them in the
thirties.

The second formulation is related to another type of normalization of the
sums. Namely, instead of positive constants b−1

n , the sequence of non-singular
matrices B−1

n of order m is used, i.e., the sequences of the sums

Zn = B−1
n

( n∑

i=1

Xi − an

)

are considered. The class of possible limit distributions obtained under such
formulation is naturally wider than the class of the Lévy–Feldheim laws, and
is referred to as the class of operator stable laws.

In the multidimensional case, in contrast to the one-dimensional one, the
family of stable laws is determined not by a finite number of parameters, but by
three parameters and some probability distribution concentrated on the unit
sphere. We present here only one particular case of the stable m-dimensional
distributions called the spherically symmetric distributions.

Its characteristic function is of the form

g(k) = exp(−λ |k|α ),

where k is an N-dimensional vector, 0 < α ≤ 2, and λ > 0. The case α = 2
corresponds to the spherically symmetric normal law with density

pG
N(x) = (4πλ )−N/2 exp(−|x|2/4λ ),

and the case α = 1, to the N-dimensional Cauchy distribution with density

pC
N(x) = λΓ

(
(1 + N)/2

)
[π(λ 2 + |x|2)]−(1+N)/2,

where x is an N-dimensional vector again. These two cases, up to a shift of
the distributions and linear transformation of their arguments, are the only
ones where explicit expressions for the densities of multidimensional stable
distributions are known.

The detailed information about the theory of stable laws, including the
multidimensional ones, is presented in the first part of this book. The second
part is devoted to their applications.
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In fact, a book about the applications of the stable laws in various branches
of human knowledge should be impossible by the only reason: even the normal
(Gaussian) law is so widely distributed over all spheres of human activity that
more or less detailed description of this phenomenon would need a good deal of
volumes and for this reason it is hardly worth to do it. However, as soon as one
excludes it (together with the degenerate distribution) from consideration, the
field of applications becomes much narrower. Indeed, the analysis of existing
publications shows that there are only a few dozens of problems, mostly in
physics and the related sciences, where the stable laws have been applied. Is
it not surprising? All stable laws form the single family containing an infinite
number of distributions, and the normal law is the only one (within linear
transformations of argument) of them!

We see three reasons for this.
We believe that the first reason, absolutely inessential from a mathemati-

cian’s viewpoint but of great importance for those who use this technique to
solve his own particular problems, consists of the absence of simple analytical
expressions for the densities of stable laws. That is the reason why the nor-
mal law is the first of stable laws which appeared on the scene and found at
once the applications in the theory of errors, then in statistical physics, and in
other sciences. The next stable law that appeared in theoretical physics was
the Lorentz dispersion profile of a spectral line (Lorentz, 1906) known in the
probability theory as the Cauchy law, i.e., the symmetric stable distribution
with parameters α = 1 and β = 0, whose density is of the simple form

pC(x) =
1

π(1 + x2)
.

As it was noted in (Frank, 1935) the stable distribution with parameters α =
1/2 and β = 1, called the Lévy distribution,

pL(x) =
1√
2π

exp
{
− 1

2x

}
x−3/2

was obtained in 1915 by Smoluchowski and Schrödinger for first-passage times
in the diffusion problem. In 1919, in Holtsmark’s work (Holtsmark, 1919)
devoted to the same problem as the Lorentz’s one but with due account of
random electric fields created by nearest neighbors of a radiating atom, the
three-dimensional stable Cauchy distribution (α = 1)

pC
3 (x) =

1
π2[1 + |x|2]2

and two more three-dimensional spherically symmetric stable laws with char-
acteristics α = 3/2 (the Holtsmark distribution and α = 3/4 were presented.
The Holtsmark distribution and his approach were lately widely used in as-
trophysical evaluations (Chandrasekhar & Neumann, 1941).
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Bringing ‘new land’ beyond the Gaussian law into cultivation went forward
slowly. One can mention the Landau distribution in the problem of ionization
losses of charged particles in a thin layer (Landau, 1944) (the stable law with
α = 1 and β = 1), the Monin distribution in the problem of particles diffusion in
a turbulent medium (Monin, 1955; Monin, 1956) (three-dimensional symmetric
stable law with the exponent α = 2/3), the Lifshits distribution of temperature
fluctuations under action of nuclear radiation (Lifshits, 1956) (one-dimensional
stable law with α = 5/3 and β = 1) and Dobrushin’s result concerning the theory
of signal detection (Dobrushin, 1958) (one-dimensional stable laws with α ≥ 1
and β = 1).

The second reason consists in that all non-degenerate stable laws, differ-
ing from the normal one, have infinite variance. As concerns the whole family
of stable laws, the normal law is exceptional, something like a ‘monster’, an
abnormal member of the family. However, from the point of view of the ap-
plied sciences, where a specific meaning is often associated with the variance,
distributions with infinite variance look oddly indeed. Moreover, the random
variable itself, whose distribution is under consideration, often lies in some
natural limits, and hence cannot be arbitrary large (in absolute value). In this
case, not only variance but all moments of higher orders are finite, and the
normal law does satisfy this condition, too.

The above reasoning can lead us to the speculation that the difference
between the fields of application of the normal law and of other stable laws is
due to the objective reality. But a more deep brainwork inspires doubts about
this conclusion. Indeed, in spite of the finiteness of all moments, the normal
random variable is unbounded, and can take arbitrarily large (absolute) values,
but cannot take infinite values in the sense that

lim
x→∞

∫ ∞

x
p(x′) dx′ = lim

x→−∞

∫ x

−∞
p(x′) dx′ = 0.

In other words, the random variable distributed by the normal (as well as by
any other stable) law takes finite values with probability one. Such random
variables are called proper (Borovkov, 1976), and the whole family of stable
laws possesses this property. The divergence of variances of stable laws differ-
ent from normal is connected with the power-like behavior of the distribution
tails: ∫ ∞

x
p(x′) dx′ +

∫ −x

−∞
p(x′) dx′ ∝ x−α , x →∞, 0 < α < 2.

The existence of finite variance of the normal law is connected with just a
faster decrease of tails as compared with the others. Thus, as concerns their
intrinsic structure, all the family members compete on equal terms, and only
the common habit to use the variance as a characteristic of distribution makes
many practical workers avoiding the mysterious infinities.

B. Mandelbrot (Mandelbrot, 1983, p. 338) wrote that to anyone with the
usual training in statistics, an infinite variance seems at best scary and at
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worst bizarre. In fact, ‘infinite’ does not differ from ‘very large’ by any effect
one could detect through the sample moments. Also, of course, the fact that
a variable X has an infinite variance in no way denies that X is finite with
a probability equal to one… Thus, the choice between variables should not
be decided a priori, and should hinge solely on the question of which is more
convenient to handle. we should accept infinite variance because it makes it
possible to preserve scaling.

One more property of the normal law, important to applications, can at-
tract our attention. It concerns the multidimensional distributions: the
multidimensional spherically symmetric normal law is factorized into one-
dimensional normal distributions. In other words, the components of the
multidimensional vector are distributed by the one-dimensional normal law
and are independent. It is easy to demonstrate that in the case of any other
spherically symmetric stable law the vector components are also distributed by
the one-dimensional stable law with the same characteristic α but they need
not be independent. We recall that the independence property for components
of normal vector is used for elementary deduction of Maxwell velocity distribu-
tion in kinetic theory of gases (Maxwell, 1860), but in the general probabilistic
construction of statistical mechanics developed by A.Ya. Khinchin (Khinchin,
1949) it arises merely as a consequence of the postulated variance finiteness.

And, finally, the possibly most trivial but, at the same time, the most im-
portant reason for the slow expansion of stable laws in applied problems is
the shortage of knowledge. Up to nowadays, as a rule, the information about
the stable laws is absent in the textbooks on the probability theory and can
be found only in some monographs (Gnedenko & Kolmogorov, 1954; Loève,
1955; Lukacs, 1960; Feller, 1966; Zolotarev, 1986) or in mathematical journals
which imposes heavy demands on the reader who should be seriously experi-
enced in mathematics. In the above-mentioned works of Lorentz, Holtsmark,
Chandrasekhar, and von Neumann, Landau, Monin, the term ‘stable laws’
was not used, the property of stability was not emphasized, and there were no
references to the mathematical works on stable laws. It looks as if authors did
not know about belonging of the obtained distributions to the class of stable
laws.

In the 1960s, the works (Good, 1961; Kalos, 1963) appeared, where the
distributions obtained were already identified as stable laws. In 1970s, the
works (Jona-Lasinio, 1975; Scher & Montroll, 1975) were published, where the
authors striving for clearness and completeness of their results did not only
give references but also made additions to their articles provided with some
information about stable laws. This tendency to supplement the article by
more or less brief information about stable laws remains good in 1980s and
1990s (Weron, 1986; Bouchaud & Georges, 1990; West, 1990; West, 1994).

Since the 1960s, the stable laws attracted the attention of scholars working
in the area of economics, biology, sociology, and mathematical linguistics, due
to a series of publications by Mandelbrot and his disciples (Mandelbrot, 1977;
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Mandelbrot, 1983). The point is that the statistical principles described by the
so-called Zipf–Pareto distribution were empirically discovered fairly long ago
in all these areas of knowledge. The discrete distributions of this type are of
the form

pk = ck−1−α , k ≥ 1, α > 0,

while their continuous analogues (densities) are

p(x) = cx−1−α , x ≥ a > 0.

Mandelbrot called attention to the fact that the use of the extremal stable
distributions (corresponding to β = 1) to describe empirical principles was
preferable to the use of the Zipf–Pareto distributions for a number of reasons.
It can be seen from many publications, both theoretical and applied, that
Mandelbrot’s ideas receive more and more wide recognition of experts. In
this way, the hope arises to confirm empirically established principles in the
framework of mathematical models and, at the same time, to clear up the
mechanism of the formation of these principles.

The Mandelbrot’s fractal concept has found its application in the turbulence
problem, anomalous diffusion, dynamical chaos and large-scale structure of
the Universe (Bouchaud & Georges, 1990; Isichenko, 1992; Shlesinger et al.,
1993; Klafter et al., 1996; Coleman & Pietronero, 1992). In the foundation
of these trends, the main part is taken by the power-type laws that provide
us with the scale invariance (self-similarity) of the structures and processes.
Thus, the stable laws with their power-type asymptotic behavior turn out to
be very suitable here.

It is quite possible that some interesting works have turned out to be
beyond the scope of this book or have appeared too late to be included into it.
Having no intention to give the comprehensive exposition of all that concerns
the theory of stable laws and their applications, we hope, anyway, that our book
will be useful for those researchers, graduate and postgraduate students who
feels the need to go out the ‘domain of attraction’ of normal law. Experience
shows that ‘with probability close to one’ this way leads one to shining new
and interesting results.

This book consists of two parts. The first part, devoted to the theory of
stable laws, is due to V.M. Zolotarev, except for Chapter 2 and Sections 6.1,
6.2, 7.4, 10.1–10.6, which were written by V.V. Uchaikin. The second part,
containing actual examples of applications of stable laws to solving various
problems, is due to V.V. Uchaikin, except for Sections 10.7, 10.8 13.7, 13.10,
14.1, 14.2, 14.3, 16.4, and 18.1, written by V.M. Zolotarev. Chapter 17 was
composed by V.M. Zolotarev and V.Yu. Korolev.

This book is, to a considerable degree, inspired by our colleagues V.Yu. Ko-
rolev and S.V. Bulyarskii. We are grateful to J.N. Fry, B. Mandelbrot,
J.H. McCulloch, A.A. Lagutin, A.V. Lappa, R.R. Nigmatullin, E.A. Novikov,
L. Pietronero, W.R. Schneider, F. Sylos Labini, A. Weron, K. Weron, and
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G.M. Zaslavsky for the materials they kindly supplied us with and for useful
advices. One of the authors, V.V. Uchaikin, would like to express his gratitude
to Director of Planck Institute in Heidelberg, Professor Völk, for his hospitality
and permission to use the library facilities.

We are especially grateful to the Editor, Professor V.Yu. Korolev, and to the
translator, Dr. A.V. Kolchin, because the book could unlikely see the light with-
out their persistence and benevolent long-suffering. G. Gusarov, D. Korobko,
V. Saenko, N. Mironova helped us to prepare the manuscript. Yu. Nikulin and
D. Rozhetskii pointed out some inconsistencies and misprints in formulas.

The work on the book, as usual, put a heavy burden on not only the authors
but their families as well. The colleagues of one of the authors, V.V. Uchaikin,
also felt themselves uneasy while their chief squeezed out this work. We
express a deep gratitude to all of them.

V. Uchaikin
V. Zolotarev

Moscow, March 1999
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Theory
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1

Probability

1.1. Probability space
The fundamental notions of probability theory are random variables and their
probability distributions. Nevertheless, we should begin with quite simple
notion of probability space (Ω, Ξ, Q), whose constituents are the space of ele-
mentary events (outcomes) Ω, the sigma algebra Ξ of Borel subsets of Ω, and
some function Q(A) defined on the sets of the family Ξ and taking values from
the interval [0, 1]. Speaking of sigma algebras, we mean that both unions of a
finite or countable number of elements of Ξ and their complements lie in Ξ as
well. The function Q(A) is a normalized countably additive measure; Q(A) = 1,
and for any union A = A1 ∪ A2 ∪ … of a finite or countable number of pair-wise
non-overlapping elements of Ξ, the equality

Q(A) = Q(A1) + Q(A2) + …

holds. This is the basic object of probability theory.
A rich variety of probability spaces are in existence. In order to obtain a

meaningful theory, one should consider a rather rich probability space (Ω, Ξ, Q);
i.e., the sets Ω, Ξ should be rich, and the measure Q should take reason-
ably many values. For example, if we consider Ω consisting of six elements
ω1, ω2, …, ω6, and take as Ξ the set of all 26 subsets of Ω (including the empty
set and Ω itself), and define a measure Q on the elementary outcomes ωi, we
arrive at the model of all possible dices, both symmetric and asymmetric. It
is clear that this model is too poor to be used in actual problems. Meanwhile,
there exists a probability space of very simple structure which allows us to
consider just about anything. Its structure is as follows: Ω is the interval [0, 1]
whose points are elementary events; Ξ is the system of all Borel sets of the
interval Ω; Q is the so-called Lebesgue measure, which is uniquely determined
by the condition that for any interval ∆ in Ω the value Q(∆) is equal to the
length |∆| of that interval.
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4 1. Probability

1.2. Random variables
The probability space we constructed governs, in some sense, the random
events that occur in our model.

Here we come against ‘non-predictability’, or ‘randomness’; the following
construction of the general model relates to randomness only via the probabil-
ity space as the base. The emergence of randomness can be easily imagined
in that special probability space we just introduced. We randomly drop a tiny
‘ball’ onto the interval Ω (i.e., the ‘ball’ can, with equal chances, be put in any
point of Ω); its position is the result of a trial denoted by ω, and this is the only
manifestation of ‘randomness’. The trials can be repeated, with no dependence
on the results of the preceding trials, and we thus arrive at the model of inde-
pendent trials. But in actual experiments we observe only factors of various
nature related to random trials, which we will refer to as random.

In the general model, the random variable is any real-valued function X(λ )
defined on Ω and possessing a special property called measurability.

Before turning to rigorous definition of measurability, we observe that in
the real axis R1, as well as in the interval Ω, we can define Borel sets in the
same way as we do for Ξ, on the base of all possible intervals of R1. Let A be
some Borel set of Ξ and X(A) be the set of values of the function X(λ ) while λ
runs through all elements of A.

The function X(λ ) transforms the sets of Ξ and maps them onto some sets
in the real axis; the function is called measurable if all sets it generates are
Borel. This constraint on the structure of the functions X(λ ) playing the parts
of random variables, which, at first glance, seems to be too complicated, and
the constraint on the structure of the sets A from the family Ξ which stand
for various random events, are necessary indeed. The point is that the notion
of probability of random events related to a random variable X(ω) is defined
implicitly, through the probability measure Q. If B is some Borel set from the
set of values of the random variable X(ω) and A = X−1(B) is the corresponding
pre-image (a set of Ω), then the probability that X(ω) belongs to B (this event
is random and is denoted by X(ω) ∈ B) can be calculated as follows:

P{X(ω) ∈ B} = P{ω ∈ X−1(B)} = Q(A) (1.2.1)

Therefore, if the function X(λ ) representing the random variable under
observation is given, then the calculation of probabilities (1.2.1) can pose com-
putational but not fundamental obstacles.

Unfortunately, by far the most frequently encountered situation is where
the function X(λ ) is unknown and moreover, we cannot even make reasonable
guesses. Nevertheless, sometimes the form of the function X(λ ) can be inferred.
For example, if one tosses a symmetric coin, then, assigning 0 and 1 to the sides
of the coin, a trial can be considered as the observation of a random variable
X taking these two values. Both of the possible outcomes are equiprobable.
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Figure 1.1. Graphs of Xp(λ ), 0 ≤ p ≤ 1/2, simulating a symmetric coin

Thus, as X(λ ) we can take any of the functions Xp(λ ) presented in Fig. 1.1.
Any of them can model the coin tossing experiment.

Let us give an insight into the idea of ‘simulation’ based on these models. If
we take one of the functions Xp(λ ) and assign random values to λ in the interval
Ω (we do not dwell on technical details of realization of such an assignment),
then Xp(ω) becomes a random variable that behaves exactly as a symmetric
coin.

This simple example demonstrates that even in those cases where an ad-
ditional information helps us to clear up the structure of the function X(λ ), it
often remains uncertain. In other words, for any random variable that we are
observing in some experiment there exists a set (more exactly, an infinite set)
of functions X(λ ) which can serve as its model.

This is why we do not pose the problem of reconstruction of functions X(λ )
which model random variables. While investigating actually observed random
variables, the analysis does not advance beyond finding the corresponding
probability distributions, i.e., sets of probabilities P{X ∈ B} for various Borel
sets B in R1.

This is too difficult to be practical to deal with these sets, because it is
physically infeasible to examine, item-by-item, all possible Borel sets. Some
way out is provided by the so-called distribution functions of random variables.
These are sets of probabilities of more simple random events FX (x) = P{X < x},
where x are real values. Knowing the distribution function FX (x), we are able
to re-build unambiguously the probability distribution P{X ∈ B}, where B are
Borel sets.

1.3. Functions X(λ )
In view of the above concept of a random variable as a real-valued measurable
function defined on the interval [0, 1], the natural question arises: what is the
set ΛF of all functions X(λ ) that generate the random variables with a given
distribution function F(x)? The formal answer turns out to be not too difficult.
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Figure 1.2. The distribution function F(x) and the inverse function F−1(λ ) of
a random variable that takes two values: zero with probability p
and one with probability 1− p, 0 < p < 1

There exists a universal way which allows us to construct a function gen-
erating F(x). We consider the function F−1(λ ) defined on the interval [0, 1]
which is, in some sense, inverse to F(x). Lest the presentation be not over-
complicated, we do not dwell on analytic definition of F−1(λ ), but give a graph-
ical illustration. Consider the reflection of the graph of the function F(x) from
the bissectrix of the first quadrant (Fig. 1.2).

The jumps of the function F(x) become the intervals of constancy of F−1(λ ),
whereas the intervals where F(x) is a constant become jumps of F−1(λ ) It is
not hard to see that

P{F−1(ω) < x} = F(x)

i.e., X0(λ ) = F−1(λ ) is a function of the set ΛF.
If we assume that all non-decreasing functions on Ω are right-continuous in

their discontinuity points (which does not influence the distribution functions
generated), then there exists a unique X0(λ ) in the set ΛF.

Now we turn to the system of transformations of the ‘support’ function
X0(λ ) determined by the one-to-one mappings of the set Ω onto itself. This
means that every point of Ω is mapped either to itself or to some other point,
while two distinct points cannot be mapped to one and the same point. To-
gether with each relocated point, the corresponding value of the function X0(λ )
moves as well. As the result of the transformation J chosen of the set Ω, which,
obviously, possesses an inverse transformation, we arrive at the extra function
XJ(λ ). All measurable functions of such a kind constitute the set ΛF.

As an illustrative example, we consider the distribution function given in
Fig. 1.2. The inverse of this function plays the part of the ‘support’ func-
tion X0(λ ), and the functions in Fig. 1.3 are its transformations of the above-
discussed type.

To demonstrate that the above transformation of the function X0(λ ) gives
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0 p 1 λ

X1(λ )

0 p2 p p(2− p) 1 λ

X2(λ )

X3(λ )

0p3p2 p 1 λ

p2(2− p)

p2(2− p)

p(2− p)
p(1 + (1− p)(2− p))

Figure 1.3. Rademacher-type functions modeling independent random
variables

us the whole set ΛF, we take some function X(λ ) from this set, and transpose
elements of Ω so that the values of the resulting function do not decrease as
λ grows. Because ΛF contains only those non-decreasing functions that differ
from X0(λ ) in values at discontinuity points only, the transformation X(λ )
necessarily gives us one of non-decreasing functions of the set ΛF.

Thus, by re-defining the support function at its discontinuity points and
subsequent inverse transformation of Ω we arrive at X(λ ) starting from X0(λ ).

In the framework of the general mathematical model, the presentation of
random variables as functions X(ω) of random argument ω plays a basic part,
while the whole model becomes complete and well-integrated, thus alleviating
the analysis.

1.4. Random vectors and processes
Thus, a random variable is specified by its distribution and is modeled by
measurable functions defined on Ω (Fig. 1.4).

If we deal with a random k-dimensional vector X = (X1, …, Xk), then all rea-



8 1. Probability

0 λ

X(λ )

Figure 1.4. A function modeling a random variable

t
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ω

1
λ

Xt(λ )

1

X1(λ )

2

X2(λ )

3

X3(λ )

n

Xn(λ )

Figure 1.5. A function modeling an n-dimensional random vector

soning related to random variables can, with some complication, be extended
to this case. A random vector is modeled by the set of functions X1(λ ), …, Xk(λ ).
It is convenient to present them as a single multi-layered graph (Fig. 1.5).

Here the part of probability distributions of a random vector X is played
by the set of probabilities P{X ∈ B}, where B are Borel sets of points of the
k-dimensional Euclidean space Rk.

The ‘medium’ which carries the information equivalent to the probability
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distribution P{X ∈ B} is the distribution function of the vector

FX(x) = FX(x1, …, xk) = P{X1 < x1, …, Xk < xk},

where x = (x1, …, xk) are vectors of Rk.
In our model, a random vector is a set of functions X1(λ ), …, Xk(λ ) defined

on one and the same interval. Separate inequalities

X1(λ ) < x1, …, Xk(λ ) < xk

are associated with their corresponding pre-images A1, …, Ak on the interval
Ω, while the totality of these inequalities on Ω is associated with the set
Ax = A1 ∩ … ∩ Ak (i.e., the common part of all these sets). Thus, the function
FX(x) is calculated with the help of the measure Q by means of the formula
FX(x) = Q(Ax).

In probability theory, the need for working on sets of random variables is
quite usual. If we consider the random variables of such a set as components of
a random vector, then the probability distribution of this vector, or, what is the
same, the corresponding distribution function, carries the complete informa-
tion about that set. It is referred to as the joint distribution (joint distribution
function) of the random variables of the set.

The next stage in complicating matters is related to random processes. Let
us imagine that the multi-layered graph in Fig. 1.5 continues in one or in both
directions of the axis t, being supplemented by the addition of new graphs at
…,−1, 0, k + 1, k + 2, …. The result is the random process Xt(ω) with discrete
time t. The choice of a point ω in Ω results in an infinite sequence

…X−1(ω), X0(ω), X1(ω), … (1.4.1)

or
X1(ω), …, Xk(ω), Xk+1(ω), …,

which is a single realization (corresponding to an elementary event ω) of the
process Xt(ω).

A random process Xt(ω) with continuous time t is introduced similarly,
but for it the result of a single trial, or its single realization, is not sequence
(1.4.1) but a real-valued function defined on the axis t. A random process with
continuous time can be visualized as in Fig. 1.6.

As we see, the model of a random process is a function of two variables t
and λ defined in the strip 0 < λ < 1. Choosing a point in the interval Ω, we
select a length-wise section of this function through ω, being a function of t.
The function is the result of a single trial, one of the possible realizations of
the random process.

If we fix t and take the cross-wise section through this point, we obtain a
function defined on Ω, i.e., a model of some random variable Xt(ω).
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0

ω

1 λ

t1

t2

Xt2 (λ )

t3

Xt3 (λ )

Xt(λ )

Xt1 (λ )

Xt(ω)

Figure 1.6. A function modeling a random process with continuous time

1.5. Independence
The notion of independence of random events, of random variables, etc. is the
fundamental part of probability theory, and makes it a self-contained field of
mathematics, even if evolved from set theory, measure theory, and functional
analysis. Its heart consists of the following.

Let X = (X1, …, Xk), k ≥ 2, be some set of random variables. We denote
the distribution function of the random variable Xi by Fi(xi), i = 1, …, k, and
its joint distribution function by FX(x1, …, xk). Then we say that the random
variables of this set are independent, if

FX(x1, x2, …, xk) = F1(x1)F2(x2)…Fk(xk) (1.5.1)

for any x1, …, xk.
Therefore, the property of mutual independence of random variables of a

set X is some special property of its joint distributions. Property (1.5.1) is
equivalent to the following more general property of probability distributions:

P{X1 ∈ B1, X2 ∈ B2, …, Xk ∈ Bk} = P{X1 ∈ B1}P{X2 ∈ B2}…P{Xk ∈ Bk},
(1.5.2)

which holds for any Borel sets B1, …, Bk (property (1.5.1) becomes a particular
case of (1.5.2) if we take the semi-axes (−∞, xi) as Bi).
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The importance of this purely mathematical notion is that it allows us to
model the absence of interaction of actual random events.

Indeed, let us consider, as an example, a sequential tossing of a coin with
sides labelled with zero and one. The coin may be asymmetric; then the
probability p of occurrence of one is not necessarily 1/2. The modeling of
divorced from each other tossings (of course, the coin itself remains the same)
is carried out by means of the sequence of functions X1(λ ), X2(λ ), … given in
Fig. 1.3. The peculiarity of these functions is that they take only two values,
zero and one, whereas the ratio of lengths of neighboring intervals is p : 1− p.

A direct verification demonstrates that the random variables corresponding
to these functions are mutually independent, i.e., they obey property (1.5.1)
or equivalent property (1.5.2). The independence of the first two random
variables can be simply verified by examining the equalities

P{X1 = l, X2 = m} = P{X1 = l}P{X2 = m} (1.5.3)

for l, m = 0 or 1 (we actually need to examine only three equalities because the
fourth one follows from them in view of the fact that the sum of probabilities
over l and m is equal to one).

In the course of analysis, we see the following feature of property (1.5.1):
it breaks down as the graph of one of the functions is slightly altered while
the total length of the intervals where the function is equal to one remains
the same (for example, if we shift the first interval to the right by some small
distance ε > 0, and assign the zero value to the function in the interval (0, ε)
appeared).

The sense of the abovesaid is that the property of independence of random
variables is a very special structural property of the functions that model
them. The mathematical notion of independence used in probability theory is
of particular importance because it is able to model the situations where the
events do not cause one another. Nevertheless, the notion of independence
inherent in probability theory is much wider than its ordinary interpretation
evolved from practice. This becomes evident while we discuss independence
of the events related to one and the same trial. So, it is hard to imagine that,
while tossing a symmetric dice, the occurrence of a multiple of three (event
A) and the occurrence of an even number (event B) are independent, whereas
the occurrence of a prime number (event C, i.e., the occurrence of 2, 3, or 5)
depends on event B but is independent of event A. Moreover, events A and B
can be made dependent and events B and C can be made independent, by
suitable deformation of the dice.

Too rigorous understanding of dependence of random events in the founda-
tion of theoretical analysis is not good because this downgrades our inference
potentialities. Nevertheless, while we consider random objects (events, vari-
ables, processes, etc.) that are, to some extent, inter-related, we drop the
independence condition in favor of one or other type of weak dependence, so
eliminating the above excessive rigor.
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A remarkable property of independent random variables X1, …, Xk, k ≥ 2,
consists in the fact that any measurable functions of these random variables

Y1 = g1(X1), …, Yk = gk(Xk) (1.5.4)

are again independent random variables.
Another eye-catching property of independent random variables consists

of multiplicativity of means:

E[g1(X1)…gk(Xk)] = Eg1(X1)…Egk(Xk). (1.5.5)

In particular,

EXiXj = EXi EXj, 1 ≤ i < j ≤ k, (1.5.6)

where, as in (1.5.5), the means of random variables on the right-hand side are
assumed to be finite.

The last relation remains valid if we change the mutual independence of
the random variables X1, …, Xk for the weaker condition that they are pair-wise
independent, i.e., Xi and Xj are independent if i ≠ j.

The fact that the mutual independence of all k random variables in (1.5.6)
can be weakened and changed for pair-wise independence is an evident ex-
ample of extending the idea of independence of a family of random variables.
In modern probability theory, such a phenomenon comes into evidence in the
form of the so-called martingale dependence.

1.6. Mean and variance
In the general case, the probability distribution of a random variable X, or its
distribution function, is a rather complex characteristic. This propelled us into
hunting for more simple and convenient but yet informative characteristics of
random variables. Searching along these lines revealed such characteristics
as the mean and the mean root square deviation of a random variable X,
which also are referred to as the mathematical expectation and the standard
deviation, whereas the square of the latter is called the variance.

Under our interpretation of a random variable X as a function X(ω) of
random argument, these characteristics are defined as follows:

EX =
∫ 1

0
X(λ )dλ (1.6.1)

(the mean of X),

Var X =
∫ 1

0
(X(λ )− EX)2dλ (1.6.2)
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(the variance of X).
The property

E
n∑

i=1

Xi =
n∑

i=1

EXi (1.6.3)

is, in view of definition (1.6.1), the ordinary property of additivity of the definite
integral which holds under quite weak constraints on the summands Xi(λ ).
The similar property of additivity of the variances

Var
n∑

i=1

Xi =
n∑

i=1

Var Xi. (1.6.4)

is not so universal as (1.6.3).
Usually, (1.6.4) is presented under the mutual independence of summands,

but actually it is true as soon as the variances on the right-hand sides exist
and the summands are pair-wise independent, i.e., (1.5.6) holds. The variance
Var X does not change if some constant C is added to X, because

E(X + C) = EX + C

and therefore,
Var(X + C) = Var X.

Thus, considering property (1.6.4), without loss of generality we can take the
means EXi equal to zero, so (1.6.4) takes the form

ES2
n = ES2

n−1 + EX2
n , (1.6.5)

where

Sn =
n∑

i=1

Xi.

If we represent the left-hand side of (1.6.5) as

E(Sn−1 + Xn)2 = ES2
n−1 + 2ESn−1Xn + EX2

n,

then it becomes clear that (1.6.4) is equivalent to

E(Sn−1Xn) = E(Sn−1E(Xn | Sn−1)) = 0,

where E(Xn | Sn−1) stands for the conditional mathematical expectation of Xn
under the condition that Sn−1 takes a certain value.

The sign of outer expectation shows that we carry out the averaging over
all possible values of Sn−1.
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The last equality, obviously, holds if E(Xn | Sn−1) = 0, but this is exactly
the condition called the martingale dependence between the summands of Sn
(we say that the sequence Sn forms a martingale).

The conditional mathematical expectation E(X | Y) of a random variable
X under the condition that another random variable Y takes a value y is
understood as

E(X | Y) =
∫

x dx
(
dyFXY (x, y)/dyFY (y)

)
, (1.6.6)

where FXY (x, y) is the joint distribution function of the pair of random variables
X, Y, and FY (y) is the distribution function of the random variable Y. In the
case where these distribution functions possess densities pXY (x, y) and pY (y),
the integrand takes a simpler form

E(X | Y) =
∫

x
pXY (x, y)

pY (y)
dx.

The above definition of the martingale is somewhat generalized, and is called
the Lévy martingale. Usually, the name of martingale is related to the condi-
tion

E(Xn | X1, …, Xn−1) = 0.

As a simple example of the latter is the pitch-and-toss game with inde-
pendent tossing while the bets in each round are set by one of the players
with consideration for his payoff in the preceding rounds. Although in this
game the random variables Xi take, as before, two values Mn and −Mn with
probabilities 1/2 each, the value of Mn is determined by one of the players with
regard to values of Xi in the preceding rounds, which makes the random vari-
ables X1, X2, … dependent. Nevertheless, no matter what strategy is chosen,
the martingale condition always holds.

1.7. Bernoulli theorem
In 1713, eight years after the death of Jacob Bernoulli, his book ‘Ars Con-
jectandi’ came into the light, and marked the beginning of probability theory
as a branch of science. The author, a magnificent Swiss scientist, famed for
his works in mathematics, mechanics, and physics, went down in history as
the patriarch of probability theory who established the first and, as will soon
become evident, fundamental limit theorem, the law of large numbers1.

This remarkable mathematical fact that reflects one of the most important
laws of the Universe, consists in the following.

1Although we know this famous theorem by the publication of 1713, in fact this result was
obtained by Jacob Bernoulli about 1693.
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Let us consider a sequence of non-related (i.e., independent) trials under
stable environmental conditions. The outcome of a trial is either an event A
we are interested in but whose occurrence we cannot forecast, or the contrary
event A. After n trials, we count the number N(A) of occurrences of event A.
The ratio

νn(A) = N(A)/n, (1.7.1)

is interpreted as the frequency of event A in the first n trials. If we repeat
sequences of trials of length n, the frequences should not necessarily coincide:
the frequency is random. But, as even some predecessors of J. Bernoulli
noticed, while n grows, the frequency ‘stabilizes’ around certain value. This
empirically strengthened fact allows us to interpret the frequency for large
enough n as the measure of ‘uncertainty’ of event A. This law which lies in the
heart of many actual applications should, of course, be theoretically validated.
The Bernoulli theorem is exactly the validation we need.

Let X1, X2, … be a sequence of independent2 random variables, each taking
two values, 0 and 1, provided that p = P{Xn = 1} for all n (which implies that
P{Xn = 0} = 1− p remains the same for all random variables).

We consider the arithmetical means of the first n random variables

µn =
1
n

n∑

i=1

Xi, n = 1, 2, … (1.7.2)

If we associate Xi = 1 with the occurrence of event A in the ith trial, and
Xi = 0, with the contrary event A, then µn becomes exactly the frequency
of event A during n trials, i.e., a variable equal to νn(A). The frequencies
νn(A) are ‘stabilized’ near some constant which characterizes the measure of
randomness of occurrence of event A in the trials. It is natural that the part
of such a measure has to be played by the probability p. Thus, the arithmetic
mean µn should match p. This is the way that Jacob Bernoulli prepared; the
result can be formulated as follows.

THEOREM 1.7.1 (Jacob Bernoulli). Let a positive ε be arbitrarily small; then

P{|µn − p| ≥ ε} → 0, n →∞. (1.7.3)

Since
εn = µn − p

P
→ 0,

i.e., converges to zero in probability as n →∞, the law of large numbers, that
is, Bernoulli’s theorem can be formulated as follows:

µn = p + εn, n ≥ 1. (1.7.4)

2Speaking of an infinite sequence of independent random variables, we mean that the set of
the first n random variables, no matter what n is, consists of independent random variables.
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The sense of this assertion consists exactly in that it confirms the experi-
mental observation that the frequency of occurrence of event A in a sequence
of independent trials approaches the a priori probability of occurrence of this
event in a single trial. We put stress on the fact that none of mathematical
proofs, no matter how pretty they are, can act for a ground of actually observed
data. So, the Bernoulli theorem cannot serve as the proof of the existence of a
limit of the actually observed frequencies νn(A).

The mathematical proof of the fact that the frequency µn of the occurrences
of event A tends to the probability p of the occurrence of event A in a single trial
is valid in the framework of a certain mathematical model, i.e., under some-
what idealized conditions that are in some correspondence to the conditions
under which the actual trials take place. In other words, the mathematical
assertion established by Bernoulli should not be mixed with the widespread
and empirically validated law of stability of frequencies. The mathematical
interpretation of the law of large numbers and its manifestation in actual
processes are similar but nevertheless not identical.

The Bernoulli theorem is of great importance indeed, because it is the pri-
mary connecting link between probability theory and its applications. There
are many parameters and functional characteristics in models used in proba-
bility theory that cannot be identified without invoking experimental data.

As a simple example, let us consider deformed, asymmetric coin, for which
it is not feasible to calculate the probability of occurrence of a chosen side in
tossing. But this probability can be evaluated by experiment, by observing
a large enough number of tossings and finding the corresponding frequency
νn. The Bernoulli theorem provides us with grounds to expect that νn and
p are close to each other if the number of tossings is large enough. But it
remains unclear which number of trials should be observed to ensure that the
difference between νn and p becomes no greater than an ε given.

Bernoulli, being not an only outstanding mathematician but deeply en-
gaged in practical work, (which was not rare in XVII–XVIII centuries) was not
satisfied with assertion (1.7.3) of qualitative nature, and gave explicit bounds
for the probability entering into that expression. In more recent times, these
bounds were refined. One of the refined bounds is given by the relation

P{|µn − p| ≥ ε} ≤ β = 2 exp
(
−nε2/2

)
, (1.7.5)

see (Uspensky, 1937).
If β is small, for example, if β = 0.05 or β = 0.01, then with probability

α = 1−β close to one the validity of inequality |µn−p| ≤ ε should be considered
as a certain event. Based on bound (1.7.4), we obtain

µn − ε < p < µn + ε, (1.7.6)

where

ε =

√
2
n

ln
2
β

.
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For β chosen, practically certain events are determined by the levels of
probabilities no less than 0.95 and 0.99. The corresponding bounds for ε
become, respectively,

ε = 2.72/
√

n, ε = 3.25/
√

n.

This is the traditional presentation and interpretation of the Bernoulli
theorem. Now, let us take a second look at this theorem from the viewpoint of
modeling of random variables treated at some length in the preceding sections.

We have demonstrated how to model a sequence of independent random
variables taking the value 1 with probability p, 0 < p < 1, and the value 0 with
probability 1 − p in Fig. 1.3, where particular functions X1(λ ), X2(λ ), X3(λ ) of
Rademacher type3 were pictured. Their arithmetic mean

µn(λ ) =
1
n

n∑

i=1

Xi(λ ) (1.7.7)

is again a function defined in the interval [0, 1]. As n grows, the functions
µn(λ ) whimsically change and become much more complicated, but µn gather
around the point p.

We consider the ε-neighborhood of p, i.e., the strip between the levels p− ε
and p + ε, 0 < ε < min(p, 1 − p)/2, and denote it by Bε . In the interval [0, 1]
we choose λ such that µn(λ ) ∈ Bε . The set An,ε of those λ is a Borel set of Ω;
therefore

P{µn(ω) ∈ Bε} = P{p− ε < µn(ω) < p + ε} = P{|µn(ω)− p| < ε} = Q(An,ε).

The Bernoulli theorem states that for any fixed ε the measure Q(An,ε ) of
the set An,ε tends to one as n →∞.

This is illustrated in Fig. 1.7 in the case p = 1/2.
Since the effect that the bulk of the values of the functions µn(λ ) approaches

the level p holds not only for the functions Xi(λ ) of special structure (Fig. 1.5)
but also for a wide class of other functional sequences, it looks very curious and
even intriguing from the viewpoint of the function theory and analysis. The
main contribution to this effect is due to the special interconsistent nature of
the functions Xi(λ ) which we refer to as ‘independence of random variables’.

We can also discuss how the Bernoulli theorem describes the behavior of
the distribution functions Gn(x) of the random variables µn. Let F(x) stand
for the common distribution function of the summands Xi (given in Fig. 1.2).
All Gn(x) are step-functions and vary from zero to one on the interval [0, 1],
as well as the function F(x). If for n = 1 there are two jumps (G1(x) coincides

3The German mathematician G. Rademacher considered a sequence of functions rk(λ ) related
to the functions Xk(λ ), p = 1/2, by means of the equality rk(λ ) = 2Xk(λ ) − 1, k = 1, 2, … The
main property of these functions is that all of them can be considered as mutually inddpendent
random variables X1, X2, …, Xn, …
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Figure 1.7. Evolution of the functions χn(λ ), µn(λ ), and Gn(x) as n grows

with F(x)), then for n = 2 the number of jumps increases to three, for n = 3, to
four, etc. (see Figures 1.7 and 1.8). The function Gn(x) at the points xk = k/n,
k = 0, …, n, possesses jumps of amplitudes

∆Gn(xk) =

(
n
k

)
2−n.

The Bernoulli theorem states that µn converges in probability to the constant
p as n →∞ (the limiting relation (1.7.6) describes exactly this type of conver-
gence). The random variable equal to some constant p possesses the one-step
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Figure 1.8. Further evolution of the function Gn(x)

distribution function

e(x− p) =

{
0, x ≤ p,
1, x > p,

with unit jump at the point x = p (such a distribution function is called degen-
erate at the point p).

It is well known that the convergence in distribution of any sequence of
random variables to a constant is equivalent to the weak convergence of the
distribution functions of these variables to the corresponding degenerate dis-
tribution function (the convergence takes place at any point except the jump
point of the latter function). Denoting this convergence by the symbol ⇒, we
rewrite the assertion due to Bernoulli in the form

Gn(x) ⇒ e(x− p) n →∞. (1.7.8)
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Figure 1.9. The behavior of the head occurrence frequency after 100 tossings
of an asymmetric coin, p = 0. 26

The graphical interpretation of this convergence is simple. If we enclose
the graph of the function e(x− p) (the vertical line at the jump point included)
in a strip of width 2ε, then, whatever ε is, beginning with some n the graph of
the function Gn(x) appears to be lying inside the ε-neighborhood of the graph
of e(x− p) (Fig. 1.8). Here Φ(x) is the graph of the distribution function of the
standard normal law. As n grows, the graphs of Gn(x) approximate to Φ(x),
which is exactly the graphical interpretation of the Moivre–Laplace theorem,
the simplest version of the central limit theorem.

An impression can be formed that the Bernoulli theorem fits only simple
problems of finding a probability of an individual event. It is formally so, but
the potentialities of the law discovered by Bernoulli are much wider. In some
form it manifests itself in a great body of problems of mathematical statistics.

We conclude our presentation of the Bernoulli theorem, which is now fre-
quently referred to as the Bernoulli law of large numbers, with the demonstra-
tion of behavior of the head occurrence frequency in a long sequential tossing
of an asymmetric coin given in Fig. 1.9.

1.8. The Moivre–Laplace theorem
The law of large numbers and the bounds for the unknown probability p result-
ing from it did not satisfy the mathematicians who fervently desired to refine
them. One of such refinements was due to Moivre, and recently is referred to
as the Moivre–Laplace theorem.

Under the modern notation, the Moivre result can be formulated as fol-
lows. Instead of the arithmetic means µn of the independent random variables
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X1, X2, …, we consider the sequence of normalized sums

Zn =
1
bn

( n∑

i=1

Xi − an

)
, n = 1, 2, …, (1.8.1)

where
an = np, b2

n = np(1− p),

and denote the corresponding distribution functions by Wn(x).
We fix a pair of arbitrary numbers x and y so that y < x; then, as n →∞,

P{y ≤ Zn < x} = Wn(x)−Wn(y) ∼ 1√
2π

∫ x

y
exp(−z2/2) dz (1.8.2)

uniformly in y and x. If we let y → −∞ on the right-hand side of (1.8.2),
then the limit obtained, which depends only on x, appears to be some distri-
bution function. It is usually denoted by Φ(x) and called the standard normal
distribution, or the Gauss law.

The right-hand side of (1.8.2) is equal to α = Φ(x) − Φ(y). Since Φ(x) → 1
as x → ∞, and Φ(y) → 0 as y → ∞, by choosing a sufficiently large x > 0
and |y|, y < 0, we can always make α so close to one as desired. So, setting
x = −y = 1.96, we obtain α = 0.95. Therefore, for large n the inequality

−1.96 < Zn < 1.96 (1.8.3)

becomes practically certain (if we say that those are events of probability no
less than 0.95).

In view of definition (1.8.1) of normalized sums Zn, we derive from inequal-
ities (1.8.3) the practically certain bounds

µn − 1.96
√

p(1− p)/n < p < µn + 1.96
√

p(1− p)/n, (1.8.4)

which are asymptotically (i.e., for n large enough) more precise than bounds
(1.7.6) following from the recent refinement (1.7.5) of the Bernoulli theorem. It
should be said in all fairness that the advantage of bounds (1.7.5) over (1.8.4)
is that the former are true for all n, whereas the latter, for sufficiently large n
(without further specifying).

The Moivre–Laplace theorem represents a considerable step forward,
which was not outperformed in more than gross of years, although such great
mathematicians as Laplace, Gauss, and Chebyshov were developing this field.

The generalization of the Bernoulli law of large numbers turned out to be
a more easygoing problem.
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1.9. The law of large numbers
In 1830, Siméon Denis Poisson formulated a theorem that extended the law
of large numbers. He did not provide a rigorous proof; it was given sixteen
years later by Chebyshov. Poisson considered the case where independent
random variables X1, X2, … take values 0 and 1 but do not need to be identically
distributed, i.e., the probabilities pi = P{Xi = 1} can differ for different i. The
theorem asserts that for an arbitrary small positive ε

P

{∣∣∣∣∣
1
n

n∑

i=1

Xi −
1
n

n∑

i=1

pi

∣∣∣∣∣ ≥ ε

}
→ 0

as n →∞.
Poisson also introduced the notion of ‘law of large numbers’. The theorem

due to him is usually referred to as the Poisson law of large numbers. The next
advance, in 1867, was due to Chebyshov. He considered a very general case
where the independent random variables X1, X2, … possess means αi = EXi
and variances σ2

i = Var Xi, without any further constraints. The theorem due
to Chebyshov looks as follows.

THEOREM 1.9.1 (Chebyshov). For any T ≥ 1 the probability that

∣∣∣∣∣
1
n

n∑

i=1

Xi −
1
n

n∑

i=1

αi

∣∣∣∣∣ ≤ T

√√√√1
n

n∑

i=1

σ2
i

is no less than 1− 1/T2.

This theorem immediately implies a sufficient condition for the validity
of the Chebyshov law of large numbers, which consists in the convergence
in probability of the arithmetic means of the random variables Xi and the
corresponding mathematical expectations αi. This condition itself consists in
the validity of the limit relation

(
σ2

1 + … + σ2
n

)
/n2 → 0 n →∞. (1.9.1)

We put stress on the fact that the Chebyshov theorem was proved by a
remarkable simple approach by making use of the general inequality

P{|Y − EY| ≥ T} ≤
Var Y

T2 , (1.9.2)

which holds for any T > 0 and any random variable possessing a finite ex-
pectation and a finite variance. Indeed, substituting the arithmetic mean of
the independent random variables Xi for Y, we arrive at an inequality which
implies the sufficiency of condition (1.9.1).
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Some very interesting but now widely known results are due to Bernstein,
who also dealt with the Poisson law of large numbers. Bernstein considered a
sequence of random variables X1, X2, … taking two values, 0 and 1. No extra
assumption on independence was posed; nevertheless, for each of the random
variables Xi,

0 < pi = P{Xi = 1} < 1.

In this case, obviously, qi = P{Xi = 0} possesses the same property. To formu-
late the criterion of validity of the law of large numbers, one makes use of the
conditional probabilities

pij = P{Xi = 1 | Xj = 1} =
P{Xi = 1, Xj = 1}

P{Xj = 1} ,

qij = P{Xi = 1 | Xj = 0} =
P{Xi = 1, Xj = 0}

P{Xj = 0} ,

The Bernstein criterion is expressed as follows. For an arbitrary small
ε > 0,

P

{∣∣∣∣∣
1
n

n∑

i=1

Xi −
1
n

n∑

i=1

pi

∣∣∣∣∣ > ε

}
→ 0 n →∞ (1.9.3)

if and only if

max
1≤j≤n

pjqj

∣∣∣∣∣
1
n

n∑

i=1

pij −
1
n

n∑

i=1

qij

∣∣∣∣∣ → 0 n →∞.

Turning back to the scheme of summation of independent identically dis-
tributed random variables {Xi}∞i=1, we present the following result known as
the Khinchin law of large numbers

THEOREM 1.9.2 (Khinchin). If the mathematical expectation EXi exists and is
equal to a, then the normalized sums Zn =

∑n
i=1 Xi/n converge in probability to

µ as n →∞:

Zn
P
→ µ, n →∞.

This means that for any ε > 0

P{|Zn − µ| > ε} → 0

as n → ∞. In other words, the distribution of the random variable Zn con-
verges to the degenerate distribution concentrated in µ. The density of this
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distribution is represented by the Dirac δ -function δ (x − µ), a generalized
function which is zero for all x ≠ a and satisfies the normalization condition 4

∫
δ (x− µ) dx = 1.

As we see, we do not need the finiteness of variances any more; only the
mathematical expectations should be finite.

1.10. Strong law of large numbers
We turn back to the Bernoulli law of large numbers in its second form, and
consider the functions X1(λ ), X2(λ ), … which model sequential tossing of a
coin (which does not need to be symmetric, and the probability p can be any
number lying in the interval (0, 1)). The first three functions of such a form
are presented in Fig. 1.3.

With the use of the functions Xn(λ ), we construct a multilayered graph
similar to that in Fig. 1.5. Such a graph, as we have said, corresponds to some
random process Xt(ω) with discrete time t = 1, 2, …. We transform the function
Xt(λ ) by the rule

X̄t(λ ) =
1
n

n∑

i=1

Xi(λ ). (1.10.1)

The multilayered graph of X̄1(λ ) in Fig. 1.10 corresponds to some random
process with discrete time. For each fixed outcome ω, which corresponds to
the length-wise section of the graph of X̄1(λ ) passing through λ = ω, we obtain
a graph given in Fig. 1.11. What does the Bernoulli theorem say about the
behavior of these functions corresponding to different ω as n grows? It turns
out that the information available is very limited. The point is that relation
(1.7.3) concerns the probability of an event associated with a single moment
t = n, i.e., in the multilayered graph of X̄t(λ ) one considers only one section and
concludes that the set of those λ which are beyond the strip |Xn(λ ) − p| < ε is
of vanishing measure as n grows.

The Bernoulli theorem itself cannot help us to clear up the behavior of the
functions emerging as length-wise sections of X̄t(λ ). We should invoke some
general principle of probability theory which relates the probabilities of single
events in a long series of trials and the probabilities of their simultaneous
occurrences. This would allow us to consider several cross-sections of the
graph of X̄t(λ ) at a time.

Such a principle which is able to help us is the well-known Borel–Cantelli
lemma, more exactly, the following its part.

4Formally speaking, the Dirac δ -function can be considered as the derivative of the step
function e(x).
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Figure 1.10.

0 1 2 3 4 5 6 7 8 t

p

X̄t(λ )

Figure 1.11.

We consider a sequence of arbitrary trials (not assuming that they are
independent, etc.) with two possible outcomes each. This means that in the
trial numbered n either the event An or its negation Ān occurs.

Let C1, C2, … be a chain of events where each Cn coincides with either An or
its negation Ān. We consider the set C = C1 ∩C2 ∩… consisting of simultaneous
occurrence of the events C1, C2, … We divide all events C into two groups;
the former group Γ is constituted by those events where at least one infinite
subsequence of the events An exists, whereas the latter group Γ̄ consists of the
remaining events. The events C of the latter group are characterized by the
property that, beginning with some place, their ‘tails’ contain only Ān.

According to the Borel–Cantelli lemma, in the case where the series P{A1}+
P{A2} + … converges, the probability of any event C ∈ Γ is equal to zero.

As An, we take
An = {ω : |µn(ω)− p| ≥ n−1/4},
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and apply inequality (1.7.5) to estimating Q(An); then

Q(An) ≤ 2 exp(−
√

n/2).

Hence it follows that the series of probabilities Q(An) converges, i.e., that in a
sequence of tossings of one and the same coin the inequality |µn−p| < n−1/4 can
be not true infinitely many times only with zero probability. In other words,
if in the graph of Xt(λ ) we take length-wise sections along different points λ ,
they can be divided into two non-overlapping sets B and B̄. For λ ∈ B, the
inequalities

∣∣∣∣∣
1
n

n∑

i=1

Xi(λ )− p

∣∣∣∣∣ < n−1/4 (1.10.2)

hold beginning with some n0 (which, of course, need not be one and the same
for different λ ). The points of the set B do not possess this property. Moreover,
the measure Q of the set B̄ is equal to 1, whereas that of B is equal to 0.
Dropping randomly a point ω, we almost surely find it in the set B. Saying
‘almost sure’, we mean the occurrence of an event with probability one, which
is a synonym to certainty.

Property (1.10.2) immediately yields µn(λ ) → p as n → ∞ for any λ ∈ B.
Those λ for which the convergence of µn(λ ) to p takes place, can find themselves
in the set B̄ as well, but for them relation (1.10.2) is systematically violated.

The regularities found with the help of the Borel–Cantelli lemma are much
more rich in content than the Bernoulli law of large numbers, because we are
able to trace the behavior of µn(λ ) as n grows for almost all λ . This can be
represented as follows:

P
{

lim
n→∞µn(ω) = p

}
= 1. (1.10.3)

This refinement of Bernoulli’s theorem plays an important role in applica-
tions, because provides impressive evidence that the frequency of occurrence
of a random event in a long series of independent trials is adequate to the
probability of this event.

Property (1.10.3) is referred to as the strong law of large numbers, which
was first formulated by Émile Borel in 1909. Later, many scientists dealt with
generalizing various forms of the law of large numbers. Let us cite some of the
breakthroughs in this field.

In 1927–1929, Khinchin studied sequences of dependent random variables
X1, X2, … with finite means αi = EXi and variances σ2

i = Var Xi, and suggested
sufficient conditions for the strong law of large numbers, i.e., the validity with
probability one of the limiting relation

lim
n→∞

∣∣∣∣∣
1
n

n∑

i=1

Xi −
1
n

n∑

i=1

αi

∣∣∣∣∣ = 0. (1.10.4)
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In particular, those conditions imply that in the case of identically distribut-
ed random variables with finite means α = EXi and variances σ2

i = Var Xi, the
equality

lim
n→∞

∣∣∣∣∣
1
n

n∑

i=1

Xi − α

∣∣∣∣∣ = 0 (1.10.5)

holds with probability one.
Later on, Kolmogorov established (1.10.5) under the only condition that

the mathematical expectation E|X1| exists.
In 1933, Kolmogorov suggested a rather wide sufficient condition for the

validity of (1.10.4) for sequences of independent random variables Xi possess-
ing finite means αi and variances σ2

i : the series

σ2
1 + σ2

2 /4 + … + σ2
n/n2 + …

should converge.
The question on necessary and sufficient conditions for the validity of the

strong law of large numbers appeared to be quite difficult, and was solved only
forty years after the arrival of astonishing elegant result due to Kolmogorov.

The solution of this problem is mainly due to two famous Russian mathe-
maticians, Yu. Prokhorov and S. Nagaev.

First, Prokhorov attempted to unravel this problem; the results he obtained
in the fifties set the stage for the Nagaev’s quest later.

It turns out that the criterion sought for cannot be formulated in terms of
means and variances of independent random variables.

Some evidences exist that the usage of moments of various orders fares
poorly, and some more complex characteristics become a necessity.

Set, say, ƒn(s, ε) = E exp(sXn)1(|Xn| ≤ εn) 5, where s > 0, ε > 0, and define
hr(ε) as the unique solution of the equation

∑r ∂
∂s

ln ƒn(s, ε) = εnr, nr = 2r+1,

where
∑r stands for the summation over n from 2r to 2r+1.

The theorem due to Nagaev asserts that the strong law of large numbers,
i.e., the validity of (1.10.4) with probability one, holds true if and only if for
any ε > 0 the series

∞∑

n=1

P{Xn > εn},
∞∑

r=1

exp
(
−εhr(ε)nr

)

converge.
5The function 1(A) is the indicator of the event A; it takes value 1 if A occurs, and 0 otherwise
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Not only the development of that briefly cited branch of probability theory
was inspired by the Borel–Cantelli lemma. The strong law of large numbers, as
a deepened version of the usual law of large numbers, attracted the attention of
many mathematicians and propelled them into hunting for similar tendencies
that hold with probability one in other models.

1.11. Ergodicity and stationarity
We cannot give here even a short survey of the results related to the Borel–
Cantelli lemma. The Borel’s strong law of large numbers manifests itself
in schemes of summation of dependent random variables, random vectors,
random processes with continuous time, random fields and schemes associated
with various group operations.

We consider in more detain one result related to special types of random
processes.

A process Xt(ω) is called narrow-sense stationary if for any finite set of
times t1 < t2 < … < tn and any real τ the joint distributions of the vectors

(
Xt1(ω), Xt2(ω), …, Xtk(ω)

)

and

(Xt1+τ (ω), Xt2+τ (ω), …, Xtk+τ (ω))

coincide.
Let us recall Figures 1.5 and 1.6 which represent random processes with

discrete and continuous time respectively. Choosing some times, we dissect the
graph of Xt(λ ) cross-wise at the corresponding points. The set of the sections
forms the set of functions, i.e., a model of a random vector. Shifts of the sections
by some τ, of course, change the graphs, but, due to special structure of the
function Xt(λ ), do not alter the distributions generated by the resulting graphs.

In particular, the distributions generated by the sections are identical,
whereas the numerical characteristics such as the moments EXt(ω), Var Xt(ω),
etc., do not depend on t.

In 1931, a famed American mathematician G. Birkhoff obtained a very
important result of the theory of dynamic systems, known as the Birkhoff ’s
ergodic theorem.

In 1938, Khinchin discovered a direct inter-relation between the dynam-
ic systems and narrow-sense stationary random processes. The analog of
Birkhoff ’s theorem in the theory of stationary processes is the following asser-
tion.

THEOREM 1.11.1 (Birkhoff–Khinchin). If for a stationary process Xt(ω) the
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mathematical expectation E |Xt(ω)| exists, then the limit

lim
T−S→∞

1
T − S

T∑

t=S+1

Xt(ω) = X̂ (1.11.1)

for a process with discrete time, or the limit

lim
T−S→∞

1
T − S

∫ T

S
Xt(ω) dt = X̂ (1.11.2)

for a process with continuous time, exists with probability one.

Since the sequences X1, X2, … of independent identically distributed ran-
dom variables are particular cases of narrow-sense stationary processes with
discrete time, property (1.11.1) becomes an immediate extension of the strong
law of large numbers in the Kolmogorov’s formulation above. The existence of
the mathematical expectation is not sufficient for X̂ = m = EXt(ω), though. In
this sense, Kolmogorov’s theorem is stronger. In the case of narrow-sense sta-
tionary process, the extra condition that guarantees the validity of this equality
consists in the existence of the variance σ2 = Var Xt(ω) and the property

lim
T→∞

1
T

T−1∑

τ=0

B(τ) = 0

for a process with discrete time, or

lim
T→∞

1
T

∫ T

0
B(τ) dτ = 0

for a process with continuous time, where

B(τ) = E
[
Xt+τ(ω)Xt(ω)

]
−m2

is the correlation function of the process Xt(ω). It is hard to imagine a typical
function modeling a stationary process, because its structure is very compli-
cated indeed. Some degree of the knowledge how a stationary process looks
like can be obtained from Fig. 1.6.

One of the properties of this process is the equality of areas under the
graphs of the functions resulting from cross-wise sectioning of the surface of
Xt(λ ), which corresponds to the independence of the mean a = EXt(ω) of time t.

Fig. 1.12 presents the functions Xt(λ ) and X̄t(λ ) modeling a stationary
process X and its averaging X̄. The easily observable peculiarity of the function
Xt(λ ) is a gradual (as t grows) flattening of its graph.

In conclusion, we give an example. Consider a λ ∈ (0, 1) and represent it
as the infinite decimal fraction

λ = 0.k1k2…kn…,



30 1. Probability
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Figure 1.12.

allowing for infinite sequences of zeros but not allowing for infinite sequences
of nines; then we become able to represent any λ uniquely as a decimal frac-
tion. We introduce the function Xt(λ ), 0 < λ < 1, t = 1, 2, …, setting Xn(λ ) = kn,
where kn is the nth digit in the decimal representation of λ . As we know, the
function Xt(λ ) models some random process with discrete time. The realiza-
tions of the process are length-wise sections of the function Xt(λ ) through the
points λ = 0, k1, k2, … which are sequences (k1, k2, …). Their behavior is very
diversified.

So, if λ is a rational number, then its representation λ = 0, k1, k2, … always,
beginning with some place, contains a periodically repeating group of digits
(the length of the period can be equal to one). Let us consider the sequence of
arithmetical means of the first n digits in the decimal representation of λ , i.e.,

zn(λ ) =
1
n

(k1 + … + kn) , n = 1, 2, …

In view of the just mentioned periodicity, as n grows, the sequence
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zn(λ ) possesses a limit that is equal to the arithmetical mean of the dig-
its constituting the shortest periodically repeating group. For example, for
λ = 10/99 = 0.10101… and λ = 1/4 = 0.25000…, as n →∞, we obtain

zn(λ1) → 1/2, zn(λ2) → 0.

The part of limits for sequences zn corresponding to rational λ can be played
by any rational number lying in the interval [0, 9).

For irrational λ , the description of the behavior of zn(λ ) becomes much
more tangled. First of all, in some cases there exist no limits of the numbers,
which is illustrated by the example of λ = 0.1122…211…122…21…, where
alternating groups of ones and twos grow very quickly: they are of lengths
21, 24, 29, 216, …

It is not hard to construct irrational λ such that zn(λ ) tends to a prescribed
rational q lying in the interval (0, 9). To this end it suffices to take a rational µ
such that zn(µ) → q and ‘dilute’ its decimal fraction representation by growing
blocks of digits so that the total volume of these blocks among the first n digits
increases as o(n) while n → ∞ and so that these extra blocks break down
the periodicity. In a slightly more complicated manner we can construct irra-
tional λ such that the corresponding sequence zn(λ ) has a prescribed irrational
number q lying in the interval [0, 9] as its limit.

The above brainwork allows us to imagine how complicated is the func-
tion Xt(λ ). Nevertheless it is possible to prove that it models a narrow-sense
stationary random process.

It is not hard to see that for the process Xt(ω) there exist finite mean and
variance, and

EXt(ω) = (0 + 1 + … + 9)/10 = 4.5.

It is easily seen that for the process Xt(ω) the Birkhoff–Khinchin ergodic
theorem holds; moreover, the role of the limit X̂ in relation (1.11.1) is played
by the mean EX(1, ω) = 4.5. It remains to note that

zn(ω) =
1
n

n∑

i=1

Xt(ω).

Thus, the limit relation
lim zn(ω) = 4.5

holds with probability one.

1.12. The central limit theorem
We recall that the above-cited Moivre–Laplace theorem also obeys the law of
large numbers in the sense that as n →∞, the distribution of the arithmetical
means tends to a degenerate one. But, in contrast to the law of large numbers,
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this theorem asserts that, prior to degeneration, the distribution turns into
Gaussian. It is natural to assume that the use of dichotomic random variable
that takes two values, 0 and 1, is not necessary for such a behavior. Investiga-
tions concerning the generalization of the Moivre–Laplace theorem constitute
an important part of probability theory and provide us with a great body of
limit theorems and related results. Let us present the most widely known (for
those who are not specialists in probability theory) version of the central limit
theorem.

THEOREM 1.12.1 (central limit theorem). Let X1, X2, … be independent identi-
cally distributed random variables with mean µ and variance σ2 < ∞. Then,
as n →∞,

P
{∑n

i=1 Xi − nµ
σ
√

n
< x
}

⇒ Φ(x) ≡
∫ x

−∞
pG(x) dx, (1.12.1)

where
pG(x) =

1√
2π

e−x2/2.

Since Φ(x) is continuous, actually, the convergence in (1.12.1) is uniform
in x.

This theorem essentially extends the domain of applications of the normal
distribution. Indeed, the random summands are now arbitrary, provided that

• the summands are identically distributed;

• the variance is finite.

Further investigation demonstrates that these conditions need not be
present to arrive at the normal distribution. The first constraint is eliminated
by means of the following theorem proved in 1922 by Lindeberg.

THEOREM 1.12.2 (Lindeberg). Let X1, X2, … be independent random variables
with zero means and variances σ2

1 , σ2
2 , …. We set

B2
n =

n∑

k=1

σ2
k = Var

n∑

i=1

Xi.

If for any ε > 0

lim
n→∞

1
B2

n

n∑

k=1

∫

|x|>εBn

x2dFk(x) = 0,

then the distributions of
∑n

i=1 Xi/Bn weakly converge to the normal law.

The second constraint can be weakened due to the following assertion.
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THEOREM 1.12.3 (on convergence to the normal law). The distribution of the
normalized sum

Zn =
∑n

i=1 Xi − an

bn

of independent identically distributed random summands with distribution
function F(x), with some an, bn > 0, converges to the normal law if and only if

lim
x2 ∫

|y|>x dF(y)
∫
|y|<x x2dF(y)

= 0. (1.12.2)

The normalizing constants bn may either grow as
√

n, which occurs if and
only if the variance of the summands is finite, or differ from

√
n by a slowly

varying factor. In particular, for
∫

|y|>x
dF(y) ∝ x−2, x →∞,

the variance of the summands is infinite, but (1.12.2) holds and Bn ∝
√

n ln n
as n →∞.

Under various additional constraints, we are able to obtain better results.
In particular, if independent identically distributed summands Xi with zero
mean and variance σ2 possess the finite third moment E|x1|3, then there exists
an absolute constant C such that

∣∣∣∣P
{∑n

i=1 Xi

σ
√

n
< x
}
− Φ(x)

∣∣∣∣ ≤ C
E|x1|3
σ3√n

, −∞ < x <∞;

C was estimated as 7.59, 2.9 (Esseen); 2.05 (Walles); 0.9051, 0.8197 (Zolotarev);
0.7975 (van Beek); 0.7655 (Shiganov) (see (Zolotarev, 1997; Senatov, 1998). It
is known that C ≥ 1/

√
2π.

The above theorems, as well as many others, answer the question under
which hypotheses and with which rate the distributions of the appropriately
normalized sums of independent random variables converge to the normal
law. It is natural to pose the question in a different form: if normalized partial
sums have a certain limiting distribution, what is this limit? Is it necessarily
a Gaussian distribution? May some other law appear? This question was
answered by Paul Lévy in the beginning of 1930s, so enriching probability
theory immeasurably.

Those readers who are not familiar with stable distributions can take the
following theorem due to Lévy as the definition.

THEOREM 1.12.4 (Lévy). Let X1, X2, … be independent identically distributed
random variables, and let there exist constants bn > 0 and an such that

P
{∑n

i=1 Xi − an

bn
< x
}

⇒ G(x), n →∞, (1.12.3)



34 1. Probability

for some function G(x) which is not degenerate. Then G(x) is a stable law.

What are the stable laws differing from the normal one? Which constraints
should be imposed on the distributions of the summands in order to find ap-
propriate coefficients an and bn, and how do they look? Which scientific and
applied problems inspire such laws and what are their sequels? We will answer
these questions in the following chapters of the present book.



2

Elementary introduction to the
theory of stable laws

2.1. Convolutions of distributions
We begin with a simple example. Let X1 and X2 be independent random
variables (r.v.’s) uniformly distributed on [0, 1]. Their common distribution
function and density function are

FX (x) ≡ P{X < x} =





0, x ≤ 0,
x, 0 < x ≤ 1,
1, x > 1,

pX (x) = F′X (x) =





0, x < 0,
1, 0 < x < 1,
0, x > 1.

(2.1.1)

The value of pX (x) at the points x = 0 and x = 1 is a matter of convention, say,
pX (0) = pX (1) = 0. The sum of these variables X1 + X2 is a r.v. distributed on
[0, 2]. To find its distribution function

FX1+X2 (x) = P{X1 + X2 < x}, (2.1.2)

look at Fig. 2.1.
The unit square contains all possible positions of the random point P with

independent uniformly distributed coordinates X1, X2. The probability for
such a point to fall into any part of the given square is equal to the area of that
part. The event X1 + X2 < x corresponds to the domain A lying below the line
X2 = x−X1. The dependence of its area on x gives us the distribution function

FX1+X2 (x) =

{
x2/2, 0 ≤ x ≤ 1,
2x− x2/2− 1, 1 < x ≤ 2.

35
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Differentiating it with respect to x, we obtain the probability density of the
sum:

pX1+X2 (x) = F′X1+X2
(x) =

{
x, 0 ≤ x ≤ 1,
2− x, 1 < x ≤ 2.

(2.1.3)

The density function of the summand (2.1.1) is in the shape of a square, the
density of the sum of two terms (2.1.3) takes the form of a triangle (Fig. 2.2).
Note also that the change of the form is accompanied by its shift and spread.

In the case of summing two arbitrarily distributed r.v.’s, probability (2.1.2)
is determined by the probability measure of the domain x1 + x2 < x:

FX1+X2 (x) =
∫∫

x1+x2<x
pX1,X2 (x1, x2) dx1 dx2, (2.1.4)
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where
pX1,X2 (x1, x2) dx1 dx2 = P{X1 ∈ dx1 ∩ X2 ∈ dx2}.

Introducing the Heaviside step function

e(x) =

{
0, x ≤ 0,
1, x > 0,

(2.1.5)

we can rewrite (2.1.4) as

FX1+X2 (x) =
∫ ∞

−∞

∫ ∞

−∞
e(x− x1 − x2)pX1,X2 (x1, x2) dx1 dx2. (2.1.6)

Differentiating this equality with respect to x and keeping in mind that the
derivative of e(x) is the Dirac δ -function,

e′(x) = δ (x), (2.1.7)

we obtain

pX1+X2 (x) =
∫ ∞

−∞
pX1,X2 (x− x′, x′) dx′. (2.1.8)

For independent r.v’s X1 and X2, we have

pX1,X2 (x1, x2) = pX1(x1)pX2(x2);

therefore we obtain

pX1+X2 (x) =
∫ ∞

−∞
pX1(x− x′)pX2(x′) dx′. (2.1.9)

Changing the integration variable, we can transform (2.1.9) to the equivalent
form

pX1+X2 (x) =
∫ ∞

−∞
pX2(x− x′)pX1(x′) dx′. (2.1.10)

The operation defined by (2.1.9) and (2.1.10) is referred to as a convolution
of distribution densities, and is denoted by the symbol ∗:

∫ ∞

−∞
pX1(x− x′)pX2(x′) dx′ ≡ pX1 (x) ∗ pX2(x). (2.1.11)

The same notation can also be applied to distribution functions:

FX1+X2 (x) =
∫ ∞

−∞
FX1 (x− x′) dFX2(x′)

=
∫ ∞

−∞
FX2 (x− x′) dFX1(x′)

≡ FX1 (x) ∗ FX2 (x).
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For non-negative summands, the integration limits are changed in an appro-
priate way:

pX1+X2 (x) =
∫ x

0
pX1(x− x′)pX2(x′) dx′. (2.1.12)

Applying (2.1.12) to the sum of uniformly distributed on (0, 1) r.v.’s,

pX1+X2 (x) =
∫ 1

0
pX (x− x′) dx′ =

∫ x

x−1
pX (x′) dx′

and substituting (2.1.1), we again arrive at distribution (2.1.3).
We turn back to (2.1.9), and integrate both its parts with respect to x:
∫ ∞

−∞
pX1+X2 (x) dx =

∫ ∞

−∞

[∫ ∞

−∞
pX1(x′′) dx′′

]
pX2(x′) dx′ =

∫ ∞

−∞
pX2(x′) dx′ = 1.

This is natural: a distribution density function should be normalized to 1.
The corresponding expressions for the first and the second moments of the
distribution pX1+X2 (x) are

∫ ∞

−∞
xpX1+X2 (x)dx =

∫ ∞

−∞

[∫ ∞

−∞
(x′′ + x′)pX1(x′′)dx′′

]
pX2(x′) dx′

=
∫ ∞

−∞
x′pX1(x′) dx′ +

∫ ∞

−∞
x′pX2(x′) dx′,

∫ ∞

−∞
x2pX1+X2 (x) dx =

∫ ∞

−∞

[∫ ∞

−∞
(x′′ + x′)2pX1(x′′) dx′′

]
pX2(x′) dx′

=
∫ ∞

−∞
x2pX1(x) dx + 2

∫ ∞

−∞
xpX1(x) dx

∫ ∞

−∞
xpX2 (x) dx

+
∫ ∞

−∞
x2pX2(x) dx.

Introducing the notation

EX ≡
∫ ∞

−∞
xpX (x) dx, Var X = EX2 − (EX)2,

we can present the abovesaid as follows:

E(X1 + X2) = EX1 + EX2, (2.1.13)
Var(X1 + X2) = Var X1 + Var X2. (2.1.14)

Formulae (2.1.13) and (2.1.14) lie at the heart of the probability theory: math-
ematical expectation of a sum of r.v.’s is equal to the sum of expectations of
summands (2.1.13), and the variance of a sum of independent r.v.’s is equal to
the sum of variances (2.1.14).
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However, the assertions given here are not rigorous. They should be supple-
mented by the condition that the summands on the right-hand side of (2.1.13),
(2.1.14) exist. In the case of unbounded in x distributions, this means the
existence of the improper integrals

∫ ∞

−∞
xpX (x) dx = a, a = EX,

∫ ∞

−∞
x2pX (x) dx = a2 + σ2, σ2 = Var X.

It is clear that if a r.v. is distributed in a bounded domain, then pX(x) is
equal to zero outside this domain and no problem with the existence of the
moments arises. Such a problem arises in the only case where the domain
of values of a r.v. is infinite, and the density function decreases not so fast
at large distances from the origin. Such cases are to be found in physics,
but experienced physicists always discover the reason why the tail of such a
distribution may be (and even must be) truncated on large distances and then
all moments, of course, exist.

Our book, however, is devoted to those distributions for which the integrals
representing variances, or even expectations, are divergent. As it will be
understood from the following, such distributions can be extremely useful in a
series of physical, and not only physical, applications.

2.2. The Gauss distribution and the stability
property

The most popular distribution in various physical and engineering applications
is the normal distribution (Gauss law):

pG(x; a, σ2) =
1√
2πσ

exp

{
− (x− a)2

2σ2

}
, −∞ < x <∞, σ > 0. (2.2.1)

In view of (2.1.9), the density function of the sum of two normally dis-
tributed independent r.v.’s with parameters a1, σ1, a2, σ2, respectively, is of the
form

pX1+X2 (x) =
1

2πσ1σ2

∫ ∞

−∞
exp

{
− (x− x′ − a1)2

2σ2
1

− (x′ − a2)2

2σ2
2

}
dx′. (2.2.2)

Let us evaluate this integral. We present the integrand as exp{−ψ(x, x′)/2},
where

ψ(x, x′) =
(x− x′ − a1)2

σ2
1

+
(x′ − a2)2

σ2
2

.
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Changing the variables

x = σz + a1 + a2, x′ = σy + a2, σ =
√

σ2
1 + σ2

2 ,

removing the brackets and rearranging the terms, we obtain

ψ(x, x′) =
σ4

σ2
1 σ2

2

[
y−

(
σ2

σ

)2
z

]2

+ z2.

We substitute this function in the exponent in (2.2.2), and obtain

pX1+X2 (x) =
1

2π
σ exp

{
−z2/2

}

σ1σ2

∫ ∞

−∞
exp



−

σ4

σ2
1 σ2

2

[
y−

(
σ2

σ

)2
z

]2


dy.

Taking into account that the integral of the density (2.2.1) is equal to one by
means of normalization and turning back to the former variable, we arrive at

pX1+X2 (x) =
1√
2πσ

exp

{
− (x− a1 − a2)2

2σ2

}
, σ2 = σ2

1 + σ2
2 .

This means that the sum of two independent normally distributed r.v.’s with
parameters (a1, σ1) and (a2, σ2) is a r.v. which is normally distributed with
parameters (a1 + a2,

√
σ2

1 + σ2
2 ):

pX1+X2 (x) = pG(x; a1 + a2,
√

σ2
1 + σ2

2 ).

In other words, the convolution of normal distributions is again a normal
distribution:

pG(x; a1, σ1) ∗ pG(x; a2, σ2) = pG(x; a1 + a2,
√

σ2
1 + σ2

2 ). (2.2.3)

In Fig. 2.3, two initial distributions and their convolution are presented. As
well as in the case of rectangular distributions (Fig. 2.2) the resulting distri-
bution does not coincide with the initial ones: while summing, the barycentre
of distribution is shifted along the x-axes and the distribution becomes more
‘dissipated’.

The basic distinction between these cases consists of that in the first of
them, the form of distribution changes, whereas it is not so in the second
case. It is necessary, however, to determine what is meant by the form of
distribution, or, at least, to establish the sense of expressions of a type ‘the
form of distribution changes’ , ‘the form of distribution does not change’.

Let us introduce the equivalence relation: we say that two r.v.’s X and Y
are equivalent if their distributions coincide, and write

X d= Y;
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this hence means
pX (x) = pY (x).

We does not assume that X and Y are pair-wise independent; if X is a uniformly
distributed on (0, 1) r.v., then

1− X d= X,

and for any symmetrically distributed (about zero) Y,

−Y d= Y.

We also introduce the similarity relation: we say that two r.v.’s X and Y
are similar and write

Y s= X

if there exist constants a and b > 0 such that

Y d= a + bX.

Otherwise, the distributions of two r.v.’s are of the same form, if there exists a
linear transformation which brings them into coincidence. Indeed,

pY(x)dx = pa+bX (x)dx = P{x < a + bX ≤ x + dx}

= P
{

x− a
b

< X ≤
x− a

b
+

dx
b

}

= pX

(
x− a

b

)
dx
b

. (2.2.4)

As concerns distribution functions, we have

Fa+bX (x) = FX

(
x− a

b

)
.
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As we can see from (2.2.1)), if we set

pG(x) ≡ pG(x; 0, 1) =
1√
2π

exp
{
−x2/2

}
, (2.2.5)

then the distribution of any normal r.v. is expressed in terms of the standard
normal distribution (2.2.5) by means of relation (2.2.4) as follows:

pG(x; a, σ) =
1
σ

pG
(

x− a
σ

)
.

We write YG for the normal r.v. distributed by law (2.2.5); then (2.2.3) can be
rewritten as

σ1YG
1 + σ2YG

2
d=
√

σ2
1 + σ2

2 YG.

where YG
1 and YG

2 are independent random variables with the same distribu-
tion as YG. Assuming σ1 = σ2 = 1 and applying this relation to an arbitrary
number of summands, we obtain

n∑

i=1

YG
i

d=
√

nYG (2.2.6)

or
n∑

i=1

YG
i

s= YG, a = 0, b =
√

n.

Property (2.2.3) can be re-formulated now as follows: the sum of indepen-
dent normal r.v.’s is similar to the summands. This property of the normal
distribution lies at the heart of the general definition of stable distributions.

DEFINITION OF STABLE R.V.’S. A random variable Y is referred to as stable if
n∑

i=1

Yi
s= Y (2.2.7)

for any n, i.e., if there exist constants bn > 0 and an such that
n∑

i=1

Yi
d= an + bnY, (2.2.8)

where Y1, Y2, … are independent random variables each having the same dis-
tribution as Y.

DEFINITION OF STRICTLY STABLE R.V.’S. A stable r.v. is called strictly stable if
(2.2.8) holds with an = 0:

n∑

i=1

Yi
d= bnY, (2.2.9)
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where Y1, Y2, … are independent random variables with the same distribution
as Y.

The normal r.v. YG is strictly stable with

bG
n =
√

n. (2.2.10)

Applying the mathematical expectation operator to both parts of (2.2.8)

nEY d= an + bnEY

and assuming EY = 0, we obtain

an = 0.

Thus, if the expectation of a stable r.v. exists and is zero, this variable is strictly
stable. Note that (2.2.6) rewritten in the form

1
n

n∑

i=1

YG
i

d= YG/
√

n (2.2.11)

manifests itself as the law of large numbers: the larger n, the closer (in the
probabilistic sense) the arithmetic mean is to the mathematical expectation
EYG = 0.

Actually, as was shown by P.Lévy, a r.v. is stable as soon as (2.2.7) is true for
n = 2 and 3 (Feller, 1966). Keeping this in mind, one can make use of another
definition of stable r.v. that is equivalent to the one given above.

DEFINITION OF STABLE R.V.’S. A random variable Y is stable if and only if for
any arbitrary constants b′ and b′′ there exist constants a and b such that

b′Y1 + b′′Y2
d= a + bY, (2.2.12)

where Y1 and Y2 are independent and

Y1
d= Y2

d= Y.

Distribution functions and densities of stable (strictly stable) r.v.s are called
stable (strictly stable) and denoted by G(x) and q(x) respectively. Definition
(2.2.12) can expressed in terms of G(x) and q(x) as

G
(

x
b′

)
∗ G

(
x
b′′

)
= G

(
x− a

b

)
(2.2.13)

and

1
b′b′′

q
(

x
b′

)
∗ q
(

x
b′′

)
=

1
b

q
(

x− a
b

)
. (2.2.14)
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Definition (2.2.9) of strictly stable r.v.’s is equivalent to

q(x) ∗ q(x) = (1/b2)q(x/b2), (2.2.15)
q(x) ∗ q(x) ∗ q(x) = (1/b3)q(x/b3), (2.2.16)

and so on. In particular, distribution (2.2.5) is a strictly stable distribution
satisfying (2.2.15)–(2.2.16) with coefficients b2 =

√
2, b3 =

√
3.

2.3. The Cauchy and Lévy distributions
The Gaussian distribution is not the only distribution law which possesses the
stability property. We give here two more examples of stable distributions.

At some point S, let an emitter of particles be placed, and at the distance
l away from it, let the screen be installed (Fig. 2.4). The particles are emitted
in a plane which is perpendicular to the screen, and the angle Φ between the
plane anf the normal to the screen is a random variable which is uniformly
distributed on (−π/2, π/2). Let us find the distribution of the random coordinate
X = l tan Φ on the screen, assuming that the particles fly along straight lines.
By virtue of the monotonous dependence X on Φ,

FX (x) = P{X < x} = P{Φ < φ(x)}, φ(x) = arctan(x/l).

Since
P{Φ < φ(x)} = FΦ(φ(x)) = 1/2 + φ(x)π,

we arrive at

pX (x) = F′X (x) =
φ ′(x)

π
=

l
π(l2 + x2)

. (2.3.1)

Distribution (2.3.1) is called the Cauchy law. It is a symmetrical ‘bell-
shaped’ function like the Gaussian distribution (Fig. 2.5), but it differs from
that in the behavior of their tails: the tails of the Cauchy density decrease as
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x−2; the variance does not hence exist. The parameter l plays the role of scale
factor. In what follows, we use the representation where l is assumed to be
equal to 1:

pC(x) =
1

π(1 + x2)
. (2.3.2)

We denote the corresponding r.v. by YC.
If this distribution were stable, it should be strictly stable due to its sym-

metry about x = 0; to prove its stability, we have to make sure that relations
(2.2.6)–(2.2.7) hold with a = a′ = a′′ = 0. We rewrite the expression for p2(x) as

p2(x) = pC(x) ∗ pC(x) = (1/π)2
∫ ∞

−∞

dz
[1 + (x− z)2][1 + z2]

. (2.3.3)

This integral can be transformed to an integral along a closed contour C in the
complex plane (Fig. 2.6), which encloses the two poles of the integrand z1 = i
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and z2 = x + i. Applying the residue method, we obtain

p2(x) = (1/π)2
∮

C

dz
(z− i)(z + i)[z− (x + i)][z− (x− i)]

= (2i/π)
{

1
2i(−x)(−x + 2i)

+
1

x(x + 2i)2i

}

=
1

2π[1 + (x/2)2]
,

i.e.,

pC(x) ∗ pC(x) =
1
2

pC
(

x
2

)
.

Evaluating in the same way the convolution pC(x) ∗ pC(x) ∗ pC(x), we see that
the Cauchy distribution is strictly stable, and the scale factors are

bC
2 = 2, bC

3 = 3. (2.3.4)

In terms of r.v.’s, this property takes a quite unexpected form

(YC
1 + … + YC

n )/n d= YC
1 (2.3.5)

meaning that the arithmetic mean of the Cauchy r.v.’s is distributed as an
individual term of the sum. It is worthwhile to give another remarkable
property of the Cauchy random variable XC:

1/YC d= YC. (2.3.6)

Indeed, for x > 0

F1/YC (x) = P{1/YC < x}
= 1

2 + P{0 < 1/YC < x}
= 1

2 + P{YC > 1/x}
= 3

2 − FYC (1/x). (2.3.7)

After differentiating and making use of (2.3.2), this yields

p1/YC (x) = pYC(x). (2.3.8)

Now we consider a non-symmetric one-sided (concentrated on the positive
semiaxis) distribution named the Lévy distribution. Let X be a r.v. distributed
by the normal law with density

pX(x) =
1√
2π

exp
{
−x2/2

}
, (2.3.9)
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and set Y = X−2. By definition, the distribution function of Y is

FY (x) = P {Y < x} = P
{

1/X2 < x
}

= 2P{X > 1/
√

x}

=
√

2/π
∫ ∞

1/
√

x
exp

{
−y2/2

}
dy.

Differentiating this expression with respect to x, we obtain

pY(x) ≡ pL(x) =
1√
2π

exp
{
− 1

2x

}
x−3/2, x > 0. (2.3.10)

This is exactly the well-known Lévy distribution1. Its graph is presented in
Fig. 2.7. In view of the existence of the inverse value of the argument of the
exponent, all derivatives of the Lévy density at the origin are equal to zero.
The density attains its maximum at the point x = 1/3, and its tail is

pL(x) ∼ 1√
2π

x−3/2, x →∞.

Both the variance and expectation of this distribution are infinite.
The direct evaluation of the convolution of distributions (2.3.10) is rather a

tiresome procedure. We obtain the distribution of Y1 +Y2 using the well-known
connection with the normal law specified above.

Let X1 and X2 be independent r.v.’s with density (2.3.9). The probability for
the point P with these coordinates to fall into dA = dx1 dx2 is

P{P ∈ dA} =
1

2π
exp

{
−x2

1 + x2
2

2

}
dA. (2.3.11)

1The reader can meet in the literature some formulae for the Cauchy and Lévy distributions
which differ from those cited here like the standard normal distribution (with unit variance)
differs from (2.2.5). Various forms of representations of the stable laws will be considered in
some of the following chapters. The stable distributions considered in the present chapter are
given in form A.
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Passing to the polar coordinates r, ϕ,

x1 = r cos ϕ, x2 = r sin ϕ,
X1 = R cos Φ, X2 = R sin Φ,

instead of (2.3.11) we obtain

P{P ∈ dA} = P{R ∈ dr, Φ ∈ dϕ} = exp
{
−r2/2

}
r dr

dϕ
2π

. (2.3.12)

It can easily be seen from this formula that the distance R =
√

X2
1 + X2

2 and
the azimuth angle Φ are independent. This is an important property of the
bivariate normal distribution (2.3.11).

Now we consider the sum of two independent r.v.’s distributed by the Lévy
law

Z = Y1 + Y2 =
1

X2
1

+
1

X2
2

. (2.3.13)

Its distribution function is

FZ(z) = P{Z < z} = P
{

R2 sin2 2Φ > 4/z
}

=
1

2π

∫∫

Az

exp
{
−r2/2

}
r dr dϕ, (2.3.14)

where Az means the domain of values of the variables r, ϕ (Fig. 2.8) defined by
the inequality

r2 sin2 2ϕ > 4/z.

Integrating with respect to r while ϕ is fixed,
∫ ∞

2/(
√

z| sin 2ϕ|)
e−r2/2rdr = exp{−2[z sin2 2ϕ]−1},

and integrating then with respect to ϕ, we arrive at

FZ(z) =
1

2π

∫ 2π

0
exp{−2[z sin2 2ϕ]−1}dϕ.

The density

pZ(z) =
4

πz2

∫ π/2

0
exp{−2[z sin2 2ϕ]−1} dϕ

sin2 2ϕ

by the change of variables t = cot 2ϕ is transformed to

pZ(x) =
√

2/π exp {−2/z} z−3/2.
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Comparing this result with (2.3.10), we see that the convolution of Lévy
distributions is of the form

pL(x) ∗ pL(x) = (1/4)pL(x/4),

which is consistent with (2.2.11) as

bL
2 = 4. (2.3.15)

Repeating the above procedure, we are able to validate (2.2.12) and thus com-
plete the proof of the strict stability of the Lévy distribution. The scale factor
is

bL
3 = 9. (2.3.16)

Writing out YL for the r.v. with distribution density (2.3.9) taking into account
that distribution (2.3.8) corresponds to the r.v. YG/

√
2, we can represent the

results obtained above as follows:

YL d= [YG]−2, (2.3.17)

(YL
1 + YL

2 )/2 d= 2YL
1 . (2.3.18)

The latter relation is even more surprising than (2.3.5): the arithmetic mean
of YL

i has a more ‘dissipated’ distribution than an individual term.
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In view of these unusual properties of stable random variables, the problem
of their summation deserves a more close look.

Before doing that, we give one more useful relation between the Gauss and
Cauchy random variables. Let

Z = YG
1 /YG

2

with independent normal variables YG
1 and YG

2 . It is clear that Z is a symmet-
rical random variable and its distribution function can be written in the form
(for z > 0)

FZ(z) = P{YG
1 /YG

2 < z}
= 1

2 P{YG
1 /YG

2 < z | YG
1 > 0, YG

2 > 0}

= 1
2

∫ ∞

0
dx1

∫ ∞

x1/z
dx2pYG

1 ,YG
2

(x1, x2 | YG
1 > 0, YG

2 > 0)

=
1
π

∫ ∞

0
dx1e−x2

1/2
∫ ∞

x1/z
e−x2

2/2 dx2.

Differentiating the equality with respect to z, we obtain

pZ(z) =
1

πz2

∫ ∞

0
e−[1+z−2]x2

1/2x1dx1 =
1

π(1 + z2)
;

therefore

YG
1 /YG

2
d= YC. (2.3.19)

2.4. Summation of strictly stable random variables
In view of (2.2.8), the problem of summing stable r.v.’s, i.e., finding the distri-
bution of their sum Sn, can be reduced to finding an, bn. For a strictly stable
r.v., an = 0, and (2.2.8) takes the form

Sn =
n∑

i=1

Yi
d= bnY. (2.4.1)

This problem is most easily solved for the normal distribution which is the only
stable distribution with finite variance. Calculating variances of both sides of
(2.4.1), we obtain

n Var Y = b2
n Var Y, (2.4.2)

which, together with Var Y ≠ 0, immediately yields

bn ≡ bG
n = n1/2. (2.4.3)
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We consider now the general case of summation of strictly stable r.v.’s.
Rewriting (2.4.1) as the sequence of sums

Y1 + Y2
d= b2X

Y1 + Y2 + Y3
d= b3X

Y1 + Y2 + Y3 + Y4
d= b4X

… (2.4.4)

we consider only those sums which contain 2k terms, k = 1, 2, …:

Y1 + Y2
d= b2Y

Y1 + Y2 + Y3 + Y4
d= b4Y

Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7 + Y8
d= b8Y

…

Y1 + Y2 + … + Y2k−1 + Y2k
d= b2kY

…

Making use of the first formula, we transform the second one as follows:

S4 = (Y1 + Y2) + (Y3 + Y4) d= b2(Y1 + Y2) d= b2
2Y.

Here we keep in mind that X1 + X2
d= X3 + X4. Applying this reasoning to the

third formula, we obtain

S8 = (Y1 + Y2) + (Y3 + Y4) + (Y5 + Y6) + (Y7 + Y8)
d= b2(Y1 + Y2) + b2(Y5 + Y6)
d= b2

2Y1 + b2
2Y5

d= b2
2(Y1 + Y5) = b3

2Y.

For the sum of 2k terms, we similarly obtain

S2k
d= b2kY d= bk

2Y.

Comparing this with (2.4.1), with n = 2k, we obtain:

bn = bk
2 = b(ln n)/ ln 2

2 ;

hence
ln bn = [(ln n)/ ln 2] ln b2 = ln n(ln b2)/ ln 2.
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Thus, for the sequence of sums we obtain

bn = n1/α2 , α2 = (ln 2)/ ln b2, n = 2k, k = 1, 2, … (2.4.5)

Choosing now from (2.4.4) those sums which contain 3k terms, and repeat-
ing the above reasoning, we arrive at

bn = n1/α3 , α3 = (ln 3)/ ln b3, n = 3k, k = 1, 2, … (2.4.6)

In the general case,

bn = n1/αm , αm = (ln m)/ ln bm, n = mk, k = 1, 2, … (2.4.7)

We set m = 4. By virtue of (2.4.7),

α4 = (ln 4)/ ln b4,

whereas (2.4.5) with k = 2 yields

ln b4 = (1/α2) ln 4.

Comparing the two last formulae, we conclude that

α2 = α4.

By induction, we come to the conclusion that all αm are equal to each other:

αm = α.

The following expression hence holds for the scale factors bn:

bn = n1/α , n = 1, 2, 3, … (2.4.8)

whereas (2.4.1) takes the form

Sn =
n∑

i=1

Yi
d= n1/αY. (2.4.9)

Substituting (2.4.8) into (2.4.2), we obtain

n Var Y = n2/α Var Y,

and see that for non-degenerate (Var Y ≠ 0) distributions with finite variance
the index α must be equal to 2. If α ≠ 2, this relation can be formally satisfied
only with Var Y = ∞. Indeed, all stable distributions, except normal, have
infinite variances, and some of them, as we will see below, have also infinite
mathematical expectations. We will see also that there exist no distributions
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with α > 2, so α ∈ (0, 2]. The parameter α called the characteristic exponent
of a stable distribution is its most important characteristic determining the
rate of decrease of its tails.

Like the normal law, all other stable distributions remain stable under
linear transformations, and one can choose some standard values of the shift
and scale parameters. In this case we deal with reduced stable densities
which are characterized by one more parameter—the skewness parameter
β ∈ [−1, 1]. It characterizes the degree of asymmetry of the distributions
being different from the normal law.

Stable distributions with β = 0 are symmetric (for example, the Cauchy
distribution):

P{Y > x} = P{Y < −x}.

If β ≠ 0, the symmetry is violated:

P{Y > 0} > P{Y < 0}

for β > 0 and vice versa for β < 0. In the extreme cases where β = 1 and
β = −1, the corresponding probabilities P{Y > 0} attain their maximum
values depending on α. If α ≤ 1, the maximal probabilities become equal to 1
and we deal with one-sided stable distributions concentrated on the positive
(β = 1) or on the negative (β = −1) semiaxes only. The Lévy distribution is an
example of such a kind: it corresponds to the parameters α = 1/2 and β = 1.
The reflected Lévy distribution pL(−x) gives another example corresponding
to the values α = 1/2 and β = −1.

Introducing the notation q(x; α, β) for the reduced stable densities, we can
rewrite the distributions mentioned above as

pC(x) = q(x; 1, 0),

pL(x) = q(x; 1/2, 1),

pL(−x) = q(x; 1/2,−1).

As far as the normal distribution is concerned, it turns out to be more conve-
nient to accept as the reduced form the distribution with variance 2:

q(x; 2, β) = pG(x; 0,
√

2) =
1

2
√

π
e−x2/4.

The distribution function corresponding to the density q(x; α, β) is denoted
by G(x; α, β):

G(x; α, β) =
∫ x

−∞
q(x; α, β) dx

and the stable variable itself, by Y(α, β).
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As will be shown in the following chapter, all stable distributions with α < 1
are strictly stable, and the stable distributions with α > 1 are easily trans-
formed to strictly stable ones since EY = a exists and is used for centering r.v.
The distribution q(x; 1, β) is strictly stable if only β = 0. The general relation of
equivalence for sums Sn of independent identically distributed strictly stable
r.v.s Yi is of the form

n∑

i=1

Yi(α, β) d= n1/αY(α, β). (2.4.10)

As was noticed by Feller, these results have important and unexpected
consequences. Let us consider, for example, a stable distribution with α < 1.
The arithmetic mean (X1 + … + Xn)/n has the same distribution as X1n−1+1/α .
Meanwhile, the factor n−1+1/α tends to infinity as n grows. Without pursuing
the rigor, we can say that the average of n variables Xk turns out considerably
greater than any fixed summand Xk. This is possible only in the case where
the maximum term

Mn = max{X1, …, Xn} (2.4.11)

grows extremely fast and gives the greatest contribution to the sum Sn. The
more detailed analysis confirms this speculation.

We do not perform detailed analysis here, using only simple arguments of
rather heuristic nature.

The distribution function for the maximum (2.4.11) can immediately be
written. Indeed, the event {Mn < x} implies {Y1 < x, …, Yn < x} and vice
versa; therefore,

FMn (x) = P {Mn < x} = P {Y1 < x, …, Yn < x} .

Since Yi are independent, the right-hand side of this expression can be trans-
formed to the product of probabilities of individual events {Yi < x}. In view of
coincidence of the distributions of Yi, it is the mere nth power of this probabil-
ity:

FMn (x) = Pn {Xi < x} = Fn
Y (x). (2.4.12)

If the maximum gives a primary contribution to the sum, the following
relation should be satisfied:

F̄Sn (x) ∼ F̄Mn (x), x →∞. (2.4.13)

where
F̄(x) ≡ 1− F(x).
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By virtue of (2.4.9),

F̄Sn (x) = P{Sn ≥ x} = P
{

Y ≥ n−1/αx
}

= F̄Y (n−1/αx). (2.4.14)

Substituting (2.4.14) into the left-hand side of (2.4.13), and (2.4.12) into the
right-hand one, we obtain

F̄Y (n−1/αx) ∼ 1− Fn
Y (x);

changing the variable n−1/αx = y, we arrive at

F̄Y (y) ∼ 1− [1− F̄Y (yn1/α )]n

∼ nF̄Y (yn1/α ), y →∞.

The solution of this equation, provided that β ≠ −1, is

F̄Y (x) ∼ cx−α , x →∞. (2.4.15)

Similarly we obtain

FY (x) ∼ d|x|−α , x →∞. (2.4.16)

Differentiating (2.4.15) and (2.4.16) with respect to x, we obtain the follow-
ing asymptotic expressions for the density:

pY (x) = −F̄′Y (x) ∼ αcx−α−1, x →∞,

pY (x) = FY (x) ∼ αd|x|−α−1, x → −∞.

It is clear that this does not correspond to the normal law (α = 2), and that
there are no α > 2: the normal law is the only stable law with finite variance.
Thus, the characteristic exponent α takes values from the interval (0, 2]; for
α = 2 we have the normal law (2.2.5); with α < 2 we have stable laws whose
probabilities of large deviations are power functions (2.4.15)–(2.4.16). In some
cases, only one of the tails may exist.

2.5. The stable laws as limiting distributions
Were it not for one circumstance, the problem of summaton of stable r.v.’s itself
would not be of much interest. The matter is that the sums Sn of independent
r.v.’s, which do not belong to the family of stable laws, in some sense can
become stable beginning with some, large enough, number of summands. This
circumstance extremely expands the area of application of stable law theory
indeed. The stable laws with α < 2 play the same role in summation of r.v.’s
with infinite variances as the normal law does in the case of finite variances.
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First, let us turn back to summation of uniformly distributed r.v.’s (2.1.1).
They have finite mathematical expectations that are equal to 1/2 and can easily
be transformed to r.v.’s with zero mean:

X0 = X − 1/2.

The distribution of the r.v.’s (2.1.3) is shifted by −1 along the x-axis, and we
obtain (by dropping the superscript 0), for the centered r.v.’s,

pX(x) = 1, −1/2 < x < 1/2 (2.5.1)

and

pX1+X2 (x) =

{
x + 1, −1 < x < 0,
1− x, 0 < x < 1.

(2.5.2)

Outside the specified areas, the densities are zero.
Calculate now the distribution of the sum of three independent r.v.’s of

identical type. To this end, we use formula (2.1.10) where distribution (2.5.1)
is pX1(x), and instead of pX2(x) we take the distribution pX2+X3 (x) determined
by (2.5.2):

pX1+X2+X3 (x) =
∫ ∞

−∞
pX2+X3 (x− x′)pX1(x′) dx′ =

∫ x+1/2

x−1/2
pX2+X3 (x′)dx′

=





(x + 3/2)2/2, −3/2 < x < −1/2,
3/4− x2, −1/2 < x < 1/2,
(x− 3/2)2/2, 1/2 < x < 3/2.

This distribution is constituted by three pieces, but they are adjusted to each
other better than in the case of two terms, and form a smooth ‘bell-shaped’
curve.

All three distributions (2.5.1)–(2.5) are symmetric about the origin but their
forms differ. The difference is due to the natural ‘dissipation’ of distributions
during the summation process. Their variances grow linearly as the number
of summands grow,

Var
n∑

i=1

Xi = n Var X = n/12.

To eliminate this effect, we re-normalize the sums, assigning identical vari-
ances to them, say, 2 (the standard normal distribution in form (2.2.5) has such
a variance):

Zn =
1
bn

n∑

i=1

Xi,
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0 x−
√

3
√

3

pZn (x)

Figure 2.9.

where

bn =
√

n Var X = b1
√

n, b1 = 1/
√

12. (2.5.3)

Figure 2.9 pictures the densities of distributions Z2, Z3, and the normal
distribution. Their behaviour as n grows can serve as an illustration to one of
the main theorems of the probability theory, the central limit theorem, whose
assertion can be presented as

n∑

i=1

Xi
d∼ b1n1/2YG, n →∞.

The proof of this theorem can be found in any textbook on probability
theory. We note here only some points that are important for understanding
the further presentation.

First, the limiting distribution of normalized sums is the normal law. It
belongs to the family of stable laws, and, as it can easily be seen, it appears
in the central limit theorem just for this reason. Indeed, let X1, X2, … be
an infinite sequence of independent identically distributed r.v.’s, and let n be
large enough for the normalized sum Zn to be considered as already distributed
according to the limiting law. The same holds true for the sum of the following
n terms of the given sequence Z′n as well, and, of course, for the sum of 2n
terms Z2n. Hence,

Z2n
s= Zn + Z′n,

which implies that Zn should belong to the family of stable r.v.’s.
Second, we see here that the normalizing factors are determined by the se-

quence bn = b1
√

n, rather than bn =
√

n while summing r.v.’s satisfying (2.2.5);
b1 depends on a single characteristic of X, the variance, as

b1 =
√

Var X.



58 2. Elementary introduction to the theory of stable laws

As far as Var X exists, other properties of X do not alter the form of the limiting
distribution.

Before turning to discussing other stable laws, it is pertinent to say that
Feller noticed that the important role which the normal distribution FG plays
in probability theory is based on the central limit theorem. Let X1, …, Xn be
independent r.v.’s distributed by the law FX with zero mean and variance one.
We set Sn = X1+…+Xn. The central limit theorem asserts that the distributions
of Snn−1/2 converge to FG. If the distributions have no variances, n−1/2 cannot
play the part of normalizing constants, other choice of a normalizing constant
can still bring the limit into existence. It is rather interesting that all stable
laws, and only they, can be obtained as such limits. Let us introduce the
following terminology which makes the further discussion of the problem in
question more simple.

DEFINITION OF A DOMAIN OF ATTRACTION. We say that the common distribu-
tion FX of independent r.v.’s Xk belongs to the domain of attraction of the
distribution F if there exist some normalizing constants an, bn > 0 such that
the distribution of

(∑n
i=1 Xi − an

)
/bn converges to F.

The above-mentioned declaration (that stable laws, and only they, play that
part of limiting laws) can be now reformulated as follows: the distribution F
possesses a domain of attraction if and only if it is stable.

What are the conditions which the distribution of summands should satisfy
in order to belong to the domain of attraction of a given stable law? Or, in other
words, how to find the stable law whose domain of attraction contains a given
distribution?

Before answering this question, we try to predict the answer, based only
on the abovesaid and the analysis of an example.

First, in order to belong to the domain of attraction of a stable law differing
from the normal law, it is necessary for the summands to have infinite variance,
because otherwise the central limit theorem is true.

As in the normal case, we can assume that the dependence bn on n is of the
same form for these sums as for sums of stable r.v.’s. But in case of stable r.v.s
the dependence

bn = b1n1/α

is related to the tails of the summands distribution that behave as a power
function. We can assume that this relation remains valid in the general case
as well. Thus, it seems likely that the general scheme of summation is similar
to summation of stable r.v.’s, but in the asymptotic sense only, as n →∞.

Denoting by Xi(α, β) a random variable belonging to the domain of attrac-
tion of the strictly stable law q(x; α, β), by analogy with (2.4.10) we write

n∑

i=1

Xi(α, β) d∼ b1(α)n1/α Y(α, β), n →∞. (2.5.4)
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It follows herefrom that for β ≠ −1

P

{ n∑

i=1

Xi/bn > x

}
∼ P{X/b1 > x}, x →∞,

or

F̄∑n
i=1 Xi (bnx) ∼ nF̄X (bnx) ∼ F̄X (b1x). (2.5.5)

where
F̄X (x) ∼ cx−α , x →∞.

From (2.5.5) it follows that

bn ∼ b1n1/α , (2.5.6)

where b1 is determined by means of

F̄X (b1x) ∼ 1− G(x; α, β), x →∞. (2.5.7)

To make the situation more clear, we give the following example. Let X be
distributed by the symmetric Zipf–Pareto law, that is,

pX (x) =

{
cx−2, |x| > ε,
0, |x| < ε,

(2.5.8)

where the positive constants c and ε are determined from the normalization
condition as ∫ ∞

−∞
pX (x) dx = 2c

∫ ∞

ε
x−2dx = 2c/ε = 1.

The distribution of the sum of two independent r.v.’s is given by the convolution

pX1+X2 (x) =
∫ ∞

−∞
pX (x− x1)pX (x1) dx1

= c
{∫ −ε

−∞
pX (x− x1)x−2

1 dx1 +
∫ ∞

ε
pX (x− x1)x−2

1 dx1

}

= c{I+(x) + I−(x)}, (2.5.9)

where

I+(x) =
∫ ∞

ε
pX(x + x1)x−2

1 dx1, (2.5.10)

I−(x) =
∫ ∞

ε
pX(x− x1)x−2

1 dx1. (2.5.11)

In view of the symmetry, it is sufficient to calculate distribution (2.5.9) for
positive x.
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−ε ε x1

2ε

x

Figure 2.10.

We notice that the condition |x| > a from (2.5.8) does not influence the
integration domain in (2.5.10) for positive x:

I+(x) = c
∫ ∞

ε

dx1

(x + x1)2x2
1

= c
∫ 1/ε

0

z2dz
(xz + 1)2 .

After one more change of the variable xz + 1 = y, we obtain

I+(x) =
c
x3

∫ x/(ε+1)

1
[(y− 1)2/y2] dy =

c
x3 [(1 + x/ε)− 2 ln(1 + x/ε)− (1 + x/ε)−1].

The integration domain in the second integral (5.12) is the intersection of the
complement (x− ε, x + ε) with the ray (ε,∞) (Fig 2.10). If x < 2ε, the integral

I−(x) = c
∫ ∞

ε+x

dx1

(x− x1)2x2
1

= c
∫ ∞

ε

dx1

x2
1(x + x1)2

coincides with I+(x); if x > 2ε, the integral

I′−(x) = c
∫ x−ε

ε

dx1

(x− x1)2x2
1

is added, which can be computed in a similar way:

I′−(x) = − ε
x3 [(1− x/ε)− 2 ln(|1− x/ε|)− (1− x/ε)−1].

As a result, for (2.5.9) we obtain

pX1+X2 (x) =

{
εI+(|x|), |x| < 2ε,
εI+(|x|) + (ε/2)I′−(|x|), |x| > 2ε.

(2.5.12)
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0 0−ε ε −ε εx x

pSn (x) pZn (x)

n = 1

n = 2

n = 1
n = 2

pC(x)

Figure 2.11.

The densities of distributions (2.5.8) and (2.5.12) are shown in Fig. 2.11.
The distribution of the sum already fills the gap (−ε, ε) which was open for

one term. The density at the central point of the distribution is obtained by
removing the indeterminacy in I+(x) by the L’Hôpital rule:

pX1+X2 (0) = ε lim
x→0

I+(x) =
1
6ε

. (2.5.13)

For large values of x,

pX1+X2 (x) ∼ 2cx−2,

F̄X1+X2 (x) ∼ 2cx−1. (2.5.14)

We know a symmetric stable distribution with such tails, and it is the Cauchy
distribution:

pC(x) ∼ (1/π)x−2. (2.5.15)

From (2.5.8) and (2.5.15) it follows that

F̄X (x) ∼ cx−1, FC(x) ∼ (1/π)x−1.

Using (2.5.5)–(2.5.7) and taking (2.5.14) into account, we obtain

b1 = πc, b2 = 2b1 = 2πc. (2.5.16)

This agrees with formula (2.5.6) where α = 1. (Factors an do not appear here
due to the symmetry).

The density functions for normalized sums of r.v.’s Z1 = X/b1, Z2 =
(X1 + X2)/b2 and the Cauchy stable density are shown in Fig. 2.11. Of course,
Fig. 2.11 is no more than illustration to other theorem that extends the central
limit theorem to the case of summation of r.v.s with infinite variances. The form
given here is not the most general one (actually, we allow c and d to be slowly
varying functions), but it is nevertheless sufficient for many applications.
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GENERALIZED CENTRAL LIMIT THEOREM. Let X1, …, Xn be independent identi-
cally distributed random variables with the distribution function FX (x) satis-
fying the conditions

1− FX (x) ∼ cs−µ , x →∞, (2.5.17)

FX (x) ∼ d|x|−µ , x →∞, (2.5.18)

with µ > 0. Then there exist sequences an and bn > 0 such that the distribution
of the centered and normalized sum

Zn =
1
bn

( n∑

i=1

Xi − an

)
(2.5.19)

weakly converges to the stable distribution with parameters

α =

{
µ, µ ≤ 2,
2, µ > 2,

, (2.5.20)

β =
c− d
c + d

(2.5.21)

as n →∞:

FZn (x) ⇒ GA(x; α, β). (2.5.22)

The coefficients an and bn can be taken in the form given in Table 2.1.

Table 2.1. Centering and normalizing coefficients an and bn (form A).

µ α an bn
0 < µ < 1 µ 0 [π(c + d)]1/α [2Γ(α) sin(απ/2)]−1/αn1/α

µ = 1 µ β(c + d)n ln n (π/2)(c + d)n
1 < µ < 2 µ nEX [π(c + d)]1/α [2Γ(α) sin(απ/2)]−1/αn1/α

µ = 2 2 nEX (c + d)1/2[n ln n]1/2

µ > 2 2 nEX
[
(1/2)VarX

]1/2 n1/2

Obviously, the last case (µ > 2) is covered by the central limit theorem
which holds true for any random variables Xi with finite variances but not for
power-type distributions (2.5.17), (2.5.18) with µ < 2. Recall that, as it has
been said in Section 2.4, GA(x; 2, β) is the Gauss distribution with variance 2:

GA(x; 2, β) =
1

2
√

π

∫ x

−∞
e−z2/4 dz.
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We will not prove this theorem, but give here some heuristic reasoning
following (Bouchaud & Georges, 1990) for the case of non-negative summands
with the asymptotics

F̄X (x) ∼ cx−α , 0 < α < 1, x →∞,

leading to one-sided stable distributions. By (2.4.12), the density function of
the maximum term Mn in the sum Sn is of the form

pMn (x) = dFMn (x)/dx = n
[
1−

∫ ∞

x
pX (x′) dx′

]n−1
pX(x). (2.5.23)

We denote by xn the most probable value of Mn; then
[
dpMn(x)/dx

]
x=xn

= 0. (2.5.24)

Differentiating (2.5.23) with respect to x and substituting the result in (2.5.24),
we obtain

dpX(xn)/dxn

[
1−

∫ ∞

xn

pX (x′)dx′
]

+ (n− 1)p2
X (xn) = 0. (2.5.25)

As x →∞,
∫ ∞

x
pX (x′) dx′ ∼ cx−α ,

pX (x) ∼ cαx−α−1,

dpX (x)/dx ∼ −cα(α + 1)x−α−2; (2.5.26)

if n� 1, (2.5.25) yields the asymptotic relation

α + 1 ∼ ncαx−α
n ;

therefore,

xn ∼ Cn1/α , C =
(

cα
α + 1

)1/α
. (2.5.27)

Estimating the characteristic value of the sum Sn with the help of the
‘truncated mean’

〈X〉xn =
∫ xn

0
xpX (x) dx,

we obtain

Sn ∼ 〈Sn〉xn = n
∫ xn

0
xpX (x) dx =

∫ Cn1/α

0
xpX (x) dx.



64 2. Elementary introduction to the theory of stable laws

Let A > 0 be chosen so that, as x > A, the density pX (x) satisfies (2.5.26). Then

〈Sn〉xn = n

{∫ A

0
xpX (x) dx +

∫ Cn1/α

A
xpX (x) dx

}
= n〈X〉A + 〈S′n〉xn ,

where

〈S′n〉xn = αcn
∫ Cn1/α

A
x−α dx.

It follows herefrom that, as n →∞,

Sn ∼ 〈S′n〉xn ∼
{

c0n1/α , α < 1;
c1n ln n, α = 1,

(2.5.28)

where c0 and c1 are positive constants.
Estimating similarly the truncated variance of the sum Sn with α > 1, we

obtain

〈
(
Sn − 〈S′n〉

)2〉xn ∼
∫ xn

0

(
x− 〈X〉

)2 pX (x)dx

∼
{

c3n1/α , α < 2,
c4n ln n, α = 2.

(2.5.29)

Formulae (2.5.28) and (2.5.29) conform with the generalized limit theorem.

2.6. Summary
In this chapter we outline general features of the stable laws, without using
much mathematics (except, maybe, the preceding section) and illustrate some
basic ideas by simple examples. Let us formulate here the basic results.

The normal law possesses the stability property: the sum of independent
normally distributed r.v.’s is distributed by the normal law as well; it and only
it turns out to be the limiting law for the normalized sums

Zn =

( n∑

i=1

Xi − na1

)/
(
b1
√

n
)

(2.6.1)

of identically distributed r.v.’s Xi with finite second moment
∫ ∞

−∞
x2pX (x) dx <∞. (2.6.2)

(the central limit theorem).
However, the normal law is not a unique stable law. There is a whole family

of stable distributions, and the normal law is just one of them. Similarly to the
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normal case, each of stable distributions G(x; α, β) has a domain of attraction,
i.e., there exist r.v.’s X and sequences an, bn such that the distribution of the
normalized sums of independent summands distributed by the same law as X

Zn =

( n∑

i=1

Xi − an

)/
bn (2.6.3)

converge to G(x; α, β) as n →∞. Condition (2.6.2) does not take place anymore,
and is replaced by the conditions

∫ ∞

x
pX(x) dx ∼ cx−α , x →∞, (2.6.4)

∫ x

−∞
pX(x) dx ∼ d|x|−α , x → −∞, (2.6.5)

which determine the rate of growth of the centering and normalizing coeffi-
cients an and bn (generalized limiting theorem). We will use the term long
(heavy) tails for such tails, and the term short (light) tails for those satisfying
the relation

∫ ∞

x
pX (x) dx = o(x−2), x →∞,

∫ x

−∞
pX (x) dx = o(x−2), x → −∞,

The stability property of and the limiting part played by stable distribu-
tions are common both for normal law and for other stable laws.

Let us highlight the distinctions of other stable distributions from the
widely known normal law. First of all, we note that the stable distribution
family contains not only symmetric laws satisfying the condition p(x) = p(−x)
and in this sense being similar to normal. Asymmetry of stable distributions
is characterized by the parameter β ∈ [−1, 1] which is zero for symmetrical
distributions. Together with the characteristic exponent α, related to the
asymptotic behaviour of densities, it determines a two-parameter set of stable
densities q(x; α, β). As it was shown above, the case α = 1, β = 0 corresponds
to the symmetric Cauchy distribution, and the case α = 1/2, β = 1, to the
one-sided Lévy distribution.

With the exception of the Gauss, Cauchy and Lévy laws, explicit expres-
sions for the densities of stable distributions in terms of elementary functions
are unknown, and for their use it is necessary to refer to tables (see Appendix)
or use numerical algorithms.

Considering in more detail the summation of non-negative random vari-
ables X which satisfy condition (2.6.4), we arrive at the following qualitative
conclusions.
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For 0 < α < 1, the ‘typical’ values of the sum Sn ≡
∑n

i=1 Xi (for example,
the most probable value corresponding to the position of the maximum of the
density) behave as n1/α , i.e., increase much faster than in the case where α > 1
and the expectation hence exists. A ‘dispersion’ of values of the random sum
Sn grows with the same rate, so its relative fluctuations (the ratio of the width
to the most probable value) do not vanish.

For 1 < α ≤ 2, there exists EX = a1, and in view of the law of large numbers
the typical value of the sum is proportional to the number of summands.
However, the ‘dissipation’ of the sum characterized by the factor bn grows as
n1/α (for α < 2) or (n ln n)1/2 (for α = 2). Thus, the relative fluctuations decrease
as n1/α−1 or

√
ln n/
√

n, i.e., essentially slower than in the normal case (2.6.2),
where finiteness of the variance leads us to the traditional behaviour of the
relative fluctuations which grow as n−1/2.

Discussing the distinctions between the cases α = 2 and α < 2, it is neces-
sary to highlight the following important fact. In the case of attraction to the
normal law, only a few terms are necessary to get a satisfactory goodness-of-fit
to the normal law in the central domain. Further increase of the number of
summands improves only the tails of the distribution which, however, never
perfectly coincide with the limiting one. In the case of summation of n uni-
formly distributed on (−1/2, 1/2) r.v.’s, the density function for the sums outside
the interval (−n/2, n/2) is always equal to zero.

Another situation occurs in the case of summation of random variables
satisfying conditions (2.6.4) and (2.6.5). Both tails of the density behave as
the power function, which coincides with the behavior of the summands; the
density of the sum Sn coincides with the limiting density at the tails for any n
but differs from it in the central domain. As n grows, this distinction decreases
with rate determined by the distribution of summands.

Despite a ‘good’ behavior of summands providing very light (normal) tails
of the limit law for the sums Sn, the random sums SNn may have limit dis-
tributions with heavy tails, e.g., stable, due to a ‘bad’ behavior of the index
Nn. By doing this we will try to shake a prejudice existing among applied
specialists. According to this prejudice, the heavy-tailedness of the law which
is limit for sums of independent r.v.’s (e.g., inherent in stable laws) is neces-
sarily due to the heavy-tailedness of the distributions of summands (e.g., to
the non-existence of their moments of orders less than two). This idea lies
upon well-known results (see, e.g., (Gnedenko & Kolmogorov, 1954, Chapter 7,
§35, Theorem 2). Of course, we do not make an attempt to call these classic
results in question. We simply attract attention to that when solving applied
problems (especially in financial or actuarial mathematics where stable laws
are widely used) it is very important to choose an appropriate structure model.
From the results given below (see (Korolev, 1997)) it follows that the heavy
tails of the limit distribution for sums may occur due to the randomness of the
number of summands. We show that random sums of independent summands
with the properties described above are asymptotically strictly stable if and



2.6. Summary 67

only if so are their indexes.
Consider a sequence of independent random variables {Xi}i≥1 which are

not necessarily identically distributed. Assume that EXi = 0, EX2
i = σ2

i < ∞,
i ≥ 1. Moreover, assume that the r.v.’s {Xi}i≥1 satisfy the Lindeberg condition:
for any τ > 0

lim
n→∞

1
B2

n

n∑

i=1

∫

|x|>τBn

x2dFi(x) = 0,

where B2
n = σ2

1 + … + σ2
n, Fi(x) = P(Xi < x). Let {Nn}n≥1 be a sequence of

positive integer-valued r.v.’s such that for each n the r.v.’s Nn and {Xi}i≥1 are
independent. For a natural k denote Sk = X1 + … + Xk.

Let {Dn}n≥1 be a sequence of positive numbers such that Dn → ∞ as
n →∞.

THEOREM 2.6.1. Assume that Nn →∞ in probability as n →∞. Then

lim
n→∞P

(
SNn

Dn
< x
)

= GC(x; α, 0), x ∈ R, (2.6.6)

if and only if

lim
n→∞

P

(
B2

Nn

D2
n

< x

)
= GC(x; α/2, α/2), x ∈ R.

The proof consists in the sequential application of Theorem 16 from (Ko-
rolev, 1994) according to which under the above assumptions

P
(

SNn

Dn
< x
)

→ P(Z < x), n →∞,

(where Z is some r.v.) if and only if there exists a r.v. U ≥ 0 such that first,

P(Z < x) =
∫ ∞

0
Φ(x/u)dP(U < u), x ∈ R,

and second,
BNn

Dn
→ U, n →∞,

and Theorem 3.3.1 in (Zolotarev, 1986), according to which

GC(x; α, 0) =
∫ ∞

0
Φ(x/
√

u)dGC(u; α/2, α/2), x ∈ R,

with regard to the identifiability of scale mixtures of normal laws and the
absolute continuity of stable distributions.
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COROLLARY 2.6.1. If, in addition to the conditions of the theorem, the sum-
mands {Xj}j≥1 are identically distributed, then convergence (2.6.6) takes place
if and only if

lim
n→∞

P
(

Nn

D2
n

< x
)

= GC(σ2
2x; α/2, α/2), x ∈ R.

These are the general properties of stable laws and limit processes relat-
ed to them, which could be obtained by elementary technique used in this
introductory chapter. In the following chapters, we will get acquainted with
more effective mathematical methods, namely with the characteristic func-
tions which allow us to obtain more important and accurate results.
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Characteristic functions

3.1. Characteristic functions
The distribution function or the density function completely characterize a
random variable, but they are not so convenient in problems of summation
of independent r.v.’s as compared with the characteristic function, which also
contains the complete information about the r.v’s under consideration.

DEFINITION OF A CHARACTERISTIC FUNCTION. The complex-valued function

ƒX (k) = EeikX (3.1.1)

is called the characteristic function (c.f.) of a real r.v. X.

Here k is some real-valued variable. If the density pX (x) exists, (3.1.1) is
the Fourier transform of that density:

ƒX (k) =
∫ ∞

−∞
eikxpX (x) dx. (3.1.2)

The inverse Fourier transform

pX (x) =
1

2π

∫ ∞

−∞
e−ikxƒX (k) dk (3.1.3)

allows us to reconstruct the density of a distribution from a known known c.f.
(the uniqueness theorem).

The following properties of c.f.’s immediately follow from their definition:

(a) ƒX (0) = 1, |ƒX (k)| ≤ 1 for all k; and ƒX (k) → 0 as k → ∞ under the
assumption that there exists a density of the r.v. X;

(b) ƒa+bX (k) = eikaƒX (bk);

69
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(c) ƒ?X (k) = ƒX (−k) = ƒ−X (k), where ? means the complex conjugation. If X
is symmetric about zero,

X d= −X,

then its c.f. is real-valued, and vice versa.

(d) If
E|X|n <∞, n ≥ 1,

then there exists the continuous nth derivative of the c.f., and

ƒ(n)(0) = inEXn;

(e) if Sn is the sum of independent r.v.’s X1, …, Xn, then

ƒSn (k) = ƒX1 (k)…ƒXn (k).

(f) any c.f. ƒX (k) is a uniformly continuous function;

(g) if X ≥ 0, then ƒX (k) is defined in the half-plane of the complex variable
k, then ℑk ≥ 0; |ƒX (k)| ≤ 1, ƒX (k) is thus an analytical function in the
domain ℑk > 0, and is continuous in the domain ℑk ≥ 0.

Definition (3.1.1) can be applied to the case of degenerate distributions as
well: if X = a with probability one, then

pX (x) = δ (x− a),

ƒX (k) = eiak, (3.1.4)

and the inversion formula (3.1.3) leads us to the integral representation of the
δ -function

δ (x− a) =
1

2π

∫ ∞

−∞
eik(x−a) dk,

which is commonly used in theoretical physics.
The c.f. of the uniform distribution on (0, 1) is of the form

ƒX (k) =
∫ 1

0
eikxdx =

eik − 1
ik

. (3.1.5)

The c.f. of the symmetric uniform on (−1, 1) distribution of Y can be ob-
tained using this property by the transformation Y = 2X − 1:

ƒY (k) = e−ikƒX (2k) =
eik − e−ik

2ik
=

sin k
k

. (3.1.6)

This result corresponds to property (c): the c.f. of a symmetric r.v. is real-
valued. Besides, in view of property (a), both functions (3.1.5) and (3.1.6) tend
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to zero as k → ∞, whereas function (3.1.4) does not possess such a property,
because its density, which is defined by the generalized δ -function, does not
exist in a common sense (the distribution function F(x) is not differentiable at
the discontinuity point).

In the general case, the problem to find the distribution function with c.f.
given is solved by the following theorem.

THEOREM 3.1.1 (inversion theorem). Any distribution function F(x) is uniquely
defined by its c.f. ƒ(k). If a and b are some continuity points of F(x), then the
inversion formula

F(b)− F(a) = lim
c→∞

1
2π

∫ c

−c

e−ikb − e−ika

ik
ƒ(k) dk

is true.

COROLLARY 3.1.1. If |ƒ(k)/k| is integrable at infinity, then

F(b)− F(a) =
1

2π

∫ ∞

−∞

e−ikb − e−ika

ik
ƒ(k) dk.

COROLLARY 3.1.2. If the c.f. ƒ(k) is absolutely integrable on (−∞,∞), then
the corresponding F(x) is an absolutely continuous distribution function with
bounded continuous density p(x) = F′(x) defined by the formula

p(x) =
1

2π

∫ ∞

−∞
e−ikxƒ(k) dk. (3.1.7)

The principal advantage of the use of c.f.’s in actual practice consists in the
fact that the c.f. of a sum of independent r.v.’s is equal to the mere product of
the c.f.’s of the summands:

ƒX1+X2 (k) = ƒX1 (k)ƒX2 (k), (3.1.8)

while the density function of the sum is given by integral (2.1.9):

pX1+X2 (x) =
∫ ∞

−∞
pX1(x− x′)pX2(x′) dx′.

Property (3.1.8) can be rewritten in a more simple form via the so-called second
characteristic:

ψX (k) = ln ƒX (k) (3.1.9)

Indeed,

ψX1+X2 (k) = ψX1(k) + ψX2 (k). (3.1.10)
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Property (e) is of special importance in the problems on summation of
a large number of independent random variables where the application of
density functions leads us to the necessity of evaluating multiple integrals.
For this reason, the c.f.’s play the central role in the theory of stable laws. In
this connection, the following theorem is of particular importance.

THEOREM 3.1.2 (continuity theorem). Let ƒn(k), n = 1, 2, … be a sequence of
c.f.’s, and let Fn(x) be a sequence of the corresponding distribution functions. If
ƒn(k) → ƒ(k) as n →∞, for all k and ƒ(k) is continuous at k = 0, then ƒ(k) is the
c.f. of a cumulative distribution function F(x), and the sequence Fn(x) weakly
converges to F(x), Fn ⇒ F. The inverse is also true: if Fn ⇒ F and F is a
distribution function, then ƒn(k) → ƒ(k), where ƒ(k) is the c.f. of the distribution
function F.

3.2. The characteristic functions of symmetric
stable distributions

Let us begin with the c.f.’s of symmetric stable distributions whose densities
are expressed in terms of elementary functions.

Henceforth we use the notation g(k; α, β) for a characteristic function of a
reduced stable distribution density q(x; α, β):

g(k; a, β) =
∫ ∞

−∞
eikxq(x; α, β) dx.

We calculate first the c.f.’s of the normal r.v.’s with density (2.2.5)

q(x; 2, 0) ≡ pG(x; 0,
√

2) =
1

2
√

π
e−x2/4. (3.2.1)

By virtue of (3.1.2),

g(k; 2, 0) =
1

2
√

π

∫ ∞

−∞
e−u(k,x) dx,

where
u(k, x) = x2/4− ikx.

We rewrite the last function as

u(k, x) = (x− 2ikx)2/4 + k2,

and pass to the complex integration variable z = (x− 2ikx)/2; then we obtain

g(k; 2, 0) =
1√
π

e−k2
I, (3.2.2)
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−c c ℜz

ℑz

−c− ik c− ik

C

Figure 3.1. The integral of e−z2
along C is zero

where

I =
∫ ∞−ik

−∞−ik
e−z2

dz

which must be understood as the limit

I = lim
c→∞

∫ c−ik

−c−ik
e−z2

dz. (3.2.3)

Due to the absence of poles of the integrand inside the rectangle with corner
points c, c − ik, −c − ik, and −c (see Fig. 3.1), the integral along the closed
contour is equal to zero by virtue of the well-known Cauchy’s theorem. Since
the integrals over the intervals [c, c − ik] and [−c− ik,−c] tend to zero suffi-
ciently fast as c → ∞, limit (3.2.3) can be rewritten as the improper integral
along the real axis

I =
∫ ∞

−∞
e−x2

dx =
√

π, (3.2.4)

which was considered in the preceding chapter. The substitution of (3.2.4)
into (3.2.2) yields

g(k; 2, 0) = e−k2
. (3.2.5)

We note that the use of the traditional form of the normal distribution

pG(x) =
1√
2π

e−x2/2
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−1 1 ℜz

ℑz

k > 0 k < 0

Figure 3.2.

leads us to the c.f.
ƒG(k) = e−k2/2.

This c.f., as a function of k, is of the same form as the density pG which is the
function of its own argument x, but this coincidence is, in a sense, accidental:
it takes place only for the normal distribution.

Let us now consider the Cauchy distribution (2.3.2) whose c.f. is

g(k; 1, 0) =
1
π

∫ ∞

−∞

eikx

1 + x2 dx.

By the change of variable z = ix, it can be represented as

g(k; 1, 0) = − 1
πi

∫ +i∞

−i∞

ekz

(z + 1)(z− 1)
dz.

Closing the contour of integration to the left for k > 0 and to the right for k < 0
(Fig. 3.2) and using the well-known theorem on residues, we obtain

ƒC(k) = e−|k|. (3.2.6)

To derive the c.f. of a symmetric stable distribution with an arbitrary pa-
rameter α, we use formula (2.4.1) applied to the sum of independent strictly
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stable variables

n∑

i=1

Yi
d= bnY, bn = n1/α . (3.2.7)

According to Properties (b) and (e), it is possible to rewrite the equation fol-
lowing from (2.2.7) as

ƒn
Y (k) = ƒY (n1/αk). (3.2.8)

We recall that, by virtue of symmetry of the distribution, ƒY (k) is real-valued.
In a neighborhood of k = 0, the c.f. is positive; therefore, it has to be positive
for any argument, as it follows from (3.2.8). Taking the logarithm of (3.2.8),
we arrive at the equation for the second characteristic (3.1.9)

nψY (k) = ψY (n1/αk). (3.2.9)

Setting here

ψY (k) = −ckµ , k > 0, (3.2.10)

we see that (3.2.10) satisfies (3.2.9) with µ = α and arbitrary complex-valued
constant c. Presenting the latter as

c = λ [1− ic1],

with real λ and c1, we obtain

ψY (k) = −λkα [1− ic1], k > 0, 0 < α ≤ 2. (3.2.11)

To find ψY (k) in the field of negative values of the argument, we make use of
property (c) of the c.f.’s, which yields

ψY (k) = −λ [|k|α − ikω(k)], −∞ < k <∞, 0 < α ≤ 2,

where
ω(k) = c1|k|α−1.

Since |ƒX (k)| ≤ 1, and therefore, ℜψX (k) ≤ 0, the real-valued constant λ
should be non-negative. If λ = 0, we arrive at the confluent case (3.1.4) with
a = 0. In the case where λ > 0, this constant is determined by the choice
of a scale of r.v., and, without loss of generality, can be set equal to 1. The
real-valued function ω(k) plays a more essential part; namely, it relates to the
parameters α and β of a stable distribution as

w(k) = ω(k; α, β).
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Thus, the c.f. of a strictly stable distribution with parameters α and β can
be presented as

g(k; α, β) = exp {−|k|α + ikω(k; α, β)} , (3.2.12)

where the explicit form of dependence of function ω(α, β) on α and β has yet to
be determined. In the symmetric case where β = 0, it is very simple. In view
of property (c), the c.f. is real-valued; hence

ω(k; α, 0) = 0, (3.2.13)

and therefore,

g(k; α, 0) = e−|k|
α
. (3.2.14)

The above c.f.’s (3.2.5) and (3.2.6) are mere cases of general expression
(3.2.10):

ƒG(k) = e−k2 ≡ g(k; 2, 0), (3.2.15)

ƒC(k) = e−|k| ≡ g(k; 1, 0). (3.2.16)

Let us demonstrate the effectiveness of the method of the characteristic
functions method in those two examples considered in the preceding chapter
with the help of distribution densities:

q(x; 2, 0) ∗ q(x; 2, 0) = q(x/
√

2; 2, 0)/
√

2,
q(x; 1, 0) ∗ q(x; 1, 0) = q(x/2; 1, 0)/2.

By virtue of (3.2.7) and Properties (b) and (e), these relations are equivalent
to

[g(k; 2, 0)]2 = g(
√

2k; 2, 0),

[g(k; 1, 0)]2 = g(2k; 1, 0).

They immediately follow from (3.2.15) and (3.2.16) by simple raising them to
power two.

Let us look at Fig. 3.3, where the second characteristic ψ(k; α, 0) in the
neighborhood of zero is drawn. For α > 1, the slope of curves changes contin-
uously, but for α ≤ 1 it breaks at the point k = 0, and the first derivative does
not exist. For this reason, the first moment of distributions with α ≤ 1 exists
only in the Cauchy sense:

lim
A→∞

∫ A

−A
q(x; α, β)x dx = 0.

A comparison of the graphs of the corresponding densities reveals the follow-
ing generality: the faster the tails of distribution decrease, the smoother the
central part of characteristic function is, and vice versa (Feller, 1966).
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Ψ(k)

k

α < 1
α = 1

α > 1

Figure 3.3. The second characteristics of symmetric stable laws

3.3. Skew stable distributions with α < 1
The only asymmetric stable density for which an explicit representation via
elementary functions is known is the Lévy density (α = 1/2, β = 1):

q(x; 1/2, 1) =
1√
2π

e−1/(2x)x−3/2, x > 0. (3.3.1)

It is concentrated on the positive semi-axis, and its c.f. is

g(k; 1/2, 1) =
1√
2π

∫ ∞

0
eikx−1/(2x)x−3/2 dx. (3.3.2)

We consider the real and imaginary parts of c.f. (3.3.2)

ℜg(k; 1/2, 1) =
1√
2π

∫ ∞

0
e−1/(2x)x−3/2 cos kx dx,

ℑg(k; 1/2, 1) =
1√
2π

∫ ∞

0
e−1/(2x)x−3/2 sin kx dx.

Omitting bulky evaluations, we give the final results from (Oberhettinger,
1973):

1√
2π

∫ ∞

0
e−1/(2x)x−3/2 cos kx dx =

√
2πe−

√
|k| cos

√
|k|,

1√
2π

∫ ∞

0
e−1/(2x)x−3/2 sin kx dx =

√
2πe−

√
|k| sin

√
|k| sign k,

where
sign k = k/|k|.
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gA(k; 1/2, 1)

k k

gA(k; 1/2,−1)

0

1

0

1

Figure 3.4. The c.f.’s g(k; 1/2, 1) and g(k; 1/2,−1) (— stands for ℜg, and - - -, for ℑg

Thus, c.f. (3.3.2) takes the form

g(k; 1/2, 1) = e−
√
|k|(1−i sign k). (3.3.3)

This function is complex-valued, but its modulus

|g(k; 1/2, 1)| = e−
√
|k|

coincides with the c.f. of the symmetric stable distribution with the same
parameter α = 1/2.

The Lévy distribution (3.3.1) and the ‘reflected’ one (i.e., concentrated on
the negative semi-axis) with the c.f.

g(k; 1/2,−1) = e−
√
|k|(1+i sign k) (3.3.4)

are extreme in the set of stable distributions with parameter α = 1/2. The
graphs of these c.f.’s are shown in Fig. 3.4. Comparing (3.3.3) and (3.3.4) with
(3.2.12), we obtain

ω(k; 1/2, 1) = |k|−1/2,

ω(k; 1/2,−1) = −|k|−1/2.

The relation

g(k; 1/2, 1)g(k; 1/2,−1) = e−
√
|k| (3.3.5)
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following from (3.3.3) and (3.3.4) demonstrates that the difference of two inde-
pendent random variables Y(1/2, 1) is the symmetric stable variable with the
same characteristic exponent:

Y1(1/2, 1)− Y2(1/2, 1) d= Y1(1/2, 1) + Y2(1/2,−1) d= 4Y(1/2, 0). (3.3.6)

In what follows, separate symbols of a random variable Y(α, β) stand for
independent realizations of this random variable:

Y1(α, β) + Y2(α, β) ≡ Y(α, β) + Y(α, β). (3.3.7)

Then property (3.3.6) takes the form

Y(1/2, 1)− Y(1/2, 1) d= Y(1/2, 1) + Y(1/2,−1) d= 4Y(1/2, 0). (3.3.8)

Let us now pose the problem to find the c.f. g(k; α, β) for all β ∈ [−1, 1],
α ∈ (0, 1). Since explicit expressions for these densities are absent, we should
refer to the definition of the stable laws. In view of the definition, we search
for the c.f.’s as the limits of the c.f.’s of normalized sums (2.6.3), as n →∞:

g(k; α, β) = lim
n→∞

ƒZn (k), (3.3.9)

where

Zn =
1
bn

( n∑

i=1

Xi − an

)
.

As concerns the distribution of individual terms which should satisfy con-
ditions (2.5.18), we choose it in the simplest (Zipf–Pareto) form (Fig. 3.5)

pX (x) =





αcx−α−1, x > ε,
0, −ε < x < ε,
αd|x|−α−1, x < −ε.

(3.3.10)

We have already dealt with a particular symmetric case of such a distribu-
tion in Section 2.5. We managed to calculate the one-fold convolution of such
distributions with α = 1, but the evaluation of multiple convolutions of these
distributions is rather difficult. Therefore, we will solve it by means of c.f.’s.

The c.f. of an individual summand distributed by (3.3.10) is of the form

ƒX (k) =
∫ ∞

ε
eikxpX (x) dx +

∫ −ε

−∞
eikxpX (x) dx

= αa
∫ ∞

ε
eikxx−α−1 dx + αb

∫ ∞

ε
e−ikxx−α−1 dx.

(3.3.11)
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0

p(x)

x−ε ε

Figure 3.5. Density (3.3.10)

By virtue of property (a),

ƒX (0) = (c + d)ε−α = 1. (3.3.12)

Let k > 0; then, by the change of variable z = kx, c.f. (3.3.11) is reduced to

ƒX (k) = α(c + d)kα
[
I(−α)
c (εk) + iβI(−α)

s (εk)
]

, (3.3.13)

where

I(µ)
s (k) =

∫ ∞

k
zµ−1 sin z dz, (3.3.14)

I(µ)
c (k) =

∫ ∞

k
zµ−1 cos z dz, (3.3.15)

β = (c− d)/(c + d).

By virtue of Properties (b) and (e) of a characteristic function,

ƒZn (k) ≡ ƒSn/bn (k) = [ƒX (k/bn)]n. (3.3.16)
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We make use of expression (2.6.3) for a normalized sum, and obtain an = 0,
since the distributions under consideration are strictly stable (α < 1). The
positive coefficients bn infinitely increase as n → ∞, so the c.f. ƒX enters into
(3.3.16) for small values of the argument k/bn.

In the domain of small k, c.f. (3.3.13) can be simplified. To this end, we
present the limiting values of integrals (3.3.14) and (3.3.15) which enter into
(3.3.13) as

lim
k→+0

I(µ)
s (k) = Γ(µ) sin(µπ/2), 0 < |µ| < 1, (3.3.17)

lim
k→+0

I(µ)
c (k) = Γ(µ) cos(µπ/2), 0 < µ < 1. (3.3.18)

If µ = −α and 0 < α < 1, then only the first limit exists:

lim
k→+0

I(−α)
s (k) = −Γ(−α) sin(απ/2). (3.3.19)

By integration by parts the remaining integral is transformed to

I(−α)
c (k) = α−1k−α cos k− α−1I(1−α)

s (k). (3.3.20)

The second term tends to the finite limit (3.3.17) as k → +0, and we obtain

I(−α)
c (k) ∼ α−1k−α − α−1Γ(1− α) cos(απ/2), k → +0. (3.3.21)

Substituting (3.3.19) and (3.3.21) into (3.3.13) and taking (3.3.12) into account,
we arrive at expression

ƒX (k) ∼ 1− (c + d)kα {Γ(1− α) cos(απ/2) + iαβΓ(−α) sin(απ/2)} ,

which, after simple transformations, takes the form

ƒX (k) ∼ 1− C(α)(c + d)kα [1− iβ tan(απ/2)], k → +0,

where
C(α) = Γ(1− α) cos(απ/2).

Using property (c) to determine the c.f. in the domain of negative k, we
obtain the general expression for the c.f. in neighborhood of zero

ƒX (k) ∼ 1− C(α)(c + d)|k|α [1− iβ tan(απ/2) sign k], k → 0. (3.3.22)

Substituting (3.3.22) into (3.3.16), we obtain

ƒZn (k) ∼
{

1− C(α)(c + d)b−α
n |k|α [1− iβ tan(απ/2) sign k]

}n , n →∞.
(3.3.23)
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and, after introducing

yn = −C(α)(c + d)b−α
n |k|α [1− iβ tan(απ/2) sign k],

we represent (3.3.23) as

ƒZn (k) ∼
[
(1 + yn)1/yn

]nyn
, n →∞. (3.3.24)

Since yn → 0 as n → ∞, the expression in square brackets tends to e. For
the limit of (3.3.24) to be a c.f., it is necessary that nb−α

n tends to a finite limit
different from zero. We set

bn = b1n1/α , b1 = [C(α)(c + d)]1/α ; (3.3.25)

then

g(k; α, β) = lim
n→∞

ƒZn (k)

= exp {−|k|α [1− iβ tan(απ/2) sign k]} , 0 < α < 1. (3.3.26)

This is the c.f. sought for. For β = 0, we obtain the c.f. of the symmetric
distribution (3.2.10); for α = 1/2 and β = ±1, we have the c.f. of one-sided distri-
butions (3.3.3) and (3.3.4); and the general expression (3.3.26) for normalizing
coefficients bn coincides with (2.4.8), differing from it only by the factor b1 ≠ 1,
which appears due to the difference of (3.3.10) from the stable distribution.

3.4. The general form of stable characteristic
functions

In the case where α > 1, the mathematical expectation of the r.v. X given by
(3.3.10) exists:

EX = α(c− d)
∫ ∞

ε
x−αdx =

α(c− d)
(α − 1)εα−1 ≡ a, (3.4.1)

and, as a consequence, the expectation of the sum exists:

ESn = na.

The latter can be chosen as the centering constant, namely an = na in (2.6.3),
which yields

Zn = (Sn − na)/bn. (3.4.2)

Formula (3.3.13) remains valid for α > 1 as well, but the problem consists
now in that both integrals contained there diverge as k → 0. Therefore,
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alongside with the use of (3.3.20), we need to transform the first integral
(3.3.14) in an appropriate way:

I(−α)
s (k) = α−1k−α sin k + α−1I(1−α)

c (k) (3.4.3)

= α−1k−α sin k + [α(α − 1)]−1k−α+1 cos k− [α(α − 1)]−1I(2−α)
s (k).

We recall that k > 0. Here the latter integral possesses a finite limit equal to
(3.3.17) as k → 0. Substituting (3.3.20) and (3.4.3) into (3.3.13), and collecting
the leading terms as k → 0, we obtain

ƒX (k) ∼ 1 + ika− kαC(α)(c + d)[1− iβ tan(απ/2)], k → 0, k > 0,
(3.4.4)

or, by extending it to the whole real axis,

ƒX (k) ∼ 1 + ika− C(α)(c + d)|kα |[1− iβ tan(απ/2) sign k], k → 0.
(3.4.5)

Expression (3.4.5) differs from (3.3.22) with α < 1 only by the presence of ika1
occurred due to the finiteness of expectation 3.4.1.

According to property (c), the characteristic function of r.v. (3.4.2) is

ƒZn (k) = e−ikna/bn ƒSn (k/bn) = e−ika/bn[ƒX (k/bn)]n. (3.4.6)

By virtue of the smallness of the terms containing k and |k|α , c.f. (3.4.5) can be
represented in the asymptotically equivalent form

ƒX (k) ∼ [1 + ika]{1− C(α)(c + d)|k|α [1− iβ tan(απ/2) sign k]}, k → 0.
(3.4.7)

Substituting (3.4.7) into (3.4.6) and, as before, setting bn according to (3.3.25),
we arrive at the limiting expression

g(k; α, β) = exp {−|k|α [1− iβ tan(απ/2) sign k]} , 1 < α < 2,

which coincides with (3.3.26).
Thus, as we foretold in Section 2.2, the c.f.’s of strictly stable laws look as

g(k; α, β) = exp{−|k|α + ikω(k; α, β)}, (3.4.8)

where

ω(k; α, β) = |k|α−1β tan(απ/2), α ≠ 1. (3.4.9)

The peculiarity of the case where α = 1, β ≠ 0, which is not covered by the
strictly stable laws, is that the mathematical expectation does not exist, but it
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is impossible to drop the centering constants an here. Rather than (3.4.2) we
should consider

Zn = (Sn − an)/bn, (3.4.10)

where an are to be chosen later.
Let us turn back to the expression for the c.f.’s of summands (3.3.13) which,

in the case under consideration, takes the form

ƒX (k) = (c + d)k
[
I(−1)
c (εk) + iβI(−1)

s (εk)
]

. (3.4.11)

Transforming both the integrals I(−1)
c and I(−1)

s by means of integration by
parts, we reduce them to

I(−1)
c (k) = k−1 cos k− π/2 + Si(k) ∼ k−1 − π/2, k → +0, (3.4.12)

I(−1)
s (k) = k−1 sin k− π/2 + Ci(k) ∼ − ln k, k → +0, (3.4.13)

where Si(k) and Ci(k) are the integral sine and cosine respectively. Substituting
(3.4.12) and (3.4.13) into (3.4.11) under normalization (3.3.12), and extending
the results to the domain k < 0, we obtain

ƒX (k) = 1− (π/2)(c + d)|k| − i(c + d)βk ln[(c + d)|k|]
∼ [1− (π/2)(c + d)|k|]{1− i(c + d)βk ln[(c + d)|k|]}, k → 0.

(3.4.14)

Characteristic function (3.4.10) is related to (3.4.14) as follows:

ƒZn (k) = e−i(an/bn)k[ƒX (k/bn)]n ∼ e−i(an/bn)k[(1 + yn)1/yn ]nyn[(1 + zn)1/zn ]nzn ,

where

yn = −(π/2)(c + d)b−1
n |k| → 0, n →∞,

zn = −iβ(c + d)b−1
n k ln[(c + d)b−1

n |k|] → 0, n →∞.

Hence

ƒZn (k) ∼ exp{−(π/2)(c + d)b−1
n n|k|}

× exp{−i(an/bn)k− iβ(c + d)b−1
n nk ln[(c + d)b−1

n |k|]}.

The first factor shows that the sequence bn must be chosen so that

bn = b1n, b1 = (π/2)(c + d), (3.4.15)

and from the second one, we see that the sequence

cn = an/n + β(c + d) ln |(2/π)k/n| (3.4.16)
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should possess a finite limit. Rewriting (3.4.16) as

cn = an/n− β(c + d) ln(2n/π) + β(c + d) ln |k|,

we see that it is sufficient to set

an = β(c + d)n ln(2n/π) ∼ β(c + d)n ln n, n →∞. (3.4.17)

Thus, the c.f.’s of stable laws with parameter α = 1 can be presented as

g(k; 1, β) = exp {−|k| − i(2/π)βk ln |k|} . (3.4.18)

Setting

ω(k; 1, β) = −(2/π)β ln |k| (3.4.19)

we gather the results obtained above as follows:

g(k; α, β) = exp{−|k|α + ikω(k; α, β)}, 0 < α ≤ 2, (3.4.20)

where ω(k; α, β) is determined by (3.4.9) and (3.4.10)1.
According to the definition of the stable distributions and Properties (b)

and (e) of the c.f.’s, for the stable c.f. g(k) the relation

g(b1k)g(b2k) = g(bk)eiak (3.4.21)

holds. It can easily be seen that the above c.f.’s satisfy this condition. Indeed,
for α ≠ 1 we have

g(k; α, β) = exp{−bα |k|α [1− iβ tan(απ/2) sign k]},

Substituting this into (3.4.21), we obtain

exp{−(bα
1 + bα

2 )|k|α [1− iβ tan(απ/2) sign k]}
= eiak exp{−bα |k|α [1− iβ tan(απ/2) sign k]}.

It follows herefrom that

a = 0, b = (bα
1 + bα

2 )1/α . (3.4.22)

For a = 0, (3.4.21) takes the form

g(b1k)g(b2k) = g(bk), (3.4.23)

1The calculations performed here and in the preceding section can be considered as the
proof of a somewhat simplified version of the generalized limit theorem in Section 2.5, where
conditions (2.5.17)–(2.5.18) are replaced with simpler constraints (3.3.10).
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and hence corresponds to strictly stable c.f.’s, so the above c.f.’s for α ≠ 1 are
strictly stable indeed. The symmetric (β = 0) distribution with parameter
α = 1 also belongs to the family of strictly stable laws, and its c.f. can be
derived as the limit of c.f. (3.4.8):

g(k; 1, 0) = lim
α→1

g(k; α, 0).

The reader should keep in mind that, while deriving c.f.’s, we set λ = 1
in (3.2.11). Assigning an arbitrary positive value to it and taking the shift
parameter in the form γλ , we obtain the second characteristic of a stable law
in the general form

ln g(k; α, β , γ , λ ) = λ [ikγ − |k|α + ikω(k; α, β)]. (3.4.24)

Thus, we have a four-parameter family of stable c.f.’s whose parameters are
listed in their arguments. We extend the appropriate notation to the density
of strictly stable distributions as well:

q(x; α, β , γ , λ ) =
1

2π

∫ ∞

−∞
e−ikxg(k; α, β , γ , λ ) dk. (3.4.25)

Representation (3.4.24) rewritten in the form

ln g(k; α, β , γ ′, λ ) = ikγ ′ + λ [−|k|α + ikω(k; α, β)],

used in many works (see (3.5.24) and (3.5.25)), provides us with the opportu-
nity to supplement the family with the degenerate distribution with second
characteristic ikγ ′.

3.5. Stable laws as infinitely divisible laws
As we have seen in Section 2.2, stable laws belong to the set of infinitely
divisible laws. Now we can easily verify this, having the explicit form for
c.f.’s at our disposal. To this end, we represent definition (3.4.24) of infinitely
divisible distributions in terms of c.f.’s as

ƒ(k) = [ƒn(k)]n.

The functions ƒn(k) are uniquely determined via the function ƒ(k) as

ƒn(k) = [ƒ(k)]1/n, (3.5.1)

where the principal branch of the radical is taken.
It is clear that c.f. (4.23) is infinitely divisible, because the radical ƒ1/n does

not change its form if we replace λ by λ /n.
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Nevertheless, the set of infinitely divisible distributions is not exhausted
by the stable laws. Indeed, the Poisson distribution

pn = P {N = n} =
an

n!
e−a, a > 0, (3.5.2)

possesses the characteristic function

ƒ(k) = EeikN = e−a
∞∑

n=0

(aeik)n

n!

= exp{a(eik − 1)}.

Taking the root

[ƒ(k)]1/n = exp
{

a
n

(eik − 1)
}

merely modifies the parameter a that has the sense of the expectation of N.
Let us now consider the sum of a random number of identically distributed

independent summands

SN =
N∑

i=1

Xi. (3.5.3)

Let FX (x) and ƒX (k) be the distribution function and the c.f. of Xi, respectively,
and let N be independent of X1, X2, … and distributed by the Poisson law
(3.5.2). Then for r.v. (3.5.3) we have

FSN (x) = e−a
∞∑

n=0

an

n!
FX ∗ FX ∗ · · · ∗ FX︸ ︷︷ ︸

n

, (3.5.4)

ƒSN (x) = exp{a[ƒX (k)− 1]}. (3.5.5)

Distribution (3.5.4) is called the generalized Poisson distribution, in the
case of a degenerate r.v. (X = 1), it coincides with (3.5.2). From (3.5.5), we can
immediately see that this distribution belongs also to the class of infinitely
divisible distributions. It is clear that neither (3.5.2) nor (3.5.4) are stable
distributions (ƒX in (3.5.5) is an arbitrary c.f.). On the other hand, the uniform
on (−1, 1) distribution is not infinitely divisible, because we cannot take the
nth root of its c.f.

ƒ(k) =
sin k

k
(3.5.6)

in such a way that the result satisfies the conditions imposed on c.f.’s. For a c.f.
to belong to a class of infinitely divisible distributions, it is necessary, but not
sufficient, that there are no zeros on the real axis. Stable distributions and the
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generalized Poisson distribution satisfy this condition, whereas the uniform
distribution (3.5.6) does not.

The generalized Poisson distribution (3.5.4) plays an important part in the
theory of infinitely divisible distributions: any infinitely divisible distribution
is a limit of a sequence of generalized Poisson distributions (Feller, 1966).
Introducing, for the sake of generality, an arbitrary centering of sums Sν, we
present the c.f. of an infinitely divisible distribution as

ƒ(k) = eψ(k), (3.5.7)
ψ(k) = lim

n→∞
cn[ƒn(k)− 1− iank],

where cn are positive constants, an are real-valued centering constants. The
centering by expectations is a rather natural way for those distributions that
possess mathematical expectations. In a general case, the centering can be
performed by different ways. It seems likely that the most elementary way is
to require that

ψn(k) = cn[ƒn(k)− 1− iank] (3.5.8)

is real-valued for k = 1 (Feller, 1966). Then

ℑψn(1) = 0,

ℑƒn(1) =
∫ ∞

−∞
sin x dFn(x) = an. (3.5.9)

Here we take account for

ƒn(k) =
∫ ∞

−∞
eikx dFn(x). (3.5.10)

Substituting (3.5.9) and (3.5.10) into (3.5.8), we obtain

ψn(k) = cn

∫ ∞

−∞
(eikx − 1− ik sin x) dFn(x). (3.5.11)

Passing to the limit as n →∞, we represent this expression as

ψ(k) =
∫

x≠0
(eikx − 1− ik sin x) dH(x), (3.5.12)

where the function H(x), defined on the whole x-axis with the only point x = 0
excluded, does not decrease on the semi-axes x < 0, x > 0, tends to zero as
|x| →∞, and satisfies the condition

∫

0<|x|<1
x2 dH(x) <∞.
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The representation

ƒ(k) = exp
{

ika− bk2 +
∫ ∞

x≠0

(
eikx − 1− ik sin x

)
dH(x)

}
, (3.5.13)

where a and b ≥ 0 are real numbers, is called the canonical form of an infinitely
divisible c.f., and the function H(x) is called the spectral function of an infinitely
divisible distribution. There are also other forms of infinitely divisible c.f.’s,
for example, the Lévy–Khinchin form

ƒ(k) = exp

{
ika− bk2 +

∫ ∞

−∞

(
eikx − 1− ikx

1 + x2

)
1 + x2

x2 dH(x)

}
.
(3.5.14)

The following theorem allows us to express the c.f.’s of stable distributions
in terms of the spectral functions.

THEOREM 3.5.1 (canonical form of a stable c.f.). The c.f. of any non-degenerate
stable distribution is of canonical form (3.5.14), where either

b ≠ 0, H(x) = 0, (3.5.15)

or

b = 0, H(x) =

{
−cx−α , x > 0
d|x|−α , x < 0

(3.5.16)

with parameters α ∈ (0, 2), c ≥ 0, d ≥ 0, c + d > 0.
The reverse is true as well: c.f. (3.5.15) under conditions (3.5.15)–(3.5.16) is

stable.

We prove here only the second part of this theorem following (Lukacs,
1960). Condition (3.5.15) immediately leads us to the c.f. of the normal distri-
bution. Substitution of (3.5.16) into (3.5.14) yields

ψ(k) = ika− bk2 + αcI+(k) + αdI−(k), (3.5.17)

where

I+(k) =
∫ ∞

0

(
eikx − 1− ikx

1 + x2

)
dx

x1+α , (3.5.18)

I−(k) =
∫ 0

−∞

(
eikx − 1− ikx

1 + x2

)
dx
|x|1+α . (3.5.19)

We first consider the case where α ∈ (0, 1). Then, as one can easily see, the
integrals ∫ 0

−∞

x
1 + x2

dx
|x|1+α and

∫ ∞

0

x
1 + x2

dx
x1+α
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are finite. Therefore, formula (3.5.17) can be rewritten as

ln ƒ(k) = ika′ + αd
∫ 0

−∞
(eikx − 1)

dx
|x|1+α + αc

∫ ∞

0
(eikx − 1)

dx
x1+α . (3.5.20)

We assume that k > 0; the change of variables in (3.5.20) gives us

ψ(k) = ika′ + αkα
[
d
∫ ∞

0
(e−iv − 1)

dv
v1+α + c

∫ ∞

0
(eiv − 1)

dv
v1+α

]
. (3.5.21)

Let Γ be some contour which consists of the segment [r, R], the real axis, the
arc z = Reiϕ, 0 ≤ ϕ ≤ π/2, of a circle of radius R with center at zero, the segment
[iR, ir] of the imaginary axis, and the arc z = reiϕ, π/2 ≥ ϕ ≥ 0, of the circle of
radius r and center at zero. It follows from the Cauchy theorem that

∫

Γ
(eiz − 1)

dz
z1+α = 0.

Besides, we easily see that the integrals over arcs of circles tend to zero as
r → 0 and R →∞. Thus,

∫ ∞

0
(eiv − 1)

dv
v1+α = e−iαπ/2L1(α)

where
L1(α) =

∫ ∞

0
(e−y − 1)

dy
y1+α = Γ(−α) < 0.

Similar reasoning yields
∫ ∞

0
(e−iv − 1)

dv
v1+α = eiαπ/2L1(α).

It follows from (3.5.21) that

ψ(k) = ika′ + kααL1(α)(c + d) cos(απ/2)
[
1− i

c− d
c + d

tan(απ/2)
]

.

Taking property (c) of the c.f.’s into account, and introducing

λ = −αL1(α)(c + d) cos(απ/2) > 0,

β =
c− d
c + d

,

we see that for 0 < α < 1 and for all k

ln ƒ(k) = ika′ − λ |k|α
(

1− iβ
k
|k| tan(απ/2)

)
, (3.5.22)
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where λ > 0 and |β | ≤ 1.
Consider now the case where 1 < α < 2. It can easily be seen that

∫ ∞

0

x2

1 + x2
dx
xα =

∫ 0

−∞

x2

1 + x2
dx
|x|α <∞.

We can rewrite (3.5.17) as

ln ƒ(k) = ika′′ + αd
∫ 0

−∞
(eikx − 1− ikx)

dx
|x|1+α + αc

∫ ∞

0
(eikx − 1− ikx)

dx
x1+α ,

or, for k > 0,

ln ƒ(k) = ika′′ + tαα
{

d
∫ ∞

0
(e−iv − 1 + iv)

dv
v1+α

+ c
∫ ∞

0
(eiv − 1− iv)

dv
v1+α

}
. (3.5.23)

Integrating the function (e−iz − 1 + iz)/z1+α over the contour Γ and following
the reasoning above, we obtain

∫ ∞

0
(e−iv − 1 + iv)

dv
v1+α = eiαπ/2L2(α),

∫ ∞

0
(eiv − 1− iv)

dv
v1+α = e−iαπ/2L2(α),

where
L2(α) =

∫ ∞

0
(e−v − 1 + v)

dv
v1+α = Γ(−α) > 0.

From (3.5.23) we obtain for k > 0

ln ƒ(k) = ika′′ − λkα (1− β tan(απ/2)
)

,

where

λ = −α(c + d)L2(α) cos(απ/2) > 0,
β = (c− d)/(c + d).

For k < 0, the function ƒ(k) can be defined using property (c) of the c.f.’s; namely,
for 1 < α < 2

ln ƒ(k) = ika′′ − λ |k|α
(

1− iβ
k
|k| tan(απ/2)

)
(3.5.24)

where c > 0, |β | ≤ 1.



92 3. Characteristic functions

Now we consider the case where α = 1. The following equality is used
below for the calculation of the integrals in (3.5.17):

∫ ∞

0

1− cos y
y2 dy =

π
2

.

If k > 0, then
∫ ∞

0

(
eikx − 1− ikx

1 + x2

)
dx
x2

=
∫ ∞

0

cos kx− 1
x2 dx + i

∫ ∞

0

(
sin kx− kx

1 + x2

)
dx
x2

= −π
2

k + i lim
ε→0

[∫ ∞

ε

sin kx
x2 dx− k

∫ ∞

ε

dx
x(1 + x2)

]

= −π
2

k + i lim
ε→0

{
−k

∫ εk

ε

sin v
v2 dv + k

[∫ ∞

ε

(
sin v

v2 −
1

v(1 + v2)

)
dv
]}

.

It is easy to see that as ε → 0
∫ ∞

ε

(
sin v
v2 −

1
v(1 + v2)

)
dv → A <∞;

moreover,

lim
ε→0

∫ εk

ε

sin v
v2 dv = lim

ε→0

∫ εk

ε

dv
v

= ln k;

therefore,
∫ ∞

0

(
eikx − 1− ikx

1 + x2

)
dx
x2 = −π

2
k− ik ln k + Aik.

Since integrals (3.5.18) and (3.5.19) are complex conjugate integrals,
∫ 0

−∞

(
eikx − 1− ikx

1 + x2

)
dx
x2 =

∫ ∞

0

(
e−ikx − 1 +

ikx
1 + x2

)
dx
x2

= −π
2

k + ik ln k− iAk;

therefore, for k > 0

ln ƒ(k) = ika′′ − (c + d)(π/2)k− (c− d)ik ln k.

From property (c) for α = 1 and all real k we obtain

ln ƒ(k) = ika′′ − λ |k|
{

1 + iβ
2
π

k
|k| ln |k|

}
. (3.5.25)

Here
λ = (c + d)π/2, β = (c− d)/(c + d).

Combining (3.5.22), (3.5.24) and (3.5.25), we arrive at (3.4.24) with a′′ = λγ .
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3.6. Various forms of stable characteristic
functions

So far as there are different forms of representation of stable characteristic
functions, we refer to the representation used above as form A:

ln gA(k; α, β , γ , λ ) = λ (ikγ − |k|α + ikωA(k; α, β)), (3.6.1)

where

ωA(k; α, β) =

{
|k|α−1β tan(απ/2), α ≠ 1,
−β(2/π) ln |k|, α = 1,

(3.6.2)

0 < α < 2, −1 ≤ β ≤ 1, −∞ < γ < ∞, λ > 0. It is labeled by index A for
the purposes of distinguishing this representation from the others which we
consider in this section. As the necessity appears, we assign the corresponding
indices to the parameters, too.

While investigating the analytical properties of the family of stable laws,
form B appears to be more convenient:

ln gB(k; α, β , γ , λ ) = λ |i|kγ − |k|αωB(k; α, β), (3.6.3)

where

ωB(k; α, β) =

{
exp[−iβΦ(α) sign k], α ≠ 1,
π/2 + iβ ln |k| sign k, α = 1,

and the parameters are in the same domain as in form A (3.6.2). In this case,
only the characteristic exponents coincide:

αA = αB.

The connection between other parameters in representations A and B and the
form of the function Φ(α) can be determined by comparing (3.6.1) and (3.6.3).
We equate the real and imaginary parts of the second characteristics of those
two forms:

ℜψA = ℜψB, ℑψA = ℑψB;

we thus obtain
−λ A|k|α = −λ B|k|α cos(βBΦ(α))

and

λ Aγ Ak + λ A|k|αβA tan(απ/2) sign k = λ Bγ Bk + λ B|k|α βA sin(βBΦ(α)) sign k,

which yields (for α ≠ 1):

λ A = λ B cos(βBΦ(α)), (3.6.4)

γ A = γ B[cos(βBΦ(α))]−1, (3.6.5)

βA = tan(βBΦ(α))/ tan(απ/2). (3.6.6)
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The constant λ B, as well as λ A, should be positive; hence

−π/2 < βBΦ(α) < π/2.

Let us find Φ(α) such that βB = 1 if βA = 1 irrespective of α. The following two
equations must be satisfied:

−π/2 < Φ(α) < π/2,
tan Φ(α) = tan(απ/2).

For α < 1, 0 < απ/2 < π/2,

Φ(α) = απ/2, α < 1. (3.6.7)

For α > 1 we use the trigonometric transformation

tan(απ/2) = tan(π + (α/2− 1)π) = tan((α − 2)π/2).

Now the argument of the tangent obeys the condition

−π/2 < (α − 2)π/2 < 0,

and we obtain

Φ(α) = (α − 2)π/2, α > 1. (3.6.8)

Uniting (3.6.7) and (3.6.8), we obtain

Φ(α) = [α − 1− sign(α − 1)]π/2. (3.6.9)

In the case α = 1,

βA = βB, γ A = (2/π)γ B, λ A = (π/2)λ B.

We put emphasis on the fact that the function has a discontinuity at the
point α = 1. Nevertheless, we can find a continuous solution of the form

Φ′(α) = [1− |1− α|]π/2. (3.6.10)

But this results in the difference in signs of parameters β for α > 1: the
positive values of βA correspond to negative values of βB, and vice versa. Such
representation, up to the factor π/2, was used in (Lukacs, 1960; Zolotarev,
1966).

In form B, as well as in form A, the stable laws (as functions of parameters)
are not continuous at the point α = 1. The passage to form M removes this
peculiarity:

ln gM(k; α, β , γ , λ ) = λ (ikγ − |k|α + ikωM(k; α, β)), (3.6.11)
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where

ωM(k; α, β) =

{
(|k|α−1 − 1)β tan(απ/2), α ≠ 1,
−β(2/π) ln |k|, α = 1.

The domain of parameter variations is the same as in the two preceding forms,
and they relate to the parameters of form A as

αA = αM , βA = βM, γ A = γ M − βM tan(απ/2), λ A = λ M .

The class of strictly stable laws is determined by the equality

ln g(b1k) + ln g(b2k) = ln g(bk)

following from (3.4.23). In this case, the family of c.f.’s becomes three-
parameter, and its second characteristics can be presented in form C:

ln gC(k; α, δ , λ ) = −λ |k|α exp(−iαδ (π/2) sign k), (3.6.12)

where
0 < α ≤ 2, |δ | ≤ δα = min{α, 2− α}, λ > 0.

Sometimes, it turns out to be more convenient to use the parameter

ρ =
α + δ

2
.

In this parametric system, the case α = 1 plays a special part, because the
values of parameters α = 1, δ , λ for |δ | = α correspond to the degenerate
distribution. If this case is excluded from consideration, then for parameters
in forms B and C the equalities

αC = αB,

δ = 2βBΦ(α)/π, λ C = λ B, α ≠ 1,

δ = (2α/π) arctan(2γ B/π), λ C = λ B(π2/4 + γ B2
)1/2, α = 1

hold. An essential difference between the classes of stable and strictly stable
laws arises as soon as α = 1. In this case, only symmetric (β = 0) distribution
(the Cauchy distribution) appears to be strictly stable, whereas the asymmetric
stable distributions (β ≠ 0) do not belong to this class.

Finally, we give here one more form of c.f. for strictly stable law, namely
form E:

ln gE(k; ν, θ , τ) = − exp{ν−1/2(ln |k| + τ − iθ(π/2) sign k) + C(ν−1/2 − 1)},
(3.6.13)

where C = 0.577… is the Euler constant, and the parameters vary within the
bounds

ν ≥ 1/4, |θ| ≤ min{1, 2
√

ν − 1}, |τ| <∞
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and are related to the parameters in form C as

ν = α−2, θ = δ /α, τ = α−1 ln λ C + C(α−1 − 1).

The c.f.’s and the distributions corresponding to them with particular val-
ues of scale and shift parameters are called reduced, and denoted by

gA,B,M(k; α, β) = gA,B,M(k; α, β , 0, 1);

gC(k; α, δ ) = gC(k; α, δ , 1), δ = 0 if α = 1,

gE(k; ν, θ) = gE(k; ν, θ , C(
√

ν − 1)), θ = 0 if ν = 1.

The c.f. gB(k; α, β) and the corresponding distribution are considered standard,
and the subscript B is omitted:

g(k; α, β) = gB(k; α, β).

For the sake of convenience we give explicit expressions of the second
characteristics ψ(k; …) ≡ ln g(k, …):

ψA,M(k; α, β) = −|k|α + ikωA,M(k; α, β),

ψB(k; α, β) = −|k|αωB(k; α, β),

ψC(k; α, δ ) = −|k|α exp{−iδ (π/2) sign k},
ψE(k; ν, θ) = − exp{ν−1/2(ln |k| − iθ(π/2) sign k)}.

Some particular cases of the expressions are given in Table 3.1.
In each of the forms of parametrization, there is an indicated domain of

variation of the parameters corresponding to this form, which we call the
domain of admissible values of the parameters.

Of course, one may puzzle over the question: why such an abundance
of different forms for expressing the characteristic functions of stable laws
exists? While studying the analytic properties of the distributions of stable
laws, we encounter groups of properties with their own diverse features. The
expression of analytic relations connected with stable distributions can be
simpler or more complicated depending on how felicitous the choice of the
parameters determining the distributions for our problem turns out to be.
By associating with a particular group of properties the parametrization form
most natural for it, we thereby minimize the complexity involved in expressing
these properties. In this approach, the extraneous complexity is, as it was,
isolated from the problem and relegated to the formulae for passing from one
form of expressing the characteristic functions g to another.
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3.7. Some properties of stable random variables
The explicit expressions for the characteristic functions of stable laws obtained
above allow us to reveal a series of interrelations between them. In many cases,
it is convenient and rather intuitive to treat relations between stable distribu-
tions as relations between random variables having these distributions. The
reverse passage is quite simple and does not require additional explanations.

We denote by YD(Γ) the random variable having the c.f. gD(k; Γ), where D is
one of the symbols A, B, M, C, E, and let Γ stand for the set of parameters corre-
sponding to the form chosen, so the r.v. YA(α, β , γ , λ ) has the c.f. gA(k; α, β , γ , λ ),
and so on. For the reduced forms, we use the shortened sets of parameters
YA(α, β) ≡ YA(α, β , 0, 1), etc.

Using this notation, we can obtain relations between stable r.v.’s presented
in different forms. In view of property (c) (Section 3.1), the second charac-
teristics of the r.v. a + bX is related to the corresponding characteristics of X
as

ψa+bX (k) = iak + ψX (bk).

Applying this relation to the r.v.

X = a + bYA(α, β),

we obtain (b > 0)

ψX (k) = −|bk|α + i{ak + βA|bk|α tan(απ/2) sign k}, α ≠ 1,

ψX (k) = −|bk|α + i{ak− (2/π)βAbk[ln |k| + ln b]}, α = 1.

The second characteristics of YB(α, β) is

ln gB(k; α, β) = −|k|α cos[βBΦ(α)] + i|k|α sin[βBΦ(α)] sign k, α ≠ 1,

ln gB(k; 1, β) = −(π/2)|k| − iβBk ln |k|.

Equating the real and imaginary parts of ψX and ln gB, we obtain

a = 0, b = [cos(βBΦ(α))]1/α , α ≠ 1,

a = βB ln(π/2), b = π/2, α = 1.

Thus,

YB(α, β) = [cos(βΦ(α))]1/α YA(α, βA), α ≠ 1,
YB(1, β) = β ln(π/2) + (π/2)YA(1, β).

We note that both forms of the symmetric r.v.’s Y(α, 0) coincide (for α ≠ 1).
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Similar reasoning yields

YM(α, β) = YA(α, β)− β tan(απ/2), α ≠ 1,
YM(1, β) = YA(1, β);

YC(α, δ ) = [cos(δπ/2)]1/αYA(α, β), α ≠ 1,
YC(1, 0) = YA(1, 0);

YE(ν, θ) = [cos(ν−1/2θπ/2)]ν1/2
YA(α, β), ν ≠ 1,

YE(1, 0) = YA(1, 0).

Now we present some properties which are true for both forms A and B, so
we omit the subscripts.

(1) Any two admissible parameter quadruples (α, β , γ , λ ) and (α ′, β ′, γ ′, λ ′)
uniquely determine real a > 0 and b such that

Y(α, β , γ , λ ) d= aY(α, β , γ ′, λ ′) + λb. (3.7.1)

In form A, a and b relate on the parameters as

a = (λ /λ ′)1/α ,

b =

{
γ − γ ′(λ /λ ′)1/α , α ≠ 1,
γ − γ ′ + (2/π)β ln(λ /λ ′), α = 1.

There exists an important particular case of (3.7.1). Let γ ′ = 0 and
λ ′ = 1; then

Y(α, β , γ , λ ) d=

{
λ 1/α Y(α, β) + λγ , α ≠ 1,
λ 1/α Y(α, β) + λ [γ + (2/π)β ln λ ], α = 1.

(3.7.2)

Equality (3.7.2) shows that λ stands for the scale parameter, while γ
corresponds to the translation parameter (rigorously speaking, the pure
shift of the distribution is a linear function of γ ).

(2) For any admissible parameter quadruple (α, β , γ , λ ),

Y(α,−β ,−γ , λ ) d= −Y(α, β , γ , λ ). (3.7.3)

The useful content of this property is, in particular, that it allows
us, without loss of generality, to consider the distribution functions
G(x; α, β , γ , λ ) with the only (according to our choice) additional condi-
tion that the signs of the argument x, the parameter β , or the parameter
γ are preserved.
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(3) Any admissible parameter quadruples (α, βk, γk, λk) and any real h, ck,
k = 1, …, m, uniquely determine a parameter quadruple (α, β , γ , λ ) such
that2

Y(α, β , γ , λ ) d= c1Y(α, β1, γ1, λ1) + … + cmY(α, βm, γm, λm) + h. (3.7.4)

In form A, the quadruple (α, β , γ , λ ) depends on the parameters and
numbers chosen as follows:

λ =
m∑

n=1

λn|cn|α ,

λβ =
m∑

n=1

λnβn|cn|α sign cn,

λγ =
m∑

n=1

λnγncn + h′,

h′ =

{
h, α ≠ 1,
h− (2/π)

∑m
n=1 λnβncn ln |cn|, α = 1.

We mention some special cases that are of independent interest.

(a) An arbitrary admissible parameter quadruple (α, β , γ , λ ) and any
β1 ≤ β and β2 ≥ β uniquely determine positive c1, c2 and real h such
that

Y(α, β , γ , λ ) d= cY (α, β1) + c2Y(α, β2) + h. (3.7.5)

In form A, the parameters are inter-related as follows:

c1 = [λ (β2 − β)/(β2 − β1)]1/α ,

c2 = [λ (β − β1)/(β2 − β1)]1/α ,

h =

{
λγ , α ≠ 1,
λγ − (2/π)(β1c1 ln c1 + β2c2 ln c2), α = 1.

Choosing β1 = −1, β2 = 1, and using the equality

Y(α,−1) = −Y(α, 1),

we obtain

Y(α, β , γ , λ ) d= (λ /2)1/α
[
(1 + β)1/αY(α, 1)− (1− β)1/α Y(α, 1)

]
+ h.
(3.7.6)

2Here and in what follows we use rule (3.3.7).
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We hence conclude that any r.v. Y(α, β , γ , λ ) can be expressed as a
linear combination of two independent r.v.s Y(α, 1) (in the sense of
the equality d=). For standardized strictly stable r.v.’s, (3.7.6) takes
the form

Y(α, β) d= (1/2)1/α
{

(1 + β)1/αY(α, 1)− (1− β)1/αY(α, 1)
}

.
(3.7.7)

(b) For any admissible parameter quadruple (α, β , γ , λ ),

Y(α, β , γ , λ )− Y(α, β , γ , λ ) d= Y(α, 0, 0, 2λ ). (3.7.8)

(c) Any admissible parameter quadruple (α, β , γ , λ ) uniquely deter-
mines an admissible parameter quadruple (α, β∗, γ ∗, λ ) such that

Y(α, β , γ , λ )− (1/2)Y(α, β , γ , λ )− (1/2)Y(α, β , γ , λ ) d= Y(α, β∗, γ ∗, λ∗).
(3.7.9)

Thus,

β∗ = [(1− 21−α)/(1 + 21−α )]β ,

γ ∗ =

{
0, α ≠ 1,
−(β /π) ln 2, α = 1,

λ∗ = (1 + 21−α )λ .

It is not hard to see that the r.v.’s on the right-hand sides of equalities
(3.7.8)–(3.7.9) possess strictly stable distributions. This feature of the trans-
formations of independent r.v.’s with arbitrary stable distribution on the left-
hand sides of equalities appears to be very useful in the problem of statistical
estimation of the parameters of stable laws.

All the properties mentioned above are deduced from explicit expressions
for the c.f.’s of stable r.v.’s As an example, let us prove Property 3 in the case
where α ≠ 1. In terms of c.f.’s, relation (3.7.4) takes the form

g(k; α, β , γ , λ ) = eikh
m∏

n=1

g(cnk; α, βn, γn, λn). (3.7.10)

Using the explicit expression for c.f. (3.5.23), we equate the logarithms of both
parts of equality (3.7.10), and obtain

λ (ikγ − |k|α + ik|k|α−1β tan(απ/2))

= ikh +
m∑

n=1

λn(ikγncn − cα
n |k|α + ik|k|α−1cα

k βk tan(απ/2)).
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A comparison of the coefficients of the functions ik, |k|α , and ik|k|α−1 gives the
relations determining the parameters β , γ , λ . It is clear that γ and λ take
admissible values. Writing out the parameter β in the final form

β =
m∑

n=1

λn|cn|αβn sign cn

/ m∑

n=1

λn|cn|α ,

and taking the inequality |βn| ≤ 1 into account, we see that the condition |β | ≤ 1
is satisfied indeed.

Additional information about the properties of stable r.v.’s can be found
in (Zolotarev, 1986).

3.8. Conclusion
There is one particular error which is repeated in fairly many papers (connect-
ed in one way or another with stable laws). Namely, to describe the family
of stable laws they use form A for g(k) with the sign in front of itωA(k; α, β)
chosen to be ‘minus’ in the case α ≠ 1. Along with this, it is commonly assumed
that the value β = 1 corresponds to the stable laws appearing as limit distri-
butions of the normalized sums Zn with positive terms. But this assumption
contradicts the choice of ‘minus’ in front of ωA.

The error evidently become widespread because it found its way into the
well-known monograph (Gnedenko & Kolmogorov, 1954). Hall (Hall, 1981)
devoted a special note to a discussion of this error, calling it (with what seems
unnecessary pretentiousness) a ‘comedy of errors’.

Though he is undoubtedly right on the whole, in our view he exaggerates
unnecessarily, presenting the matter as if the mistake he observed is almost
universal. In reality, this defect in (Gnedenko & Kolmogorov, 1954) was noticed
long ago. For example, special remarks on this were made in (Zolotarev,
1961a; Skorokhod, 1954). And in general, there are more than a few papers
and books whose authors were sufficiently attentive and did not lapse into this
‘sin’. For example, we can mention (Linnik, 1954; Feller, 1966).
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Probability densities

4.1. Symmetric distributions

The characteristic functions uniquely determine the corresponding densities
of stable laws; nevertheless, it is hard to calculate the densities by the direct
application of the inversion theorem, because we have to operate with improp-
er integrals of oscillating functions. Therefore, all numerical calculations of
densities are based on other representations emerging from somewhat trans-
formed inversion formula. In actual practice, three basic representations are
used: convergent series, asymptotic series, and integrals of non-oscillating
functions.

We begin with expansions of symmetric distributions. For strictly stable
laws (form C),

q(x; α, δ ) = (2π)−1
∫ ∞

−∞
e−ikxg(k; α, δ ) dk

= π−1ℜ
∫ ∞

0
exp{−ikx} exp{−kαe−iδπ/2}dk. (4.1.1)

Substituting δ = 0, we obtain

q(x; α, 0) = π−1
∫ ∞

0
e−kα

cos kx dk. (4.1.2)

We expand the cosine entering the integrand into a series; after the change

103
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t = kα we obtain

q(x; α, 0) = π−1
∫ ∞

0

∞∑

m=0

(−1)m

(2m)!
(kx)2me−kα

dk

= (πα)−1
∞∑

m=0

(−1)m

(2m)!
x2m

∫ ∞

0
e−tt(2m+1)/α−1 dt

= (πα)−1
∞∑

m=0

(−1)m

(2m)!
Γ
(

2m + 1
α

)
x2m. (4.1.3)

Recalling the well-known convergence criteria, we easily see that this series
converges for α ≥ 1. In particular, for α = 2

q(x; 2, 0) = (2π)−1
∞∑

m=0

(−1)m

(2m)!
Γ(m + 1/2)x2m = (2

√
π)−1

∞∑

m=0

(2m− 1)!!
(2m)!

(−x2/2)m

= (2
√

π)−1
∞∑

m=0

1
m!

(−x2/4)m = (2
√

π)−1 exp{−x2/4},

and we arrive at the normal distribution, whereas for α = 1

q(x; 1, 0) = π−1
∞∑

m=0

(−x2)m =
1

π(1 + x2)

the series stands for the Cauchy distribution.
In order to get a convergent series for α < 1, we have to transform the

integration path; we will dwell upon this in following section, while here we
make use of formula 82 of (Oberhettinger, 1973)
∫ ∞

0
kµ exp(−akc) cos(kx)dk

= −
∞∑

n=0

{(−a)n(n!)−1Γ(µ + 1 + nc) sin[π(µ + nc)/2]}x−µ−1−nc,

which holds for µ > −1 and 0 < c ≤ 1. Setting µ = 0, a = 1, and c = α, we
arrive at the series

q(x; α, 0) = π−1
∞∑

n=1

(−1)n−1

n!
Γ(nα + 1) sin(nαπ/2)x−nα−1, (4.1.4)

which converges for α < 1.
By integrating (4.1.3) from 0 to x and (4.1.4) from x to∞, we immediately

obtain the corresponding expansions of the distribution functions G(x; α, 0).
Since, in view of symmetry,

G(0; α, 0) = 1/2,
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Figure 4.1. Integration contour C for α < 1

we obtain

G(x; α, 0) =





1− π−1
∞∑

n=1

(−1)n

n!
Γ(nα) sin(nαπ/2)x−nα , α < 1,

1/2 + (πα)−1
∞∑

m=0

(−1)m

(2m + 1)!
Γ
(

2m + 1
α

)
x2m+1, α ≥ 1. (4.1.5)

4.2. Convergent series for asymmetric
distributions

We turn back to the universal formula (4.1.1). Because

q(x; α, δ ) = q(−x; α,−δ ), (4.2.1)

it suffices to evaluate the integral

q(x; α, δ ) = π−1ℜ
∫ ∞

0
exp{−ikx} exp{−kαe−iδπ/2}dk (4.2.2)

for all δ and and x belonging to either positive or negative semiaxis.
Let α < 1, −α < δ ≤ α, and x > 0. By virtue of the Cauchy theorem, the

integral ∮

C
exp{−izx− zαe−iδπ/2}dz

along the closed contour given in Fig. 4.1 vanishes. Setting r → 0 and R →∞,
by making use of the Jordan lemma we obtain

∫ ∞

0
exp{−ikx− kαe−iδπ/2}dk = −i

∫ ∞

0
exp{−xk− kαe−iρπ}dk, (4.2.3)

where ρ = (δ + α)/2. Changing xk for t in the right-hand side and substituting
the result into (4.2.2), we obtain

q(x; α, δ ) =
1

πx
ℜ
{
−i
∫ ∞

0
exp{−t− (t/x)αe−iρπ}dt

}
.
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Expanding exp[−(t/x)αe−i(ρπ)] into a series and interchanging integration and
summation signs, we arrive at the representation of a stable density (for α < 1
and any x > 0) in the form of a convergent series

q(x; α, δ ) = π−1
∞∑

n=1

(−1)n−1Γ(αn + 1)
n!

sin (nρπ) x−αn−1. (4.2.4)

Using the known relation

sin(πx) =
π

Γ(x)Γ(1− x)
, (4.2.5)

we are able to rewrite (4.2.4) in the equivalent form containing only gamma
functions

q(x; α, δ ) =
∞∑

n=1

(−1)n−1

n!
Γ(αn + 1)

Γ(ρn)Γ(1− ρn)
x−αn−1, ρ = (δ + α)/2. (4.2.6)

We recall that in the domain α < 1 the asymmetry parameter δ ranges
from −α to α, which corresponds to βA varying between −1 and 1. We set
δ = α and use formula (4.2.1) for negative x:

q(x; α, α) = q(|x|; α,−α).

Substituting series (4.2.4) into the right-hand side of this equality with ρ = 0,
we obtain

q(x; α, α) = 0, x < 0, α < 1.

Therefore, a stable distribution with parameters α < 1 and δ = α
(βA = βB = 1) is concentrated in the positive semi-axis. Similarly, a distri-
bution with parameters α < 1 and δ = −α (βA = βB = −1) is concentrated in
the negative semiaxis.

Let us consider the special case of a distribution concentrated in the posi-
tive semiaxis with characteristic parameter α = 1/2 (δ = ρ = 1/2). Because the
factor

1
Γ(1− ρn)

=
1

Γ(1− n/2)

vanishes at all even natural n, sum (4.2.6) contains only summands with odd
indices n = 2m + 1, m = 0, 1, 2… Passing to summation over m, we obtain

q(x; 1/2, 1/2) =
∞∑

m=0

Γ(m + 3/2)
(2m + 1)! Γ(m + 1/2)Γ(1/2−m)

x−m−3/2

=
1
2

∞∑

m=0

1
(2m)! Γ(1/2−m)

x−m−3/2. (4.2.7)
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Figure 4.2. Integration contour C for α > 1

Taking advantage of the well-known relations

(2m)! = Γ(2(m + 1/2)) =
22m
√

π
Γ(m + 1/2)Γ(m + 1)

and
Γ(1/2−m)Γ(1/2 + m) =

π
cos πm

=
π

(−1)m ,

we rewrite (4.2.7) as

q(x; 1/2, 1/2) =
x−3/2

2
√

π

∞∑

m=0

(−1)m

m!
(4x)−m

=
1

2
√

π
x−3/2 exp{−1/(4x)}, x ≥ 0

which corresponds to the Lévy law. It might be well to point out that there
exists no power expansions of one-sided distributions with respect to the point
x = 0: derivatives of all orders at this point are equal to zero.

For α > 1 and x > 0 the form of the contour C depends on the sign of δ : (see
Fig. 4.2). In either case the integrals along the arcs tend to zero as r → 0 and
R →∞. By the Cauchy theorem,

∫ ∞

0
exp{−ikx− kαe−iδπ/2}dk = eiδπ/(2α)

∫ ∞

0
exp{−ikxeiδπ/(2α) − kα}dk.

Changing kα for t, we obtain
∫ ∞

0
exp{−ikx−kαe−iδπ/2}dk = α−1eiδπ/(2α)

∫ ∞

0
exp{−ixt1/α eiδπ/(2α)}e−tt1/α−1 dt.
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Substituting this expression into (4.2.2), we obtain

q(x; α, δ ) = (απ)−1ℜ
{

eiδπ/(2α)
∫ ∞

0
exp{−ixt1/αeiδπ/(2α)}e−tt1/α−1 dt

}
;
(4.2.8)

expanding the first exponential in the integrand into a series, we arrive at the
series

q(x; α, δ ) =
1
π

∞∑

n=1

(−1)n−1 Γ(n/α + 1)
n!

sin(nρπ/α)xn−1, x > 0, (4.2.9)

which converges for α > 1 and all admissible δ . Once more using (4.2.5), we
arrive at an analogue of (4.2.6) for α > 1

q(x; α, δ ) =
∞∑

n=1

(−1)n−1

n!
Γ(n/α + 1)

Γ(nρ/α)Γ(1− nρ/α)
xn−1. (4.2.10)

Now the extreme (that is, with δ = ±(2 − α)) distributions are not one-sided
but are dispersed along the whole axis from −∞ to∞.

In the symmetric case δ = 0, ρ = α/2, the series (4.2.6) and (4.2.10) take
the forms (4.1.4) and (4.1.3) respectively.

The contributions of the leading terms of the expansions for some distri-
butions are given in Figures 4.3–4.6 (the numbers near the curves show how
many leading terms of the expansion are used).

Beyond the scope of strictly stable laws, we are able to arrive at the expan-
sion of qB(x; 1, β), β ≠ 0 (Zolotarev, 1986):

qB(x; 1, β) = π−1
∞∑

n=1

(−1)n−1nbn(β)xn−1, (4.2.11)

where

bn(β) =
1

Γ(n + 1)

∫ ∞

0
exp{−βt ln t}tn−1 sin

[
(1 + β)tπ/2

]
dt. (4.2.12)

We integrate (4.2.4) along the semiaxis (x,∞) and (4.2.9), (4.2.11) along the
interval (0, x), and thus obtain the corresponding expansions for the distribu-
tion functions. For α < 1 and x > 0,

1− G(x; α, δ ) = (πα)−1
∞∑

n=1

(−1)n−1 Γ(αn + 1)
n!n

sin(nρπ)x−αn; (4.2.13)

for α > 1 and x > 0,

G(x; α, δ )− G(0; α, δ ) = π−1
∞∑

n=1

(−1)n−1 Γ(n/α + 1)
n!n

sin(nρπ/α)xn;(4.2.14)
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Figure 4.3. Representation of qC(x; 1/2, 0) by (4.2.6) (for large x) and by (4.3.3)
for small x (the numbers near the curves show how many leading
terms of the expansion are used)

for α = 1, β > 0,

GB(x; 1, β) = 1− π1b0(β) + π−1
∞∑

n=1

(−1)n−1bn(β)xn, (4.2.15)

where the coefficients bn(β) are determined by formula (4.2.12), too. The value
of the distribution function G(0; α, β) entering into (4.2.14) will be determined
in Section 4.5.

As concerns one-sided stable distributions qB(x; α, 1), α < 1, there exists an
expansion into a convergent series in the generalized Laguerre polynomials

L(s)
n (x) =

(
Γ(n + 1)

Γ(n + 1 + s)

)1/2 n∑

k=0

(−1)k Γ(n + 1 + s)xk

Γ(k + 1)Γ(n− k + 1)Γ(1 + s + k)
,

s > −1, n = 0, 1, …, that form a complete orthonormalized system in the
Hilbert space of real-valued functions on [0,∞) which are square integrable
with respect to the measure µ(dx) = xs exp(−x) dx. According to (Brockwell
& Brown, 1978), for any α ∈ (0, 1) and x > 0, the density qB(x; α, 1) can be



110 4. Probability densities

Figure 4.4. Representation of qC(x; 3/2, 0) by (4.2.10) (for small x) and by (4.3.2)
for large x (the numbers near the curves show how many leading
terms of the expansion are used)

represented in the form of a convergent series

qB(x; α, 1) = x exp(−x)
∞∑

n=0

k(s)
n (α)L(s)

n (x),

where s is an arbitrary fixed number exceeding −1, and

k(s)
n (α) = α

(
Γ(n + 1)

Γ(n + 1 + s)

)1/2 n∑

m=0

(−1)mΓ(1 + s + n)
Γ(m + 1)Γ(n−m + 1)Γ(1 + α(s + m))

.

For the sake of brevity, we use various asymmetry parameters. All of them,
except ρ = α/2, are equal to zero for symmetric laws. The extreme values of
the parameters used are given in Table 4.1.

4.3. Long tails
As we have seen in the preceding section, the support of G(x; α, δ ) is the semi-
axis (0,∞) in the case where α < 1, δ = α; the semiaxis (−∞, 0) in the case
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Figure 4.5. Representation of one-sided qC(x; 1/2, 1/2) by (4.2.6) (the numbers
near the curves show how many leading terms of the expansion are
used)

Table 4.1. Extreme values of asymmetry parameters

Graphs
βA −1 −1
βB −1 1

α < 1 δ −α α
ρ 0 α
θ −1 1

Graphs
βA −1 1
βB −1 1

α > 1 δ 2− α α − 2
ρ 1 α − 1
θ 2/α − 1 1− 2/α
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Figure 4.6. Representation of extreme qC(x; 3/2,−1/2) by (4.2.10) in a neighbor-
hood of x = 0; the numbers near the curves show how many leading
terms of the expansion are used, label 4 stands for representation
by the first leading term of (4.7.12) in the domain of left short tail

where α < 1, δ = −α, and the whole real axis otherwise. But this does not
allow us to judge the behavior of the functions G(x; α, δ ) and q(x; α, δ ) at x = 0
for α < 1 and at x = ∞ for 1 < α < 2 (except for the case where α = 1,
δ = 0), because these points of the complex plane are singular for the functions
under consideration: in the first case, it is the branch point, whereas in the
second case it is the essential singularity, which follows from the asymptotic
expansions of the functions G and q in neighborhoods of the corresponding
singularities. Furthermore, the expansions for short tails (x → ∞ for α > 1
and δ = 2 − α; x → −∞ for α > 1 and δ = α − 2; x → 0 for α < 1 and
δ = ±α) essentially differ from the expansions for long tails. We begin with the
analysis of long tails, and postpone the study of short tails to Section 4.7.

Let α > 1. We turn back to relation (4.2.8). Bringing the argument of the
first exponential in the integrand into the form

−ixt1/αeiδπ/(2α) = −xt1/αei(δ+α)π/(2α)

= −xt1/αe(iδ+α−1)π/(2α)eiπ/(2α),
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we turn to the integration variable

λ = xt1/αeiπ/(2α)

thus obtaining

q(x; α, δ ) = (πx)−1ℜ
{

ei(δ−1)π/(2α)
∫ ∞

0
exp

[
−λei(δ+α−1)π/(2α)

]

× exp
[
−(λ /x)αe−iπ/2

]
dλ
}

.

Applying the Taylor formula to the second exponential of the integrand,
we obtain

exp
[
−(λ /x)α e−iπ/2

]
=

m∑

n=0

(−1)n

n!
e−iπn/2(λ /x)αn +

(λ /x)α(m+1)

(m + 1)!
θ , |θ| ≤ 1.

Then

q(x; α, δ ) =
1

πx
ℜ

{
ei(δ−1)π/(2α)

[ m∑

n=0

(−1)n

n!
Jne−iπn/2x−αn

+θ
Jm+1

(m + 1)!
x−α(m+1)

]}
, (4.3.1)

where

Jn =
∫ ∞

0
λ αn exp{−λeiϕ}dλ ,

ϕ = (δ + α − 1)π/(2α) ∈ [π − 3π/(2α), π/(2α)].

To evaluate the integrals Jk, we consider the Cauchy integral in the com-
plex plane ∮

C
zαn exp{−zeiϕ}dz = 0

along the contour given in Fig. 4.7.
As r → 0 and R →∞, the integrals along the arcs vanish, and

Jn = exp(−iϕαn− iϕ)Γ(αn + 1).

Substituting this into (4.3.1) and introducing ρ = (δ + α)/2, we obtain

q(x; α, δ ) = (πx)−1
m∑

n=1

(−1)n−1Γ(αn + 1)
n!

sin(nρπ)x−αn + O(x−α(m+1))

∼ (πx)−1
∞∑

n=1

(−1)nΓ(αn + 1)
n!

sin(nρπ)x−αn, (4.3.2)
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Figure 4.7.

which is the asymptotic expansion of a strictly stable density as x → ∞ for
α > 1 and δ ≠ −α.

For α < 1 and x > 0 we use formula (4.1.1) applying the Taylor theorem to
the first exponential of the integrand, thus obtaining

e−ikx =
m∑

n=0

(−ix)n

n!
kn + θ

xm+1km+1

(m + 1)!
, |θ| ≤ 1.

Setting

Jn =
∫ ∞

0
kn exp{−kαe−iδπ/2}dk,

instead of (4.1.1) we obtain

q(x; α, δ ) = π−1ℜ

{ m∑

n=0

(−ix)n

n!
Jn + θ

xm+1

(m + 1)!
Jm+1

}
.

It is easy to evaluate the integrals Jn if we use the Cauchy theorem. Taking
the line z = u exp{iδπ/(2α)}, 0 ≤ u <∞, as the integration path, we obtain

Jn = α−1Γ((n + 1)/α) exp{i(n + 1)δπ/(2α)}.

Therefore, for α < 1 and x → 0

q(x; α, δ ) ∼ π−1
∞∑

n=1

(−1)n−1 Γ(n/α + 1)
n!

sin(nρπ/α)xn−1, (4.3.3)

where, as before, ρ = (δ + α)/2.
Following the same way, we obtain the corresponding expansions of the

distribution functions: for α < 1, x → 0,

G(x; α, δ )− G(0; α, δ ) ∼ π−1
∞∑

n=1

(−1)n−1 Γ(n/α + 1)
n!n

sin(nρπ/α)xn; (4.3.4)
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for α > 1, x →∞,

1− G(x; α, δ ) = (πα)−1
∞∑

n=1

(−1)n−1 Γ(αn + 1)
n!n

sin(nρπ)x−αn; (4.3.5)

It is easily seen that series (4.2.9) and (4.2.14) which converge for α > 1
turn into asymptotic expansions (4.3.3) and (4.3.4) as α < 1, x → 0, whereas
the series (4.2.4) and (4.2.13) which converge for α < 1, into expansions (4.3.2)
and (4.3.5) as α > 1, x → ∞. The contributions of the leading terms of the
asymptotic expansions are given in Figures 4.3–4.5.

4.4. Integral representation of stable densities
Both convergent and asymptotic expansions are convenient tool of numerical
analysis in the cases where the number of terms required to guarantee a
reasonable accuracy is not very large. Otherwise one should prefer the integral
representation of the density. From the computational viewpoint, the definite
integral can be treated as the limit of a sequence of integral sums, i.e., as a
series, too; the existence of various schemes of numerical integration offers
considerable scope for further improvements.

It is clear that the presence of oscillating integrand plagues the computa-
tion. In this section, we transform the inversion formula for stable density
into an integral of non-oscillating function.

Let

q(x; α, β) = q(−x; α,−β) = π−1ℜ
∫ ∞

0
eikxg(k; α,−β) dk. (4.4.1)

Without loss of generality, we assume that x > 0 if α ≠ 1 and β > 0 if α = 1,
and make use of form B with

ln g(k; α,−β) =

{
−|k|α exp{iβΦ(α) sign k}, α ≠ 1,
−|k|(π/2− iβ ln |k|), α = 1,

Φ(α) =

{
απ/2, α < 1,
(α − 2)π/2, α > 1.

The function g(k; α, β) allows the analytic continuation from the positive semi-
axis to the complex plane with the cut along the ray arg z = −3π/4. We denote
this continuation by g+(z; α, β). It is not hard to see that

ln g+(z; α, β) =

{
−zα exp{−iβΦ(α)}, α ≠ 1,
−z(π/2 + iβ ln z), α = 1,

where zα and ln z stand for the principal branches of these functions.
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We consider the integral

J =
∫

L
eixzg+(z; α,−β) dz ≡

∫

L
e−W(z,x) dz

along the contour L which starts from zero and goes to infinity so that the
W(z, x) takes only real values. In view of the abovesaid,

W(z, x) =

{
−ixz + zα exp{iβΦ(α)}, α ≠ 1,
−ixz + z(π/2− iβ ln z), α = 1.

Substituting
z = ρeiϕ = ρ cos ϕ + iρ sin ϕ

and keeping in mind that

zα exp{iβΦ} = ρα exp{i(αϕ + βΦ)}
= ρα cos(αϕ + βΦ) + iρα sin(αϕ + βΦ),

we obtain

W(z, x) = ρα cos(αϕ + βΦ) + xρ sin ϕ
− i

[
xρ cos ϕ − ρα sin(αϕ + βΦ)

]
, α ≠ 1,

W(z, x) = ρ
[
x sin ϕ + (π/2 + βϕ) cos ϕ + β sin ϕ ln ρ

]

− iρ
[
x cos ϕ + β cos ϕ ln ρ − (π/2 + βϕ) sin ϕ

]
, α = 1.

Setting

ℑW(z, x) =

{
xρ cos ϕ − ρα sin(αϕ + βΦ) = 0, α ≠ 1,
x cos ϕ + β cos ϕ ln ρ − (π/2 + βϕ) sin ϕ = 0, α = 1,

(4.4.2)

we arrive at the equation for the contour L in the polar coordinates:

ρ(ϕ) =
(

sin(αϕ + βΦ)
x cos ϕ

)1/(1−α)

, α ≠ 1, (4.4.3)

ρ(ϕ) = exp {−x/β +
(
ϕ + π/(2β) tan ϕ

)
} , α = 1. (4.4.4)

The following lemma allows us to change integration along the real semi-
axis in (4.4.1) for integration along the contour L whose points satisfy (4.4.2).

LEMMA 4.4.1. In the complex plane z with the cut along the ray arg z = −3π/4,
let {Γ} be a family of contours possessing the following properties each:

(1) it begins at z = 0;
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(2) it does not cross the cut;

(3) it goes to infinity so that, beginning with some place, the argument of all
its points lies in the domain

0 ≤ arg z ≤ π − ε,
ε − [π/2− βΦ(α)]/α ≤ arg z ≤ [π/2 + βΦ(α)]/α,

where 0 < α < 2, |β | ≤ 1, and ε > 0 is as small as desired.

Then for any contour Γ and any pair of admissible parameters α, β we have
∫ ∞

0
eizxg+(z; α,−β) dz =

∫

Γ
eizxg+(z; α,−β) dz.

The proof of this lemma was given in (Zolotarev, 1986), where, in addition,
it was established that the contour L determined by (4.4.2) belongs to the
family {Γ}. Therefore,

q(x; α, β) = π−1ℜ
∫ ∞

0
e−W(z,x) dz = π−1

∫

L
e−V(ϕ,x) d(ρ cos ϕ), (4.4.5)

where

V(ϕ, x) = ρ(ϕ)x sin ϕ + ρα (ϕ) cos(αϕ + βΦ), α ≠ 1, (4.4.6)
V(ϕ, x) = ρ(ϕ)[x sin ϕ + (π/2 + βϕ) cos ϕ + β sin ϕ ln ρ(ϕ)], α = 1. (4.4.7)

We arrive at the final form of V(ϕ, x) after substituting ρ = ρ(ϕ): for α ≠ 1

V(ϕ, x) = ρα sin(αϕ + βΦ) sin ϕ
cos ϕ

+ ρα cos(αϕ + βΦ)

= ρα cos((α − 1)ϕ + βΦ)
cos ϕ

; (4.4.8)

for α = 1

V(ϕ, x) = ρ(βϕ + π/2)(cos ϕ + sin2 ϕ/ cos ϕ). (4.4.9)

In order to give the final form of the integral representation, we have to
clear up the structure of the differential d(ρ cos ϕ). We begin with the case
α ≠ 1. By virtue of (4.4.2)

xρ cos ϕ = ρα sin(αϕ + βΦ).

Therefore,

x d(ρ cos ϕ) = αρα cos(αϕ + βΦ) dϕ + αρα−1 sin(αϕ + βΦ) dρ
= αρα cos(αϕ + βΦ) dϕ + αx cos ϕ dρ
= αx d(ρ cos ϕ) + α[xρ sin ϕ + ρα cos(αϕ + βΦ)] dϕ.
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ℑz ℑz

ℜz ℜz

α = 3/2 α = 1/2

Figure 4.8. The family of contours L for α = 3/2, α = 1/2, x = 1, and various β

The second term is αV(ϕ, x) dϕ, thus

x d(ρ cos ϕ) = αx d(ρ cos ϕ) + αV(ϕ, x) dϕ,

hence

d (ρ cos ϕ) =
α

(1− α)x
V(ϕ, x) dϕ, α ≠ 1. (4.4.10)

The integration limits in ϕ are determined by

ρ(ϕ1) = 0, ρ(ϕ2) =∞.

For α < 1
ϕ1 = −βπ/2, ϕ2 = π/2,

whereas for α > 1
ϕ1 = π/2, ϕ2 = β(π/α − π/2).

The corresponding families of contours are given in Fig. 4.8.
Substituting (4.4.10) into (4.4.5), we obtain (for x > 0)

q(x; α, β) =
α

π(1− α)x

∫ ϕ2

ϕ1

V(ϕ, x) dϕ. (4.4.11)

In view of (4.4.3) and (4.4.8),

V(ϕ, x) =
[

sin(αϕ + βΦ)
x cos ϕ

]α/(1−α) cos((α − 1)ϕ + βΦ)
cos ϕ

.
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We set

U(ϕ; α, β) =
[

sin(αϕ + βΦ(α))
cos ϕ

]α/(1−α) cos((α − 1)ϕ + βΦ(α))
cos ϕ

, (4.4.12)

and obtain

V(ϕ, x) = xα/(α−1)U(ϕ; α, β). (4.4.13)

Returning to (4.4.11) and using the relation

q(−x; α, β) = q(x; α,−β),

we arrive at the formula

q(x; α, β) =
α|x|1/(α−1)

π|1− α|

∫ π/2

−β∗Φ/α
exp{−|x|α/(α−1)U(ϕ; α, β∗)}U(ϕ; α, β∗) dϕ

(4.4.14)

which is true for all x, where

β∗ =

{
β , x > 0,
−β , x < 0.

For α = 1, the way described above leads us to

q(x; 1, β) =
1

π|β |e
−x/β

∫ π/2

−π/2
exp{−e−x/βU(ϕ; 1, β)}U(ϕ; 1, β) dϕ, (4.4.15)

where
U(ϕ; 1, β) =

π/2 + βϕ
cos ϕ

exp{(ϕ + π/(2β)) tan ϕ}.

Expressions (4.4.14) and (4.4.15) are exactly the representations of stable
densities as integrals of non-oscillating functions sought for. Differentiating
them, we arrive at integral representations of derivatives of densities (Lukacs,
1960; Zolotarev, 1986), while integrating them we obtain representations of
distribution functions. Let us dwell on the latter topic.

4.5. Integral representation of stable distribution
functions

Integrating (4.2.1) we see that the relation

G(−x; α, β) + G(x; α,−β) = 1 (4.5.1)

is valid for all real x and all admissible (in forms A and B) parameters α, β .
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Let α < 1, x > 0. Since

dxα/(α−1) =
α

α − 1
x1/(α−1) dx,

by integrating (4.4.14) (form B) we obtain

G(x; α, β) = 1−
∫ ∞

x
q(x′; α, β) dx′

= 1 + π−1
∫ π/2

−βπ/2
dϕ

×
∫ ∞

x
exp{−(x′)α/(α−1)U(ϕ; α, β)}d{(x′)α/(α−1)U(ϕ; α, β)}

= 1− π−1
∫ π/2

−βπ/2
dϕ
∫ V(ϕ,x)

0
e−y dy

= (1− β)/2 + π−1
∫ π/2

−βπ/2
e−V(ϕ,x) dϕ, (4.5.2)

where the function V(ϕ, x) is determined by formulae (4.4.12) and (4.4.13).
For α > 1 and x > 0,

G(x; α, β) = 1− π−1
∫ π/2

−βΦ/α
dϕ
∫ ∞

V(ϕ,x)
e−y dy

= 1− π−1
∫ π/2

−βΦ/α
e−V(ϕ,x) dϕ. (4.5.3)

Finally, for α = 1 and β > 0,

G(x; 1, β) = π−1
∫ π/2

−π/2
exp{e−x/β U(ϕ; 1, β)}dϕ. (4.5.4)

The cases where x < 0 for α ≠ 1 and where β < 0 for α = 1 are reduced to the
just analyzed by (4.5.1).

Let us find the value of the distribution function at the point x = 0. We
recall that

V(ϕ, x) = xα/(α−1)U(ϕ; α, β);

therefore, for α < 1
V(ϕ, x) →∞, x → 0,

whereas for α > 1
V(ϕ, x) → 0, x → 0.

In the former case, (4.5.2) yields

G(0; α, β) = (1− β)/2, (4.5.5)
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and in the latter case formula (4.5.3) yields

G(0; α, β) = 1/2− βΦ(α)/(απ). (4.5.6)

Since

Φ(α) =

{
απ/2, α < 1,
(α − 2)π/2, α > 1,

formula (4.5.6) unifies the two cases α < 1 and α > 1. The property

G(0; α, 1) = 0

following from (4.5.5) has been discussed above (see Section 4.2).

4.6. Duality law
This law relates, in the framework of the class of strictly stable distributions,
the distributions with parameter α ≥ 1 to the distributions with parameter
α ′ = 1/α. In what follows, we use form C.

DUALITY LAW. For any pair of admissible parameters α ≥ 1, δ , and any x > 0
the equalities

α[1− G(x; α, δ )] = G(x−α ; α ′, δ ′)− G(0; α ′, δ ′), (4.6.1)

q(x; α, δ ) = x−1−αq(x−α ; α ′, δ ′) (4.6.2)

are true, where the parameters α ′, δ ′ relate to α, δ as follows:

α ′ = 1/α, δ ′ + α ′ = (δ + α)/α. (4.6.3)

Relation (4.6.2) is the result of differentiation of (4.6.1), so it suffices to
establish the validity of (4.6.1). By virtue of (4.5.3), the left-hand side of
equality (4.6.1) can be represented as

α[1− G(x; α, δ )] = (α/π)
∫ π/2

−δπ/(2α)
exp{−xα/(α−1)U(ϕ; α, δ )}dϕ, (4.6.4)

where we utilize the formula δ = 2βΦ(α)/π which relates the asymmetry pa-
rameters δ and β in forms C and B respectively (see Section 3.6). Since
α ′ = 1/α, we obtain

xα/(α−1) = (x−α )1/(1−α) = (x−α )α′/(α′−1). (4.6.5)
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Moreover,

U(ϕ; α, δ ) =
[

sin(αϕ + δπ/2)
cos ϕ

]α/(1−α) cos((α − 1)ϕ + δπ/2)
cos ϕ

=
[

sin(αϕ + δπ/2)
cos ϕ

]1/(1−α) cos((α − 1)ϕ + δπ/2)
sin(αϕ + δπ/2)

=
[

cos ϕ
sin αϕ + δπ/2

]α′/(1−α′) cos((α − 1)ϕ + δπ/2)
sin(αϕ + δπ/2)

.

Introducing
ϕ ′ = π/2− (αϕ + δπ/2),

we obtain

αϕ + δπ/2 = π/2− ϕ ′,

(α − 1)ϕ + δπ/2 = (α ′ − 1)ϕ ′ + δ ′π/2;

hence

U(ϕ; α, δ ) =
[

sin(α ′ϕ ′ + δ ′π/2)
cos ϕ ′

]α′/(1−α′) cos((α ′ − 1)ϕ ′ + δ ′π/2)
cos ϕ ′

= U(ϕ ′; α ′, δ ′). (4.6.6)

The integration limits ϕ1 = −δπ/(2α), ϕ2 = π/2 are transformed into ϕ ′1 =
π/2, ϕ ′2 = −δ ′π/(2α ′). Since

dϕ = −α ′dϕ ′, (4.6.7)

substituting (4.6.5)–(4.6.7) into (4.6.4) we obtain

α[1− G(x; α, δ )] = π−1
∫ π/2

−δ ′π/(2α′)
exp{−(x−α )α′/(α′−1)U(ϕ ′; α ′, δ ′)}dϕ ′

In view of (4.5.2) and (4.5.5), the right-hand side of the above equality is exactly
the right-hand side of (4.6.1), as we wished to prove.

We do not need to consider the case where α = 1 in its own right, because
the validity of (4.6.1) follows from the continuity of the distributions belonging
to the class of strictly stable laws in α, δ in the whole domain of variation of
these parameters.

In terms of random variables, the duality law can be expressed as follows:

αP{Y(α, δ ) ≥ x} = P{1/Y(α ′, δ ′) > xα}.
In particular, if α = 1 and δ = 0, then α ′ = 1 and δ ′ = 0; therefore,

Y(1, 0) d= [Y(1, 0)]−1.

If α = 1/2 and δ = 1/2, then α ′ = 2 and δ ′ = 0, which yields

Y(1/2, 1/2) = [Y(2, 0)]−2.

We have discussed this in Section 2.3.
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4.7. Short tails
The formulae of the preceding sections allow us to conclude the asymptotic
analysis of stable densities with examination of the behaviour of the short
tails (that is, x → 0 for α < 1, β = 1, and x → ∞ for α ≥ 1, β = −1 in form B).
This study is based on the well-known method of asymptotic representation of
integrals due to Laplace. We utilize one of the simplest versions of this method
given in (Zolotarev, 1986).

We consider even, analytic on the interval (−π, π) functions s(ψ) and ω(ψ),
and assume that

(1) w(ψ) is strictly monotone in the interval (0, π);

(2) µ = s(0) > 0, τ = w(0) > 0, σ2 = w′′(0) > 0;

(3) s(ψ) = O(w(ψ)) as ψ → π.

With the use of these functions, we consider the integrals

IN = (2π)−1
∫ π

−π
s(ψ) exp{−Nw(ψ)}dψ , (4.7.1)

which exist for any N > 0.

LEMMA 4.7.1. As N →∞, the representation

IN ∼
µ√
2πσ

N−1/2 exp(−τN)

[
1 +

∞∑

n=1

QnN−n

]
(4.7.2)

holds, where

Qn =
1√
2π

∫ ∞

−∞
pn(ψ)e−ψ2/2dψ , (4.7.3)

and pn(ψ) are polynomials which are the coefficients of the expansion into series
in powers of h2 = (σ2N)−1 of the even function

ω(ψ , h) =
1
µ

s(ψh) exp
{
− 1

σ2h2

[
w(ψh)− τ − (σψh)2/2

]}

= 1 +
∞∑

n=1

pn(ψ)h2n. (4.7.4)

We set β = 1 in (4.4.14) and consider the case α < 1 where Φ(α) = απ/2.
For x > 0 we obtain

q(x; α, 1) =
αx1/(α−1)

π(1− α)

∫ π/2

−π/2
exp

{
−xα/(α−1)U(ϕ; α, 1)

}
U(ϕ; α, 1) dϕ,
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where

U(ϕ; α, 1) =
[

sin(α(ϕ + π/2))
cos ϕ

]α/(α−1) cos((α − 1)ϕ + απ/2)
cos ϕ

.

Changing ϕ + π/2 for ψ , we transform the function xα/(α−1)U(ϕ; α, 1) into
ξ (x, α)w(ψ , α), where

ξ (x, α) = (1− α)(α/x)α/(1−α),

w(ψ , α) =
[

sin(αψ)
α sin ψ

]α/(α−1) sin((1− α)ψ)
(1− α) sin ψ

.

The density q(x; α, 1) thus becomes

q(x; α, 1) =
[ξ (x, α)]1/α

2π(1− α)1/α

∫ π

−π
w(ψ , α) exp{−ξ (x, α)w(ψ , α)}dψ . (4.7.5)

If α = 1, β = −1, we obtain

q(x; 1,−1) =
1

2π
ξ (x, 1)

∫ π

−π
w(ψ , 1) exp{−ξ (x, 1)w(ψ , 1)}dψ , (4.7.6)

where

ξ (x, 1) = exp(x− 1),

w(ψ , 1) =
ψ

sin ψ
exp(1− ψ cot ψ).

For α > 1 the function w = w(ψ , α) is defined via the function w(ψ , α) with
α < 1 by changing α for 1/α.

Setting

ν = ν(α) =

{
|1− α|−1/α , α ≠ 1
1, α = 1,

we reduce (4.7.5) and (4.7.6) to

q(x; α, β) =
ν(α)
2π

[ξ (x, α)]1/α
∫ π

−π
w(ψ , α) exp{−ξ (x, α)w(ψ , α)}dψ , (4.7.7)

This formula remains valid for α > 1 as well, which immediately follows from
the duality law and the following properties of the function ξ (x, α): if α > 1,
then for any x > 0

ξ (x−α , 1/α) = ξ (x, α);

and
ν(1/α)[ξ (x−α , 1/α)]αx−(1+α) = ν(α)[ξ (x, α)]1/α .
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Similarly we can rewrite distribution functions in a unified form with the
use of the duality law and relations (4.5.3), (4.5.4) in the cases α < 1, β = 1,
and α ≥ 1, β = −1 as follows:

1
2π

∫ π

−π
exp{−ξ (x, α)w(ψ , α)}dψ =

{
G(x; α, 1), α < 1,
1− G(x; α,−1), α ≥ 1.

(4.7.8)

For the sake of convenience we set

α∗ =

{
α, if α < 1,
1/α, if α ≥ 1.

(4.7.9)

The function ξ (x, α) increases beyond all bounds as x → 0 and as x → ∞,
provided that α ≥ 1, β = −1, whereas the function w(ψ , α), as one can see from
its definition, is an even analytic function in the interval (−π, π) such that

τ = w(0, α) = 1, σ2 = w′′(0, α) = α∗ > 0.

Thus, condition (2) is satisfied.
To see whether or not condition (1) is fulfilled, we consider the function

h(α, ψ) = α cot(αψ)− cot ψ

in the domain 0 < ψ < π. Since

∂h/∂α = [2 sin2(αψ)]−1[sin(2αψ) − 2αψ] < 0,

the function h(α, ψ) with fixed ψ decreases while α grows. Because h(1, ψ) = 0,
we see that

h(α, ψ) > 0 if 0 < α < 1.

Using this property, we conclude that

∂w(ψ , α)/∂ψ
w(ψ , α)

= [αh(α, ψ) + (1− α)h(1− α, ψ)]/(1− α) > 0.

It is clear that w(ψ , α) is positive for 0 < ψ < π; therefore,

∂w(ψ , α)/∂ψ > 0,

and condition (1) is hence satisfied. The third condition is also fulfilled (s(ψ) is
w(ψ , α) itself, or s(ψ) ≡ 1 ≤ w(ψ , α)), and we are able to apply Lemma 4.7.1 to
the case under consideration.

To refine the form of the asymptotic expansion we are interested in, we
have to study series (4.7.4) governing the coefficients Qn in (4.7.3) in great
depth.
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First we write the expansion into power series of the function ln w(ψ , α),
provided that α ≤ 1, making use of the known expansions of the functions
ln(ψ−1 sin ψ) and ψ cot ψ (Gradshtein & Ryzhik, 1963, 1.411, 1.518). We obtain

ln w(ψ , α) =
∞∑

n=1

an(α)ψ2n,

where

an(α) =
22n|B2n|
(2n)! 2n

[
α(1− α2n)

1− α
+ 1− (1− α)2n

]

are polynomials of degree 2n − 1 with zero constant term, and B2n are the
Bernoulli numbers. From the known Bruno formula we obtain

w(ψ , α) = 1 + αψ2/2 +
∞∑

n=2

bn(α)ψ2n, (4.7.10)

where

bn(α) = (n!)−1Cn(1! a1, 2! a2, …, n! an),

Cn(y1, y2, …yn) =
∑

k1,k2 ,…,kn≥0
k1+2k2+…+nkn=n

n!
k1! k2!…kn!

(
y1

1!

)k1
(

y2

2!

)k2

…
(

yn

n!

)kn

.

One can readily see that bn(α) are polynomials of degree 2n − 1 with zero
constant terms.

From (4.7.10) it follows that

w(ψ , α) = 1 + α∗ψ2/2 +
∞∑

n=2

bn(α∗)ψ2n,

where bn(α∗) is a rational function of α, provided that α ≥ 1.
Thus, if s(ψ) = w(ψ) = w(ψ , α), then expansion (4.7.4) takes the form

ω(ψ , h) = exp
{

ln w(ψh, α)− 1
α∗h2

[
w(ψh, α)− 1−−α∗(ψh)2/2

]}

= exp

( ∞∑

n=1

dn(ψ , α)h2n

)
= 1 +

∞∑

n=1

pn(ψ , α)h2n, (4.7.11)

where

dn(ψ , α) =
(

an(α∗)− (ψ2/α∗)bn+1(α∗)
)

ψ2n,

pn(ψ , α) =
1
n!

Cn(1! d1, 2! d2, …, n! dn)

are polynomials of degree 2(n + 1) in ψ and of degree 2n in α∗.
Applying Lemma 4.7.1 to the integral representation (4.7.7), and taking

expansion (4.7.10) into account, we arrive at the following assertion.
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THEOREM 4.7.1 (on asymptotic behavior of short tails). Let α < 1, β = 1, and
x → 0, or α ≥ 1, β = −1, and x →∞. Then

q(x; α, β) ∼ ν√
2πα

ξ (2−α)/(2α) exp(−ξ )

[
1 +

∞∑

n=1

Qn(α∗)(α∗ξ )−n

]
. (4.7.12)

The coefficients Qn, determined by (4.7.3) with pn taken from expansion (4.7.11),
are polynomials of degree 2n in α∗.

The leading term of expansion (4.7.12)

q(0)(x; α) =
(x/α)(1−α/2)/(α−1)
√

2πα|1 − α|
exp{−|1− α|(x/α)α/(α−1)}, α ≠ 1,

(4.7.13)

q(0)(x; 1) =
1√
2π

exp{(x− 1)/2− ex−1} (4.7.14)

does not depend on the parameter β . Its contribution in the case α = 3/2, β = 1
is given in Fig. 4.6.

Curiously, it was found that for α = 1/2 and α = 2 the density q(0)(x; α) is
exactly the Lévy density and the Gauss density, respectively:

q(0)(x; 1/2) = q(x; 1/2, 1), (4.7.15)

q(0)(x; 2) = q(x; 2, 0). (4.7.16)

In view of (4.7.16), formula (4.7.13) would be expected to be a good ap-
proximation to q(x; α,−1) for α close to two in a wide domain of variation
of x. Fig. 4.9 lends credence to this conjecture, and demonstrates that, due
to (4.7.15), the asymptotic term q(0)(x; α) provides us with a rather perfect
approximation to the short tail even for α ∈ (1/2, 1).

4.8. Stable distributions with α close to extreme
values

Using the infinite series expansion obtained above, one can show that if E is a
random variable distributed by the exponential law with mean one, then

|YB(α, β)|α d
→ E−1, α → +0. (4.8.1)

This result was obtained by Zolotarev (Zolotarev, 1957). We follow (Cressie,
1975) who offered a simpler way for the proof of (4.8.1).

We set
Z(α, β) = |YB(α, β)|α .
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x x

q q

Approximation of qB(x; 7/4,−1)
(bullets) by the leading term of
(4.7.13) (solid line)

Approximation of qB(x; 1/4, 1) and
qB(x; 1/2, 1) (bullets) by (4.8.7)
(solid line)

Figure 4.9.

Then Z(α, β) becomes a positive random variable, and its density p(z; α, β) has
two contributions from the density q(x; α, β) of Y(α, β): one from the point
z = x1/α , and the other, from the point z = −x1/α . Denoting them by pR(z; α, β)
and pL(z; α, β), respectively, and taking series expansion (4.2.4) into account,
we represent them as

pR(z; α, β) =
1

παz

∞∑

n=1

(−1)n−1

n!
Γ(αn + 1) sin[n(1 + β)απ/2]z−n,

(4.8.2)

pL(z; α, β) =
1

παz

∞∑

n=1

(−1)n−1

n!
Γ(αn + 1) sin[n(1− β)απ/2]z−n.

(4.8.3)

Thus

p(z; α, β) = pR(z; α, β) + pL(z; α, β). (4.8.4)

Using the elementary trigonometric formula

sin(A + B) + sin(A− B) = 2 sin A cos B,

and substituting (4.8.2), (4.8.3) into (4.8.4), we obtain

p(z; α, β) = z−2
∞∑

n=1

(−1)n−1 Γ(nα + 1) sin(nαπ/2) cos(nαβπ/2)
(n− 1)! nαπ/2

z−n+1. (4.8.5)
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If we let α → +0 and formally take the limit under the summation sign, then
we obtain

lim
α→+0

p(z; α, β) = z−2e−1/z, z > 0. (4.8.6)

The limiting distribution does not depend on the parameter β .
This can be justified by rewriting the summand of (4.8.5) as ƒn(α)—a func-

tion of α—and observing that

|ƒn(α)| ≤ 2e2n2en exp[−(1− α1)n ln n]z−n+1 ≡ an.

on [0, α1], 0 < α1 < 1. The bound is obtained by using the Stirling formula (as
was done in (Ibragimov & Linnik, 1971, §2.4). Thus,

∞∑

n=1

an <∞,

and (4.8.5) is a uniformly convergent series of continuous on [0, α1] functions.
Therefore, from (Titchmarsh, 1939), we conclude that (4.8.5) is a continuous
function of α on [0, α1], and we do not lose the rigor while deducing (4.8.2).

But (4.8.6) is exactly the distribution of the random variable E−1, because

P
{

E−1 < z
}

= P
{

E > z−1
}

= e−1/z

and
pE−1(z) = z−2e−1/z, z > 0.

Thus, (4.8.1) is true.
The asymptotic expression

qas(x; α) = αe−x−α
x−α−1, x > 0, (4.8.7)

following from (4.8.1) can be used to approximate the densities q(x; α, 1) even
for α close to 1/2 (see Fig. 4.10).

Let us turn to the consideration of a stable law with α close to another
extreme value 2. It is known that for any fixed x, as α → 2,

q(x; α, 0) = q(x; 2, 0)(1 + o(1)). (4.8.8)

On the other hand, if α is fixed and α ≠ 2, then, as x →∞,

q(x; α, 0) = k(α)x−1−α (1 + o(1)), (4.8.9)

where
k(α) = π−1Γ(α + 1) sin(απ/2)

is a positive constant depending only on α (see (4.3.2)).
Let x = ξ (α), moreover, ξ (α) →∞ as α → 2. Intuition suggests that if ξ (α)

grows fast enough, then representation (4.8.9) is valid; if ξ (α) grows rather
slowly, then (4.8.8) remains good. The following theorem (Nagaev & Shkolnik,
1988) restates this suggestion in a rigorous way.
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x

q

α = 1/2

α = 1/4

Figure 4.10. Approximation of qB(x; 1/4, 1) and qB(x; 1/2, 1) by (4.8.7) (solid line)

THEOREM 4.8.1 (on symmetric stable laws close to the normal law). Let ∆ = 2−
α → 0, x →∞. Then

q(x; α, 0) = q(x; 2, 0)(1 + o(1)) + ∆x∆−3(1 + o(1)). (4.8.10)

From (4.8.10), it follows, in particular, that representations (4.8.8) and
(4.8.9) hold true in the domains x ≤ (2 − ε)| ln ∆|1/2 and x ≥ (2 + ε)| ln ∆|1/2,
respectively, where ε > 0 is as small as desired.

4.9. Summary
Summarizing the above facts, we can issue the following idea about the densi-
ties of stable laws.

The set of stable laws is determined by a four-parameter family of densities,
while the set of strictly stable laws, by a three-parameter one.

The formulae describing the interrelations between parameters of various
forms of representations of the densities are given in Section 3.6. The property

q(x; α, β , γ , λ ) = λ−1/α q(λ−1/α (x− h); α, β , 0, 1),

where h = h(α, β , γ , λ ) is a known function (in particular, h = γ if γ ≠ 1), allows
us to exclude the shift and scale parameters from consideration and direct our
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attention to the study of

qA,B,M(x; α, β) = qA,B,M(x; α, β , 0, 1),

qC(x; α, δ ) = qC(x; α, δ , 1),

qE(x; ν, θ) = qE(x; α, ν, θ , τ0),

where

τ0 =

{
C(
√

ν − 1), α ≠ 1,
2 ln(π/2), α = 1.

The common properties of stable densities are

• continuity;

• invariance with respect to the simultaneous change of the sign of the
argument x and the asymmetry parameter β :

q(x; α,−β) = q(−x; α, β).

• for α ≠ 2, at least one of the tails appears to be long:

q(x; α, β) = O(x−α−1), x →∞, β ≠ −1;

q(x; α, β) = O(|x|−α−1), x → −∞, β ≠ 1;

• as concerns strictly stable densities, the duality law

q(x; α, δ ) = x−1−αq(x−α ; 1/α, 1 + (δ − 1)/α)

holds.

The following particular cases are useful (form B):

G(0; α, β) = (1/2)[1− (2/π)βΦ(α)/α]

=

{
(1− β)/2, α < 1,
(1− β(1− 2/α))/2, α > 1,

q(0; α, β) = π−1Γ(1 + 1/α) cos[βΦ(α)/α],

q′(0; α, β) = (2π)−1Γ(1 + 2/α) sin[2βΦ(α)/α], (4.9.1)

The graphs of the densities qA(x; α, β) obtained by means of the integral
representation are given in Figures 4.11–4.15.

The characteristic α is common for all forms and does not change during
transition from one form to another. The maximum value α = 2 corresponds
to the normal law, and the further α is from this extreme value, the greater is
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x

q

α = 0.25

α = 2.0

Figure 4.11. Symmetric stable distribution densities qA(x; α , 0) for α = 0.25,
0.50, 0.75, 1.00 (the Cauchy law), 1.25, 1.50, 1.75, and 2 (the Gauss
law)

x

q

β = 0

β = 1

Figure 4.12. Stable distribution densities qA(x; 1/2, β) for β = 0, 0.25, 0.5, 0.75,
and 1 (the Lévy law)
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x

q

β = 1 β = −1

Figure 4.13. Stable distribution densities qA(x; 3/2, β) for β = −1, −0.75, −0.50,
−0.25, 0, 0.25, 0.5, 0.75, and 1

x

q

α = 0.5

α = 0.9

Figure 4.14. One-sided stable distribution densities qA(x, α , 1) for α = 0.5 (the
Lévy law), 0.6, 0.7, 0.75, 0.8, and 0.9
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x

q

Figure 4.15. Extreme stable distribution densities qA(x; α , 1) for α = 1.25, 1.50,
and 1.75

the difference between the distribution and the normal law; the parameter β
and related ones δ and θ characterize the asymmetry of the stable law: they
are zero for symmetric distributions.

Fig. 4.11 illustrates the evolution of a symmetric stable distribution as α
decreases. It is seen that the density around the maximum grows and the
decrease rate of the tails lowers, so more probability becomes concentrated
at small and large distances from the mean, while the intermediate domain
becomes somewhat sparse as compared with the normal law.

As β ≠ 0, the distributions become asymmetric about x = 0 (Figures 4.12
and 4.13). If α < 1, then, as β grows from 0 to 1, the maximum of the density
becomes shifted into positive x, and the positive semiaxis thus holds greater
probability, which attains one for β = 1. In this extreme case, the right-
hand tail of the distribution remains long, while the left-hand one becomes
short. If α > 1, then this change of β is associated with an inverse process:
the maximum of the density is shifted into negative x and the probability
concentrated on the negative semiaxis grows, attaining G(0; α, 1) = 1/α < 1 for
1 < α < 2, Even in the extreme case β = 1, some probability remains on the
positive semiaxis whose distribution is described by a long tail opposing the
short tail on the negative semiaxis. If β ≠ ±1, both tails appear to be long.

The behavior of extreme stable densities is illustrated in Figures 4.14–4.15.
For α < 1, the extreme distributions turn out to be one-sided.

Let us make some comments concerning the evolution of the asymmetric
density q(x; α, β) while α grows and passes through 1. As we have seen, a part
of the probability (and all probability for extremal β) is instantly transferred
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from one semi-axis to another. On the face of it, we can circumvent this
weird behavior by taking Φ′(α) determined by formula (3.6.10) instead of Φ(α)
determined by (3.6.9) in representation B, which is equivalent to the change
of sign of β for α > 1, though. But this does not solve the problem.

To clear up the essence of the problem, we consider a stable distribution
as the result of summation. As we know, the extreme values 1 and −1 of
the parameter βA correspond to the well-known situation of the summation
of random variables with identical signs (positive or negative). Although this
relation is not reversible (the density qA(x; α, 1) can appear as a limit while one
sums random variables Xi of different signs), it can play the role of a simple
‘reference point’ in properties of stable laws. This remains true in other forms
of representation of stable densities, namely in forms A, M, and B (with the
use of Φ(α)), because βA = 1 corresponds to βM = βB = 1 and

δ =

{
α > 0 α < 1,
α − 2 < 0 α > 1,

θ =

{
1 α < 1,
1− 2/α < 0 α > 1.

Of course, one can re-define the parameters in the domain α > 1, but it is
more important to preserve the continuity of strictly stable distributions in
the whole domain of the admissible values of the characteristic parameters.
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Integral transformations

5.1. Laplace transformation
The characteristic functions

ϕ(k) =
∫ ∞

−∞
p(x)eikxdx,

applied in Chapter 3 to the investigation of stable laws are only particular inte-
gral transforms, namely the Fourier transforms. The methodology of integral
transformations as a whole is acknowledged to be among the most powerful
and efficient tools of the analysis. Its essence consists in that the investigation
of a function ƒ(x) is replaced by that of its integral transform

ψ(z) =
∫

D
K(z, x)ƒ(x) dx, z ∈ I,

where the sets D, I, and the function K(z, x), referred to as the kernel, deter-
mine the type of the transform. As concerns the Fourier transforms, D and I
coincide with the real axis R, whereas

K(z, x) = eizx.

The theory of integral transforms with various kernel types was presented
in (Titchmarsh, 1937). We give here some facts needed in what follows.

We begin with the Laplace transform.

DEFINITION OF THE ONE-SIDED LAPLACE TRANSFORM. Let a function ƒ(x) be de-
fined in the positive semi-axis x > 0, and let the integral

ƒ̃(λ ) =
∫ ∞

0
e−λxƒ(x) dx (5.1.1)

converge in some half-plane ℜλ > c; then the function ƒ̃(λ ) is called the (one-
sided) Laplace transform.

137
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Laplace transform (5.1.1) exists for ℜλ ≡ σ > c, the improper integral
converges absolutely and uniformly, and the transform ƒ̃(λ ) is thus an analytic
function of λ > c, provided that the integral

∫ ∞

0
e−σx|ƒ(x)|dx = lim

A→0
B→∞

∫ B

A
e−σx|ƒ(x)|dx

converges for σ = c. The infimum σa of those real c for which this condi-
tion is fulfilled is referred to as the absolute convergence abscissa of Laplace
transform (5.1.1).

The domain of definition of analytic function (5.1.1) is usually analytically
continued to the whole complex plane, except the singularities placed to the
left of the absolute convergence abscissa, and in what follows we do this with
no additional stipulation.

THEOREM 5.1.1 (uniqueness theorem). Laplace transform (5.1.1) is uniquely
determined for any function ƒ(x) admitting of such a transform. Conversely,
two functions ƒ1(x) and ƒ2(x) whose Laplace transforms coincide, coincide them-
selves for all x > 0, except for, maybe, a set of zero measure; ƒ1(x) = ƒ2(x) for all
x where both of these functions are continuous.

THEOREM 5.1.2 (inversion theorem). Let ƒ̃(λ ) be given by (5.1.1) for ℜλ > σa,
and

I(x) =
1

2πi
lim

R→∞

∫ σ+iR

σ−iR
eλxƒ̃(λ ) dλ , σ > σa. (5.1.2)

Then in any open interval where ƒ(x) is bounded and possesses a finite number
of maximum, minimum, and discontinuity points

I(x) =





(1/2)[ƒ(x− 0) + ƒ(x + 0)] x > 0,
(1/2)ƒ(0 + 0) x = 0,
0 x < 0.

In particular, for any x > 0 at which ƒ(x) is continuous

I(x) = ƒ(x).

The integration path in (5.1.2) lies to the right of all singularities of ƒ̃(λ ). If
the improper integral in (5.1.2) exists, then, provided that ƒ(x) is continuous,

ƒ(x) =
1

2πi

∫ σ+i∞

σ−i∞
eλxƒ̃(λ ) dλ . (5.1.3)

The correspondence between the basic operations over functions and their
transforms following from (5.1.1)–(5.1.3) is given in Table 5.1.
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Table 5.1. Correspondence of operations over ƒ(x) and its
Laplace transform ƒ̃(λ )

ƒ(x) ƒ̃(λ )
1 ƒ(x− a), ƒ(x) = 0 for x ≤ 0 exp(−aλ )ƒ̃(λ )

2 ƒ(bx), b > 0 ƒ̃(λ /b)/b

3 ƒ′(x) λ ƒ̃(λ ) − ƒ(0 + 0)

4
∫ x

0
ƒ(x′)dx′ ƒ̃(λ )/λ

5 ƒ1 ∗ ƒ2 ≡
∫ x

0
ƒ1(x′)ƒ2(x− x′)dx′ ƒ̃1(λ )ƒ̃2(λ )

6 −xƒ(x) ƒ̃′(λ )

7 x−1ƒ(x)
∫ ∞

λ
ƒ̃(λ ′)dλ ′

8 eaxƒ(x) ƒ̃(λ − a)

Calculation of the Laplace transform ƒ̃(λ ) of a given ƒ(x) is merely calcu-
lation of the definite (improper) integral of exp{−λx}ƒ(x) along the semi-axis
(0,∞). The reconstruction of the original from a given transform, which re-
lates to integration in the complex plane, can appear to be a more complicated
process. Before we dwell upon this problem, we note the existence of another
type of Laplace transforms, namely two-sided ones.

DEFINITION OF TWO-SIDED LAPLACE TRANSFORM. Let a function ƒ(x) be defined
on the whole axis, and let the integral

ƒ̂(λ ) =
∫ ∞

−∞
e−λxƒ(x) dx

converge along at least one line ℜλ = c. Then the function ƒ̂(λ ) is called the
two-sided Laplace transform of the function ƒ(x).

While the one-sided transforms share many common properties with the
power series, the two-sided transforms resemble the Laurent series. Its con-
vergence domain is the strip a < ℜz < b, which is allowed to degenerate into a
line as a = b.

It is worthwhile to notice that the Fourier transform ϕ(k) of a function ƒ(x)
is related to its two-sided Laplace transform ƒ̂(λ ) by

ϕ(k) = ƒ̂(−ik);

so, all properties of the Fourier transforms can be derived from the known
properties of the Laplace transforms, and vice versa. The inversion formula
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for the two-sided Laplace transforms is of the same form as for the one-sided
transform, because the latter can be considered as the two-sided transform of
a function which is equal to zero at negative x.

5.2. Inversion of the Laplace transformation
As concerns analytic methods to inverse the Laplace transformation, the most
popular of them are the residue method and the saddle point method. The
former is based on representation of improper integral (5.1.3) in the form of
the limit of a sequence of integrals In along closed contours Cn:

In =
1

2πi

∮

Cn

h(z) dz.

Here, the following assertion plays an important part.

LEMMA 5.2.1 (Jordan). Let ΓR be the arc {z : |z| = R, | arg z−ϕ0| < π/(2ν)}, and
let h(z) satisfy, along this arc, the inequality

|h
(
Reiϕ) | ≤ ε(R) exp {−Rν cos[ν(ϕ − ϕ0)]} .

If ε(R)R1−ν → 0 as R →∞, then

lim
R→∞

∫

ΓR

|h(z)||dz| = 0.

This lemma allows us to go from the integral along the line to the integral
along a closed contour; to evaluate the latter, we use the following theorem.

THEOREM 5.2.1 (theorem on residues). Let a univalent function h(z) be analyt-
ic in some domain D, except for isolated singularities, and let a closed contour
C belong, together with its interior, to the domain D, enclose a finite number
z1, z2, …, zn of singularities, and pass through none of them. Then

1
2πi

∮

C
h(z) dz =

n∑

k=1

Res h(zk),

where Res h(zk) are the residues of the function h(z) at the points zk:

Res h(zk) =
1

(m− 1)!
lim
z→zk

dm−1

dzm−1

[
(z− zk)mh(z)

]
,

zk ≠ ∞ are poles of order m. In particular, if zk is a simple pole and h(z) =
p(z)/q(z), p(z) and q(z) are analytic at zk, and p(zk) ≠ 0, then q′(zk) ≠ 0 and

Res h(zk) = p(zk)/q′(zk).
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Combining these assertions, we obtain the following theorem.

THEOREM 5.2.2 (expansion theorem). Any meromorphic tame function ƒ̃(λ ) in
some domain ℜλ > c0 satisfying the hypotheses of Jordan’s lemma such that
for any c > c0 the integral

∫ c+i∞
c−i∞ ƒ̃(λ ) dλ converges absolutely, can be considered

as the transform of the function

ƒ(x) =
∑

k

Res
[
ƒ̃(λ )eλx

]
λ=λk

,

where the sum of residues is over all singularity points λk of the function ƒ̃(λ )
arranged so that their absolute values do not decrease.

In contrast to the residue method, the saddle point method provides us
with an asymptotic approximation of the function under consideration. Let
the integral (5.1.3) be represented as

I(t) =
1

2πi

∫ σ1+i∞

σ1−i∞
etϕ(λ )H(λ ) dλ , (5.2.1)

where t is a real-valued positive parameter, the functions H(λ ) and

ϕ(λ ) ≡ u(λ ) + iv(λ )

take real values along the real axis, and the function u(λ ) attains its minimum
at the real axis. At the minimum point λ = λ 0, the derivatives of the function
u(λ ) ≡ u(x + iy) with respect to x and y become zero:

(∂u/∂x)λ 0 = (∂u/∂y)λ 0 = 0. (5.2.2)

Since the functions u(λ ) and v(λ ) are harmonic,

∂2u/∂x2 = −∂2u/∂y2, ∂2v/∂x2 = −∂2v/∂y2, (5.2.3)

while passing through the point λ 0 in a direction parallel to the imaginary
axis, the function u(λ ) = u(λ 0 + iy) attains its maximum. This point is referred
to as the saddle point. By the Cauchy–Riemann conditions

∂v/∂x = −∂u/∂y, ∂v/∂y = ∂u/∂x,

that is, the derivative of v(λ ) at the saddle point is equal to zero as well. Since
v(λ ) itself is zero along the real axis,

∂2v/∂x2 = −∂2v/∂y2 = 0,

i.e., in a neighborhood of λ 0 the function v(λ ) is almost zero along a line parallel
to the imaginary axis. We shift the integration contour in (5.2.1) so that it



142 5. Integral transformations

passes through the saddle point λ 0 but remains parallel to the imaginary axis.
Then in a neighborhood of this point the function

exp{tϕ(λ )} = exp{tu(λ 0 + iy)}

for large t quickly increases as y tends to zero (from the side of negative y),
peaks sharply at y = 0 (i.e., λ = λ 0) and then quickly decreases. The greater is
t, the narrower and higher is the peak of exp{tϕ(λ )}, yielding more grounds to
ignore the variation of the continuous function H(λ ) under the integral sign,
i.e., to factor out its value at the point λ 0 from the integral:

I(t) ∼ H(λ 0)
2πi

∫ λ 0+i∞

λ 0−i∞
exp{tu(λ )}dλ , t →∞.

Expanding u(λ0 + iy) into series in y at the saddle point

u(λ 0 + iy) = u(λ 0) + y[∂u(λ 0, y)/∂y]y=0 + (y2/2)[∂2u(λ 0, y)/∂y2]y=0 + …

and taking (5.2.2) and (5.2.3), into account, we obtain

u(λ 0, y) = ϕ(λ 0)− |ϕ ′′(λ 0)|y2/2 + …,

where
|ϕ ′′(λ 0)| =

[
∂2u(x, 0)/∂x2

]
λ 0

.

Since dλ = i dy, we arrive at the expression

I(t) ∼ H(λ 0)
2π

etϕ(λ 0)
∫ ∞

−∞
e−|ϕ

′′(λ 0)|y2t/2 dy.

Setting
|ϕ ′′(λ 0)|y2t/2 = z2,

the integral is reduced to the Poisson integral
∫ ∞

−∞
e−z2

dz =
√

π,

and we obtain the final result

I(t) ∼ 1√
2π|ϕ ′′(λ 0)|t

H(λ 0)etϕ(λ 0), t →∞, (5.2.4)

where the saddle point λ 0 is determined by the saddle point condition

ϕ ′(λ 0) = 0. (5.2.5)
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5.3. Tauberian theorems
Obviously, if we take as ƒ(x) a distribution density p(x), then the integral

p̃(λ ) =
∫ ∞

0
e−λxp(x) dx

converges in the half-plane ℜλ ≥ 0.
Based on the definition of the mathematical expectation, this formula can

be rewritten as
p̃(λ ) = Ee−λX ,

where X is a random variable with distribution density p(x). We take the last
relation as the definition of the Laplace–Stieltjes transform of the distribution
F(x), in other words,

p̃(λ ) =
∫ ∞

0
e−λx dF(x). (5.3.1)

For our purposes, it is convenient to extend definition (5.3.1), to the whole class
of measures, i.e., to measures which do not have to be probability distributions
(as was done by Feller):

m̃(λ ) =
∫ ∞

0
e−λx dM(x), (5.3.2)

where M(x) is an analogue of distribution function, i.e., a measure concentrated
in the interval [0, x]. The difference between (5.3.2) and (5.3.1) consists in that
M(x) does not need to tend to one as x → ∞ and therefore, m̃(λ ) does not
necessarily tend to one as λ → 0. The Tauberian theorems just establish a
connection between the asymptotic behavior of the measure M(x) or its density
m(x) = M′(x) as x → ∞ and the behavior of its Laplace transform m̃(λ ) as
λ → 0.

We consider a simple example. Let

M(x) = Axµ , µ ≥ 0, x > 0; (5.3.3)

then
m(x) = µAxµ−1,

and
m̃(λ ) = µA

∫ ∞

0
e−λxxµ−1 dx = AΓ(µ + 1)λ−µ .

The Tauberian theorems deal with arbitrary functions M(x) which satisfy
(5.3.3) asymptotically, as x → ∞. Moreover, it is possible to weaken the
requirements imposed on the asymptotic form and rewrite it as

M(x) ∼ L(x)xµ , x →∞,
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where L(x) is a slowly varying function as x →∞, i.e., a function that satisfies
the condition

L(tx)/L(t) → 1, t →∞, (5.3.4)

for any fixed x (for example, ln x or any its power satisfy this condition).

THEOREM 5.3.1. If L(x) slowly varies at infinity and 0 ≤ µ < ∞, then the
relations

M(x) ∼ L(x)xµ , x →∞, (5.3.5)

and

m̃(λ ) ∼ L(1/λ )Γ(µ + 1)λ−µ , λ → 0 (5.3.6)

are equivalent.

THEOREM 5.3.2. Tauberian Theorem 5.3.1 remains valid if we reverse the roles
of zero and infinity, that is, if we let x → 0 and λ →∞.

THEOREM 5.3.3. Let 0 < µ < ∞. If M(x) possesses a monotone, beginning with
some place, derivative m(x), then

m(x) ∼ µL(x)xµ−1, x →∞, (5.3.7)

if and only if

m̃(λ ) ∼ L(1/λ )Γ(µ + 1)λ−µ , λ → 0. (5.3.8)

The product of a slowly varying function L(x) and a power function xµ is
referred to as regularly varying with parameter µ. Thus, the long tails of
stable distributions G(x; α, β) as x → −∞ and 1− G(x; α, β) as x →∞ appear
to be regularly varying functions at infinity with parameter coinciding with
the characteristic parameter of the stable law. In view of the limiting part of
stable distributions, the following assertion becomes obvious.

PROPOSITION 5.3.1. Let F(x) be a distribution function such that F̄(x) ≡ 1−F(x)
regularly varies at infinity:

F̄(x) ∼ L(x)x−µ , x →∞,

and let Fn(x) be the multi-fold convolution of this function (F1(x) = F(x)). Then

F̄n(x) ∼ nL(x)x−µ , x →∞.
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As concerns one-sided stable laws, µ = α ∈ [0, 1), L(x) = const, and

Fn(x) = F(x/bn),

which immediately yields
nx−α = (x/bn)−α

or
bn = n1/α .

In conclusion, we give a theorem containing the conditions which guarantee
that a monotone function is regularly varying.

THEOREM 5.3.4. A function U(x) which is monotone in (0,∞) regularly varies
at infinity if and only if

lim
t→∞

U(tx)/U(t) = ψ(x) (5.3.9)

on an everywhere dense set of x, where the limit ψ is finite and positive in some
interval.

The proof of this theorem can be found in (Feller, 1966, §8, Chapter VIII).

5.4. One-sided stable distributions
As we have seen, Tauberian theorems lead us to one-sided stable laws in a
quite natural way.

Let F(x) be a distribution function, and let p̃(λ ) be the Laplace transform
(5.3.1) of the corresponding density. Then, integrating by parts, we easily see
that ∫ ∞

0
e−λx[1− F(x)] dx = [1− p̃(λ )]/λ .

Since the function 1− F(x) is monotone, the relations

1− F(x) ∼ L(x)x−α , x →∞, (5.4.1)

and

1− p̃(λ ) ∼ L(1/λ )Γ(1− α)λ α , λ → 0, (5.4.2)

are equivalent (α < 1).
This version of Tauberian theorems was used by Feller to prove the two

following theorems concerning one-sided stable distributions.
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THEOREM 5.4.1. For any α ∈ (0, 1) the function

q̃(λ ; α) = e−bλ α
, b > 0, (5.4.3)

appears to be the Laplace transform of the one-sided stable distribution G(x; α)
possessing the properties

1−G(x; α) ∼ cx−α , x →∞, c = b/Γ(1− α), (5.4.4)

and

q(x; α) = G′(x; α) ∼ 1√
2π(1− α)α

b1/(2−2α)(x/α)(α−2)/(2−2α)

× exp
{
−(1− α)b1/(1−α)(x/α)−α/(1−α)

}
, x → 0. (5.4.5)

The proof of the theorem is based on the correspondence 5 (see Table 5.1)
and the stability property (2.2.15)–(2.2.16):

[q̃(λ ; α)]n = q̃(λbn; α).

Function (5.4.3) satisfies this condition with

bn = n1/α .

Relation (5.4.4) is a particular case of (5.4.1) because

1− q̃(λ ; α) = 1− e−bλ α ∼ bλ α , λ → 0.

Relation (5.4.5) can be obtained with the use of the saddle point method by
inverting the Laplace transformation

q(x; α) =
1

2πi

∫ σ+i∞

σ−i∞
e−bλ α+λxdλ .

Setting
λ = zx−1−γ , γ > 0,

we obtain

q(x; α) =
1

2πi
x−1−γ

∫ σ′+i∞

σ′−i∞
exp

{
−bx−(1+γ )αzα + zx−γ

}
dz.

Setting
γ = α/(1− α)

so that
(1 + γ )α = γ ,
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we obtain
q(x; α) = x−1/(1−α)I(x−α/(1−α)),

where

I(t) =
1

2πi

∫ σ′+i∞

σ′−i∞
exp {tϕ(z)} dz,

ϕ(z) = z− bzα , t = x−α/(1−α) →∞
if x → 0. Now, the saddle point is

z0 = (αb)1/(1−α)

and, after obvious transformations, we arrive at (5.4.5). Comparing it with
(4.7.13), one can see that the Laplace transform q̃(λ ; α) with b = 1 corresponds
to form B:

∫ ∞

0
e−λxqB(x; α, 1) dx = e−λ α

. (5.4.6)

In the case α = 1/2 the inverse transformation is expressed in terms of ele-
mentary function and leads us to a known distribution

1
2πi

∫ σ+i∞

σ−i∞
exp

{
λx− λ 1/2

}
dλ

=
1

πix

∫ σ′+i∞

σ′−i∞
exp

{
s2 − 2(x−1/2/2)s

}
s ds

=
1

πix
exp

{
− 1

4x

}∫ σ′′+i∞

σ′′−i∞
exp

{
(s− x−1/2/2)2

}
s ds

=
1

2
√

π
x−3/2 exp {−1/(4x)} .

As concerns the behavior of (5.4.3) as α → 1, in the limit we have the
degenerate distribution concentrated at x = 1.

The second theorem concerns the summation of independent random vari-
ables.

THEOREM 5.4.2. Let F(x) be a distribution function on (0,∞) and let its multi-
fold convolution converge,

Fn(bnx) → G(x), n →∞, (5.4.7)

where the limiting distribution G is not degenerate at any point. Then

(a) there exist a function L(x) slowly varying at infinity and a constant α ∈
(0, 1) such that

1− F(x) ∼ L(x)x−α , x →∞; (5.4.8)
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(b) vice versa, if F(x) is of form (5.4.8), then there exist bn such that

nb−α
n Γ(1− α)L(bn) → 1, n →∞. (5.4.9)

In this case, (5.4.7) holds with G(x) = G(x; α, 1).

PROOF. Let p̃(λ ) and q̃(λ ) be the Laplace transforms of the distributions F(x)
and G(x) respectively. Then (5.4.7) yields

−n ln p̃(λ /bn) → − ln q̃(λ ) (5.4.10)

It is clear that the function ln p̃(λ ) satisfies condition (5.3.9), and therefore, it
regularly varies at zero:

− ln p̃(λ ) ∼ λ αL(1/λ ), λ → 0, (5.4.11)

where L(x) slowly varies at infinity and α ≥ 0. Then from (5.4.10) it follows
that

− ln q̃(λ ) = cλ α , 0 < α < 1,

while (5.4.11) yields

1− p̃(λ ) ∼ λ αL(1/λ ), λ → 0. (5.4.12)

and, using (5.4.1)–(5.4.2), we obtain (5.4.8). Finally, if (5.4.8) holds, then there
exist bn satisfying (5.4.9). Then from (5.4.12) it follows that

1− p̃(λ /bn) ∼ λ α b−α
n L(bn/λ ) ∼ cλ α /n.

It follows herefrom that the left-hand side of (5.4.10) tends to λ α , which com-
pletes the proof.

Now, let us consider the problem of the contribution of the maximum term

Mn = max {X1, …, Xn}

to the sum

Sn =
n∑

i=1

Xi

in the case where the normalized sum

Zn =
Sn

bn

converges to a one-sided stable distribution with characteristic α < 1. We
follow Feller’s method (Feller, 1966).
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Assuming that the terms Xi belong to the normal domain of attraction of
the stable law, i.e., satisfy (5.4.8) with L(x) = const = A, we represent the
Laplace transform of the ratio Sn/Mn as

p̃n(λ ) = Ee−λSn/Mn

=
∫ ∞

0
dx1…

∫ ∞

0
dxn exp

{
−λ

n∑

i=1

xi/ max{xi}
}

p(x1)…p(xn)

=
n∑

j=1

∫ ∞

0
dxj

∫
dx1…

∫
dxi…

∫
dxn

︸ ︷︷ ︸
xi<xj

× exp



−λ


1 +

∑

i≠j

xi/xj





 p(x1)…p(xn)

= ne−λ
∫ ∞

0
dx p(x)

[∫ x

0
exp{−λy/x}p(y) dy

]n−1
. (5.4.13)

Changing the variable t = y/x in the inner integral and introducing the variable
s = x/bn in the outer one, we bring (5.4.13) into the form

ƒn(λ ) = ne−λ
{

bn

∫ ∞

0
ds p(bns)[bns

∫ 1

0
e−λ tp(bnst) dt]n−1

}
. (5.4.14)

It is convenient to represent the expression in the square brackets as

bns
∫ 1

0
e−λ tp(bnst) dt = 1− [1− F(bns)]− bns

∫ 1

0
[1− e−λ t]p(bnst) dt,

(5.4.15)

where

F(bns) = bns
∫ 1

0
p(bnst) dt.

Using formulae (5.4.8) and (5.4.9), we obtain

bns
∫ 1

0
e−λ tp(bnst) dt ∼ 1− (bns)αAψ(λ ), n →∞, (5.4.16)

where

ψ(λ ) ≡ 1 + α
∫ 1

0
(1− e−λ t)t−α−1 dt.

Substituting the obtained expressions into (5.4.14), we arrive at

ƒn(λ ) ∼ n1+1/α e−λ
∫ ∞

0
ds p(n1/αs)

[
1− s−αA

n
ψ(λ )

]n−1

∼ n1+1/α e−λ
∫ ∞

0
ds p(n1/αs) exp

{
−s−αAψ(λ )

}
, n →∞.

(5.4.17)
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As we have seen while deriving (5.4.16),

p
(

n1/αs
)
∼ αA

(
n1/αs

)−α−1
,

so we find the limiting expression for (5.4.17):

lim
n→∞

ƒn(λ ) = e−λ αA
∫ ∞

0
ds s−α−1 exp

{
−s−αAψ(λ )

}
.

Setting
σ = s−αAψ(λ ),

we arrive at

ƒ(λ ) ≡ lim
n→∞

ƒn(λ ) =
e−λ

ψ(λ )
=

e−λ

1 + α
∫ 1

0 (1− e−λ t)t−α−1dt
, (5.4.18)

which was first obtained (in terms of characteristic functions) in (Darling,
1952).

Formula (5.4.17) allows us to find the mathematical expectation of the ratio
under consideration:

ESn/Mn = −ƒ′(0) =
1

1− α
.

Thus, a more rigorous analysis confirms the qualitative reasoning given in
Section 2.5: if α < 1, then the sum Sn is comparable to its maximum term. As
is seen from the last formula, this property is violated as α → 1. The square
of relative fluctuations is also expressed in a simple form:

Var(Sn/Mn)
[E(Sn/Mn)]2 =

ƒ′′(0)
[ƒ′(0)]2 =

α
2− α

.

As α decreases, so does the fluctuation, because the influence of the maximum
term on the sum increases. As α approaches 1, the fluctuations are growing,
coming close to 1.

5.5. Laplace transformation of two-sided
distributions

We turn to the consideration of the one-sided Laplace transforms of two-sided
stable distributions

q̃(λ ; α, β) =
∫ ∞

0
e−λxq(x; α, β) dx. (5.5.1)

By virtue of property (c) (Section 4.9), in order to give a complete description
of the density q(x; α, β) on the whole axis x, it suffices to evaluate (5.5.1) for all
β ∈ [−1, 1].
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For the sake of convenience, we slightly alter the expression of a stable
density.

Let α < 1 and x > 0. By virtue of (4.4.1),

q(x; α, β) = π−1ℜ
∫ ∞

0
eizxg+(z; α,−β) dz

= π−1ℜ
∫ ∞

0
exp {izx− zα exp(iβαπ/2)} dz

= −π−1ℑ
∫ ∞

0
exp {−xu− uα exp[i(1 + β)απ/2]} du

= π−1ℑ
∫ ∞

0
exp {−xu− uα exp(−iρπ)} du,

where ρ = (1 + β)α/2. By rotating the integration contour through ρπ/(2α), we
obtain

q(x; α, β) = π−1ℑ
∫ ∞

0
exp

{
−xueiρπ/(2α) − uαe−iρπ/2 + iρπ/(2α)

}
du.(5.5.2)

We substitute (5.5.2) into the right-hand side of (5.5.1) and change the
integration order (this operation is valid because the double integral converges
absolutely), thus obtaining

q̃(λ ; α, β)

= π−1ℑ
∫ ∞

0
du exp

{
−uαe−iρπ/2 + iρπ/(2α)

} ∫ ∞

0
exp

{
−x[λ + ueiρπ/(2α)]

}
dx

= π−1ℑ
∫ ∞

0
exp

{
−(ue−iρπ/(2α))α + iρπ/(2α)

} [
λ + ueiρπ/(2α)

]−1
du.

Rotating the integration contour through −ρπ/(2α) and introducing a new
variable, we obtain

q̃(λ ; α, β) = π−1
∫ ∞

0
exp{−uα} eiρπ/α + u

|λ + ueiρπ/α |2 du.

After one more passage to a new variable (from λu to u) we arrive at

q̃(λ ; α, β) = π−1
∫ ∞

0
exp{−(λu)α} sin(ρπ/α)

u2 + 2u cos(ρπ/α) + 1
du, (5.5.3)

which, as was established in (Zolotarev, 1986), remains true for any α ≠ 1 and
any admissible β .

Similar reasoning proves that for α = 1 and any admissible β

q̃(λ ; 1, β) = π−1
∫ ∞

0

[
λ cos(βu ln u)− u sin(βu ln u)

] exp{−uπ/2}√
λ 2 + u2

du,
(5.5.4)
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whereas for β > 0

q̃(λ ; 1, β) = π−1
∫ ∞

0
exp{−βu ln u}sin(uρπ)

λ + u
du. (5.5.5)

To elucidate the behavior of transform (5.5.3) for α < 1 and β → 1, that is,
for ρ → α, we consider the function

ψρ(u) =
α sin(ρπ/α)

ρπ[u2 + 2u cos(ρπ/α) + 1]
.

Since ∫ ∞

0

du
u2 + 2u cos(ρπ/α) + 1

=
ρπ

α sin(ρπ/α)
,

we obtain ∫ ∞

0
ψρ(u)du = 1.

At the same time, for u ≠ 1

ψρ(u) → 0, ρ → α.

Thus, lim ψρ(u) as ρ → α can be considered as the Dirac δ -function δ (u − 1),
and formula (5.5.3) takes the form

q̃(λ ; α, 1) = e−λ α
,

which coincides with that of the preceding section (5.4.6).
As concerns the two-sided Laplace transforms, since for α < 2 and β ≠ ±1

both tails of a stable law behave as a power function, ƒ̂(λ ) exists for λ =
−ik, k ∈ R only, i.e., in the only case where it coincides with the characteristic
function. In the case where β = 1 and ℜλ ≥ 0, though,

ln ƒ̂(λ ; α, 1) =





λ α , α > 1,
λ ln λ , α = 1,
−λ α , α < 1.

5.6. The Mellin transformation
DEFINITION OF THE MELLIN TRANSFORM. The Mellin transform of a function
g(x) defined on the positive semi-axis and satisfying the condition

∫ ∞

0
|g(x)|xσ dx <∞

is the function
ḡ(s) =

∫ ∞

0
g(x)xsdx, ℜs = σ.



5.6. The Mellin transformation 153

If we denote by ƒ̂(λ ) the two-sided Laplace transform of

ƒ(x) = g(ex),

then we obtain the relation

ƒ̂(−s− 1) = ḡ(s).

This relation allows us to derive all properties of the Mellin transforms from the
corresponding properties of the Laplace transforms; in particular, the inversion
formula is of the form

g(x) =
1

2πi

∫ σ+i∞

σ−i∞
ḡ(s)x−s−1µ̃ds, x > 0,

whereas the convolution formulae are
∫ ∞

0
ƒ(x′)g(x/x′) dx′/x′ = ƒ̄(s)ḡ(s),
∫ ∞

0
ƒ(x′)g(xx′) dx′ = ƒ̄(1− s)ḡ(s).

Let us dwell on the Mellin transforms of strictly stable densities:

q̄(s; α, δ ) =
∫ ∞

0
xsqC(x; α, δ ) dx. (5.6.1)

Let α ≠ 1. We substitute (5.5.2) coinciding with the density qC(x; α, δ ) for
ρ = (δ + α)/2 (−1 < s < 0) into (5.6.1), and obtain

q̄(s; α, δ ) = π−1ℑ
∫ ∞

0
dx xs

∫ ∞

0

{
−xueiρπ/(2α) − uαe−iρπ/2 + iρπ/(2α)

}
du.

Changing the integration order, we obtain

q̄(s; α, δ ) = π−1ℑ
∫ ∞

0
du exp

{
−uαe−iρπ/2 + iρπ/(2α)

}

×
∫ ∞

0
xs exp

{
−xueiρπ/(2α)

}
dx

= π−1Γ(1 + s)ℑ
∫ ∞

0

[
ueiρπ/(2α)

]−s
exp

{
−uαe−iρπ/2

} du
u

.

Rotating the integration contour through −ρπ/(2α), after an appropriate
change of variable we arrive at the following expression for the Mellin trans-
form of the density qC(x; α, δ ):

q̄(s; α, δ ) = π−1Γ(1 + s) sin(ρsπ/α)
∫ ∞

0
u−s−1 exp{−uα}du

= (απ)−1Γ(1 + s)Γ(−s/α) sin(ρsπ/α)

=
sin(ρsπ/α)

sin(sπ)
Γ(1− s/α)
Γ(1− s)

. (5.6.2)
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Either sides of the last equality are analytic in the strip−1 < ℜs < α; therefore,
the equality validated for −1 < s < 0 remains true for all values of s belonging
to that strip.

We have just considered the case α ≠ 1, but the formula

q̄(s; α, δ ) =
sin(ρsπ/α)Γ(1− s/α)

sin(sπ)Γ(1− s)
, ρ = (δ + α)/2, −1 < ℜs < α, (5.6.3)

remains good for α = 1 as well due to the continuity of function (5.6.1) at the
point α = 1.

Transform (5.6.3) can also be represented as

q̄(s; α, δ ) =
Γ(s)Γ(1− s/α)

Γ(ρs/α)Γ(1− ρs/α)
. (5.6.4)

5.7. The characteristic transformation
The characteristic transformation will be the last of the transformations we
consider. It is more convenient to formulate the action of the transformation
in terms of random variables.

DEFINITION. Let

w0(k)X = E|X|ik (5.7.1)

and

w1(k)X = E|X|ik sign X (5.7.2)

with k ∈ R. Then the 2 × 2 diagonal matrix

WX (k) =
(

w0(k)X 0
0 w1(k)X

)
(5.7.3)

is referred to as the characteristic transform of the density pX (x).

Transform (5.7.3) was first introduced in (Zolotarev, 1962b) and later found
an application in multiplicative problems of number theory. The characteristic
transforms of random variables play the same role in the scheme of multipli-
cation of random variables as the characteristic functions do in the scheme of
summation. It is not hard to reveal this similarity in the light of the following
properties of characteristic transforms.

(1) The characteristic transform exists for any random variable X.

This immediately follows from the definition (5.7.1)–(5.7.2) of the functions
wj(k)X .



5.7. The characteristic transformation 155

(2) The distribution FX is uniquely determined by the characteristic trans-
form WX .

Indeed, let

c+ = P {X > 0} , c− = P {X < 0} ,

c+ƒ+(k) = E|X|ike(X), c−ƒ−(k) = E|X|ike(−X),

where ƒ+ and ƒ− are some characteristic functions that uniquely relate to the
parts of the distribution FX (x) on the semi-axis x > 0 and x < 0, respectively,
while the corresponding coefficients c+ and c− are non-zero, because e(x) is a
step function. We obtain

c+ + c− = 1− P {X = 0} , wj(k)X = c+ƒ+(k) + (−1)jc−ƒ−(k), j = 0, 1,

c+ƒ+(k) = [w0(k)X + w1(k)X ]/2, c−ƒ−(k) = [w0(k)X − w1(k)X )]/2.

Therefore, the distribution FX can indeed be reconstructed if we are given the
functions w0 and w1.

(3) If U and V are independent random variables, then for their product
X = UV

WX (k) = WU(k)WV (k), k ∈ R. (5.7.4)

Indeed,

wj(k)X = E|UV|ik(sign UV)j = wj(k)Uwj(k)V , j = 0, 1,

which implies (5.7.4).
We assume that q = qC(x; α, δ ) and s is a complex number in the strip

−1 < ℜ < α. Let

W(s; α, δ ) =
(

w0(s; α, δ ) 0
0 w1(s; α, δ )

)
.

This function exists for any s lying in the strip and for any admissible values
of the parameters; it closely relates to the Mellin transforms. Indeed,

w0(s; α, δ ) = q̄(s; α, δ ) + q̄(s; α,−δ ),
w1(s; α, δ ) = q̄(s; α, δ )− q̄(s; α,−δ ).

Therefore, the assertions concerning the transforms q̄ remain true also for the
elements wj of the transform W. Formula (5.6.3) allows us to obtain easily an
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explicit expression for the functions wj(s; α, δ ). For j = 0,

w0(s; α, δ ) = q̄(s; α, δ ) + q̄(s; α,−δ )

=
sin[(1 + δ /α)sπ/2]

sin(πs)
Γ(1− s/α)
Γ(1− s)

+
sin[(1− δ /α)sπ/2]

sin(πs)
Γ(1− s/α)
Γ(1− s)

=
cos[δsπ/(2α)]

cos(sπ/2)
Γ(1− s/α)
Γ(1− s)

. (5.7.5)

This is nothing but the absolute moment of the random variable YC(α, δ ) of
order s:

E|YC(α, δ )|s ≡
∫ ∞

−∞
|x|sqC(x; α, δ ) dx =

cos[δsπ/(2α)]
cos(sπ/2)

Γ(1− s/α)
Γ(1− s)

. (5.7.6)

In the extreme cases α < 1, |δ | = α, the moments take the more simple form

E|YC(α, ±α)|s =
Γ(1− s/α)
Γ(1− s)

, (5.7.7)

which can be continued to the whole negative semi-axis (−∞ < s < α).
In a perfectly similar way, we obtain

w1(s; α, δ ) = q̄(s; α, δ )− q̄(s; α,−δ )

=
sin[δsπ/(2α)]

sin(sπ/2)
Γ(1− s/α)
Γ(1− s)

. (5.7.8)

5.8. The logarithmic moments
Although the random variables |Y(α, δ )| ≡ |YC(α, δ )| have finite moments
only of order less than α, their logarithms have moments of all orders, and
this sometimes (for example, in certain statistical problems) turns out to be a
very valuable property. It happens that moments of logarithmic type have a
relatively simple form of expression. Below, we dwell upon the computation of

yjn(α, δ ) = E(ln |Y(α, δ )|)n(sign Y(α, δ ))j, j = 0, 1, n = 1, 2, …

It turns out that the logarithmic moments yjn are polynomials of degree n
in 1/α and polynomials of degree at most n + 1 in δ . Explicit expressions for
them can be written with the use of the Bell polynomials Cn(u1, …, un) which
were introduced in Section 4.7.

We introduce Q1, Q2, … by setting Q1 = (1/α − 1)C, where C is Euler’s
constant, and

Qj = Ajπj|Bj|/j + (1/α j − 1)Γ(j)ζ(j) for integer j ≥ 2,
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where Bj are the Bernoulli numbers, ζ(j) is the value of the Riemann ζ-function
at j, and Aj are defined for the logarithmic moments as follows:

Aj = (2j − 1)[1− (δ /α)j] for the moments y0n,

Aj = 1− (δ /α)j for the moments y1n.

THEOREM 5.8.1. For any admissible values of the parameters (α, δ ) the follow-
ing equalities are valid (n = 1, 2, …):

y0n = Cn(Q1, Q2, …, Qn), (5.8.1)
y1n = Cn(Q1, Q2, …, Qn)δ /α.

PROOF. Since
wj(s; α, δ ) = E|Y(α, δ )|s(sign Y(α, δ ))j,

we conclude that
yjn = (d/ds)nwj(s; α, δ )|s=0

are the coefficients in the series expansion of the functions wj in powers of s.
However, it is more convenient to expand these functions not directly but after
expanding their logarithms in series. We observe that in the case δ = 0 we
obtain w1(s; α, δ ) = 0, so the computation of y1n should be carried out under
the additional condition that δ ≠ 0. We obtain

ln w0(s; α, δ ) = ln cos[sδπ/(2α)]− ln cos(sπ/2) + ln Γ(1− s/α)− ln Γ(1− s).

The function ln cos x can be expanded in a power series just like ln Γ(1−x) (see
(Gradshtein & Ryzhik, 1963, 1.518, 8.342)):

ln cos x = −
∞∑

k=0

2k(2k − 1)|Bk|
kΓ(k + 1)

xk,

ln Γ(1− x) = Cx +
∞∑

k=2

ζ(k)
k!

xk.

With the use of these formulae, we obtain

ln w0(s; α, δ ) =
∞∑

j=1

Qj
sj

j!
,

where Qj are the same as above. If we now use Bruno’s formula, we find that

w0(s; α, δ ) = exp



∞∑

j=1

Qj
sj

j!


 = 1 +

∞∑

n=1

Cn(Q1, Q2, …, Qn)
sn

n!
,

which implies (5.8.1).
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Considering w1(s; α, δ ) with δ ≠ 0, it is convenient to rewrite it as

w1(s; α, δ ) = δ
sin[sδπ/(2α)]

δ sin(sπ/2)
Γ(1− s/α)
Γ(1− s)

= δh(s)

and expand the function h(s) in a series in powers of s. Of course, all series
expansion coefficients for w1 are proportional to δ . The expansion of h(s) is
carried out just like that of w0, with, however, the difference that the formula
(Gradshtein & Ryzhik, 1963, 1.518)

ln
(

x
sin x

)
=
∞∑

k=2

2k|Bk|
kΓ(k + 1)

xk

is used here.
Since Qj, j ≥ 2, are polynomials of degree j in 1/α and δ , by turning back

to the explicit expression for the Bell polynomials it is not hard to see that
Cn(Q1, …, Qn) possesses the same property. In the case of the logarithmic
moment y1n the maximal power of δ is equal to n + 1, because y1n = Cnδ /α.

In conclusion, we give expressions for the logarithmic moments when n = 1
and n = 2, assuming that C1(Q1) = Q1 and C2(Q1, Q2) = Q2

1 + Q2:

y01 ≡ E ln |Y(α, δ )| = (1/α − 1)C, (5.8.2)
y11 ≡ E[ln |Y(α, δ )| sign Y(α, δ )] = (1/α − 1)2Cδ /α, (5.8.3)

y02 ≡ E ln2 |Y(α, δ )| = (1/α − 1)2C2 + (2/α2 + 1)π2/12− [πδ /(2α)]2,
(5.8.4)

y12 ≡ E[ln2 |Y(α, δ )| sign Y(α, δ )] = [(1/α − 1)2C2

+ (2/α2 − 1)π2/12 + (πδ /(2α))2/3]δ /α. (5.8.5)

5.9. Multiplication and division theorems
Using the transformations considered above, we can supplement our collection
of the relations between random variables given in Section 3.7.

To avoid awkward formulae, it makes sense to agree on some more notation.
If X is a random variable, then for any complex number s we assume that

Xs = |X|s sign X (5.9.1)

with 0s = 0 for any s. If X is not negative with probability one, then this
generalized understanding of a power obviously coincides with the traditional
one. Powers of random variables in the sense of (5.9.1), obviously, possess the
basic properties of ordinary powers:

(Xs)r = Xsr, Xs
1Xs

2 = (X1X2)s,
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but there is also an essential difference, because

X0 = sign X, (−X)s = −Xs

for any s.
Here it is appropriate to point out a peculiarity of equalities between ran-

dom variables in the sense of d=. If X ′+X d= X ′′+X or X ′X d= X ′′X, then, generally
speaking, the relation X ′ d= X ′′ is not necessarily true. However, if the charac-
teristic function ƒX (t) is non-zero for almost all t or, what is the same, wk(t)X
are non-zero almost everywhere, then this equality becomes valid. Of course,
the reverse is valid without any restrictions imposed on the distribution of X.

The use of relations between random variables in place of writing out
relations between the corresponding distributions makes even more sense in
the present chapter than in Section 3.7. The point is that we have to deal with
products X = X1X2 of independent random variables, and the distribution
function F of the product X is expressed in terms of the distribution functions
F1 and F2 of the factors in a form being considerably more cumbersome than,
say, the convolution of F1 and F2. Even in the simplest case, where F1 and F2
are continuous,

F(x) = [1− F2(0)]
∫ ∞

0
F1(x/y) dF2(y) + F2(0)

∫ 0

−∞
[1− F1(x/y)] dF2(y).

We use below form C with parameter θ = δ /α instead of δ , and assume
that the random variables written separately on one side of an equality are
independent.

THEOREM 5.9.1. For any admissible (α, θ) and (α, θ ′),

Y(α, θ)
Y(α, θ ′)

d=
Y(α, θ ′)
Y(α, θ)

. (5.9.2)

PROOF. All such relations can be proved by a universal method. The character-
istic transforms of the distributions of the left-hand and right-hand sides of the
equalities are computed and compared. Since the characteristic transforms,
like the characteristic functions, uniquely determine the distributions related
to them, coincidence of the characteristic transforms means coincidence of the
corresponding distributions.

In this case, the characteristic transform of the left-hand side is

wj(s; α, θ)wj(−s; α, θ ′) =
cos[(j− sθ)π/2]Γ(1− s/α)

cos[(j− s)π/2]Γ(1− s)

×
cos[(j + sθ ′)π/2]Γ(1 + s/α)

cos[(j + s)π/2]Γ(1 + s)
, j = 0, 1.
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Since
cos[(j− sθ)π/2]
cos[(j− s)π/2]

=
cos[(j + sθ)π/2]
cos[(j + s)π/2]

,

for j = 0, 1 we obtain

wj(s; α, θ)wj(−s; α, θ ′) = wj(−s; α, θ)wj(s; α, θ ′), j = 0, 1,

i.e., the distributions of the left- and right-hand sides of (5.9.2) coincide.

THEOREM 5.9.2. Let (α, θ) and (α ′, θ ′) be pairs of admissible values of parame-
ters, and let ν be a number such that

α ′(1 + |θ|)/2 ≤ ν ≤ [α(1 + |θ ′|)/2]−1. (5.9.3)

Then

Y(α, θ)Yν(α ′, θ ′) d= Y(α ′/ν, θ)Yν(αν, θ ′). (5.9.4)

PROOF. Let us compute the characteristic transform of the left-hand side of
(5.9.4). Using (5.7.4), (5.7.5), and (5.7.8), we obtain

wj(s; α, θ)wj(sν; α ′, θ ′) =
cos[(j− sθ)(π/2)]
cos[(j− s)(π/2)]

Γ(1− s/α)
Γ(1− s)

×
cos[(j− sνθ ′)(π/2)]
cos[(j− sν)(π/2)]

Γ(1− s/α ′)
Γ(1− sν)

.

Similarly, for the right-hand side

wj
(
s; α ′/ν, θ

)
wj(sν; αν, θ ′) =

cos[(j− sθ)(π/2)]
cos[(j− s)(π/2)]

Γ(1− sν/α ′)
Γ(1− s)

×
cos[(j− sνθ ′)(π/2)]
cos[(j− sν)(π/2)]

Γ(1− s/α)
Γ(1− sν)

.

It is obvious that the expressions coincide. It remains to verify that the param-
eters in the right-hand side of (5.9.4) lie in the domain of admissible values.
We know that |θ| ≤ min(1, 2ν/α − 1), and therefore, the conditions

|θ| ≤ min
{

1, 2ν/α ′ − 1
}

, |θ ′| ≤ min {1, 2/(αν)− 1}

imposed on the right-hand side hold if and only if

|θ| ≤ 2ν/α ′ − 1, |θ ′| ≤ 2/(αν)− 1.

These inequalities are equivalent to (5.9.3), though.
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THEOREM 5.9.3. Let (α, θ) and (α ′, θ ′) be pairs of admissible values of the pa-
rameters, and let µ be any real number such that

|θ|/ min
{

1, 2/α ′ − 1
}

≤ |µ| ≤ min {1, 2/α − 1} /|θ ′|. (5.9.5)

Then

Y(α, θ)Yµ (α ′, θ ′) d= Y(α, θ ′µ)Yµ (α ′, θ/µ)
d= Y(α,−θ ′µ)Yµ (α ′,−θ/µ). (5.9.6)

The proof of the first part of (5.9.6) is similar to that of (5.9.4). The second
part follows from (3.7.3)

−Y(α, θ) d= Y(α,−θ).

From (5.9.6) and (5.9.4), we derive the following assertion.

COROLLARY 5.9.1. For any pairs (α, θ) and (α ′, θ ′) of admissible values of the
parameters and any number µ > 0 such that

|θ|/µ ≤ min {1, 2/(αµ)− 1} ,

|θ ′|/µ ≤ min
{

1, 2µ/α ′ − 1
}

, (5.9.7)

the relation

Y(α, θ)Yµ (α ′, θ ′) d= Y(α ′/µ, θ ′µ)Yµ (αµ, θ/µ)
d= Y(α ′/µ,−θ ′µ)Yµ(αµ,−θ/µ) (5.9.8)

is valid.

THEOREM 5.9.4. Let (α, θ) be a pair of admissible values of the parameters, and
let 0 < α ′ ≤ 1. Then

Y(α, θ)Y1/α (α ′, 1) d= Y(αα ′, θ). (5.9.9)

COROLLARY 5.9.2. If α ≤ 1 and α ′ ≤ 1, then

Y(α, 1)Y1/α (α ′, 1) d= Y(αα ′, 1). (5.9.10)

COROLLARY 5.9.3. In (5.9.2), set α = 1/2, θ = 1 and α ′ = 1/2k. Then

Y(1/2, 1)Y2(1/2k, 1) d= Y(1/2k+1, 1). (5.9.11)
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By (2.3.17), which yields

Y(1/2, 1) d= Y−2(2, 0) d= (2N2)−1,

where N is a random variable with standard normal distribution (2.2.5), this
relation provides us with

Y(1/2n, 1) d= 21−2n
N−2N−22

…N−2n
.

If we set α = 1, θ = 0, and α ′ = 1/2n in (5.9.9), then the relation

NN−1Y(1/2n, 1) d= Y(1/2n, 0)

follows from (2.3.19), and yields the relation (Brown & Tukey, 1946)

Y(1/2n, 0) d= 21−2n
NN−1N−4…N−2n

.

PROOF. We begin with (5.9.9). The components of the characteristic transform
of its left-hand side are of the form

wj(s; α, θ)wj(s/α; α ′, 1) =
cos[(j− sθ)π/2]Γ(1− s/(αα ′))

cos[(j− s)π/2]Γ(1− s)
= wj(s; αα ′, θ).

Moreover, since α ′ ≤ 1, we obtain

|θ| ≤ min{1, 2α − 1} ≤ min{1, 2/(αα ′)− 1},

i.e., the pair (αα ′, θ) belongs to the domain of admissible values.

The proof of the following theorem is carried out in the same way.

THEOREM 5.9.5. For any pairs (α, θ) and (1, θ ′) of admissible values,

Y(α, θ)Yθ (1, θ ′) d= Y(α, θθ ′). (5.9.12)

COROLLARY 5.9.4. For any pair (α, θ) of admissible values,

Y(α, θ) d= Y(α, θα)Yθα (1, θ/θα),

where
θα = min {1, 2/α − 1} .

In particular, if α ≤ 1, then

Y(α, θ) d= Y(α, 1)Y(1, θ),

i.e., the random variable Y(α, θ) can be factorized in two independent stable
components Y(α, 1) and Y(1, θ).
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In the remaining part of this section, we deal with the extreme strictly
stable distribution with parameters (α, θα ). As a matter of fact, the main
role among them is played by the distributions with α < 1, because θ =
1 corresponds to the distribution degenerate at the point x = 1, while the
distributions with α > 1 (more precisely, the part of them concentrated on
the semi-axis x > 0) can, by the duality property, be expressed in terms of the
distributions of the first group. The random variables Y(α, 1), 0 < α < 1, whose
distributions form this group (and only they) are positive with probability one.
The abbreviated notation Y(α) will be used below for the variables Y(α, 1).

THEOREM 5.9.6. Assume that ω1, …, ωn are chosen so that 0 < ωj < 1. Then for
any n ≥ 2

Yαn(αn) d= Yω1(ω1)Yω1ω2(ω2)…Yω1…ω2(ωn), (5.9.13)

where αn = ω1ω2…ωn.

We prove (5.9.13) by induction. For n = 2, (5.9.13) coincides with (5.9.10).
If it is true for a set of n− 1 variables, then, by virtue of (5.9.10),

Y(αn) d= Y(αn−1ωn) d= Y(αn−1)Y1/αn−1 (ωn).

If we now replace Y(αn−1) by its expression given by (5.9.13), we arrive at
(5.9.13) with n random variables.

Despite the fact that (5.9.13) is a simple corollary to (5.9.10), it serves as the
source of a great body of interesting interconnections between the distributions
under consideration.

We will frequently come up against infinite products of positive random
variables; by convention, these products converge if the series of logarithms of
their factors converge with probability one.

The condition that the product EXs
1EXs

2… converges for some real s ≠ 0
is a quite convenient necessary and sufficient condition for the convergence
of an infinite product X1X2… of independent and positive (with probability
one) random variables. It is not difficult to see if one reduces the question of
convergence of a product of random variables to the question of convergence
of a sum of random variables.

Let E be a random variable with exponential distribution

P {E > x} = e−x, x ≥ 0.

THEOREM 5.9.7. Assume that ω1, ω2, … is a numerical sequence, 0 < ωj ≤ 1,
and α = ω1ω2… is their product. If α > 0, then

Y(α) d= Y(ω1)Y1/ω1 (ω2)Y1/(ω1ω2)(ω3)…, (5.9.14)

Yα (α) d= Yω1 (ω1)Yω1ω2 (ω2)…. (5.9.15)
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If α = 0, then

Yω1 (ω1)Yω1ω2(ω2)… d= 1/E;

in particular, for any 0 < ω < 1

Yω (ω)Yω2
(ω)Yω3

(ω)… d= 1/E.

The proof of (5.9.14) and (5.9.15) is reduced to a passage to the limit as
n → ∞ in (5.9.13), with the use of the Mellin transforms of both sides of the
equality and the criterion given above for convergence of infinite products of
independent random variables.

The following relation stands rather along. Denote by Γν, ν > 0, a random
Γ-distributed variable with parameter ν, i.e., whose density is of the form

pν(x) =
1

Γ(ν)
xν−1e−x, x ≥ 0.

THEOREM 5.9.8. For any integer n ≥ 2

1/Y(1/n) d= Γ1/nΓ2/n…Γ(n−1)/nnn. (5.9.16)

COROLLARY 5.9.5. In view of relation (5.9.9) with α = 1 and α ′ = 1/n, from
(5.9.16) it follows that a stable random variable with parameters α = 1/n and
|θ| ≤ 1 can be represented as

Y−1(1/n, θ) d= Y−1(1, θ)Γ1/nΓ2/n…Γ(n−1)/nnn d= Y(1, θ)Γ1/nΓ2/n…Γ(n−1)/nnn.

PROOF. The Mellin transform of the distribution of 1/Y(1/n) is, in view of
(5.6.4), of the form

EY−s(1/n) =
Γ(1 + ns)
Γ(1 + s)

.

This fraction can be expanded in a product of ratios of Γ-functions by using the
so-called multiplication theorem for the functions Γ(x), x > 0:

Γ(x)Γ(x + 1/n)…Γ(x + (n− 1)/n) = (2π)(n−1)/2n(1−2nx)/2Γ(nx).

We thus obtain

Γ(1 + ns)
Γ(1 + s)

= nns Γ(s + 1/n)
Γ(1/n)

Γ(s + 2/n)
Γ(2/n)

…
Γ(s + (n− 1)/n)

Γ((n− 1)/n)
. (5.9.17)

Since the ratio Γ(s+ν)/Γ(ν) is the Mellin transform of Γν, the composition of the
Mellin transforms in the left- and right-hand sides of (5.9.17) yields (5.9.16).
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So, we have just completed the introduction to the ‘multiplicative’ proper-
ties of strictly stable laws. Here something should be said about where these
numerous and diverse interrelations between distributions (which, for concise-
ness, we have clothed as relations between random variables) might turn out
to be useful.

First of all, such relations can be a convenient tool in computing distribu-
tions of various kinds of functions of independent random variables Y(α, θ). If
we supplement the relations of a multiplicative nature in this chapter by the
additive relations of Section 3.7, we obtain a kind of distinctive ‘algebra’ in the
set of independent random variables of a special form. In particular, this helps
us to get expressions of a new form for stable densities as integrals of positive
functions. For example, the representations of the one-sided densities

q(x; 1/4, 1) =
1

2π
x−4/3

∫ ∞

0
exp

{
−1

4
x−1/3(y4 + y−2)

}
dy,

q(x; 1/3, 1) =
1

2π
x−3/2

∫ ∞

0
exp

{
− 1

3
√

3x
(y3 + y−3)

}
dy

can be obtained in such a way (Zolotarev, 1986).
The second domain of application of the ‘multiplicative’ properties of stable

laws is the construction of various kinds of useful statistics with explicitly
computable distributions.

Finally, some of the relations turn out to be useful in stochastic modeling
problems to generate sequences of random variables with stable distributions.
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6

Special functions and equations

6.1. Integrodifferential equations
As we might expect, there exists a large body of various integral and integrod-
ifferential equations that link stable distributions. The investigation of these
equations allows us to obtain a useful information concerning the properties
of stable laws.

In Section 2.5, we gave a canonical form of expression for the characteristic
function g(k; α, β) (valid both for forms A and B); let us transform it as follows:

g(k) ≡ g(k; α, β) = exp
{∫

x≠0
(eikx − 1− ik sin x) dH(x)

}

= exp
{
−
∫

x≠0
(eikx − 1− ik sin x)R(x)

dx
x

}
, (6.1.1)

where R(x) = −xH′(x), x ≠ 0, is a function that is non-decreasing on the semi-
axis x < 0 and x > 0. It has the simplest form if the parameterization is taken
in form A:

R(x) =

{
−π−1Γ(1 + α) sin(απ/2)(1 + β)x−α , x > 0,
π−1Γ(1 + α) sin(απ/2)(1− β)|x|−α , x < 0.

(6.1.2)

The function R(x) corresponding to form B is obtained by replacing the
parameter β = βA in (6.1.2) by its expression in terms of α and βB. In what
follows, let

Si(x) =
∫ x

0

sin t
t

dt

be the integral sine function.

THEOREM 6.1.1. For either of the two forms of parameterization A or B the
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distribution function G(x; α, β) and the density q(x; α, β) satisfy the equations

xG′(x; α, β) = −
∫

y≠0
[G′(x; α, β) Si(y)− G(x− y; α, β) + G(x; α, β)] dR(y),

(6.1.3)

xq(x; α, β) =
∫

y≠0
[q(x; α, β)

sin y
y
− q(x− y; α, β)]R(y) dy. (6.1.4)

PROOF. We transform (6.1.1), integrating the integral in the exponential by
parts and keeping in mind that

∣∣∣∣
∫ u

0
(eikv − 1− ik sin v)

dv
v

∣∣∣∣ = O(u2) u → 0,
∣∣∣∣∣

∫

1≤|v|≤u
(eikv − 1− ik sin v)

dv
v

∣∣∣∣∣ = O(ln u) u →∞.

As a result, we obtain

g(k) = exp

{∫

y≠0

[∫ ky

0
(eiv − 1)

dv
v
− ik Si(y)

]
dR(y)

}
. (6.1.5)

Differentiating both sides of (6.1.5) with respect to k, k ≠ 0, we obtain

g′(k) =
1
k

g(k)
∫

(eiky − 1− ik Si(y)) dR(y).

Hence, after the change of variables k = s/x, x ≠ 0, we obtain

d
dx

g
(

s
x

)
= −1

x
g
(

s
x

)∫ (
eisy/x − 1− is

x
Si(y)

)
dR(y). (6.1.6)

We transform the inversion formula

q(x; α, β) =
1

2π

∫
e−ikxg (k) dk, x ≠ 0,

by carrying out the change of variable kx = s:

xq(x; α, β) =
sign x

2π

∫
e−isg (s/x) ds.

Differentiating both sides of this equality with respect to x and replacing
(d/dx)g(s/x) by its expression (6.1.6), we obtain

(xq(x; α, β))′ = −sign x
2π

∫
e−isg (s/x)

ds
x

∫ (
eisy/x − 1− is

x
Si(y)

)
dR(y).
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A change in the order of integration and the inverse change of variable s = kx
leads to the equality

(xq(x; α, β))′ = − 1
2π

∫
dR(y)

∫
(eiky − 1− ik Si(y))e−ikxg(k) dk.

The inner integral is a linear combination of integrals, each of which is simply
the inversion formula for the density or its derivative, i.e.,

(xq(x; α, β))′ = −
∫

[q(x− y; α, β)− q(x; α, β) + q′(x; α, β) Si(y)] dR(y).
(6.1.7)

Equality (6.1.3) is obtained by integration of both sides of the equality with
respect to x from −∞ to x and making use of the fact that xg(x; α, β) → 0 as
x → −∞. Integration by parts in (6.1.3) leads us to (6.1.4).

REMARK 6.1.1. Although the theorem is connected with stable distributions
normalized by the conditions γ = 0 and λ = 1, the assertion of the theorem
extends easily to the general case. Indeed, since

G(x; α, β , γ , λ ) = G((x− l)λ−1/α ; α, β , 0, 1)

by (3.7.2), where the quantity l is related to β , γ , and λ by simple formulae, we
obtain equations for G(x; α, β , γ , λ ) and q(x; α, β , γ , λ ) from (6.1.3) and (6.1.4)
by replacing x by (x− l)λ−1/α .

REMARK 6.1.2. Note that in the course of the proof we obtain an integrodiffer-
ential equation (6.1.7) for the densities of stable laws.

Integral and integrodifferential equations for stable distributions can differ
(sometimes very strongly) in form, though they are all equivalent in the final
analysis. The integrodifferential equation (for densities with α ≠ 1) obtained
in (Medgyessy, 1958) is apparently the closest to equation (6.1.7), which was
taken from (Kanter, 1975) along with (6.1.3) and (6.1.4).

6.2. The Laplace equation
Now we consider the function

Sα (u, v) =

{
xq(x; α, β) if α ≠ 1, x > 0,
βq(x; α, β) if α = 1, β > 0,
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where q(x; α, β) is given in form B and the variables u and v are related to x
and β as follows:

u =

{
− ln x if α ≠ 1,
x/β − ln β if α = 1,

v =

{
βΦ(α)/α if α ≠ 1,
π/(2β) if α = 1.

Let z = u + iv and define the function Ψα (z) as follows: if 0 < α < 1, then

Ψα (z) =
i
π

∫ ∞

0
exp {−k− kα exp (−iαπ/2 + αz)}dk;

if 1 < α ≤ 2, then

Ψα (z) =
1
π

∫ ∞

0
exp

{
ike−z − z− kα} dk;

and if α = 1, then

Ψ1(z) =
i
π

∫ ∞

0
exp {− (π/2 + z) k− k ln k} dk.

Recalling representation (4.4.1) of the density q(x; α, β), we see that

Sα (u, v) = ℜΨα (z).

It is clear that Ψα (x) is an entire analytic function for all α.
We thus arrive at the following assertion.

THEOREM 6.2.1. For each admissible value of α the function Sα (u, v) is a solu-
tion of the first boundary value problem of the Laplace equation ∆Sα = 0 in the
strip

−∞ < u <∞, −πδα /(2α) ≤ v ≤ πδα /(2α)

for the case α ≠ 1, and in the half-plane −∞ < u < ∞, v ≥ π/2 for the case
α = 1. The boundary conditions are

Sα (±∞, v) = 0,

Sα (v, ±πδα /(2α)) = e−uq
(
e−u; α, ± sign(1− α)

)

for α ≠ 1, and

S1(±∞, v) = S1(u,∞) = 0, S1(u, π/2) = q(u; 1, 1)

for α = 1.

REMARK 6.2.1. Here the domain of variation of the variables u and v arises,
of course, due to constraints imposed on the parameter β . But if Sα (u, v) is
defined directly as the real part of Ψα (z), then it is harmonic at each point of
the (u, v)-plane.
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6.3. Fractional integrodifferential equations
A number of equations for densities q(x; α, δ ) of strictly stable distributions
can be written with the use of the fractional integral operator Ir:

I
rh(x) ≡ e−iπrIr

−h(x) =
e−iπr

Γ(r)

∫ ∞

x
(t− x)r−1h(t) dt.

In the functions ψ(x) = xq(x; α, δ ), x > 0, considered below, the densities
q(x; α, δ ) are parameterized in form C (but we omit the index C).

We mention several special properties of the operators Ir that are needed
in what follows.

LEMMA 6.3.1. Let z be a complex number. If r ≥ 0 and ℜz > 0, or if r < 0 and
ℜz ≥ 0, then

I
r exp(−zx) = exp(−iπr− zx)z−r. (6.3.1)

In particular, for r > 0 and z = −ik, k > 0,

I
−r exp(ikx) = exp(iπr/2 + ikx)kr. (6.3.2)

Let s be a real number, and n, the smallest integer such that n + s > 0. Then for
any r < s

I
rx−s = exp(−iπr)

s(s + 1)…(s + n− 1)Γ(s− r)
Γ(s + n)

xr−s. (6.3.3)

In particular, if s > 0, then for any r < s

I
rx−s = exp(iπr)

Γ(s− r)
Γ(s)

xr−s. (6.3.4)

PROOF. The case r = 0 clearly does not need to be analyzed. If r > 0 and ℜz > 0,
then

I
r exp(−zx) =

exp(−iπr)
Γ(r)

∫ ∞

x
e−zt(t− x)r−1dt

=
exp(−iπr)

Γ(r)
e−zx

∫ ∞

0
e−zttr−1dt,

which, as is not difficult to see, implies (6.3.1).
If −1 < r < 0 and ℜz ≥ 0, integration by parts gives us

I
r exp(−zx) =

exp(−iπr)
Γ(r)

∫ ∞

x
(e−zt − e−zx)(t− x)r−1dt

=
exp(−iπr)

Γ(1 + r)
z
∫ ∞

x
e−zt(t− x)rdt.
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The integral is then transformed as in the preceding case.
If r is a negative integer, then Ir is the operator of r-fold differentiation,

and verification of (6.3.1) presents no difficulties.
But if r is negative and not an integer, then, choosing a positive integer n

such that −1 < r + n < 0, we can factor the operator, Ir = Ir+n
I
−n, and obtain

I
r exp(−zx) = Ir+n dn

dxn exp(−zx)

= exp(iπn)zn
I

r+n exp(−zx),

i.e., we arrive at the case analyzed above.
The verification of (6.3.3) is similar.

THEOREM 6.3.1. Let x > 0, and let α ≠ 1 and δ be some pair of admissible
parameter values. Then for any r > −1/α the function ψ(x) = xq(x; α, δ ) is the
real part of a function χ(ξ ), ξ = x−α , satisfying the equation

xI−αr(x−1χ(x−α )) = exp {−iπr + i(α − δ )rπ/2} ξ r
I
−rχ(ξ ). (6.3.5)

PROOF. Consider the function

χ(ξ ) =
1
π

∫ ∞

0
exp {it− ξ tα exp(iδπ/2)} dt. (6.3.6)

A simple transformation of the integral in (4.1.1) shows that ψ(x) = ℜχ(ξ ).
Let us demonstrate that χ(ξ ) satisfies (6.3.5). Using (6.3.1), we obtain

I
−rχ(ξ ) =

1
π

∫ ∞

0
exp(ik)I−r exp {−ξkα exp(iδπ/2)} dk

= exp(irπ + irδπ/2)
1
π

∫ ∞

0
kαr exp {ik− ξkα exp(iδπ/2)} dk.

(6.3.7)

Further, since

µ(x) ≡ x−1χ(x−α ) =
1
π

∫ ∞

0
exp {ikx− kα exp(iδπ/2)} dk, (6.3.8)

from (6.3.2) it follows that

xI−αrµ(x) =
x
π

∫ ∞

0
exp {−kα exp(iδπ/2)} I−αr exp(ikx) dk

= exp(iαrπ/2)
1
π

∫ ∞

0
kαr exp {ikx− kα exp(iδπ/2)} d(kx)

= ξ r exp(iαrπ/2)
1
π

∫ ∞

0
kαr exp {ik− ξkα exp(iδπ/2)} dk.

(6.3.9)

Comparison of (6.3.7) and (6.3.9) validates (6.3.5). The condition αr > 1
ensures the existence of the integrals in these equalities.
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A slight change in the reasoning allows us to derive another equation of
type (6.3.5).

Let us carry out integration by parts in expression (6.3.6) for the function
χ(ξ ):

χ(ξ ) = i/π + (αξ /π) exp {i(δ − 1)π/2}
∫ ∞

0
kα−1 exp {ik− ξkα exp (iδπ/2)} dk.

(6.3.10)

Let τ(ξ ) = ξ−1χ(ξ ). The functions τ, χ, and ψ are related as follows:

τ(ξ ) = xαχ(x−α ) = x1+α µ(x),

µ(x) = ξ1/αχ(ξ ) = ξ1+/ατ(ξ ), (6.3.11)

whereas the differential operators with respect to the variables x and ξ are
related by the equalities

d
dξ

= − 1
α

x1+α d
dx

,
d
dx

= −αξ1+1/α d
dξ

. (6.3.12)

THEOREM 6.3.2. For any r > −1 and any pair of admissible values of the
parameters α ≠ 1 and δ the function x1+α q(x; α, δ ) is the real part of a function
τ(ξ ) satisfying the equation

ξ r+1
I
−rτ(ξ ) + (i/π)Γ(1 + r) exp {iπ(1 + r)}

= α exp {iπr− i(r + 1)(α − δ )π/2} I1−α(r+1)(x−(1+α)τ(x−α )). (6.3.13)

PROOF. By virtue of (6.3.10),

τ(ξ )− (iπξ )−1 =
α
iπ

exp (iδπ/2)
∫ ∞

0
kα−1 exp {ik− ξkα exp (iδπ/2)}dk.

Herefrom, making use of properties (6.3.1) and (6.3.4) of the operators Ir, we
obtain

I
−r(τ(ξ )− (iπξ )−1) = I−rτ(ξ ) +

1
iπ

exp(iπr)Γ(1 + r)ξ−(1+r)

=
α
iπ

exp {iπr + i(r + 1)δπ/2}

×
∫ ∞

0
kα(r+1)−1 exp {ik− ξkα exp (iδπ/2)} dk.

(6.3.14)

On the other hand, by virtue of (6.3.2) and (6.3.8),

I
1−α(r+1)µ(x) = I1−α(r+1)(x−(1+α)τ(x−α ))

= exp {i[α(r + 1)− 1]π/2} 1
π

∫ ∞

0
kα(r+1)−1 exp {ikx− kα exp(iδπ/2)} dk

= ξ r+1 exp {i[α(r + 1)− 1]π/2} 1
π

∫ ∞

0
kα(r+1)−1 exp(ik− ξkα exp(iδπ/2))dk.

(6.3.15)
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Comparison of (6.3.14) and (6.3.15) yields (6.3.13).

COROLLARY 6.3.1. Let r = 1/α − 1. In this case, (6.3.13) takes the following
more simple form:

I
1−1/ατ(ξ ) +

i
π

Γ(1/α) exp(iπ/α)ξ−1/α = α exp {i[(2 + δ )π − 3α]π/(2α)} ξτ(ξ ).
(6.3.16)

We present another corollary as an independent theorem, because it is
connected with the case where integrodifferential equation (6.3.13) becomes
an ordinary differential equation.

THEOREM 6.3.3. If α = m/n is a rational number differing from 1, then for any
pair α, δ of admissible parameter values the density q(x; α, δ ) is the real part
of a function µ(x) satisfying the equation

nn
(

x1+m/nd/dx
)n−1

(x1+m/nµ(x))

= mn exp {−im(1− δ /α)π/2} xm (d/dx)m−1 µ(x) + (i/π)Γ(1 + n)mn−1xm.
(6.3.17)

The proof of (6.3.17) reduces to a transformation of (6.3.13) in the case
where α = m/n and r = n−1. The passage from the variable ξ to x is by means
of (6.3.11) and (6.3.12). With their help, equation (6.3.17) can be given another
form if we write it for the function τ(ξ ) and pass from the variable x to ξ :

nmξn (d/dξ
)n−1 τ(ξ ) + (i/π)(−1)nΓ(n)nm

= (−1)m+nmm exp {−im(1− δ /α)π/2}
(

ξ1+n/md/dx
)m−1

(ξ1+n/mτ(ξ )). (6.3.18)

It is not hard to see that (6.3.17) looks simpler than (6.3.18) for n < m, and
more complicated for n > m. This is very clear, for example, in the case m = 1,
where (6.3.18) is transformed into the equation

n
(

d
dξ

)n−1
τ(ξ ) + (−1)n exp {−i(1− δ /α)π/2} ξτ(ξ )

+ i(−1)m Γ(m + 1)
π

ξ−m = 0. (6.3.19)

6.4. Splitting of the differential equations
The above equations, beginning with (6.3.5), share a common feature. They
are connected not with the density q(x; α, δ ) itself but with a certain complex-
valued function whose real part is expressed in terms of the density. This
means that each of these equations is, generally speaking, a system of two
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equations for two functions, of which only one is of interest to us. The linear
nature of both equations allows us to write an equation for each of these
functions, but only at the cost of complicating the equation. Thus, the order
of equations (6.3.17) and (6.3.18) is equal to max(m − 1, n − 1), while the
order of the equation for the density q(x; α, δ ) = ℜµ(x) in the general case is
2 max(m − 1, n − 1). Sometimes, however, the complication does not occur,
because the coefficients of the operators turn out to be real.

We consider this phenomenon in more detail for the example of equation
(6.3.13) and its particular cases (6.3.17) and (6.3.18). The number

exp {iπr− i(r + 1)(α − δ )π/2}
is the factor in (6.3.13) which we shall be concerned with. It is real if and only
if the number 2r− (r + 1)(α − δ ) is even, i.e., is equal to 2k for some integer k:

2r− α(r + 1)(1− 2η/π) = 2k.

We hence obtain

δ = α − 2(k− r)/(r + 1). (6.4.1)

Determination of the numbers δ satisfying (6.4.1) means requiring that δ
belongs to the domain of admissible values, i.e., |δ | ≤ δα . It is not hard to see
that this is equivalent to the conditions

r ≤ k ≤ r + α(r + 1) if 0 < α < 1,
(α − 1)(r + 1) + r ≤ k ≤ 2r + 1 if 1 < α ≤ 2.

For equations (6.3.17) and (6.3.18) with α = m/n ≠ 1 and r = n − 1 repre-
sentation (6.4.1) is equivalent (since r is an integer) to

δ = δ (k) = α(1− 2k/m) (6.4.2)

with the following constraints imposed on the integer k:

0 ≤ k ≤ m if m < n,
m− n ≤ k ≤ n if m > n.

For each pair α = m/n, δ (k) satisfying (6.4.2), equations (6.3.17)–(6.3.18) break
up into pairs of mutually unconnected equations for the real and imaginary
parts of the corresponding function. Furthermore, the most interesting equa-
tion for the real part is always homogeneous.

It is not hard to see that for each α = m/n ≠ 1 there are at least two values
δ satisfying (6.4.2): δ = δα and δ = −δα . The set of α = m/n ≠ 1 for which
there are no cases of splitting of the differential equations other than cases of
extremal laws is made up of numbers of the form 1/(p + 1) and (2p + 1)/(p + 1),
p = 1, 2, …

If the order of the equations is at most two, then the form of the equations
themselves allows us to hope that they can be solved, at least with the help of
some special functions.
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6.5. Some special cases
1. If α = 1/2 and δ is any admissible value, then from (6.3.19) we obtain

τ′(ξ )− 1
2 exp(iζ)ξτ(ξ ) + iξ−2/π = 0, ζ = (1 + 8/α)π/2.

This equation can be solved without difficulty as we recall that τ(∞) = 0:

τ(ξ ) =
i
π

exp

(
ξ2

4
eiζ

)∫ ∞

ξ
exp

(
− t2

4
eiζ

)
dt
t2 .

Consequently,

x3/2q(x; 1/2, δ ) = ℜτ(ξ )

= −1
π

ℑ
(

z exp(z2/4)
∫ ∞

z
exp(−t2/4)

dt
t2

)
,

(6.5.1)

where z = x−1/2 exp(iζ /2).
In particular, if δ = 0 (i.e., ζ = π/2, which corresponds to a symmetric

distribution), then after appropriate transformations (6.5.1) takes the form

q (x; 1/2, 0) =
x−3/2

2
√

2π

{
cos

[
1
4x

(
1
2
− C

(√
2/(πx)

))]

+ sin
[

1
4x

(
1
2
− S

(√
2/(πx)

))]}
, (6.5.2)

where

C(z) =
∫ z

0
cos(πt2/2)dt, S(z) =

∫ z

0
sin(πt2/2)dt

are special functions called Fresnel integrals.

2. If α = 1/3 and δ = α (a case where equation (6.3.19) splits), then for
y(ξ ) = ℜτ(ξ ) we obtain the equation

y′′(ξ )− 1
3 ξy(ξ ) = 0.

The equation is solved (to within a constant factor) by the so-called Airy
integral, which can be expressed, in turn, in terms of the Macdonald function
of order 1/3:

y(ξ ) = 3c
∫ ∞

0
cos(t3 + tξ )dt = c

√
ξK1/3

(
2ξ3/2/

√
27
)

.
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To establish the value c we are aided by expansion (4.2.4) of the function
x4/3q(x; 1/3, 1) in powers of ξ = x−1/3. On the one hand (see (Gradshtein &
Ryzhik, 1963, 8.4.32(5))),

c
√

ξK1/3

(
2ξ3/2/

√
27
)

→ c
√

3Γ(1/3)/2

as ξ → 0, and on the other hand,

y(ξ ) = x4/3q (x; 1/3, 1/3) → (3π)−1
√

3Γ(1/3)/2

as ξ → 0; therefore, c = (3π)−1. Consequently,

q (x; 1/3, 1/3) =
x3/2

3π
K1/3

(
2√
27

x−1/2
)

. (6.5.3)

There are four more cases where the density g(x; α, δ ) can be expressed in
terms of special functions.

3. If α = δ = 2/3, from (6.3.18) it follows that that y(ξ ) = ℜτ(ξ ) satisfies the
equation

y′′(ξ ) + 4
9 ξ2y′′(ξ ) + 10

9 ξy(ξ ) = 0.

4. If α = 2/3 and δ = 0, then for y(ξ ) = ℜτ(ξ )

y′′(ξ )− 4
9 ξ2y′(ξ )− 10

9 ξy(ξ ) = 0.

5. If α = 3/2 and δ = δ3/2 = 1/2, then, by virtue of (6.3.19), the function
y(x) = ℜµ(x) is a solution of the equation

y′′(x) + 4
9 x2y′(x) + 10

9 xy(x) = 0.

6. If α = 3/2 and δ = −1/2, then for y(x) = ℜµ(x)

y′′(x)− 4
9 x2y′(x)− 10

9 xy(x) = 0.

Recall that in the last two cases δ = 1/2 corresponds to β = −1 in forms A
and B, while δ = −1/2 corresponds to β = 1.
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6.6. The Whittaker functions
All the equations considered above are connected with a single type of special
functions, the so-called Whittaker functions

Wλ ,µ (z) =
zλ e−z/2

Γ(µ − λ + 1/2)

∫ ∞

0
e−ttµ−λ−1/2(1 + t/z)µ+λ−1/2dt,

ℜ(µ − λ ) > −1/2, | arg z| < π.

We restrict our consideration to the particular case α = 2/3, δ = 0. The other
cases are treated similarly.

It is well known (see, for example, (Kamke, 1959, 2.273(5))) that in the
chosen case a function of the form

y(ξ ) = Cξ−1 exp
(

2
27 ξ3

)
W−1/2,1/6

(
4
27 ξ3

)

is a solution of the equation. As in the analysis of the preceding case, the value
of the constant C can be determined by comparing the asymptotic behavior of
y(ξ ) as ξ = x−2/3 → ∞, obtained in two different ways. On the one hand (see
(Gradshtein & Ryzhik, 1963, 9.227))

y(ξ ) ∼ C

√
27
2

ξ−(1+3/2) = C

√
27
2

x1+2/3.

On the other hand, on the basis of (4.9.1)

y(ξ ) = x1+2/3q (x; 2/3, 0) ∼ x1+2/3q (0; 2/3, 0) =
3

4
√

π
x1+2/3.

This implies that C = 1/(2
√

3π), i.e., for any x > 0

q (x; 2/3, 0) = q (−x; 2/3, 0)

=
x1

2
√

3π
exp

(
2
27x−2

)
W−1/2,1/6

(
4
27x−2

)
. (6.6.1)

In the remaining cases we obtain in the same way the following expressions
for the densities on the semi-axis x > 0:

q (x; 2/3, 2/3) =
x−1
√

3π
exp

(
− 2

27 x−2
)

W1/2,1/6

(
4
27 x−2

)
,

(6.6.2)

q (x; 3/2, 1/2) =
x−1
√

3π
exp

(
− 2

27 x3
)

W1/2,1/6

(
4

27 x3
)

, (6.6.3)

q (x; 3/2,−1/2) =
x−1

2
√

3π
exp

(
2
27 x3

)
W−1/2,1/6

(
4
27x3

)
. (6.6.4)
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According to the duality law (4.6.2), the densities under consideration on
the positive semi-axis must be related by the equalities

xq (x; 3/2, 1/2) = x−3/2q
(

x−3/2, 2/3, 2/3
)

,

xq (x; 3/2,−1/2) = x−3/2q
(

x−3/2, 2/3, 0
)

,

and this can indeed be observed in the above formulas (therefore, in particular,
we can obtain (6.6.4) as a corollary to (6.6.1), and (6.6.2), to (6.6.3)).

The integral representation

W−1/2,1/6(z) =
z−1/2

Γ(7/6)
e−z/2

∫ ∞

0
e−tt1/6

(
1 +

t
z

)−5/6
dt

of the function W−1/2,1/6(z) in the z-plane with a cut along the negative semi-axis
shows that this is a multi-valued function with third-order algebraic branch
points z = 0 and z =∞. Consequently, the function W−1/2,1/6(z3) is analytic on
the whole complex plane, and we can speak of its values W−1/2,1/6(z3) on the
negative semi-axis, although the formula given is unsuitable for expressing
them. This consideration, together with the consequence

q (x; 3/2, 1/2) = q (−x, 3/2,−1/2)

of (3.7.3), leads to new expressions for the densities q (x; 3/2, 1/2) and
q (x; 2/3, 2/3):

q (x; 3/2, 1/2) = − x−1

2
√

3π
exp

(
2
27 x3

)
W−1/2,1/6

(
− 4

27x3
)

,

q (x; 2/3, 2/3) =
x−1

2
√

3π
exp

(
2
27x−2

)
W−1/2,1/6

(
− 4

27x−2
)

.

A comparison of these expressions with (6.6.3) and (6.6.2) shows that in
the complex plane

W−1/2,1/6(−z3) = −2W−1/2,1/6(z3).

6.7. Generalized incomplete hypergeometrical
function

In (Hoffmann-Jørgensen, 1993), a generalized incomplete hypergeometrical
function pGq(α1, …, αp; β1, …, βq; γ , z) is used, where p, q are non-negative inte-
gers, αi, βj are positive numbers, and 0 < γ ≤ 1; the function is defined as the
incomplete hypergeometrical series

pGq =
∞∑

n=0




p∏

i=1

Γ(αi + γ n)
Γ(αi)

q∏

j=1

Γ(βj)
Γ(βj + γ n)


 zn

n!
. (6.7.1)
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In the case 0 < γ < 1, this power series converges in all the complex plane, in
the case γ = 1 it converges in the disk |z| < 1.

The theorem given in (Hoffmann-Jørgensen, 1993) gives the representation
of the densities of strongly stable laws in terms of the function 1G0. Actually,
it is equivalent to the following.

If 1 < α ≤ 2, x ≠ 0, then

xq(x; α, δ ) = −1
π

ℑ1G0(1; 1/α,−xeiπρ/α).

If 0 < α < 1, x > 0, then

xq(x; α, ρ) = −1
π

ℑ1G0(1; α,−x−αeiπρ).

Following (Zolotarev, 1994), we make some remarks concerning the func-
tions pGq introduced in (Hoffmann-Jørgensen, 1993).

The functions pGq have some pre-history. In (Wright, 1935), the asymptotic
behavior of a more general series than (6.7.1) was investigated. Namely (see
(Bateman & Erdelyi, 1953, §4.1))

pWq =
∞∑

n=0

Γ(α1 + µ1n)…Γ(αp + µpn)
Γ(β1 + ν1n)…Γ(βq + νqn)

zn

n!
, (6.7.2)

where p, q are non-negative integers, the product over an empty set is assumed
equal to 1, αi, βj ∈ R, and µi, νj are positive numbers satisfying the condition

1 +
q∑

j=1

νj −
p∑

i=1

µi > 0. (6.7.3)

Later series (6.7.2) were not considered by anyone, and little is known about
their properties. Apparently, this circumstance explains why they did not
receive any name and were not included in the class of acknowledged special
functions.

The next remark concerns the description of the domain of convergence of
series (6.7.1) in the case 0 < γ ≤ 1. Elementary calculations of the convergence
radius R of this series shows that for any γ > 0

R =

{
∞, 1 + γ (q− p) > 0,
−(p− q)−1 1 + γ (q− p) = 0,

and R = 0 otherwise (the first case quite conforms to (6.7.3)). Therefore, the
equality R =∞ is not ensured by the condition 0 < γ < 1 just like the equality
R = 1 is not ensured by γ = 1.
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6.8. The Meijer and Fox functions
In the problems related to higher transcendental functions, a distinguished
position belongs to the so-called Meijer’s G-functions. They appeared and
became an object of intensive investigations in the second half of the thirties.

DEFINITION OF A G-FUNCTION. Let p, q, and m ≤ q, n ≤ p, p + q < 2(m + n), be
some non-negative numbers, and let a1, …, ap, b1, …, bq be systems of complex
numbers satisfying the condition

max
i

ℜai −min
j

ℜbj < 1.

The Meijer function Gmn
pq

(
z
∣∣∣ a1,…,ap

b1 ,…,bq

)
of order (m, n, p, q) is uniquely defined in

the sector {z = reiϕ : |ϕ| < π[(m + n)− (p + q)/2]} by the equality

∫ ∞

0
xs−1Gmn

pq

(
z
∣∣∣∣
a1, …, ap
b1, …, bq

)
dx =

m∏

j=1

Γ(bj + s)

q∏

j=m+1

Γ(1− bj − s)

n∏

i=1

Γ(1− ai − s)

p∏

i=n+1

Γ(ai + s)

,
(6.8.1)

−min
j

ℜbj < ℜs < 1−max
i

ℜai

(the product over an empty set of indices is assumed equal to 1).

The comparison of equalities (5.6.4) and (6.8.1) suggests an idea of relating
the densities of strongly stable laws with Meijer’s functions in some cases.

Consider this possibility in more detail. Assume that the parameters α =
P/Q ≠ 1, (P, Q) = 1, and ρ = αU/V > 0, (U, V) = 1, are rational numbers1. Let
M be the least positive integer for which M = PM1 and M = VM2, where M1,
M2 are positive integers (least common multiple). Put N = QM1, L = UM2.
Obviously, α = M/N, ρ = L/M. The following assertion holds see ((Zolotarev,
1994)).

THEOREM 6.8.1. Let α = P/Q ≠ 1 and ρ = αU/V > 0 be rational numbers. Then

xq(x; α, ρ) = xq(x; M/N, αL/M) = AGmn
pq

(
xMB−1

∣∣∣∣
a1, …, ap
b1, …, bq

)
(6.8.2)

1(P, Q) = 1 means that P and Q are relatively prime, i.e., they possess no common divisor
different from 1.
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for any x > 0, where m = M − 1, n = N − 1, p = N + L− 2, q = M + L− 2;

(a1, …, an) =
(

1
N

, …,
N − 1

N

)
, (an+1, …, ap) =

(
1
L

, …,
L− 1

L

)
;

(b1, …, bm) =
(

1
M

, …,
M − 1

M

)
, (bm+1, …, bq) =

(
1
L

, …,
L− 1

L

)
;

A = N
√

α(2π)N[ρ−(1+α)/2], B =
MM

NN . (6.8.3)

PROOF. Using (5.6.4) and the well-known Gauss–Legendre multiplication for-
mula for Γ-functions, we obtain

M
∫ ∞

0
xMsq(x; α, ρ) dx =

MN
L

Γ(Ms)Γ(−Ns)
Γ(−Ls)Γ(Ls)

= MABs Γ(1/M + s)…Γ((M− 1)/V + s)Γ(1/N − s)…Γ((N − 1)/N − s)
Γ(1/L− s)…Γ((L− 1)/L− s)Γ(1/L + s)…Γ((L− 1)/L + s)

= M
∫ ∞

0
xMs

[
AGmn

pq

(
xMB−1

∣∣∣∣
a1, …, ap
b1, …, bq

)
dx
x

]

Comparing the left- and right-hand sides of the last equality, we arrive at
representation (6.8.2).

Using the properties of Meijer’s function, we easily see that particular cases
of formula (6.8.2) give us the known analytical expressions of stable densities.
In the normal case α = 2, ρ = 1, we obtain M = 2, N = 1, L = 1, B = 4,
A = π−1/2, etc.; thus

xq(x; 2, 1) = π−1/2G10
01

(
x2/4

∣∣∣∣
−
1/2

)
. (6.8.4)

According to formula (1.7.2) of (Mathai & Saxena, 1978),

G10
01

(
z
∣∣∣∣
−
b

)
= zbe−z.

Applying this formula to (6.8.4), we obtain

q(x; 2, 1) =
1√
4π

e−x2/4.

Similar reasoning, with the use of the formulae

G11
11

(
zα
∣∣∣∣
β /α
β /α

)
=

zβ

1 + zα ,

G01
10

(
z
∣∣∣∣
a
−
)

= G10
01

(
1/z
∣∣∣∣
−

1− a

)
,
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yields the Cauchy and Lévy densities.
Representation (6.8.2) will obviously add little to those few particular cases

where the densities q happen to be represented by Fresnel integrals, Bessel
functions , and Whittaker functions. However this representation together
with numerous connections in the class of G-functions may lead to new in-
teresting formulae for the densities of stable laws, such as the expression in
terms of G-functions of various integral transforms of the densities q(x; α, ρ)
with rational values of parameters, for example

∫ 1
0 xu(1 − x)v−1q(xy; α, ρ) dx,∫∞

1 x−u(x − 1)v−1q(xy; α, ρ) dx, and
∫∞

0 k(x)q(xy; α, ρ) dx where k(x) are var-
ious kernel functions (see (Erdélyi et al., 1954)): k(x) = xu−1(x + λ )−v,
x−u exp(−vx), x1/2 exp(−vx1/2), x > 0, and do on, as well as the integral of
the form

∫∞
0 q(x; α1, ρ1)(q(xy; α2, ρ2) dx.

The above-mentioned integral transforms with Euler kernels together with
(6.8.2) make it possible to obtain the expressions of distribution functions of
strongly stable laws G(x; α, ρ) with rational values of parameters in terms of
G-functions. Namely, if α = P/Q ≠ 1, ρ = αU/V > 0, then for x > 0

G(x; α, ρ) = 1− ρ +
∫ x

0
q(u; α, ρ) du

= 1− ρ +
A
M

Gm,n+1
p+1,q+1

(
xMB−1

∣∣∣∣
1, a1, …, ap
b1, …, bq, 0

)
,

where the parameters ai, bj, m, n, p, q, and others are the same as in (6.8.2),
and for x < 0

G(x; α, ρ) =
∫ x

−∞
q(u; α, ρ) du =

∫ ∞

|x|
q(u; α, α − ρ) du

=
A′

M
Gm+1,n

p′+1,q′+1

(
|x|MB−1

∣∣∣∣∣
a′1, …, a′p′ , 1
0, b′1, …, b′q′

)
,

where a′i = ai, 1 ≤ i ≤ n = N − 1, b′j = bj, 1 ≤ j ≤ m = M − 1,

a′i =
i− n

M − L
, n + 1 ≤ i ≤ p′ = N + M − L− 2,

b′j =
j−m
M − L

, m + 1 ≤ j ≤ q′ = 2M − L− 2,

A′ is derived from A in (6.8.3) by replacing ρ = αL/M with ρ′ = αL′/M, L′ =
M − L.

The above results concern only rational values of the characteristic α.
In actual computations, this constraint is not heavy, because in numerical
calculations we always deal with rational numbers. Nevertheless, it is possible
to eliminate this constraint by passing to the Fox’s H-functions (Schneider,
1986).
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The Fox function, or H-function, also called the generalized G-function
or generalized Mellin–Barnes function, represents a rich class of functions
which contains functions such as Meijer’s G-function, hypergeometric func-
tions, Wright’s hypergeometric series, Bessel functions, Mittag–Leffler func-
tions, etc., as special cases.

As Meijer’s G-functions, the Fox’s H-functions can be determined by the
Mellin transformation
∫ ∞

0
xs−1Hmn

pq

(
ax
∣∣∣∣
(a1, α1), …, (ap, αp)
(b1, β1), …, (bq, βq)

)
dx

=

m∏

j=1

Γ(bj + βjs)

q∏

j=m+1

Γ(1− bj − βjs)

n∏

i=1

Γ(1− ai − αis)

p∏

i=n+1

Γ(ai + αis)

, (6.8.5)

where m, n, p, q, ai, bj are defined above, and α1, …, αp, β1, …, βq are positive
numbers satisfying the condition

αj(bh + ν) ≠ βh(aj − λ − 1)

for ν, λ = 0, 1, 2, …, h = 1, …, m, j = 1, …, n.
The theorem on residues enables one to express the Fox function as the

infinite series

Hmn
pq (z) =

m∑

j=1

∞∑

k=0

(−1)k

k!
Cjkzsjk /βj, (6.8.6)

where

sjk =
bj + k

βj
,

Cjk =
Aj(sjk)B(sjk)
C(sjk)D(sjk)

,

Aj(s) =
∏

l=1
l≠j

Γ(bl − βls),

B(s) =
n∏

j=1

Γ(1− aj + αjs),

C(s) =
q∏

j=m+1

Γ(1− bj + βjs),

D(s) =
p∏

j=n+1

Γ(aj − αjs).
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Formula (6.8.6) can be used for calculation of particular values of Fox functions
and to study their asymptotic behavior as z →∞.

6.9. Stable densities as a class of special functions
Many facts indicate that, by virtue of their richness of analytic properties,
the functions q(x; α, β) merit being distinguished as an independent class and
accorded ‘civil rights’ in the theory of special functions. Some of these facts are
presented below.

The functions q(x; α, 1) (form B) with 0 < α < 1 turn out to be useful in the
theory of Laplace transforms and the operational calculus connected with it.
Let

V(λ ) =
∫ ∞

0
exp(−λx)v(x) dx, ℜλ ≥ 0,

denote the Laplace transform of a function v(x) (we write V(λ ) 
 v(x)). The
following formulae are well known (for example, see (Erdélyi et al., 1954)). If
V(λ )
 v(x), then, for instance,

V(
√

λ )

1

2
√

π
x−3/2

∫ ∞

0
exp

(
−u2

4x

)
v(u) du; (6.9.1)

for any c > 0

V(cλ +
√

λ )

1

2
√

π

∫ x/c

0
u(x− cu)−3/2 exp

(
− u2

4(x− cu)

)
v(u) du. (6.9.2)

The functions q(x; α, 1) with 0 < α < 1 provide an opportunity for general-
izing these relations.

THEOREM 6.9.1. If V(λ ) 
 v(x), then the following relations hold true for any
0 < α < 1 and any c > 0:

V(λ α )

∫ ∞

0
u−1/αq(xu−1/α ; α, 1)v(u) du, (6.9.3)

V(cλ + λ α )

∫ x/c

0
u−1/αq(u−1/α (x− cu); α, 1)v(u) du. (6.9.4)

In particular, for α = 1/3

V(λ 1/3)

x−3/2

3π

∫ ∞

0
u3/2K1/3

(
2√
27

u3/2x−1/2
)

v(u) du, (6.9.5)

V(cλ + λ 1/3)

1

3π

∫ x

0

(
u

x− cu

)3/2
K1/3


 2√

27

(
u3

x− cu

)1/2

 v(u) du,

(6.9.6)

where K1/3 is the Macdonald function of order 1/3.
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PROOF. By virtue of (3.7.2) and (5.4.6), for any x > 0

exp(−xλ α ) =
∫ ∞

0
e−λuu−1/αq(x−1/αu; α, 1) du. (6.9.7)

Using this equality and the integral expression for V(λ α ), we obtain (6.9.3)
after changing the order of integration.

Further, by the same equality (6.9.7),

V(cλ + λ α ) =
∫ ∞

0
exp(−cλy− λ α )v(y) dy

=
∫ ∞

0

∫ ∞

0
exp(−λ (cy + u))y−1/αq(y−1/α u; α, 1) dy du.

The change of variable u = x− cy yields an integral of the form
∫ ∞

0
exp(−λx)U(x) dx,

where the function U(x) coincides with the right-hand side of (6.9.4).
Relations (6.9.6) and (6.9.7) are derived from (6.9.3) and (6.9.4) after re-

placing q(u; 1/3, 1) by its expression in (6.5.3).

We saw above that the functions q(x; α, δ ) are solutions of various types of
integral and integrodifferential equations, and even of special types of ordinary
differential equations in the case of rational α ≠ 1. Though the function
q(x; α, δ ) represents only one of the solutions, a detailed analysis of its analytic
extensions may possibly reveal (as can be seen by the example of an analysis
of the Bessel and Whittaker equations) other linearly independent solutions.

Above all else, solutions of the equations with the densities

q(x; m/n, 1) ≡ qB(x; m/n, 1), m < n,

should be considered.
A good illustration is the case m = 1 and n = p + 1 ≥ 2 connected with the

equation (see (6.3.19))

y(p)(ξ ) = (−1)pξy(ξ )/(p + 1), ξ > 0,

whose solution is the function

y(ξ ) = ξ−(p+2)q(ξ−(p+1); 1/(p + 1), 1).

Of interest is the connection between the densities of extremal stable laws
and the Mittag–Leffler function

Eσ(x) =
∞∑

n=0

xn

Γ(nσ + 1)
, σ > 0.
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THEOREM 6.9.2. For any 0 < α < 1 and any complex-valued λ

αEα (−λ ) =
∫ ∞

0
exp(−λx)x−1−1/α q(x−1/α ; α, 1) dx. (6.9.8)

If 1/2 ≤ α < 1, then

αEα (−λ ) =
∫ ∞

0
exp(−λx)q(x; 1/α,−1) dx. (6.9.9)

PROOF. Let λ > 0. It is known (Bieberbach, 1931) that in this case the function
Eα (−λ ) has the representation

Eα(−λ ) =
1

2πiα

∫

L
exp

(
z1/α

) dz
z + λ

, (6.9.10)

where the integration contour L consists of the following three parts (z = x+iy):
the line L1 given by y = −(tan ϕ)x, where x runs from x =∞ to x = h, with h > 0
and απ/2 < ϕ < απ; the circular arc L2 given by |z| = h/ cos ϕ, −ϕ ≤ arg z ≤ ϕ;
and the reflection L3 of L1 with respect to the x-axis. We replace (z + λ )−1 in
(6.9.10) by the equivalent integral

∫ ∞

0
exp {−(z + λ )u} du.

The double integral thus obtained converges absolutely; hence we can change
the order of integration. Then

Eα (−λ ) =
∫ ∞

0
exp(−λu)ƒα (u) du,

where the function ƒα (u) can be transformed by integration by parts as follows:

ƒα (u) =
1

2πiα

∫

L
exp

(
z1/α − zu

)
dz

=
1

2πiαu

∫

L
exp

(
z1/α − zu

)
dz1/α .

We make a change of variable, setting z = ζ α /u:

ƒα (u) =
1
α

u−1−1/α
(

1
2πi

∫

L∗
exp

(
−ζα + ζu−1/α

)
dζ
)

.

The contour L∗ is the image of L under the change of variable. The integral
in parentheses is the inverse Laplace transform of the function exp(−λ α ) (0 <
α < 1) and, consequently, represents the function q(u−1/α ; α, 1) according to
(5.4.6).
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Equality (6.9.9) is obtained from (6.9.8) by using the duality law for densi-
ties (4.6.2) and the fact that the pair α < 1, δ = α in form C corresponds to the
pair α ′ = 1/α, β = −1 in form B.

The left-hand sides of (6.9.8) and (6.9.10) can be extended analytically from
the half-line λ > 0 to the whole complex plane, as is clear from the definition
of the function Eα (x). On the other hand, x−1−1/αq(x−1/α ; α, 1) decreases with
increasing x more rapidly than any function exp(−cx), c > 0. Therefore, the
right-hand side can also be extended to the whole complex plane, i.e., equalities
(6.9.8) and (6.9.9) are valid for any complex s.

Another interesting connection between the functions Eσ (x) and q(x; α, 1)
reveals itself when the following equality (obtained in (Humbert, 1953) for any
σ > 0) is generalized:

Eσ/2(x) =
1√
π

∫ ∞

0
Eσ(xuσ ) exp

(
−u2

4

)
du. (6.9.11)

THEOREM 6.9.3. Suppose that 0 < α < 1 and σ > 0. Then for any complex s

Eασ (λ ) =
∫ ∞

0
Eσ (λu−ασ )q(u; α, 1) du. (6.9.12)

The proof of the theorem can be found in (Zolotarev, 1986).

6.10. Transstable functions
The class of strictly stable laws is the starting object for the following general-
izations. As we know, each law in this class is characterized in form C by three
parameters (α, ρ, λ ), where

ρ = (δ + α)/2.

The parameter λ is purely a scale parameter, because

qC(x; α, ρ, λ ) = λ−1/α qC(xλ−1/α ; α, ρ, 1) ≡ λ−1/α qC(xλ−1/α ; α, ρ).

According to (4.2.4) and (4.2.9), the densities qC(x; α, ρ) can be represented by
convergent power series. We use these representations here in a somewhat
extended version including also the case α = 1. Namely, if 0 < α < 1, 0 ≤ ρ ≤ α
and x > 0, or if α = 1, 0 < ρ < α and x > 1, then

qC(x; α, ρ) = π−1
∞∑

n=1

(−1)n−1Γ(αn + 1)
n!

sin(nρπ)x−αn−1. (6.10.1)

If 1 < α ≤ 2, α − 1 ≤ ρ ≤ 1 and x ∈ R, or if α = 1, 0 < ρ < α, and |α| < 1, then

qC(x; α, ρ) = π−1
∞∑

n=1

(−1)n−1 Γ(n/α + 1)
n!

sin(nρπ/α)xn−1. (6.10.2)
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It is not hard to see that series (6.10.1) and (6.10.2) remain convergent if,
keeping the restrictions on the variation of x, we extend the domain of variation
of (α, ρ) in the first case to the strip 0 < α ≤ 1, ρ ∈ R, and in the second case to
the half-plane α ≥ 1, ρ ∈ R.

This enables us to define in the complex plane Z (possibly with cuts) the
family of analytic functions

T = {σ(z; α, ρ) : α > 0, ρ ∈ R} ,

by setting them equal to the corresponding functions q(x; α, ρ) on the parts of
the real axis x = ℜz where the latter were defined.

DEFINITION. Let T0 be the set of analytic functions formed all the functions
σ(z; α, ρ) in T with α ≥ 1 or with 0 < α < 1 and ρ an integer together with the
principal branches of all the functions σ(z; α, ρ) in T with 0 < α < 1 and ρ not
an integer. The functions in T0 are called transstable functions.

Let us proceed to the properties of the functions.

(1) If α > 1, then, for any ρ, σ(z, α, ρ) is an entire analytic function.

(2) If α = 1 and ρ is not an integer, then σ(z, 1, ρ) is a meromorphic analyt-
ic function with two simple conjugate poles which are solutions of the
equation

z2 + 2z cos(ρπ) + 1 = 0.

The function σ(z, 1, ρ) is equal to zero for any integer ρ.

(3) If 0 < α < 1, x > 0, and ρ is an integer, then

σ(x, α, ρ) = 0.

(4) If α > 1 and x > 0 or if α = 1 and 0 < x < 1, then

x−ασ(x−α , 1/α, αρ) = xσ(x, α, ρ).

(5) Each function σ(z, α, ρ) is periodic in the variable ρ with period Tα =
2 min {1, α}, i.e.,

σ(z, α, ρ + Tα ) = σ(z, α, ρ).

(6) For any transstable function

σ(z, α,−ρ) = −σ(z, α, ρ).

(7) If α ≥ 1 then for any complex number z

σ(−z, α, ρ) = σ(z, α, α − ρ),

zσ(z, α, ρ) = z−ασ(z−α , 1/α, αρ).
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(8) Suppose that α ≥ 1 and |ρ| ≤ α, i.e., we consider points (α, ρ) in a strip
where the periodicity with respect to ρ does not yet manifest itself. The
Fourier transform σ̂(k; α, ρ) of the function σ(x; α, ρ) exists if and only if
|ρ ± α/2| ≤ 1/2, which corresponds to the domain bounded by the curves

ρ = (α + 1)/2

and
ρ = (α − 1)/2

and the domain symmetric to it with respect to the α-axis. In the first
domain

ln σ̂(k; a, ρ) = −|k|α exp {−i(ρ − α/2)π sign k} .

In particular, for the symmetric function

σ̂(k; α, α/2) = exp {−|k|α} , α ≥ 1.

(9) Suppose that α > 0 and |ρ| ≤ Tα /2. Consider the Mellin transform of the
function xσ(x; α, ρ):

R(s; α, ρ) =
∫ ∞

0
xsσ(x; α, ρ) dx.

If 0 < α ≤ 1, then R(s; α, ρ) exists for values in some neighborhood of the
point s = 0 for any ρ. But if α > 1 then R(s; α, ρ) exists for s in some
neighborhood of zero if and only if

|ρ| ≤ (α + 1)/2.

If R(s; α, ρ) exists, then it exists for all s ∈ (−1, α) and is given by the
function (5.6.3).

These and some other properties of transstable functions are listed and
discussed in (Zolotarev, 1986).

6.11. Concluding remarks
We conclude this chapter with brief walk through some other generalizations
of stable distribution.

Let us fix some subsequence {k(n)} of natural numbers, and consider the
asymptotic behavior of the sequence of distributions of the sums

S∗
n = B−1

n

k(n)∑

i=1

Xi + Cn.



6.11. Concluding remarks 191

Khinchin demonstrated that any infinitely divisible distribution can play the
role of the limit distribution in this scheme. Thus, in order to distinguish some
non-trivial subclass of limit distributions, we need to impose some additional
constraints on {k(n)}. Such a generalization was considered by Shimizu, Pillai,
and Kruglov, who dwell on the case where

k(n) →∞, k(n) ≤ k(n + 1), k(n + 1)/k(n) → r ∈ [1,∞).

The limit distributions arisen are referred to as semi-stable. Kruglov estab-
lished that a probability distribution is semi-stable as soon as it is either
Gaussian or infinitely divisible with no Gaussian component with the spectral
function H(x) of the form

H(x) =

{
|x|−αθ1(ln |x|), x < 0,
−|x|−αθ2(ln |x|), x > 0,

where α ∈ (0, 2), θi(y) are periodic functions with one and the same period.
The so-called pseudo-stable distribution are close to semi-stable ones. A

pseudo-stable distribution is either Gaussian or infinitely divisible with no
Gaussian component whose Lévy spectral function is of the form

H(±x) = x−αθ±(ln x), x > 0,

where 0 < α < 2, θ±(y) are continuous almost periodical functions with finite
Fourier spectrum. Moreover,

H(±x) = ∓
l∑

k=1

θk(y)ϕ±
k (x/y),

where x > 0, y > 0, the functions θk(y) and ϕ±
k (x) are non-negative, continuous,

monotone decreasing, and allowing for the representation

θk(x) = x−α


ak0 +

lk∑

m=1

(
akm cos(ωm ln x) + bkm sin(ωm ln x)

)

 ,

ϕ±
k (y) = y−α


ck0 +

lk∑

m=1

(
c±

km cos(ωm ln x) + d±
km sin(ωm ln x)

)

 ,

y > 0, 1 + 2lk ≤ l, 0 < α < 2, ωm > 0. Recently, a series of new results along
these directions are obtained by Yu.S. Khokhlov (Khokhlov, 1996).

Schneider suggested a generalization of one-sided stable distributions by
specifying their Laplace transforms

φm,α (λ ) =
∫ ∞

0
dxe−λxpm,α(x)
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as

φm,α (λ ) = AbHm0
0m

(
λ
b

∣∣∣∣
−

((k− 1)/a, 1/a), k = 1, …, m

)

= Aab
m∑

k=1

∞∑

n=0

ck,n
(−1)n

n!

(
λ
b

)k−1+na

with

ck,n =
m∏

j=1,j≠k

Γ((j− k)/a− n),

a = m + α − 1,

b =
[

am

Γ(1− α)

]1/a
.

In particular,

φ1,α (λ ) =
∞∑

n=0

(−1)n

n!

(
λ
b

)na
= exp {−(λ /b)α}

and we have the one-sided stable distribution.
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Multivariate stable laws

7.1. Bivariate stable distributions
The concept of stable laws can be naturally extended to the case of multidimen-
sional (and even infinite-dimensional) spaces. We start with the consideration
of strictly stable bivariate and (in the following section) trivariate distributions
as the most important for physical applications.

Let X = (X1, X2) be a two-dimensional random vector on a plane. In the
polar coordinates, it is represented through the variables

R =
√

X2
1 + X2

2 , Φ = arctan(X2/X1).

If we denote by w(ϕ) the probability density of the angle Φ between the vector
X and the x-axis

w(ϕ) dϕ = P{Φ ∈ dϕ},

then the bivariate probability density of X can be rewritten as

p2(r) = p2(r, ϕ) = p(r | ϕ)w(ϕ), r = |r|. (7.1.1)

By normalization,

∫ 2π

0
dϕ
∫ ∞

0
dr rp2(r, ϕ) =

∫ 2π

0
dϕ w(ϕ)

∫ ∞

0
p(r | ϕ)r dr = 1,

where
∫ 2π

0
dϕw(ϕ) = 1, (7.1.2)

∫ ∞

0
p(r | ϕ)r dr = 1. (7.1.3)

193
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The factor p(r | ϕ)r is the conditional density function for the absolute
value R of the vector X, whereas

∫ r

0
p(r′ | ϕ)r′dr′ = FR(r | ϕ) (7.1.4)

is the corresponding distribution function. The probability for the absolute
value R to exceed a given value r by a fixed Φ = ϕ is expressed through this
function by the relation:

P{R > r | ϕ} = 1− FR(r | ϕ). (7.1.5)

As well as in the univariate case, we consider the power distribution of the
absolute value

P{R > r | ϕ} =

{
c(ϕ)r−α , r > ε(ϕ),
1, r < ε(ϕ),

(7.1.6)

where the positive α does not depend on ϕ, and ε(ϕ) is determined by the
normalization

1 = P{R > ε(ϕ) | ϕ} = c(ϕ)ε−α ,

which yields
ε(ϕ) = [c(ϕ)]1/α .

Differentiating both parts of equality (7.1.5) with account of (7.1.4) and (7.1.6),
we obtain:

p(r | ϕ) =

{
αc(ϕ)r−α−2, r > [c(ϕ)]1/α ,
0, r < [c(ϕ)]1/α .

(7.1.7)

The characteristic function of the bivariate distribution p2(r)

ƒ2(k) = EeikX =
∫

R2
eikrp2(r) dr, k ∈ R2,

can be rewritten (see (7.1.1)) as

ƒ2(k) =
∫ 2π

0
dϕ w(ϕ)

∫ ∞

0
eikrp(r | ϕ)r dr.

Denoting the polar coordinates of the vector k by k and ϑ , one can rewrite the
last expression as

ƒ2(k, θ) =
∫ 2π

0
dϕ w(ϕ)

∫ ∞

0
eikr cos(ϑ−ϕ)p(r | ϕ)r dr.
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Recalling (7.1.7), we obtain

ƒ2(k, θ) = α
∫ 2π

0
dϕW(ϕ)

∫ ∞

[c(ϕ)]1/α
eikr cos(ϑ−ϕ)r−α−1dr, (7.1.8)

where

W(ϕ) ≡ w(ϕ)c(ϕ) (7.1.9)

is a non-negative function integrable on [0, 2π). With k = 0, (7.1.8) turns into
1, which is in accordance with the normalization of density (7.1.1) and is a
quite natural property of characteristic functions.

We denote by φ+ and φ− the ranges of ϕ where cos(ϑ − ϕ) are positive and
negative respectively; then characteristic function (7.1.8) can be represented
as

ƒ2(k, θ) = α
∫

φ+

dϕW(ϕ)
∫ ∞

[c(ϕ)]1/α
eikr| cos(ϑ−ϕ)|r−α−1dr

+ α
∫

φ−
dϕW(ϕ)

∫ ∞

[c(ϕ)]1/α
e−ikr| cos(ϑ−ϕ)|r−α−1dr.

Passing to the new integration variable z = kr| cos(ϑ − ϕ)| and using (3.3.14)–
(3.3.15), we obtain

ƒ2(k, θ) = αkα
∫ 2π

0
dϕW(ϕ)| cos(ϑ − ϕ)|α

{
I(−α)
c (k[c(ϕ)]1/α | cos(ϑ − ϕ)|)

+ iI(−α)
s (k[c(ϕ)]1/α | cos(ϑ − ϕ)|) sign[cos(ϑ − ϕ)]

}
. (7.1.10)

Let us turn to the behavior of characteristic function (7.1.10) in the domain
of small k. We begin with the case α < 1. According to (3.3.19)–(3.3.20) with
k → 0 and α < 1,

I(−α)
s (k[c(ϕ)]1/α | cos(ϑ − ϕ)|) → −Γ(−α) sin(απ/2),

I(−α)
c (k[c(ϕ)]1/α | cos(ϑ − ϕ)|) ∼ α−1k−α [c(ϕ)]−1| cos(ϑ − ϕ)|−α

− α−1Γ(1− α) cos(απ/2).

Substituting these expressions into (7.1.10) and using relations (7.1.2) and
(7.1.5), we obtain the following formula for characteristic functions in the
domain of small k:

ƒ2(k, ϑ ) ∼ 1− kαΓ(1− α) cos(απ/2)
∫ 2π

0
dϕ W(ϕ)| cos(ϑ − ϕ)|α

− ikααΓ(−α) sin(απ/2)
∫ 2π

0
dϕ W(ϕ)| cos(ϑ − ϕ)|α sign[cos(ϑ − ϕ)]. (7.1.11)
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We denote

Γ(1− α) cos(απ/2)
∫ 2π

0
dϕ W(ϕ)| cos(ϑ − ϕ)|α = λ (ϑ ),

(7.1.12)
∫ 2π

0
dϕ W(ϕ)| cos(ϑ − ϕ)|α sign[cos(ϑ − ϕ)]

∫ 2π

0
dϕ W(ϕ)| cos(ϑ − ϕ)|α

= β(ϑ );
(7.1.13)

then (7.1.11) takes the form

ƒ2(k, θ) ∼ 1− λ (ϑ )kα [1− iβ(ϑ ) tan(απ/2)]. (7.1.14)

Since k, being the absolute value of the vector k, cannot be negative, we can
immediately proceed to the derivation of the limiting characteristic function
for the normalized sum of random vectors Sn:

Zn = Sn/bn, bn = b1n1/α .

Repeating the reasoning cited at the end of Section 3.3, we obtain

g2(k; α, β(⋅), λ (⋅)) = lim
n→∞

ƒZn (k) = exp {−λ (ϑ )kα [1− iβ(ϑ ) tan(απ/2)]} .
(7.1.15)

The case α > 1 is treated in the same way as for univariate distributions
(Section 3.4) and provides us with the same form (7.1.15) for characteristic
functions of the centered vector sums

Zn = (Sn − na)/bn, a = EX. (7.1.16)

Unlike (3.4.24), expression (7.1.15) includes the dependencies λ (ϑ ) and β(ϑ )
and, consequently, the set of bivariate strictly stable laws is a non-parametric
family.

For axially symmetric distributions, the functions

w(ϕ) = 1/(2π), c(ϕ) = c

do not depend on the angle ϕ, therefore

λ (ϑ ) ≡ λ = 2α+1B
[
(α + 1)/2, (α + 1)/2

]
(c/4π)Γ(1− α) cos(απ/2)

and
β(ϑ ) = 0.

In this case, the characteristic function also does not depend on the azimuth
angle ϑ and takes the form

g2(k; α, 0, λ ) = e−λkα
.
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Setting λ = 1, we obtain the characteristic function in the reduced (or standard)
form

g2(k; α) = e−kα
, k ≥ 0. (7.1.17)

One can demonstrate that the results obtained here are in accordance
with those for univariate distributions. For this purpose, the vector X should
be chosen so that its projection X2 is always equal to zero. In this case, ϕ can
take only two values: ϕ = 0 (the vector X is directed along the x-axis) and ϕ = π
(the vector X has the opposite direction). The angular distribution w(ϕ) is of
the form

w(ϕ) = p1δ (ϕ) + p2δ (ϕ − π), (7.1.18)

where
p1, p2 ≥ 0, p1 + p2 = 1.

It is clear that the sum of any number of such vectors lies on the x-axis as well.
The corresponding characteristic function

Eei(k1X1+k2X2) = Eeik1X1

depends on a single variable k1,

k1 = k cos ϕ =

{
k, ϕ = 0,
−k, ϕ = π.

Thus, from (7.1.15) for g2(k; …) = g2(k, θ; …) we obtain

g2(k1, 0; α, β(0), λ (0)) = exp {−λ (0)kα
1 [1− iβ(0) tan(απ/2)]} , k1 > 0,

g2(k1, π; α, β(π), λ (π)) = exp {−λ (π)(−k1)α [1− iβ(π) tan(απ/2)]} , k1 < 0.

Substituting (7.1.18) into (7.1.12)–(7.1.13), and taking (7.1.9) into account, we
obtain

λ (0) = λ (π) = Γ(1− α) cos(απ/2)[p1c(0) + p2c(π)],
β(0) = [p1c(0)− p2c(π)]/[p1c(0) + p2c(π)],
β(π) = −β(0).

Writing λ and β for λ (0) and β(0), respectively, we combine the two expressions
into one:

g(k1; α, β(0), λ (0)) = exp {−λ |k1|α [1− iβ tan(απ/2) sign k1]}
= g1(k1; α, β , 0, λ ),
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q

y x

Figure 7.1. Bivariate Cauchy distribution density q2(r; 1)

which coincides with the univariate stable distribution with γ = 0.
The bivariate stable density is given by the corresponding inverse Fourier

transformation:

q2(r; α, β(⋅), λ (⋅)) =
1

(2π)2

∫

R2
e−ikrg2(k; α, β(⋅), λ (⋅)) dk. (7.1.19)

In particular, in the axially symmetric case (β(⋅) = 0, λ (⋅) = 1), (7.1.19) terns
into

q2(r; α) =
1

2π

∫ ∞

0
e−kα

J0(kr)k dk (7.1.20)

(here and in what follows by Jκ we denote the Bessel function of order κ).
Setting here α = 1 and α = 2, we find the bivariate Cauchy and Gaussian
distribution densities, respectively:

q2(r; 1) =
1

2π(1 + r2)3/2 , (7.1.21)

q2(r; 2) =
1

4π
e−r2/4. (7.1.22)

These functions are plotted in Figures 7.1, 7.2.
Expanding the functions under the integral (7.1.20) into the Taylor series,

e−kα
=
∞∑

n=0

(−kα)n

n!
,

J0(kr) =
∞∑

n=0

(−1)n (kr)2n

22n(n!)2 ,
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q

y x

Figure 7.2. Bivariate Gauss distribution density q2(r; 2)

we obtain, respectively,

q2(r; α) =
1

π2r2

∞∑

n=1

(−1)n−1

n!
[
Γ(nα/2 + 1)

]2 sin(αnπ/2)(r/2)−nα ,
(7.1.23)

q2(r; α) =
1

2πα

∞∑

n=0

(−1)n

(n!)2 Γ((2n + 2)/α)(r/2)2n. (7.1.24)

The former of these series converges for α < 1, and is the asymptotic series for
α > 1. The latter series, on the contrary, converges for α ≥ 1, and is asymptotic
one for α < 1.

Writing Y(α) = {Y1(α), Y2(α)} for random vectors distributed by axially
symmetric stable laws, we make some remarks.

The characteristic function of Y(α), as a function of k = |k|, is of the same
form as the characteristic function of the univariate random variable Y(α, 0)
with the same characteristic α and β = 0:

g2(k; α) = e−|k|
α
, g1(k; α, 0) = e−|k|

α
. (7.1.25)

In the case α = 2 (and only in this case), the characteristic function is
factorized into two components

g2(k1; α) = e−k2
= e−k2

1e−k2
2 = g1(k1; 2, 0)g1(k2; 2, 0), (7.1.26)

each of which depends only on one of the components k1, k2.
As one can see from the expression of the characteristic function in terms

of Cartesian coordinates

g2(k1, k2; α) =
∫∫

R2
eik1x1+ik2x2q2(x1, x2; α) dx1 dx2, (7.1.27)
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g2(k1, 0; α) and g2(0, k2; α) are the characteristic functions of the components
Y1(α) and Y2(α) respectively. Thus, (7.1.26) says that the components Y1(2)
and Y2(2) of the vector Y(2) are mutually independent. This is a well-known
property of bivariate (in general—multivariate) symmetric Gaussian distri-
butions. We want to stress here that this property takes place only for the
Gaussian distribution. No other bivariate (in general—multivariate) stable
law possess such a property.

In view of the abovesaid, the relations

g2(k1, 0; α) = e−|k1|α ,

g2(0, k2; α) = e−|k2|α

mean that each of the components Y1(α) and Y2(α) has univariate stable dis-
tribution with the same characteristic α and β = 0. This is true for all admis-
sible α.

7.2. Trivariate stable distributions
To derive characteristic functions of trivariate stable laws, we follow the same
way as before, We present a three-dimensional random vector X as

X = RU,

where R is the absolute value of the vector X, and U is the unit vector indicating
the direction of X. The trivariate distribution density can be written as

p3(r) = p(r | ΩΩΩ)w(ΩΩΩ),

where ΩΩΩ = r/r, and ∫
w(ΩΩΩ)dΩΩΩ = 1.

It follows from the normalization
∫∫

p3(r, ΩΩΩ)r2 dr dΩΩΩ = 1

that ∫ ∞

0
p(r | ΩΩΩ)r2dr = 1.

The conditional density p(r | ΩΩΩ)r2 of R corresponds to the distribution function

FR(r | ΩΩΩ) =
∫ r

0
p(r | ΩΩΩ)r2dr.
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Taking this distribution in the form

1− FR(r | ΩΩΩ) =

{
c(ΩΩΩ)r−α , r > ε(ΩΩΩ),
1, r < ε(ΩΩΩ),

we obtain for the conditional density

p(r | ΩΩΩ) =

{
αc(ΩΩΩ)r−α−3, r > [c(ΩΩΩ)]1/α ,
0, r < [c(ΩΩΩ)]1/α .

(7.2.1)

The characteristic function of the three-dimensional vector X can be rep-
resented as

ƒ3(k) =
∫

dΩΩΩw(ΩΩΩ)
∫

eikΩΩΩrp(r | ΩΩΩ)r2dr,

where k is a three-dimensional vector. Recalling (7.2.1), we obtain

ƒ3(k) = α
∫

dΩΩΩ W(ΩΩΩ)
∫

[c(ΩΩΩ)]1/α
eikΩΩΩrr−α−1dr, (7.2.2)

where
W(ΩΩΩ) = w(ΩΩΩ)c(ΩΩΩ).

Formula (7.2.2) is similar to (7.1.8) with the only difference that we see here
ΩΩΩ instead of ϕ, and the scalar product kΩΩΩ occurs instead of k cos(ϑ − ϕ). In
this connection, there is no necessity to repeat all calculations of the preceding
section. The result is rather obvious: instead of (7.1.15) we obtain

g3(k; α, β(⋅), λ (⋅)) = exp {−λ (u)kα [1− iβ(u) tan(απ/2)]} , k = |k|, u = k/k.
(7.2.3)

Here

λ (u) = Γ(1− α)| cos(απ/2)|
∫

dΩΩΩ W(ΩΩΩ)|ΩΩΩu|α , (7.2.4)

β(u) =

∫
dΩΩΩ W(ΩΩΩ)|ΩΩΩu|α sign (ΩΩΩu)
∫

dΩΩΩ W(ΩΩΩ)|ΩΩΩu|α
. (7.2.5)

Relation (7.2.3) holds true for all α ∈ (0, 2] except α = 1: in the latter case, it
is good only for spherically symmetric (isotropic) distributions when β(u) = 0
(the trivariate Cauchy distribution).

Trivariate densities are obtained from characteristic functions by means
of the trivariate inverse Fourier transformation

q3(r; α, β(⋅), λ (⋅)) = (2π)−3
∫

R3
e−ikrg3(k; α, β(⋅), λ (⋅)) dk.
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In the spherically symmetric case (β(⋅) = 0, λ (⋅) = 1) this expression takes the
form

q3(r; α) =
1

2π2r

∫ ∞

0
e−kα

sin(kr)k dk. (7.2.6)

For α = 1 and α = 2, from (7.2.6) we obtain the trivariate Cauchy and Gauss
distributions, respectively:

q3(r; 1) =
1

π2(1 + r2)2 , (7.2.7)

q3(r; 2) =
1

(4π)3/2 e−r2/4. (7.2.8)

The remarks concerning bivariate axially symmetric stable distributions
in the preceding section can be reformulated for trivariate spherically sym-
metric stable distributions in an evident way. But in this case there exists a
worthwhile fourth property. We rewrite (7.2.6) as

q3(r; α) = ρ3(|r|; α),

ρ3(r; α) =
1

2π2r

∫ ∞

0
e−kα

sin(kr)k dk,

and compare it with the univariate analogue

ρ1(r; α) ≡ q(r; α, 0) = π−1
∫ ∞

0
e−kα

cos(kr) dk

which follows from (4.1.2). It is easy to see that these functions are related to
each other by the equality

ρ3(r; α) = − 1
2πr

dρ1(r; α)
dr

. (7.2.9)

This is not an inherent property of stable distribution. Relation (7.2.9) holds
for any spherically symmetric distribution if ρ1 is the distribution of one of
the components of the random vector. The key point is that in the case under
consideration ρ1 turns out to be stable distribution as well.

As follows from (4.2.4), (4.2.9), (4.3.2), (4.3.3), and (4.4.14), we can present
the following expressions for ρ1(r; α) ≡ q(r; α, 0):

ρ1(r; α) =
αr1/(α−1)

π|1 − α|

∫ π/2

0
exp{−rα/(α−1)U(ϕ; α, 0)}U(ϕ; α, 0) dϕ,

(7.2.10)

ρ1(r; α) =
1
π

∞∑

n=1

(−1)n−1

n!
Γ(n/α + 1) sin(nπ/2)rn−1, (7.2.11)

ρ1(r; α) =
1
π

∞∑

n=1

(−1)n−1

n!
Γ(nα + 1) sin(nαπ/2)r−nα−1. (7.2.12)
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Figure 7.3. ƒ(z; α) = a−3ρ3(z/a; α), a = [ρ3(0; α)]1/3, α = 0.2, 0.4, …, 1.8, 2.0 for
z < 1 and z > 0.5

Series (7.2.11) is convergent for α > 1 and asymptotic (x → 0) for α < 1. It can
be represented in a simpler form

ρ1(r; α) =
∞∑

n=0

(−1)n

πα
Γ((2n + 1)/α)

(2n)!
r2n. (7.2.13)

Series (7.2.12) is convergent for α < 1 and asymptotic (x →∞) for α > 1.
Substituting (7.2.10), (7.2.13), and (7.2.12) into (7.2.9), we obtain

ρ3(r; α) =
αr1/(α−1)

2π2r2(α − 1)|1− α|

∫ π/2

0
exp

{
−rα/(α−1)U(ϕ; α, 0)

}

× U(ϕ; α, 0)[αrα/(α−1)U(ϕ; α, 0)− 1] dϕ, (7.2.14)

ρ3(r; α) =
1

2π2α

∞∑

n=0

(−1)n

(2n + 1)!
Γ
(

2n + 3
α

)
r2n, (7.2.15)

ρ3(r; α) =
1

2π2r

∞∑

n=1

(−1)n−1

n!
Γ (nα + 2) sin(nαπ/2)r−nα−2 (7.2.16)

respectively. The results obtained with the use of these expressions are shown
in Figures 7.3.

7.3. Multivariate stable distributions
The concept of stable laws can be naturally extended to the case of spaces
with arbitrary dimensions and even to infinitely-dimensional spaces. We con-
sider a sequence of independent and identically distributed random variables
X1, X2, … taking values of the N-dimensional Euclidean space RN, and form
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the sequence of sums

Zn = (X1 + … + Xn − an)/bn, n = 1, 2, …,

normalized by some sequences of positive numbers bn and non-random ele-
ments an of RN. The set of all weak limits of the distributions of such se-
quences Zn as n → ∞ is called the family of stable distributions on RN, or
the family of Lévy–Feldheim distributions. This is not the only way of gener-
alizing the stable distributions. If the sums X1 + … + Xn are normalized by
non-singular matrices σn but not by positive numbers b−1

n , then the concept
of stable laws becomes essentially more rich. Very little is known at present
about the properties of multivariate stable laws (in particular, about their an-
alytic properties). Neither the amount nor the diversity of the facts known
here can compare in any way with what is known about the univariate dis-
tributions. Here we present and comment the canonical representation of the
characteristic function gN(k), k ∈ RN , of finite-dimensional Lévy–Feldheim
laws.

As was mentioned above, the distributions form a non-parametric set. The
corresponding characteristic functions are of the form

gN(k) = exp{i(k, a)− ψα (k)}, 0 < α ≤ 2, (7.3.1)

where a ∈ RN and the functions ψα (k), which are determined by the parameter
α and by a certain finite measure M(du) on the sphere S = {u : |u| = 1}, are as
follows.

If α = 2, then ψα (k) = (σk, k), where σ is the so-called covariance matrix.
If 0 < α < 2, then

ψα(k) =
∫

S
|(k, u)|αωα (k, u)M(du), (7.3.2)

where

ωα (k, u) =

{
1− i tan(απ/2) sign(k, u), α ≠ 1,
1 + i(2/π) ln |(k, u)| sign(k, u), α = 1.

Representation (7.3.1)–(7.3.2) is an analogue of form A of representation of
characteristic functions of univariate stable laws (3.6.1).

This analogue is not the only one. If we use a spherical system of coordi-
nates in RN and write a vector k in the form k = |k|u, then it is not difficult to
represent (7.3.1)–(7.3.2) as (cf. (7.2.3))

ln gN(k) =

{
λ [i|k|γ − |k|α (1− iβ tan(απ/2))], α ≠ 1,
λ [i|k|γ − |k|(1 + i(2/π)β ln |k|)], α = 1,

(7.3.3)
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where 0 < α ≤ 2 and β , γ , and λ are real-valued functions defined on the unit
sphere S determined by the equalities

λ = λ (u) =
∫

S
|(u, u′)|αM(du′), u ∈ S,

λβ = λβ(u) =
∫

S
|(u, u′)|α sign(u, u′)M(du′),

λγ = λγ (u) =

{
(u, a), α ≠ 1,
(u, a)− (2/π)

∫
S(u, u′) ln |(u, u′)|M(du′), α = 1.

We give some properties of the functions β , γ , and λ .

(1) They are continuous on S, and for a given α they uniquely determine the
shift a and the measure M(du) in the representation (7.3.1)–(7.3.2). In
particular, for a given α ≠ 1 the functions β and λ uniquely determine
the measure M.

(2) The domain of variation for the values of the function γ is the whole real
axis.

(3) The following relations hold for any u ∈ S:

β(−u) = −β(u), λ (−u) = λ (u),
|β(u)| ≤ 1, 0 ≤ λ (u) ≤ M0,

where M0 is the value of the complete measure M(du) on S.

Here all inequalities are strict, unless M(du) is concentrated entirely on
some subspace of RN . This leads, in particular, to the conclusion that

λ0 = inf {λ (u) : u ∈ S} > 0, |gN (k)| ≤ exp(−λ0|k|α ),

and hence the corresponding stable distribution has the density qN(x; α, a, M)
bounded by the quantity

Γ(1 + N/α)
Γ(1 + N/2)

(2
√

πλ 1/α
0 )−N .

Each of forms M and B also possesses two analogues obtained by trans-
forming the corresponding analogues of form A. Namely, if α ≠ 1, then

ln gN(k) = i(k, a)−
∫

S
{|(k, u)|α − i(k, u) tan(απ/2)(|(k, u)|α−1 − 1)}M(du),

ln gN(|k|u) = λ [i|k|γ − |k|α + iβ |k|(|k|α−1 − 1) tan(απ/2)]. (7.3.4)

In the case where α = 1, the functions ln gN(k) and ln gN(|k|u) are defined
just as in (7.3.1)–(7.3.2). As a result, these representations turn out to be
continuous functions of α in the whole domain 0 < α ≤ 2 in which α varies.
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The first analogue of form B is the representation (7.3.1)–(7.3.3) with
ωα (k, u) replaced by the function

ω̃α (k, u) =

{
exp(−iΦ(α) sign(k, u)), α ≠ 1,
π/2 + i ln |(k, u)| sign(k, u), α = 1,

and M(du) replaced by the measure

M̃(du) =

{
| cos(πα/2)|−1M(du), α ≠ 1,
(2/π)M(du), α = 1.

The second analogue of form B is obtained from (7.3.3) by the same trans-
formations used in the univariate case to derive form B from A. This repre-
sentation is

ln gN(|k|u) =

{
λ [i|k|γ − |k|α exp(−iΦ(α)β)], α ≠ 1,
λ [i|k|γ − |k|((π/2) + iβ ln |k|)], α = 1.

(7.3.5)

The elements α, β , γ , and λ in (7.3.5) determining the stable distributions
are connected with the set of analogous determining elements in (7.3.3) by
relations (3.6.4)–(3.6.6).

In those cases where the measure M̃(du) happens to be concentrated on
a half S∗ of the sphere S, the first analogue of form B allows us to write the
Laplace transform of the corresponding stable distribution q(x, α, a, M̃) as a
component-wise analytic continuation of g (the substitution k = is). Namely,
∫

RN
exp{−(s, x)}q(x; α, a, M̃)dx

=

{
exp{−(s, a)− ε(α)

∫
S∗(s, u)αM̃(du)}, α ≠ 1,

exp{−(s, a)−
∫

S∗(s, u) ln(s, u)M̃(du)}, α = 1,

where ε(α) = sign(1 − α), and the vector s takes values in the half-space L∗

containing S∗.
The representations given for the characteristic functions of stable dis-

tributions can serve as a starting point for analytic study of properties of
univariate stable laws. Recently, forms (7.3.1)–(7.3.2) are most used in litera-
ture, apparently due to the manifestation of a peculiar ‘inertia’ created by the
first investigations.

The analogues of forms B and M have not yet been used in general, al-
though they unquestionably have some merits which may make them no less
popular. For example, these representations make it possible to connect the N-
dimensional density qN(x; α, a, M) with the one-dimensional one q1(y; α, β , γ , λ )
in the case where N is odd: N = 2m + 1. Namely, for all x ∈ RN

qN(x; α, a, M) =
(−1)m

2(2π)2m

∫

S
q(2m)

1 ((u, x), α, β , γ , λ ) du, (7.3.6)
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where β , γ , and λ are the functions in the representation of the characteristic
function of the distribution qN(x; α, a, M), and where the density q1(y; α, β , γ , λ )
corresponds to form A or B, depending on which of the representations, (7.3.3)
or (7.3.5), is in use.

The functions β , γ , and λ (irrespective of the representation they are as-
sociated with) are, respectively, the generalized asymmetry, shift, and scale
characteristics of the distribution, as in their interpretation in the univariate
case. However, it should be kept in mind here that in carrying various con-
cepts associated with univariate distributions over to the multivariate case we
inevitably encounter a variety of possible generalizations. For instance, the
analogue of the univariate symmetric laws, which have characteristic func-
tions of the form

g1(k) = exp(−λ |k|α ),

can be taken to be the spherically symmetric distributions on RN having the
same form of characteristic functions (with λ = const), but the analogues of
the symmetric laws can also be taken (and this is more natural) to be the
stable distributions with the functions β(u) = γ (u) = 0 for all u ∈ S, which is
equivalent to the equality

ln gN(k) = −λ (u)|k|α = −
∫

S
|(k, u)|αM(du),

where M(du) is a certain symmetric measure.
It is worth noting that the multivariate stable laws form a subset of mul-

tivariate infinitely divisible laws whose characteristic functions (in the Lévy–
Khinchin representation)

ƒ(k) = exp

{
i(a, k)− (Bk, k) +

∫

RN

(
ei(k,x) − 1− i(k, x)

1 + |x|2
)

1 + |x|2
|x|2 H(dx)

}

are generalizations of formula (3.5.14) to the N-dimensional case.

7.4. Spherically symmetric multivariate
distributions

Below, we use the following notation. A function ƒ(x), x ∈ RN, is referred to
as a radial function, if it depends on the distance |x| only. A random vector
X ∈ RN and its probability density pN(x) are called spherically symmetric, if
pN(x) is a radial function, that is,

pN(x) = ρN(|x|), (7.4.1)

where ρN(r) is a function given in the semiaxis r ≥ 0. The characteristic
function ƒN(k) of a spherically symmetric vector X ∈ RN is a radial function
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as well,

ƒN(k) = ϕN(|k|). (7.4.2)

It is clear that these functions satisfy the relations

∫

RN
ρN(|x|)dx =

2πN/2

Γ(N/2)

∫ ∞

0
ρN(r)rN−1dr = 1,

ϕN(0) = 1.

The Fourier transformation formulae

ƒN(k) =
∫

RN
ei(k,x)pN(x) dx,

pN(x) =
1

(2π)N

∫

RN
e−i(k,x)ƒN(k) dk

imply the following relations for the corresponding radial functions (Sneddon,
1951; Samko et al., 1993):

ϕN(t) = (2π)N/2t1−N/2
∫ ∞

0
ρN (r)JN/2−1(tr)rN/2dr, (7.4.3)

ρN(r) = (2π)−N/2r1−N/2
∫ ∞

0
ϕN(t)JN/2−1(rt)tN/2dt (7.4.4)

(recall that Jκ stands for the Bessel function of order κ).
Let us consider a sequence of distributions p1(x), p2(x1, x2), p3(x1, x2, x3), …

sharing a common characteristic radial function φ(t) and therefore being spher-
ically symmetric.

THEOREM 7.4.1. Let XN = {X1, …, XN} be a random N-dimensional vector with
the spherically symmetric density

pN(x) = ρN(|x|), x ∈ RN .

Then its projection on the n-dimensional subspace {X1, …, Xn} has the density

pn(x) = ρn(|x|), x ∈ Rn,

possessing the same characteristic radial function ϕ(t).

PROOF. It is quite obvious that

ƒn(k1, …, kn) = ƒN(k1, …, kn, 0, …, 0) = ϕ(
√

k2
1 + … + k2

n),

which completes the proof.



7.4. Spherically symmetric multivariate distributions 209

Now, let ρ1(r), ρ2(r), ρ3(r), … be some radial functions of the spherically
symmetric densities and θi(s) = ρi(

√
s), i = 1, 2, 3, …

THEOREM 7.4.2. The following relations are true for any N > 1:

θN(s) =
1√
π

(
D1/2
− θN−1

)
(s) = π(1−N)/2

(
D(N−1)/2
− θ1

)
(s), (7.4.5)

where Dν
− is the fractional derivative. In particular, for any N > 2

θN(s) = −1
π

θ ′N−2(s), (7.4.6)

or

ρN(r) = − 1
2πr

ρ′N−2(r). (7.4.7)

PROOF. Since the characteristic function ƒN(k), k ∈ RN depends only on |k|, we
set

ƒN(k1, 0, …, 0) = ϕ(t), t = |k1| ≥ 0;

then

ϕ(t) =
∫ ∞

−∞
dx1 eitx1

∫

RN−1
ρN(|x|)dx2…dxn

=
∫ ∞

−∞
dx1 eitx1

∫

RN−1
θN(x2)dx2…dxn.

Passing to the polar coordinates in the inner integral, we obtain

ϕ(t) =
∫ ∞

−∞
dx1 eitx1ΩN−1

∫ ∞

0
θN(r2 + x2

1)rN−2dr

=
∫ ∞

−∞
dx1 eitx1

(
ΩN−1/2

) ∫ ∞

x2
1

θN(σ)(σ − x2
1)(N−3)/2dσ,

ΩN = 2πN/2/Γ(N/2),

which yields

θ1(s) =
π(N−1)/2

Γ((N − 1)/2)

∫ ∞

s

θN(σ) dσ
(σ − s)1−(N−1)/2

= π(N−1)/2(I(N−1)/2
− θN)(s),

and, after inversion, we arrive at (7.4.5).
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For illustration, we apply (7.4.5) to the derivation of the multivariate
Cauchy density from the univariate one

ρ1(
√

s) = θ1(s) =
1

π(1 + s)
.

By virtue of (7.4.5),

θN(s) = π−(N+1)/2 (−1)n

Γ(n− (N − 1)/2)
dnI(s)
dsn ,

where n = [(N + 1)/2] is the integer part of (N + 1)/2, and

I(s) =
∫ ∞

s

dσ
(1 + σ)(σ − s)(N+1)/2−nµ

(s + 1)−µ
∫ ∞

0

dx
xµ(1 + x)

=
π

(s + 1)µ sin(πµ)

with
µ = (N + 1)/2− n < 1.

Since
dn

dsn (s + 1)−µ = (−1)nµ(µ + 1)…(µ + n− 1)(s + 1)−µ−n,

we finally obtain

θN(s) =
Γ((N + 1)/2)

[π(1 + s)](N+1)/2

and, respectively,

qN(x; 1) =
Γ((N + 1)/2)

[π(1 + x2)](N+1)/2 (7.4.8)

for all N.

7.5. Spherically symmetric stable distributions
To find the characteristic functions of multivariate spherically symmetric sta-
ble laws, we make use of the N-dimensional analogue of the Zipf–Pareto sym-
metric distribution:

P {|X| > r} =

{
Ar−α , r > ε = A1/α ,
1, r < ε.

The radial distribution density function is

ρN(r) = − 1
SN−1

dP {|x| > r}
dr

=
αAΓ(N/2)

2πN/2 r−α−N , r > ε,
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while the radial characteristic function,

ϕN(t) = 2N/2−1αAΓ(N/2)tα
∫ ∞

εt
τ−α−N/2JN/2−1(τ) dτ.

Integrating by parts, in view of the relation

d
dτ

[τ−(N/2−1)JN/2−1(τ)] = −τ−N/2+1JN/2(τ),

we obtain

ϕN(t) = 2N/2−1AΓ(N/2)tα
{

(r0t)−N/2−α+1JN/2−1(r0t)−
∫ ∞

εt
τ−N/2−α+1JN/2(τ) dτ

}
.

As t → 0,

{…} ∼ (εt)−N/2−α+1[(εt/2)N/2−1/Γ(N/2)−…]−
∫ ∞

0
τ−N/2−α+1JN/2(τ) dτ,

which results in
1− ϕN(t) ∼ AΓ(N/2)Γ(1− α/2)

Γ((N + α)/2)
(t/2)α .

Now set

Zn = (X1 + … + Xn)/bn, (7.5.1)

and let ƒN(k) be the characteristic function of the normalized vector sum Zn of
independent summands Xi:

ƒ(n)
N (k) = E exp



ik

n∑

j=1

Xj/bn



 = ϕn

N(|k/bn|).

As n →∞,

ϕn
N(k/bn) ∼

{
1− AΓ(N/2)Γ(1− α/2)

Γ((N + α)/2)
|k/(2bn)|α

}n
.

Setting

bn = b1n1/α , (7.5.2)

we obtain

ƒ(n)
N (k) → gN(k; α) = e−|k|

α
, n →∞. (7.5.3)

with

b1 =
1
2

[
AΓ(N/2)Γ(1− α/2)

Γ((N + α)/2)

]1/α
. (7.5.4)
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In the univariate case, the coefficients (7.5.2), (7.5.3) coincide with those given
in Table 2.1 (A = 2c).

Thus, the N-dimensional densities of spherically symmetric stable laws
are represented as

qN(x; α) =
1

(2π)N

∫

RN
e−i(k,x)−|k|α dk,

while the corresponding radial functions, by virtue of (7.4.4), are of the form

ρN(r; α) = (2π)−N/2r1−N/2
∫ ∞

0
e−tα

JN/2−1(rt)tN/2dt. (7.5.5)

Expanding the exponential or the Bessel function into a series, we obtain two
expansions of the radial functions of spherically symmetric stable densities

ρN(r; α) =
1

π(r
√

π)N

∞∑

n=1

(−1)n−1

n!
Γ((nα + N)/2)Γ(nα/2 + 1) sin(αnπ/2)(r/2)−nα ,

(7.5.6)

ρN(r; α) =
2

α(2
√

π)N

∞∑

n=0

(−1)n

n!
Γ((2n + N)/α)

Γ(n + N/2)
(r/2)2n. (7.5.7)

Using the known properties of the gamma function, we easily see that, as N =
1, the expansions (7.5.6) and (7.5.7) transform to the expansions of symmetric
univariate distributions (4.1.4) and (4.1.3) respectively. As in the univariate
case, series (7.5.6) is convergent for α < 1 and asymptotical for α ≥ 1, whereas
series (7.5.7), on the other hand, converges for α ≥ 1 and is an asymptotic
series for α < 1.

Multiplying (7.5.5) by rs dr and integrating along the semiaxis, we obtain
the Mellin transform of the radial function

ρ̄N(s; α) =
21+s

α(4π)N/2
Γ((N − s− 1)/α)Γ((1 + s)/2)

Γ((N − s− 1)/2)
(7.5.8)

Making use of this expression or of expansions (7.5.6)–(7.5.7), we are able
to express the radial function in terms of the Fox function (see Section 6.8).
Formula (7.5.8) allows us to represent the absolute moment of a random vector
Y(α) with stable spherically symmetric distribution in an explicit form:

E|Y(α)|s = ΩN ρ̄N(s + N − 1; α) = 2s Γ(1− s/α)Γ((s + N)/2)
Γ(1− s/2)Γ(N/2)

. (7.5.9)

The obtained expression can be regarded as an analytical function in the s
plane excluding the points of the form s = kα and s = −N − k + 1 (k = 1, 2, …)
where this function possesses simple poles. Hence it follows, in particular,
that E|Y|s admits the Taylor expansion in a power series of s, in the circle
|s| < min(N, α).

A more detailed discussion of multivariate symmetric distributions can be
found in (Fang et al., 1990).
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Simulation

8.1. The inverse function method
Two problems will be considered in this and next chapter: simulation of
stable random variables and estimation of their parameters. The first of
them answers the question how to obtain a sequence of independent real-
izations Y1, Y2, Y3, … of a random stable variable Y(Γ) with given parame-
ters Γ = (α, β , γ , λ ). The second one is an inverse problem: how to deduce
the parameters Γ of a random stable variable Y(Γ) from the given sequence
Y1, Y2, Y3, … We start with the first of them.

There exists a great body of algorithms to simulate random variables of
different kinds (Shreider, 1966; Sobol, 1973; Hamersley & Handscomb, 1964;
Ermakov, 1975; Hengartner, 1978). Many of them use the inverse function
method called also the direct method based on the following assertion.

THEOREM 8.1.1 (on inverse function). Let U be a random variable distributed
uniformly on the interval (0, 1), and let F(x) be a monotonically increasing
function on (a, b) possessing the derivative and the limits F(x) → 0, x → a and
F(x) → 1, x → b (the cases a = −∞ and (or) b = ∞ are allowed). Then the
inverse function F−1(u), u ∈ (0, 1), exists, and the random variable

X = F−1(U) (8.1.1)

is distributed on the interval (a, b) with the density

pX (x) = F′(x). (8.1.2)

PROOF. Since the function F(x) is strictly increasing and FU(x) = x, then

FX (x) = P{X < x} = P{F−1(U) < x} = P{U < F(x)} = FU(F(x)) = F(x),

and we arrive at (8.1.2).

213
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To illustrate some applications of the theorem, we consider the following
simple examples. Three of them relate to stable variables.

INVERSE POWER VARIABLE P. Its distribution function is of the form

FP(x) = 1− (x/ε)−α , 0 < ε ≤ x.

The theorem yields

P = εU−1/α , (8.1.3)

because the random variables U and 1−U are of the same distribution:

U d= 1−U.

STANDARD EXPONENTIAL VARIABLE E. This variable has the distribution func-
tion

FE(x) = 1− e−x,

hence

E = − ln U. (8.1.4)

The following algorithm corresponds to some simple cases of stable vari-
ables (we use form B).

CAUCHY VARIABLE YB(1, 0). Its distribution function is of the form

FY (x) =
1
2

∫ x

−∞

dy
(π2)2 + y2 =

1
π

[
arctan

(
2x
π

)
+

π
2

]
.

By virtue of the theorem on inverse function, we obtain

YB(1, 0) = (π/2) tan φ (8.1.5)

where φ = π(U − 1/2) is uniform on (−π/2, π/2).

GAUSSIAN VARIABLE YB(2, 0). In this case, the distribution function is

FY(2,0)(x) =
1

2
√

π

∫ x

−∞
e−y2/4dy

and its inversion function cannot be expressed in an elementary way. But, as
follows from (2.3.12), the sum of two squared independent Gaussian variables

R2 = Y2
1 (2, 0) + Y2

2 (2, 0)
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is distributed with the density

pR2(x) = e−x2/4dx2/4,

hence R = 2E1/2, and

Y1(2, 0) = 2E1/2 cos φ , (8.1.6)

Y2(2, 0) = 2E1/2 sin φ . (8.1.7)

LÉVY VARIABLE YB(1/2, 1). Using (2.3.5) we immediately obtain

Y(1/2, 1) = [Y(2, 0)]−2 = [4E cos2 φ]−1. (8.1.8)

OTHER ONE-SIDED STABLE VARIABLES (α < 1, β = 1). We rewrite the correspond-
ing distribution function (4.5.2)

G(x; α, 1) = (1/π)
∫ π/2

−π/2
exp{−x−α/(α−1)U(ϕ; α, 1)}dϕ

with

U(ϕ; α, 1) =
[sin(αθ)]α/(1−α) sin((1− α)θ)

(sin θ)1/(1−α) ≡ Uα (θ), θ = π/2 + ϕ,

as

G(x; α, 1) =
∫ π

0
F(x; α, 1 | θ)p(θ) dθ . (8.1.9)

Here
p(θ) = 1/π, 0 < θ < π,

and
F(x; α, 1 | θ) ≡ P{YB(α, 1) < x | θ} = exp{−x−α/(1−α)Uα (θ)}

is a conditional distribution function. The right-hand side of this equation is
the probability

P{E > x−α/(1−α)Uα (θ)} = P{E−1 < xα/(1−α)/Uα(θ)}
= P{[Uα (θ)/E](1−α)/α < x}.

Therefore, in view of (8.1.9), the random variables YB(α, 1) and [Uα(θ)/E](1−α)/α

with θ uniformly distributed on (0, π) and E derived from (8.1.4) possess the
same distribution:

YB(α, 1) d= [Uα (θ)/E](1−α)/α . (8.1.10)

This result was obtained in (Kanter, 1975).
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STABLE VARIABLES WITH α < 1 AND ARBITRARY β . From (3.7.7) it immediately
follows that

Y(α, β) d= [(1 + β)/2]1/αY1(α, 1)− [(1− β)/2]1/αY2(α, 1),

where Y1 and Y2 are independent identically distributed one-sided stable vari-
ables (8.1.10).

8.2. The general formula
Kanter’s formula was extended in (Chambers et al., 1976) to the whole family
of stable variables:

YB(α, β) =
sin[α(φ + ϕ0)]

(cos φ)1/α

(
cos(φ − α(φ + ϕ0))

E

)(1−α)/α
, α ≠ 1,

(8.2.1)

YA(1, β) = (2/π)
[
(π/2 + βφ) tan φ − β ln

(
(π/2)E cos φ

π/2 + βφ

)]
, (8.2.2)

where E and φ are the same as before and

ϕ0 = βΦ(α)/α. (8.2.3)

It is easily seen that (8.2.1) is reduced to (8.1.10) if α < 1 and β → 1 (ϕ0 → π/2,
θ = φ + π/2). If α = 2, β = 0, we obtain

YB(2, 0) = E1/2 sin(2φ)/ cos φ = 2E1/2 sin φ ,

which coincides with (8.1.7). For α = 1, β = 0, we obtain, in form A, the
following relation similar to (8.1.5):

YA(1, 0) = tan φ .

For form A, the similar result was obtained in (Weron & Weron, 1995) (see
also (Janicki & Weron, 1994) and (Zolotarev, 1986)). For α ≠ 1,

YA(α, β) = [1 + β2 tan2(απ/2)]1/(2α) sin(α(φ + b))
(cos φ)1/α

[
cos(φ − α(φ + b))

E

](1−α)/α
,

(8.2.4)

where

b = α−1 arctan(β tan(απ/2)). (8.2.5)

As follows from (3.6.6),

arctan(βA tan(απ/2)) = βBΦ(α);
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therefore,
b = ϕ0.

Moreover,

[1 + βA2
tan2(απ/2)]1/(2α) = [1 + tan2(βBΦ(α))]1/(2α) = [cos(βBΦ(α))]−1/α

which agrees with the relation

YA(α, β) = [cos(βBΦ(α))]−1/αYB(α, βB)

given in Section 3.7. Thus, (8.2.4) is true.
As concerns the case where α = 1, (8.2.5) in (Weron & Weron, 1995) becomes

YA(1, β) = (2/π)
[
(π/2 + βφ) tan φ − β ln

(
E cos φ

π/2 + βφ

)]
. (8.2.6)

It does not contain the factor π/2 in the argument of the logarithm in contradis-
tinction to (8.2.2).

Let us consider this case in more details. The conditional probability

P{YB(1, β) < x | ϕ} = exp{−e−x/β U(ϕ; 1, β)}
= P{E > e−x/βU(ϕ; 1, β)}
= P{β ln

[
U(ϕ; 1, β)/E

]
< x}

yields
YB(1, β) = β ln[U(ϕ; 1, β)/E].

Substituting U(ϕ; 1, β) from the end of Section 4.4, we obtain

YB(1, β) =
(
π/2 + βφ

)
tan φ − β ln

(
E cos φ

π/2 + βφ

)
.

Passing to form A by means of the equality

YB(1, β) = β ln(π/2) + (π/2)YA(1, β)

given in Section 3.7, we arrive at (8.2.2), so (8.2.6) should be corrected.
To avoid the discontinuity in limit behavior of (8.2.2) as α → 1, in (Cham-

bers et al., 1976) form M was used:

YM(α, β) = − tan(αϕ0) + (cos φ)−1[sin(αφ) + tan(αϕ0) cos(αφ)]z(1−α)/α ,
(8.2.7)

where
z = [cos((1− α)φ) + tan(αϕ0) sin((1− α)φ)]/(E cos φ).
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Because (1 − α)φ → 0 and tan(αϕ0) → ∞ as α → 1, it is necessary to re-
arrange the calculations. At the same time one can reduce the trigonometric
computations to the tangent function of halved angles. To retain accuracy, one
should use the auxiliary functions

D2(x) = (ex − 1)/x, (8.2.8)
tan2(x) = (tan x)/x. (8.2.9)

Although these are non-standard functions, approximations to them may be
derived from existing approximations to D(x) = ex − 1 and tan x. The latter
functions are often computed via functions of the form xR(x), where R(x) is
a rational function of special form; thus, one can use R(x) to approximate
functions (8.2.8) and (8.2.9). Such approximations are used in the FORTRAN
function RSTAB given in the Appendix to (Chambers et al., 1976).

8.3. Approximate algorithm for one-dimensional
symmetric stable variables

Despite the existence of the exact algorithm (8.1.6)–(8.1.7) to simulate Gaus-
sian random variables, other approximate methods are often used in practice,
because they turn out to be faster than exact ones. As follows from the central
limit theorem, the random variable

N(n) =
√

12/n
n∑

i=1

(Ui − 1/2) (8.3.1)

is asymptotically normal with

EN(n) = 0, Var N(n) = 1.

In usual practice, (8.3.1) is considered as normal if n ≥ 10 (Sobol, 1973). The
value n = 12 is especially convenient because N(12) =

∑12
i=1 Ui − 6. Of course,

the distribution of (8.3.1) deviates from the normal one in the domain of large
|x|.

Since the general formula for stable variables is more complicated, there
exists a reason for searching for approximate algorithms. They always can be
improved using the generalized limit theorem for stable laws.

To illustrate one of such algorithms presented in (Mantegna, 1994) for
symmetric variables, we consider the ratio

V = N1/|N2|1/α , (8.3.2)

where N1 and N2 are two normal random variables with standard deviations
σ1 and σ2 respectively. Its probability density

pV (x) =
1

πσ1σ2

∫ ∞

0
y1/α exp

{
− y2

2σ2
2
− x2y2/α

2σ2
1

}
dy
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is determined for large arguments by the asymptotic approximation

pV (x) ∼ CV (σ1, σ2, α)|x|−1−α , x →∞, (8.3.3)

CV (σ1, σ2, α) = α2(α−1)/2σα
1 Γ((α + 1)/2)/(πσ2),

whereas its value at the origin is

pV (0) = 2(1−α)/(2α)σ1/α
2 Γ((α + 1)/(2α))/(πσ1). (8.3.4)

Let us compare (8.3.3) and (8.3.4) with the corresponding formulae for sym-
metric stable densities (4.1.4) and (4.1.3):

q(x; α, 0) ∼ π−1Γ(α + 1) sin(απ/2)|x|−α−1 ≡ C(α)|x|−α−1

(8.3.5)

q(0; α, 0) = Γ(1/α)/(πα). (8.3.6)

The conditions

CV (σ1, σ2, α) = C(α), pV(0) = q(0; α, 0)

are simultaneously satisfied for α = 1 only by σ1 = σ2 = 1. In this case, the
distribution pV(x) coincides with the Cauchy distribution. As the standard
deviations σ1 and σ2 cannot be chosen independently for an arbitrary value of
α, we set σ2 = 1. After this, we determine σ1 by

CV (σ1, 1, α) = C(α).

By (8.3.3) and (8.3.5), we obtain

σ1(α) =
[

Γ(1 + a) sin(απ/2)
Γ((1 + α)/2)α2(α−1)/2

]1/α
. (8.3.7)

After this choice, the asymptotic behavior of the distributions for large values
is the same, but they have different values at the origin:

pV (0) < q(0; α, 0), α < 1,
pV (0) > q(0; α, 0), α > 1.

An attempt to improve the result with the use of the formula

Zn = n−1/α
n∑

k=1

Vk

demonstrates that the convergence of this sum is quite slow. Finally, in (Man-
tegna, 1994) the nonlinear transformation

W = {(A(α)− 1)e−V/B(α) + 1}V (8.3.8)
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Table 8.1.

α σ1(α) A(α) B(α)
0.8 1.13999 0.795112 2.483
0.9 1.06618 0.899389 2.7675
1.1 0.938291 1.10063 2.945
1.2 0.878829 1.20519 2.941
1.3 0.819837 1.31836 2.9005
1.4 0.759679 1.44647 2.8315
1.5 0.696575 1.59922 2.737
1.6 0.628231 1.79361 2.6125
1.7 0.551126 2.06448 2.4465
1.8 0.458638 2.50147 2.206
1.9 0.333819 3.4615 1.7915
1.95 0.241176 4.80663 1.3925
1.99 0.110693 10.498 0.6089

was used. The value of A(α) is determined by

pW(0) = q(0; α, 0); (8.3.9)

in a neighborhood of the origin

W ∼ A(α)V,

and then (8.3.9) is satisfied as soon as

A(α) =
pV (0)

q(0; α, 0)
=

αΓ[(α + 1)/(2α)]
Γ(1/α)

[
αΓ[(α + 1)/2]

Γ(1 + α) sin(απ/2)

]1/α
. (8.3.10)

To determine B(α), in (Mantegna, 1994) the first derivative of (8.3.8) was
analyzed, resulting in the following integral equation for B(α):

1
πσ1

∫ ∞

0
y1/α exp

{
−y2

2
− y2/αB2(α)

2σ2
1 (α)

}
dy

=
1
π

∫ ∞

0
cos

[(
A(α)− 1

e
+ 1
)

B(α)
]

exp(−yα ) dy, (8.3.11)

solved numerically. The results are summarized in Table 8.1. The control
parameters used with the algorithm are determined by (8.3.2) and (8.3.8).
The parameters σ1(α) and A(α) are obtained by evaluating (8.3.7) and (8.3.9),
respectively, whereas B(α) is obtained from (8.3.11).
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8.4. Simulation of three-dimensional spherically
symmetric stable vectors

There is no problem to simulate the multi-dimensional vector Y(2, 0) because
all its components Y1(2, 0), …, YN(2, 0) are independent, and

ƒY(2,0)(k) = e−|k|
2

= e−k2
1…e−k2

N = ƒY1(2,0)(k1)…ƒYN (2,0)(kN).

We discuss here an approximate algorithm to simulate three-dimensional
stable vectors with α < 2 developed in (Uchaikin & Gusarov, 1999; Gusarov,
1998).

Why do we fail to obtain an exact algorithm? This question is quite reason-
able because for one-dimensional case such an algorithm exists. Let us look at
it some more. For a symmetric distribution, β = 0, and we obtain from (4.5.2)
and (4.5.3)

G1(r; α, 0) =





1/2 + π−1 ∫ π/2
0 exp

{
−rα/(α−1)U(ϕ; α, 0)

}
dϕ, α < 1,

1− π−1 ∫ π/2
0 exp

{
−rα/(α−1)U(ϕ; α, 0)

}
dϕ, α > 1.

where r > 0 and

U(ϕ; α, 0) =
(

sin(αϕ)
cos ϕ

)α/(1−α) cos((α − 1)ϕ)
cos ϕ

, α ≠ 1.

Due to symmetry, it suffices to simulate the absolute value |Y| and then to
perform the simple operation

Y = |Y| sign(U − 1/2),

where U is uniform on (0, 1). The distribution function of |Y| is

F1(r) ≡ F|Y|(r) = 2G1(r; α, 0)− 1

=

{
(2/π)

∫ π/2
0 exp{−rα/(α−1)U(ϕ; α, 0)}dϕ, α < 1,

(2/π)
∫ π/2

0 [1− exp{−rα/(α−1)U(ϕ; α, 0)}]dϕ, α > 1. (8.4.1)

In either case, the distribution function can be represented as

F1(r) =
∫ π/2

0
K1(r, ϕ)p(ϕ) dϕ, (8.4.2)

where

p(ϕ) = 2/π, 0 < K1(r, ϕ) < 1 (8.4.3)

for all 0 < r <∞ and 0 < ϕ < π/2. The last condition allows for interpretation of
the function K1(r, ϕ) as a conditional distribution function K1(r, ϕ) = F1(r | ϕ),
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and, as a consequence, to perform the simulation in two steps: first, to choose
φ uniformly on (0, π/2), and then, to find |Y| from the distribution function
F|Y|(r | φ).

In the three-dimensional case the distribution function of the absolute
value R = |Y| of the vector Y is of the form

F(r) ≡ FR(r) = 4π
∫ r

0
ρ3(r; α)r2dr. (8.4.4)

Making use of the relation (7.2.9) and integrating (8.4.4) by parts, we obtain

F(r) = F1(r)− 2rρ1(r; α) = F1(r)− rdF1(r)/dr. (8.4.5)

Substituting (8.4.1) into (8.4.5) yields

F(r) =

{
(2/π)

∫ π/2
0 H(ϕ, α) exp{−rα/(α−1)U(ϕ; α, 0)}dϕ, α < 1,

1− (2/π)
∫ π/2

0 H(ϕ, α) exp{−rα/(α−1)U(ϕ; α, 0)}dϕ, α > 1.
(8.4.6)

where
H(ϕ, α) = [1− αrα/(α−1)U(ϕ; α, 0)/(1− α)].

An attempt to represent it in the form (8.4.2) demonstrates that the func-
tion K3(r, ϕ) does not satisfy condition (8.4.3) for all r and ϕ, and therefore, it
cannot be interpreted as a conditional probability.

The algorithm described below (Uchaikin & Gusarov, 1998; Uchaikin &
Gusarov, 1999) is based on the numerical inversion of the function F(r):

r = F−1(u) ≡ r(u), 0 < u < 1.

To perform this transformation, one has to make use of the series expansions
for F(r) that follow from analogous ones for the one-dimensional case:

1− F(r) =
2

πα

∞∑

n=1

(−1)n+1Γ(nα + 2) sin(nαπ/2)n−1r−nα ,
(8.4.7)

F(r) =
4

πα

∞∑

n=1

(−1)n+1Γ
(

2n + 1
α

)
n

(2n + 1)!
r2n+1. (8.4.8)

Fig. 8.1 shows the behavior of the leading terms of expansions (8.4.8) as r → 0
and (8.4.7) as r → ∞, and the influence of the second terms on the result as
compared with the exact value. It is seen that the account of the second term
yields a more exact result, especially in far tail domain. (The labels near the
graphs say how many leading terms of the expansions are used.)

Let us investigate the behavior of the function r(u) as u → 0 and u → 1.
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Figure 8.1.

In view of (8.4.8), we can write the following equation for r(u) in a neigh-
borhood of u = 0:

ar3 − br5 ≈ u (8.4.9)

where

a = 2Γ(3/α)/(3πα),
b = 8Γ(5/α)/(5! πα).

Setting

θ1(u) = (u/a)1/3 (8.4.10)

as an initial approximation to the solution as u → 0 and substituting r(u) =
θ1(u) + ∆(u) into (8.4.9), we obtain

∆(u) =
u− (aθ3

1 − bθ5
1 )

3aθ2
1 − 5bθ4

1
.

Hence the second approximation can be represented as

θ̃2(u) = (u/a)1/3 +
b(u/a)

3a− 5b(u/a)2/3 ,

but divergence at the point where the denominator vanishes makes the ap-
proximation inconvenient for the use on (0, 1) and the following asymptotically
equivalent expression turns out to be more suitable:

θ2(u) = (u/a)1/3 + (b/a)(u/a)/3 + 5(b/a)2(u/a)5/3/9. (8.4.11)
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For large r, the leading term of series (8.4.7) provides us with an initial
approximation to r(u) in a neighborhood of 1:

η1(u) =
[
B/(1− u)

]1/α ,

where
B = 2Γ(α + 2) sin(απ/2)/(πα).

The use of the second term in (8.4.7) yields the quadratic equation

Ar−2α − Br−α + 1− u = 0

with the coefficient
A = Γ(2α + 2) sin(απ)/(2πα).

The last is positive for α < 1 but changes its sign while passing into the region
α > 1. In order to get a positive solution from

r−α = B/(2A) ±
√

B2/(2A)2 − (1− u)/A,

we should choose here the ‘−’ sign for α < 1 and the ‘+’ sign for α > 1. We thus
obtain

η2(u) =





[√
B2/(2A)2 + (1− u)/|A| − B/|2A|

]−1/α
, α > 1.

[
B/(2A)−

√
B2/(2A)2 − (1− u)/A

]−1/α
, α < 1.

Fig. 8.2 shows the contribution of above-described asymptotics as compared
with the exact solution obtained by numerical inversion of (8.4.6). One can see
that second approximation can be effectively applied on more longer interval
than the first one. (The label 1 denotes the first approximation, 2, the second
one, and 3 stands for the exact function.)

Now one can perform the approximation to r(u) as a whole. Beginning with
the case α > 1, we write the representation for r(u) in the form

r(u) = θ2(u) + ψ(u) + η2(u),

where ψ(u) is to be found by comparing the right-hand side of the equation with
the exact solution obtained numerically. However, before doing this this it is
necessary to note that the addend ψ(u) + η2(u) must not change the asymptotic
behavior of r(u) as u → 0 which is given by θ2(u) (see (8.4.11)) and conversely,
the addend θ2(u) + ψ(u) must not influence the asymptotics of r(u) as u → 1
given by η2(u). To satisfy these conditions, we introduce the auxiliary function

ψ(u) = −η2(0)− η′2(0)u− uP∗
n(u),
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where P∗
n(u) is a polynomial of some degree n. Since the second term of the

sum can be included in the first term of the polynomial (the asterisk is omitted
in this case), we obtain the final approximation

r(u) ≈ θ2(u) + [η2(u)− η2(0)]− uP(α)
n (u), α > 1. (8.4.12)

Calculating the coefficients c0, …, cn in the expression

uP(α)
n (u) = c0u + c1u2 + … + cnun+1

by the least squares method we conclude that a quite acceptable accuracy can
be achieved with polynomials of somewhat low degree.

This representation cannot be immediately extended to the region α < 1,
because η2(0) is complex-valued for all α < α∗ ≈ 0.82 but it turns out that the
simpler approximation

r(u) ≈ θ1(u) + uη1(u)P(α)
n (u), α < 1, (8.4.13)

provides us with an acceptable accuracy in this region. It should be noted that
the interval where this simple formula is usable also cannot be extended into
α > 1 without significant increasing the degree of the polynomial. Explicit
forms of P(α)

n (u) are cited in Appendix.
As we see in Fig. 8.3, the relative errors

δ (r) = [ρ̃3(r)− ρ3(r)]/q3(r)

in the three-dimensional density of the random vector obtained with the use
of this algorithm do not exceed 1%.
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Thus, the algorithm simulating three-dimensional random vectors with
spherically symmetric stable distribution consists of two steps.

The first of them is to simulate the isotropic three-dimensional vector ΩΩΩ =
(Ω1, Ω2, Ω3).

To simulate an isotropic vector ΩΩΩ, the well-known algorithms (Sobol, 1973;
Ermakov & Mikhailov, 1976) can be used. We cite here two of them. The first
uses the spherical coordinates with polar angle Θ and azimuth angle φ so that

Ω1 =
√

1− µ2 sin φ ,

Ω2 =
√

1− µ2 cos φ ,

Ω3 = µ ≡ cos Θ,

where
φ = 2πU1, µ = 2U2 − 1.

The second algorithm uses the choice of a random point uniformly distributed
within the three-dimensional cube with the edge length two,

Xi = 2Ui − 1

and, as soon as the point falls into a sphere inscribed into the cube,

X2
1 + X2

2 + X2
3 ≤ 1, (8.4.14)

its Cartesian coordinates Xi are transformed into the Cartesian coordinates of
the vector Ωi sought for by the formula

Ωi =
Xi√

X2
1 + X2

2 + X2
3

.

If the point (U1, U2, U3) does not satisfy (8.4.14), then a new random point
is chosen, and the procedure is repeated until (8.4.14) becomes true. The
effectiveness of the method is determined by the ratio of the volumes of the
sphere and the cube, and is equal to π/6. A higher effectiveness, π/4, can be
achieved by combining these methods:

(1) Ω1 = 2U1 − 1.

(2) X2 = 2U2 − 1, X3 = 2U3 − 1.

(3) If D ≡ X2
2 + X2

3 > 1, then go to 2; otherwise

Ω2 = X2

√
(1− Ω2

1)/D, Ω3 = X3

√
(1− Ω2

1)/D.
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The second step of the algorithm is the sampling of the absolute value R
with the use of the obtained approximations (8.4.12)–(8.4.13):

R = r(U).

The Cartesian components of the vector are

Yi = ΩiR.

Theorem 7.4.1 allows us to use this algorithm to simulate two-dimensional
axially symmetric stable vectors.
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Estimation

9.1. Sample fractile technique
This chapter is devoted to the inverse problem: to the problem of parame-
ter estimates for stable distributions. It can be said without exaggeration
that the problem of constructing statistical estimators of stable laws entered
mathematical statistics due to the works of Mandelbrot.The economic models
considered in those works contained stable distributions whose parameters
had to be determined empirically. Furthermore, it was discovered at once that
mathematical statistics, while having a great body of methods at its disposal,
can be of little help in this case, since these methods are based mainly on such
assumptions as the availability of an explicit form for the density, the exis-
tence of some particular number of moments, and so on, which are certainly
not satisfied for stable distributions. In the best case, they have only one mo-
ment of integer order (if α ≠ 2), and only in a very few cases there are explicit
expressions for the density that would enable us to concretize the algorithms
to estimate the parameters (say, by the maximum likelihood method).

However, the problem had emerged, and the search began of its solution.
This search was conducted in various directions and led to estimators, as a
rule 1/

√
n-consistent estimators that satisfied the practical workers to some

extent.
Modern mathematical statistics possesses several methods available for

improving 1/
√

n-consistent estimators, and they make it possible, in principle,
to construct asymptotically efficient estimators of the parameters of stable
laws, at least within groups given, on the basis of the estimators we obtained.
These methods can be conventionally divided into the following two categories.

The first contains methods which do not use information about the analytic
expression for the distribution density of sample elements. Here we cite (Be-
ran, 1974), which contains, in particular, a brief survey of other publications
of the same direction.

The second category includes methods in which some knowledge of the

229
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form of the distribution density of the sample elements is assumed. Among a
lot of papers concerning the use of such methods, we mention (Dzhaparidze,
1974), whose results form a convenient basis for solving the general problem
of asymptotically efficient estimators for stable distributions.

The preferability of the methods of the former category is obvious, especial-
ly because the regularity conditions they use for the distributions of the sample
elements are weaker than the conditions that usually manifest themselves in
the methods of the latter category. Unfortunately, they have been considerably
less developed and have been related only to the problem of estimation of the
scalar shift parameter of a distribution, which allows us to use them only for
estimating the parameter γ and, in some cases, λ . Therefore, in solving the
problem of construction of asymptotically efficient estimators in the general
situation, we must resort to methods of the latter category. The first of them
is based on the so-called sample fractile technique.

Fama and Roll provided estimators for symmetric stable laws with charac-
teristic functions

g(k; α, c, δ ) = exp {iδk− |ck|α} , α ≥ 1. (9.1.1)

The following results were obtained.

1. THE 50 PERCENT TRUNCATED SAMPLE MEAN AS AN ESTIMATE OF δ . For
sample size n = 100, the 50 percent truncated mean performs about as well as
both the 25 and 75 percent truncated means for symmetric stable distributions
with α lying in the range 1.1 ≤ α ≤ 1.7. Computation of δ̂ for 301 independent
samples of size 101 drawn from G(x; 3/2, 0) (the reduced distribution function
with β = 0) produced the estimate 0.144 for the standard deviation of δ̂ .

2. ESTIMATE OF c BY MEANS OF SAMPLE FRACTILES. If the appropriate fractiles
are chosen, the estimate will only slightly depend on the characteristic α.

In particular, the 0.72-fractile of a reduced (i.e., δ = 0, c = 1) symmetric
stable distribution is in the interval 0.827 ± 0.003 for 1 ≤ α ≤ 2. Thus, given a
random sample of N observations, a reasonable estimator of c is

ĉ = (x̂0.72 − x̂0.28)/1.654

where x̂ƒ refers to the (ƒ)(N +1)st order statistic, which is used to estimate x0.28
and x0.72, the 0.28 and 0.72 fractiles of the distribution of Y.

This estimator has an asymptotic bias of less than 0.4%. Being a linear
combination of order statistics, it is asymptotically normally distributed with
the standard deviation

στ =
√

Var ĉ ≈ 0.300√
nq(x0.72; α)

(9.1.2)

where q(x0.72; α) is the stable symmetric density of the distribution of Y evalu-
ated at the sample 0.72-fractile. Since symmetry is assumed, the distribution
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of c does not depend on the location parameter δ of the underlying random
variable Y. The scale of Y affects the asymptotic variance of ĉ through the
density q(x0.72; α) which appears in the denominator of (9.1.2). For a non-
reduced symmetric stable distribution (i.e., c ≠ 1), Var ĉ is, of course, c2 times
as large as Var ĉ for c = 1.

3. ESTIMATION OF α. As far as the exponent α is concerned, Fama and Roll
assert that the smaller α, the more ‘thick-tailed’ stable distributions are. With
standardized distributions, for example, the 0.95-fractile decreases monotoni-
cally from 6.31 for α = 1 to 2.33 for α = 2.

This behavior of higher fractiles suggests a simple estimator of α based on
order statistics. For some large ƒ (for example, ƒ = 0.95) we first calculate

ẑƒ =
x̂ƒ − x̂1−ƒ

2ĉ
= 0.827

x̂ƒ − x̂1−ƒ

x̂0.72 − x̂0.28
(9.1.3)

from the sample. Given that Y is a symmetric stable variable with character-
istic α and scale parameter c, ẑƒ appears to be an estimator of the ƒ-fractile of
the standardized (reduced) symmetric stable distribution with characteristic
α. Thus, an estimate of α can be obtained by searching through a ‘table’ of
standardized symmetric stable cumulative distribution functions for the value,
call it α̂ƒ, whose ƒ-fractile matches ẑƒ most closely. Formally,

α̂ƒ = H(ƒ, ẑƒ)

where H is a function that uniquely maps the fractile zƒ and the cumulative
probability ƒ onto α, and ẑƒ is the sample fractile given by (9.1.3).

Simulation studies were performed using computer-generated random
samples from stable distributions to measure the variance of the proposed
estimators.

9.2. Method of characteristic functions
This method was suggested in (Paulson et al., 1975), and makes use of the
stable characteristic function in the form

g(k; Γ) = exp {iδk− γ |k|α + ψ(k)}
with

ψ(k) = ψ(k; α, β , γ ) = −γ |k|αβ(k/|k|)ω(k; α).

The key idea is as follows. Given a random sample Yj(j = 1, …, n) of stable
variables, the empirical characteristic function ĝ(k) is

ĝ(k) = n−1
n∑

j=1

exp {ikYj} .
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Now two distribution functions are equal if and only if their respective char-
acteristic functions coincide on −∞ < k < ∞. Thus, ĝ(k) contains useful
information concerning q(x; α, β , γ , δ ) and is, moreover, a consistent estimator
of g(k). It should be possible to extract some information on α, β , γ , and δ from
ĝ(k) by finding those α̂, β̂ , γ̂ , and δ̂ which make the integral

I(α, β , γ , δ ) =
∫ ∞

−∞
|ĝ(k)− g(k)|2e−k2

dk (9.2.1)

to attain its minimum. Elementary algebraic transformations yield

|ĝ(k)− g(k)|2 =
[
ℜ(ĝ(k)− g(k))

]2 +
[
ℑ(ĝ(k)− g(k))

]2

= [C(k)− e−γ |k|α cos(δk + ψ(k))]2 + [S(k)− e−γ |k|α sin(δk + ψ(k))]2,

where

C(k) = n−1
n∑

j=1

cos(kYi),

S(k) = n−1
n∑

j=1

sin(kYj).

We set
|ĝ(k)− g(k)|2 = µ(k).

The integration in (9.2.1) was carried out numerically by 20 point Hermite’s
quadrature as

∫ ∞

−∞
µ(k)e−k2

dk =
20∑

i=1

wiµ(ki),

where ki are the zeros of the Hermite polynomial of degree 20 and wi are
the weights associated with these zeros (Abramowitz & Stegun, 1964, p.924).
To find α̂, β̂ , γ̂ , δ̂ , one assigns some initial values α̂0, β̂0, γ̂0, and δ̂0 to α,
β , γ , and δ , and then performs the unconstrained optimization of (9.2.1) by
some gradient projection procedure. As asserted in (Paulson et al., 1975), the
procedure worked well for samples from q(x; α, β , 1, 0), 0 < α ≤ 2, |β | ≤ 1, but
failed to give reasonable results for γ and δ much different from one and zero,
respectively, even though the proper orders of magnitude relative to one and
zero were obtained. To improve the method, some iterative procedure was
elaborated.

9.3. Method of characteristic transforms:
estimators of ν, θ and τ

One more approach to the problem of estimation of the parameters of stable
laws, based on the use of explicit expressions for the corresponding character-
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istic transforms and the method of sample logarithmic moments was developed
in (Zolotarev, 1978; Zolotarev, 1980; Zolotarev, 1981b; Zolotarev, 1986).

Let V1, …, Vn be independent random variables distributed as Y = YE(ν, θ , τ),
i.e., with the distribution G(x; ν, θ , τ), which is known only to belong to the class
of strictly stable laws. The problem is to carry out the statistical estimation of
the parameters of G.

From this sample we construct two collections of independent (within each
collection) random variables

U1 = sign Y1, …, Un = sign Yn,
V1 = ln |Y1|, …, Vn = ln |Yn|,

which are distributed as U = sign YE(ν, θ , τ) and V = ln |YE(ν, θ , τ)| respective-
ly.

The idea for the construction of estimators for the parameters ν, θ, and τ
is based on the following three equalities:

ν = (6/π2) Var V − (3/2) Var U + 1, θ = EU, τ = EV. (9.3.1)

The last two are given in (A.11.3), and it is not hard to validate the first by
computing the variances of U and V. By (A.11.3)–(A.11.5),

Var U = EU2 − (EU)2 = 1− θ2,

Var V = EV2 − (EV)2 = π2(2ν − 3θ2 + 1)/12.

The required relation is obtained by eliminating θ2 from these equalities.
The idea itself is simple and not new in mathematical statistics. As an

illustrative example, we recall the classical problem of estimation of the pa-
rameters of the normal distribution with density

p(x) =
1

σ
√

2π
exp

{
−1

2

(
x− a

σ

)2
}

. (9.3.2)

Let X1, …, Xn be independent random variables distributed with density
(9.3.2). Since a = EX1 and σ2 = Var X1, the fact that the convergence in
probability

X̄
P

→ a, S2
X

P
→ σ2

holds as the sample size goes to infinity allows us to choose ã = X̄ and σ̃2 = S2
X

as the estimators for the parameters a and σ2 respectively.
The method of sample moments is not very favored in mathematical statis-

tics. It is regarded, not without reason, as an estimation method that is
far from economical. However, in a number of cases where the distribution
possesses sufficiently good analytic properties (for example, the existence of
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moments of any order, etc.) the method of moments is capable of giving pa-
rameter estimators meeting modern demands. And this category includes the
case under consideration of the distributions of the random variables U and V
which have finite moments of any order.

Based on the collections U1, …, Un and V1, …, Vn generated by the indepen-
dent sample Y1, …, Yn we form the sample means AU and AV and take them
as estimators of the parameters θ and τ, i.e.,

θ̃ = Ū, τ̃ = V̄. (9.3.3)

LEMMA 9.3.1. The statistics θ̃ and τ̃ are unbiased consistent estimators of the
parameters θ and τ with variances

σ2
θ = Var θ̃ = (1− θ2)/n, (9.3.4)

σ2
τ = Var τ̃ = π2(2ν − 3θ2 + 1)/(12n). (9.3.5)

PROOF. The fact that estimators (9.3.3) are unbiased follows from (9.3.1). The
form of the variances is obtained from (A.11.9), (A.11.3), (A.11.5). The consis-
tency of the estimators follows from the fact that variances (9.3.4) and (9.3.5)
of the estimators vanish as n →∞.

Since the random variable U takes only two values +1 and−1 with respec-
tive probabilities equal to

p = P {U = +1} = (1 + θ)/2, 1− p = P {U = −1} = (1− θ)/2,

estimation of θ is equivalent to that of p, which is a well-known problem
in statistics. It is known that p̃ = (1 + θ̃)/2 is an efficient estimator for the
parameter p (see, e.g. (van der Waerden, 1957)).

In contrast to estimators (9.3.3), construction of an estimator for the pa-
rameter ν appears to be more complex. It might seem that the statistic

ν̂ = (6/π2)S2
V − (3/2)S2

U + 1 (9.3.6)

could serve as such an estimator (consistent and unbiased), because, on the
one hand,

S2
U =

n
n− 1

[
U2 − Ū2

] P
→ EU2 − (EU)2 = Var U

as n →∞, and, similarly,

S2
V

P
→ Var V,

which yields

ν̂
P
→ ν.

On the other hand,
Eν̂ = ν
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1 + ηn

2

θ
1

0

Q̂n

−1

ã = (ν̃, θ̃) â = (ν̂, θ̂)

1/4

Q

ν1

Figure 9.1.

by (A.11.10).
However, the use of ν̂ as an estimator of ν is hindered by the fact that the

domain

Q = {(ν, θ) : |θ| ≤ min(1, 2
√

ν − 1)}

of variation of the parameters ν and θ does not coincide with the domain Q̂n of
variation of the values of the pair ν̂, θ̃, which is of the form (see Fig. 9.1)

Q̂n = {(ν̂, θ̂) : |θ̃| ≤ 1, ν̂ ≥ −(1 + ηn)/2},

where ηn = 3/(n− 1) for even n, and ηn = 3/n for odd n. But this means that
there can appear pairs of values of ν̂, θ̃ which do not correspond to any stable
distributions. Consequently, we must alter the estimators ν̃ and θ̃ in such a
way that their new domain of variation coincides with Q. This can be done in
different ways, for example, by drawing the normal from the point (ν̂, θ̃) to the
boundary of Q (if, of course, the point is outside Q) and taking the coordinates
of the points of the normal on the boundary of Q as new estimators.

But we choose a simpler method when θ̃ does not vary at all, but only ν̂
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does. Namely, let

ν̃ = max
{

ν̂, (1 + |θ̃|)2/4
}

= max

{
6
π2 S2

V −
3
2

S2
U + 1,

(1 + |θ̃|)2

4

}
. (9.3.7)

With this definition of ν̃, the domain of variation of of the pair (ν̃, θ̃) coin-
cides with Q.

LEMMA 9.3.2. For any n ≥ 2,

σ2
ν = Var ν̂ =

[
22
5

(ν − 1)2 +
6
5

(9− 5θ2)(ν − 1) + 3(1− θ2)(3 + θ2)
]

/n

+ [2(ν − 1)2 + 6(1− θ2)(ν − 1) + 9(1− θ2)2]/(n(n− 1)). (9.3.8)

PROOF. By virtue of (9.3.6),

σ2
ν = Var

[
(6/π2)S2

V − (3/2)S2
U

]

=
36
π4 Var S2

V +
9
4

Var S2
U −

18
π2 cov(S2

U , S2
V ).

Let us transform the right-hand side of this equality using the known
property of the sample variance (A.11.10) and (A.11.11):

σ2
ν =

{
36
π4 [EV4

0 − (Var V)2] +
9
4

[EU4
0 − (Var U)2]− 18

π2 cov(U2
0 , V2

0 )
}

1
n

+
[

72
π4 (Var V)2 +

9
2

(Var U)2
]

1
n(n− 1)

.

We know explicit expressions for the mixed central moments. With the use of
(A.11.6), (A.11.7), and (A.11.8), along with the expression for Var U and Var V,
after simple transformations we obtain

EU4
0 = 1 + 2θ2 − 3θ4 = 4(1− Var U) Var U + (Var U)2,

EU2
0V2

0 = (Var U) Var V +
π2

3
(1− Var U) Var U,

EV4
0 = (Var V)2 + 2

[
(Var V)2 − π4

16
(Var U)2

]
+

12
5

(Var V − π2

4
Var U)2

+
4π2

5
(Var V − π2

4
Var U) +

π4

4
Var U.
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Hence the first three terms in σ2
ν can be represented as

36
π4 [EV4

0 − (Var V)2] =
22
5

W2 + 6 (Var U + 4/5) W + 9 Var U,

9
4

[EU4
0 − (Var U)2] = 9(1− Var U) Var U,

18
π2 cov(U2

0 , V2
0 ) = 6(1− Var U) Var U,

where
W =

6
π2 Var V − 3

2
Var U.

Therefore,

σ2
ν =

[
22
5

W2 + 6
(

Var U +
4
5

)
W + 3(4− Var U) Var U

]
/n

+ [2W2 + 6W Var U + 9(Var U)2]/(n(n− 1)).

To obtain (9.3.8), it remains to substitute W = ν − 1 and Var U = 1− θ2.

LEMMA 9.3.3. The inequalities

(Eν̃ − ν)2 ≤ E(ν̃ − ν)2 ≤ σ2
ν + σ2

θ (9.3.9)

are true.

PROOF. Since
|θ| ≤ min

{
1, 2
√

ν − 1
}

,

we obtain
ν = max

{
ν, (1 + |θ|)2/4

}
.

Moreover, since

max {a, b} −max
{

a′, b′
}

≤ max
{
|a− a′|, |b− b′|

}

for any real a, a′, b, and b′, and because |θ̃| ≤ 1 and |θ| ≤ 1, we obtain

ν̃ − ν = max
{

ν̂, (1 + |θ̃|)2/4
}
−max

{
ν, (1 + |θ|)2/4

}

≤ max {|ν̂ − ν|, |θ̃ − θ|} .

The inequality
ν − ν̃ ≤ max {|ν̂ − ν|, |θ̃ − θ|}

is derived quite similarly, that is,

|ν̂ − ν| ≤ max {|ν̂ − ν|, |θ̃ − θ|} .
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Hence,

(ν̃ − ν)2 ≤ max
{

(ν̂ − ν)2, (θ̃ − θ)2
}

≤ (ν̂ − ν)2 + (θ̃ − θ)2.

Therefore,

E(ν̃ − ν)2 ≤ E(ν̂ − ν)2 + E(θ̃ − θ)2.

Now we formulate the assertion which follows from Lemmas 9.3.2 and 9.3.3.

THEOREM 9.3.1. The statistic ν̃ given by (9.3.7) is an asymptotically unbiased
and consistent estimator of the parameter ν, and the square of the bias and the
square deviation of ν̃ from the true value of ν does not exceed the sum σ2

ν + σ2
θ ,

with order of magnitude O(1/n) as n →∞. The exact values of the terms in this
sum are determined by (9.3.4) and (9.3.8).

In the case of a symmetric stable variable, estimators (9.3.3) and (9.3.7)
take a simpler form

τ̃ = V̄, ν = max
{

1
4

,
6
π2 S2

V −
1
2

}
,

and can be extended to the multidimensional case. It was done in (Zolotarev,
1978; Zolotarev, 1981b).

The results can be formulated as follows.
Let Y1, …, Yn be independent realizations of a random vector Y ∈ RN

obeying spherically symmetric stable law with parameters ν and τ, which
have to be estimated. Introducing the variables

V1 = ln |Y1|, …, Vn = ln |Yn|,

we denote

V̄ = n−1
n∑

j=1

Vj,

S2
V = (n− 1)−1

n∑

j=1

(Vj − V̄)2.
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We introduce the sequences

A1 = 0, A2 = ln 2, AN =





r∑

m=1

(2m− 1)−1, N = 2r + 1,

ln 2 +
r−1∑

m=1

(2m)−1, N = 2r,

B1 = −1/2, BN =





−1/2 +
6
π2

r∑

m=1

(2m− 1)−2, N = 2r + 1,

6
π2

r−1∑

m=1

(2m)−2, N = 2r,

where r = 1, 2, 3, …

THEOREM 9.3.2. The parameters τ and ν are estimated by

τ̃ = V̄ − AN , ν̃ = max
{

1
4

,
6
π2 S2

V + BN

}
,

where τ̃ is an unbiased estimator, and ν̃ is an asymptotically unbiased one with
the bias of order of magnitude O(n−1/2). Both of the estimators are consistent.

In this section, we consider strictly stable random variables. As concerns
arbitrary stable variables with distribution G(x; α, β , γ , λ ), the key idea in the
construction of estimators for the parameters α, β and λ consists in the trans-
formation of the initial independent sample Y1, …, Yn in such a way that the
result is another set Y ′1, …, Y ′m of strictly stable variables with parameters
related in a one-to-one way to the parameters α, β and λ . The size m of the
new sample will be essentially smaller than that of the original one; however,
this should be taken as the necessary cost for the distributions of the random
variables Y ′i to possess the property we need.

Let Y1, …, Y6n be an independent sample, and

Y0
j = Y2j−1 − Y2j, j = 1, 2, …, 3n,

(the size 6n of the original sample is chosen so that while partitioning into
thirds and halves we do not need to concern ourselves with remainders). We
cite results for a simpler case involving estimators of the parameters α and λ
on the basis of the transformed sample Y0

1 , …, Y0
3n. If

Vj = ln |Y0
j |, j = 1, …, 3n,
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V̄ is the sample mean and S2
V is the sample variance, then the statistics

α̃ =
[
max

{
1
4

,
6

π2 S2
V −

1
2

}]−1/2
,

λ̃ =
1
2
{

(V̄ + C)α̃ − C
}

(9.3.10)

are consistent and asymptotically unbiased estimators of the parameters α and
λ , with the bias and the mean square deviation of the estimated parameters
of order of magnitude O(n−1/2).

The details can be found in (Zolotarev, 1986).

9.4. Invariant estimation of α
An interesting approach to estimation of the parameter α invariant with re-
spect to other parameters γ , β , and λ , was suggested in (Nagaev & Shkolnik,
1985).

Let Y = Y(α, β , γ , λ ) and

τ = (Y1 − Y2)/(Y3 − Y4), τ̄ = min(|τ|, |τ|−1). (9.4.1)

According to (Nagaev, 1979), we obtain

Fα (x) = P{τ < x} =
1
2

+
1

απ2

∫ ∞

0
ln

1 + |x + y|α
1 + |x− y|α

dy
y

, |x| ≤∞. (9.4.2)

It is easy to show that

F̄α (x) = P{τ̄ < x} = 4(Fα (x)− 1/2), 0 ≤ x ≤ 1. (9.4.3)

Using formulae (9.4.1)–(9.4.3) and the moment method, one can derive a
number of different estimates of the parameter α that are invariant relative
to the parameters β , γ , and λ . Many of them are no worse asymptotically than
the corresponding estimates in (Zolotarev, 1980). These include, for example,
an estimate based on the values of the sample mean of the logarithm of τ̄.
The practical implementation of such estimation procedures is accomplished
by means of tables of the corresponding functional of distribution (9.4.3).

Let pα(x) be the density of family (9.4.3).

PROPERTY A. Families (9.4.2) and (9.4.3) are extendable in α from the interval
(0, 2] to the half-line (0,∞):

(1) for α = 2n, with integer n, Fα is a mixture of Cauchy distributions; in
particular,

p4(x) = 2
(

1
σ

q
(

x− a
σ

; 1
)

+
1
σ

q
(

x + a
σ

; 1
))

, 0 ≤ x ≤ 1,
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where a = cos π/4, σ = sin π/4,

q(x; 1) =
1

π(1 + x2)
;

(2) for α = 2n − 1, with integer n, Fα is a slightly different mixture; in
particular,

p3(x) =
8

π2
x2 ln(1/x)

1− x6 +
16
9

(
1
σ

q
(

x− α
σ

; 1
)

+
1
σ

q
(

x + a
σ

; 1
))

,

where a = cos π/3, σ = sin π/3;

(3) as α →∞,

p∞(x) =
4

π2x
ln

1 + x
1 + x

, 0 ≤ x < 1.

For non-integer α, expansions have been derived for pα(x) in the form of
convergent and asymptotic power series in x.

PROPERTY B. Families (9.4.2) and (9.4.3) do not uniquely determine the class
of stable distributions.

9.5. Estimators of parameter γ
The parameter γ plays a special part in the above approach to solving the
general problem of statistical estimation of parameters of stable laws. The
strategy used to construct estimators of the parameters α, β , and λ consists
in the transformation of the original sample into a new sample of smaller size
which is associated in turn with distributions of the class of strictly stable laws,
and within this class the logarithmic moments possess comparatively simple
expressions in terms of the parameters under estimation. A similar universal
transformation of the original sample which would allow us to estimate the
parameter γ in the same way has not been found yet, and it seems likely that
such a transformation does not exist at all. Therefore, new ways should be
opened to constructing estimators of γ .

In the case where α > 1, the distribution GA(x; α, β , γ , λ ) has finite mean
equal to λγ , and this provides us with the opportunity to use the sample mean
as an estimator. However, these distributions do not possess finite variances
for α < 2 but only finite moments of order smaller than α. The dissipation of
the values of the sample mean in the variable λγ being estimated thus turns
out to be large, and it is all the layer, the closer α is to one.

The basic idea for constructing an estimator for the parameter γ from
an independent sample Y1, …, Yn of sufficiently large size is as follows. Let
α, β , γ , and λ be the parameters of the stable law (in form A) which is the
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distribution of the random variables Yj. We consider a simplified version of
the problem, assuming that we know the parameters α, β , and λ , and that
only the parameter γ should be estimated.

It is assumed hereafter that Y ′1, Y ′2, … is a given sequence whose random
elements are distributed by the stable law GA(x; α, β , 0, λ ) and that the values
of the parameters α, β , and γ are known. The initial sample Y1, …, Yn is
transformed with the use of random variables Y ′1, …, Y ′n into a new collection
of variables Ỹ1, …, Ỹn by the rule

Ỹj = λ−1(Yj − Y ′j ), j = 1, 2, …, n.

The variables Ỹj can be interpreted as an independent sample from a
collection which is distributed by a stable law. According to (3.7.1) and (3.7.8),

Ỹj
d= λ−1YA(α, 0, γ /2, 2λ ) d= λ−1YA(α, 0, 0, 2λ ) + γ ,

which makes it clear that Ỹj obey a symmetric stable law biased by γ . More
rigorously,

F̃(x− γ ) = P
{

Ỹj < x
}

= GA(λ (x− γ ); α, 0, 0, 2λ ).

Consequently, γ coincides with the median of the distribution F̃(x−γ ), and this,
in turn, allows us to make use of the sample median method for estimating γ
well known in statistics (Zolotarev, 1986).

Let us arrange the observations Ỹj in the increasing order, and denote the
terms of the resulting sequence by wi: w1 < w2 < … < wn. The sample median
µn is defined by

µn =

{
w(n+1)/2 if n is odd,
[w(n+2)/2 + wn/2]/2 if n is even.

We take this statistic as an estimator of the unknown parameter γ , i.e., we
set

γ̃ = µn. (9.5.1)

There are no essential differences between the cases of even and odd n, and
the corresponding asymptotic analysis (as n → ∞) of the properties of the
estimator γ̃ leads in both cases to identical conclusions, but in the technical
respect, the case of odd n is somewhat simpler, and for this reason we restrict
the discussion to analyzing the case where n = 2m + 1.

Let
Fn(x) = P {γ̃ − γ < x} .

It is not hard to see (see, e.g. (van der Waerden, 1957, §17)) that

Fn(x) =
n∑

k=m+1

(
n
k

)
F̃k(x)[1− F̃(x)]n−k.
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Since the distribution function F̃(x) possesses the density

p̃(x) = λqA(xλ ; α, 0, 0, 2λ ),

so does Fn(x), and

pn(x) = F′n(x) = n

(
2m
m

)
[F̃(x)− F̃2(x))]mp̃(x)

= an exp(−mψ(x))p̃(x), (9.5.2)

where

ψ(x) = − ln F̃(x)− ln(1− F̃(x)),

an = n

(
2m
m

)
.

It follows from (9.5.2) that the bias E(γ̃ − γ ) and the mean square error
E(γ̃ − γ )2 of the estimator γ̃ can be expressed as the integrals

E(γ̃ − γ ) = an

∫
xp̃(x) exp {−mψ(x)} dx, (9.5.3)

E(γ̃ − γ )2 = an

∫
x2p̃(x) exp {−mψ(x)} dx. (9.5.4)

The distribution F̃(x) is symmetric, i.e.,

1− F̃(x) = F̃(−x), p̃(x) = p̃(−x)

for all x. This implies that the functions ψ(x) and pn(x) are even, and that

pn(x) ∼ const x−α(m+1)−1, x →∞.

Therefore, integrals (9.5.3) and (9.5.4) exist, provided that n > 4/α − 1 (the
former integral exists for n > 2/α−1), and, moreover, integral (9.5.3) vanishes,
i.e., the estimator γ̃ is unbiased.

Let us now consider the asymptotic behavior of integral (9.5.4). Since the
distribution F̃(x) is symmetric, we obtain

ψ(0) = 2 ln 2, ψ ′(0) = 0,

ψ ′′(0) = 8p̃2(0) = 8λ 2[qA(0; α, 0, 0, 2λ )]2. (9.5.5)

The value of the density of a symmetric stable distribution at zero is known
(see Section 4.9). Therefore, by virtue of (3.7.2)

ψ ′′(0) = 2[π−1Γ(1 + 1/α)(2λ )1−1/α ]2 > 0. (9.5.6)
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Properties (4.5.5) and (4.5.6) allow us to use the Laplace method to obtain an
asymptotic representation of integral (4.5.4) as n →∞; we have already used
this method under similar circumstances in Section 4.7. By this method, we
obtain

In = an

∫
x2p̃(x) exp {−mψ(x)} dx

= an exp(−mψ(0))
∫

x2p̃(x) exp

{
−mψ ′′(0)

x2

2
+ …

}
dx.

Since σ2
n = mψ ′′(0) → ∞ as n → ∞, we arrive at the following asymptotic

formula after the change of variable
∑

n x = t and the appropriate estimation
of the ‘tails’ of the integral:

In ∼ anσ−3
n p̃(0) exp {−mψ(0)}

∫
x2 exp

{
−x2/2

}
dx

= (2m + 1)

(
2m
m

)
2−2m(8m)−3/2

√
2π(p̃(0))−3 ∼ cn−1,

where

c = [π(2λ )(1−α)/α /Γ(1 + 1/α)]2. (9.5.7)

The above reasoning can be summarized as follows.

THEOREM 9.5.1. The statistic γ̃ = µn is a consistent unbiased estimator of the
parameter γ for all odd n > (2− α)/α, with mean square error

E(γ̃ − γ )2 ∼ cn−1, n →∞,

where the constant c is given by (9.5.7).

REMARK 9.5.1. For even n, the statistic γ̃ = µn is a consistent and asymptoti-
cally unbiased estimator of γ .

REMARK 9.5.2. We indicate one more variant of an estimator for γ under the
assumption that the values of the remaining parameters are known. Formally,
this variant has more advantages than that considered above, because it does
not require a transformation of the original sample. The following considera-
tions are taken as a basis for the estimator. By virtue of (3.7.2),

GA(x; α, β , γ , λ ) = G((x− l)λ−1/α , α, β , 0, 1),

where l = λ (γ + b0), and b0 is uniquely determined by the parameters α, β ,
and λ . Hence we conclude that the median m(α, β , γ , λ ) of the distribution
G(x; α, β , γ , λ ) is related to the median m(α, β) = m(α, β , 0, 1) by the equality

λ−1m(α, β , γ , λ ) = λ 1/α−1m(α, β) + b0 + γ . (9.5.8)
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We then consider the sample median µ̃ derived from the original sample
Y1, …, Yn with distribution G(x; α, β , γ , λ ). Because of good analytic proper-
ties of stable laws, the statistic µn turns out to be asymptotically normally
distributed with mean µ = m(α, β , γ , λ ) and variance

σ2 ∼ q−2(µ; α, β , γ , λ )(4n)−1, n →∞

(see, e.g. (Zolotarev, 1986)).
Therefore, replacing the median µ in (9.5.8) by the sample median µ̃, we

obtain the estimator of γ

γ̃ = λ−1µ̃ − b0 − cλ 1/α−1, (9.5.9)

where c = m(α, β) is the unique solution of the equation G(x; α, β) = 1/2.
Like the estimator in Theorem 9.5.1, γ̃ is asymptotically unbiased and

consistent (more precisely, 1/
√

n-consistent).

9.6. Maximum likelihood estimators
Let p(x, µ) be the distribution density of independent random variables X1, …, Xn
forming a sample which serves as the base to construct an asymptotically ef-
ficient estimator of the parameter µ, given a 1/

√
n-consistent estimator µ̃ of

this parameter. Let

L(X | µ) =
n∑

j=1

ln p(Xj, µ)

be the likelihood function, and let L′(X | µ) and L′′(X | µ) be its first and second
derivatives with respect to µ.

It turns out that the statistic

µ̂ = µ̃ − L′(X | µ̃)/L′′(X | µ̃) (9.6.1)

is an asymptotically efficient estimator of µ under certain regularity conditions
imposed on the density p(x, µ), for example, the existence and continuity of the
second derivative of p(x, µ) with respect to µ, etc. In the cases where the Fisher
information

I(µ) =
∫ ( ∂

∂µ
ln p(x, µ)

)2

p(x, µ) dx

associated with the distribution corresponding to p(x, µ) can be computed, it is
possible to use the statistic

µ∗ = µ̃ + L′(X | µ̃)/(nI(µ)) (9.6.2)

instead of (9.6.1).
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The fact that an explicit expression for the density is used in construction
of the statistic µ̂ and µ∗ presents some challenge in the case of estimating the
parameters of stable laws, because, with some exceptions, we are aware of only
somewhat complicated forms of expressions for the corresponding densities
as series or integrals. However, these are not the problems that arise in
constructing the maximum likelihood estimator µ0, where one must solve the
transcendental equation L′(X | µ) = 0 for the variable µ (µ0 is the solution of
this equation).

We assume, for example, that we are looking for the value of only the single
parameter µ of a stable law under the condition that we know the remaining
parameters. To use estimator (9.6.1), we obviously have, at least, to know
some tables of values of the functions

∂
∂µ

ln p(x, µ),
∂2

∂µ2 ln p(x, µ).

In constructing similar estimators for several parameters (i.e., for esti-
mators of vectors), the problem becomes significantly more difficult from the
computational viewpoint, because it is required to tabulate all the first and
second mixed derivatives of the logarithm of the density with respect to the
parameters to be estimated.

As we know, among the stable laws there are those whose densities can
be expressed in terms of elementary functions. The parameter sets (α = 1/2,
β = 1, γ , λ ), (α = 1, β = 0, γ , λ ), and (α = 2, β , γ , λ ) correspond to them.
The last set, which corresponds to the normal distributions, is well known, so
there is no need to comment on the associated problem of estimation of the
parameters. The remaining two cases in this scheme are less known. It is thus
useful, in our opinion, to analyze these cases to illustrate the considerations
given above. We consider the simplest problem of estimation of one of the
parameters γ or λ under the condition that the value of the second parameter
is known.

In the first case,

qB(x; 1/2, 1, γ , λ ) =
λ

2
√

π
(x− γλ )−3/2 exp

(
− λ 2

4(x− γλ )

)
, x > γλ . (9.6.3)

We assume that the value of λ is known, while the value of γ is unknown
and has to be estimated. We introduce the likelihood function L(Y | γ ). Its
derivative with respect to γ is of the form

L′(Y | γ ) =
3
2

λ
∑

j

(Yj − γλ )−1 − λ 3

4

∑

j

(Yj − γλ )−2.

The likelihood equation L′(Y | γ ) = 0, reduced to an algebraic equation, does
not allow us to write out the maximum likelihood estimator, though. There-
fore, we look for an asymptotically efficient estimator γ̂ of the parameter γ by
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following the hints given above. First of all, the explicit form (9.6.3) of the
density allows us to compute the corresponding Fisher information I(γ ). Easy
calculations yield I(γ ) = 42/λ 2, which allows us to construct the estimator γ̂ of
form (9.6.2).

At our hands, we have two 1/
√

n-consistent estimators of the parameter γ .
One was given in Theorem 9.5.1, and the second, in Remark 9.5.1. The most
convenient estimator in this case turns out to be (9.5.9). Indeed,

γ̃ = λ−1µ̃ − cλ ,

where µ̃ is the sample median and c = 1.08… is the solution of the equation

G(x; 1/2, 1) = 2[1− Φ(1/
√

2x)] = 1/2,

where Φ is the distribution function of the standard normal law.
Finally, with the use of (9.6.2) we obtain the statistic

γ̂ = γ̃ +
λ 2

42
L′(Y | γ̃ )n−1 (9.6.4)

as an asymptotically efficient estimator of γ .
We assume now that the value of γ is known, but the value of λ has to be

estimated. The case is treated as before: we construct the likelihood function
L(Y | λ ) and then find its derivatives with respect to λ :

L′(Y | λ ) = nλ−1 +
(

3
2

γ − λ
)∑

j

(Yj − γλ )−1 − λ 2γ
4

∑

j

(Yj − γλ )−2.

Of course, we should not try to solve the likelihood equation L′(Y | λ ) = 0, and
we have to construct an asymptotically efficient estimator λ̂ of λ by the rule
pointed out. However, in contrast to the preceding case, the Fisher information
I(λ ), though computable, turns out to depend on λ . Therefore, λ̂ should be
constructed by (9.6.1). The 1/

√
n-consistent estimator λ̃ of λ sought for can be

found in Section 9.3 (equality (9.3.10)). Let us compute the second derivative
of L(Y | λ ) with respect to λ :

L′′(Y | λ ) = nλ−2 −
∑

j

(Yj − γλ )−1

+ 1
2 γ (3γ − λ )

∑

j

(Yj − γλ )−2 − 1
2 λ 2γ 2

∑

j

(Yj − γλ )−3.

According to (9.6.1), the asymptotically efficient estimator λ̂ is of the form

λ̂ = λ̃ − L′(Y | λ̃ )/L′′(Y | λ̂ ).
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As we see, the estimator of λ occurs to be more complicated than the estimator
of γ . This is due, in the first glance, to the choice of parameterization. If,
instead of the system (α, β , γ , λ ), we considered the system (α, β , γ ′, λ ), where
γ ′ = γλ , then the complexity of the estimator of γ ′ in the case where α = 1/2
and β = 1 should stay the same, while the estimator of λ , provided that γ ′ is
known, should be essentially simpler to calculate, since the likelihood equation
is fairly simple to solve. It turns out that the resulting maximum likelihood
estimator is a sufficient statistic (see (Januškevičiene, 1981)).

Asymptotically efficient estimators of one of the parameters γ or λ in the
case α = 1 and β = 0 can be constructed in the same way with the use of the
explicit expression

q(x; 1, 0, γ , λ ) =
λ
π

[λ 2 + (x− γλ )2]−1

for the density.
We give only a sketch of the basic idea of (Dzhaparidze, 1974) in the sim-

plest situation where the only parameter µ has to be estimated.
The part of µ can be played by any parameter of a stable law for which

we know a 1/
√

n-consistent estimator. At the same time, it should be men-
tioned that the possibilities of this method are much wider, and it allows us
to construct asymptotically efficient estimators for the parameter collection
µ = (α, β , λ ), because, as we have seen, there are 1/

√
n-consistent estimators

for the vector-valued parameter µ.
In (Worsdale, 1976), the parameters α, δ , λ of the symmetric stable distri-

bution with characteristic function

g(k; α, δ , λ ) = exp {iδk− (1/α)|λk|α}

were estimated using a modification of the method of maximum likelihood.
A procedure for estimating all three parameters α, δ , and λ was given in

(Worsdale, 1976).
DuMouchel (DuMouchel, 1975) analyzed Fama and Roll’s results using the

Fisher information matrices I(Γ) for the parameters Γ ≡ {α, β , c, δ} of stable
distributions

q(x; Γ) = qA((x− δ )/c; α, β)/c.

The elements of I(Γ) are determined by

IΓ′Γ′′ = IΓ′Γ′′(Γ) =
∫ ∞

−∞

(
∂q
∂Γ′

)(
∂q

∂Γ′′

)
1
q

dx, (9.6.5)

where Γ′ and Γ′′ each represent α, β , c and δ .
Two kinds of approximations were used in the computations. The first

is less critical and involves replacing derivatives with respect to α, β , c and
δ by the corresponding differences. The second approximation used is more
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delicate; it involves the replacement of the continuous density qA(x; α, β) by a
discrete approximation. We partition the real axis into m intervals whose end
points are −∞ = y0 < y1 < … < ym−1 < ym =∞. Then, let

pk(Γ) =
∫ yk

yk−1

q(x; Γ) dx, k = 1, 2, …, m.

Then the definition of I(Γ) given by (9.6.5) is replaced by

IΓ′Γ′′ (Γ) =
m∑

k=1

∂pk(Γ)
∂Γ′

∂pk(Γ)
∂Γ′′

/
pk(Γ).

This definition of I leans upon the assumption that the data are grouped into
m classes defined by the points y1, …, ym−1, and that only nk, the number of
observations fallen into the kth class, k = 1, …, m, is recorded. Such a reduction
of continuous data always involves some loss of information.

These concepts were applied to the stable distribution case. The asymptot-
ic standard deviations and correlations of the maximum likelihood estimators
(MLEs) of the index, skewness, scale, and location parameters were comput-
ed and tabularized, and used to compute the relative asymptotic efficiency of
other proposed estimators. It is shown that if the true stable distribution is
symmetric, the MLEs of the index and the scale parameters are asymptotical-
ly independent of those of skewness and location. The effect on the available
information of grouping the data is investigated both analytically and numer-
ically, and the most serious loss of information is shown to occur if extreme
observations are grouped while estimating α. In particular, it was found that
an estimator of δ proposed by Fama and Roll (Fama & Roll, 1968; Fama &
Roll, 1971) is very efficient and that their estimators for α and c, while not
quite so efficient, are easily computed and thus might be profitably be used as
initial values for computing the maximum likelihood estimate by an iterative
process, if greater efficiency were needed.

9.7. Fisher’s information for α close to 2
With the use of (4.8.10), in (Nagaev & Shkolnik, 1988) the asymptotic behavior
of Fisher’s information

I(α) =
∫ ∞

−∞

(
∂ ln q(x; α, 0)

∂α

)2
q(x; α, 0) dx (9.7.1)

as a function of α was investigated for α → 2.

THEOREM 9.7.1. As ∆ = 2− α → 0,

I(α) ∼ [4∆| ln ∆|]−1. (9.7.2)



250 9. Estimation

The proof of the theorem is based on the following lemma.

LEMMA 9.7.1. As ∆ = 2− α → 0,

∂q(x; α, 0)
∂α

= −x∆−3(1 + θc∆ + θc∆ ln x + θcx∆−2 ln x) (9.7.3)

for all x ≥ x0 > 0, where c is a positive constant and θ ∈ (−1, 1).

After proving the lemma, (9.7.1) is rewritten as the sum of integrals

I(α) =
5∑

k=1

Ik, (9.7.4)

decomposing the domain of integration into the intervals [0, T), [T, x1(∆)),
[x1(∆), x2(∆)), [x2(∆), x3(∆)), and x3(∆),∞), where T is some positive constant
and

x1(∆) = (2− ε)| ln ∆|1/2, x2(∆) = (2 + ε)| ln ∆|1/2, x3(∆) = exp(∆−1/2),

with some small positive ε (see (4.8.10)). Using (4.8.10) and (9.7.3), one can
show the following.

(1) As ∆ → 0,

I1 <∞. (9.7.5)

(2) If T ≤ x ≤ x1(∆) and ∆ → 0, then

q(x; α, 0) = q(x; 2, 0)(1 + o(1)),
∂q(x; α, 0)

∂α
= θcx−3,

and therefore,

I2 = 2θc
∫ x1(∆)

T
x−6 exp(x2/4) dx =

2θc
∆1−ω(ε)| ln ∆|7/2 , (9.7.6)

where ω(t) stands for any positive-valued function possessing the prop-
erty

lim
t→0

ω(t) = 0.

(3) If x1(∆) ≤ x ≤ x2(∆), then

q(x; α, 0) ≥ c∆x−3
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and
∂q(x; α, 0)

∂α
= θcx−3,

hence

I3 =
2θc
∆

∫ x2(∆)

x1(∆)
x−3 dx =

2θcω(ε)
∆| ln ∆| . (9.7.7)

(4) Further, if x2(∆) ≤ x ≤ x3(∆), then

q(x; α, 0) = ∆x∆−3(1 + o(1)),
∂q(x; α, 0)

∂α
= −x−3(1 + o(1))

as ∆ → 0, x →∞; therefore,

I4 =
2
∆

∫ x3(∆)

x2(∆)
x−3 dx (1 + o(1)) =

1 + o(1)
∆(2 + ε)2| ln ∆| . (9.7.8)

(5) Finally, for x ≥ x3(∆)

q(x; α, 0) = ∆x∆−3(1 + o(1)),
∂q(x; α, 0)

∂α
= −x−3(1 + θc∆ ln x)(1 + o(1))

as ∆ → 0, x →∞. Thus,

I5 =
2θc
∆

∫ ∞

x3(∆)
x∆−3(max{1, ∆ ln x})2 dx = ω(∆). (9.7.9)

Since ε is arbitrary, (9.7.4)–(9.7.9) immediately imply the desired assertion.

9.8. Concluding remarks
The estimators given in Sections 9.3–9.6 for the parameters of stable laws are
not best possible estimators even in the asymptotic sense as the sample size n
increases to infinity. This is due, first of all, to the fact that all the estimators
were constructed from the sample moments and the sample median which are
of a simple structure but, as a rule, of poor efficiency. Also, in constructing
estimators in the general situation we use a transformation of the original
sample which leads either to a reduction in its size by a factor of two or
three, or to an increase of the dissipation of the random variables making
up the sample in isolated cases. At the same time, the estimators we found
possess a number of merits that not only allow us to take these estimators as
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a convenient tool for solving practical problems, but also to make them a good
basis for the construction of best possible (in a certain sense) estimators of the
corresponding parameters.

Let µ̃ stand for an estimator of the parameter µ (which is allowed to be
any of the parameters considered in Sections 9.3–9.6); then with regard to its
properties we can assume that

(1) it is of somewhat algorithmically simple structure (this applies, first of
all, to the estimators of the parameters α, θ, and τ corresponding to
form E);

(2) it is asymptotically normal; and

(3) it possesses the mean square deviation E(µ̃ − µ)2 of order 1/n.

Property 2 has not been proved for any of the estimators discussed,but it
can be established without difficulty with the use of the central limit theorem
by recalling the ‘locally additive’ structure of the estimators by virtue of the
obvious inequalities

(Eµ̃ − µ)2 ≤ E(µ̃ − µ)2, Var µ̃ ≤ 4E(µ̃ − µ)2,

P(
√

n|µ̃ − µ| ≥ T) ≤ nE(µ̃ − µ)2/T2, T > 0.

Property 3 implies that µ̃ is asymptotically unbiased with bias of order at most
1/
√

n, that the variance of the estimator is of order at most 1/n, and, finally,
that µ̃ is a 1/

√
n-consistent estimator of the parameter µ.

It is worthwhile to mention another fact. Constructions of the estimators
for the parameters of stable distributions were carried out within two groups.
One included the parameters α, β , and λ , and the other, the parameter γ .
These groups differ, first of all, in the form of the transformations of the original
sample in constructing of the estimators. The estimators of the first group can
be regarded in total as the coordinates of a three-dimensional random vector
which is obviously a 1/

√
n-consistent estimator of the corresponding triple of

parameters. It can be improved as was said above.
To conclude the section, we remark that it is well known how important

in practice is to find confidence intervals for parameters being estimated. In
general, we do not dwell upon this question, although the estimators given
for parameters ν, θ and τ, due to their simple structure, allow us to construct
confidence intervals for them in a fairly simple manner. For example, the
estimator for θ is reduced to the estimator for the parameter p = (1 + θ)/2 in
the binomial scheme (see the reasoning after Lemma 9.3.1), and the problem of
constructing confidence intervals for this estimator has become classical (see
(van der Waerden, 1957; Kendall & Stuart, 1967)).

A method of estimation of bivariate stable distributions applied to financial
problems will be discussed in Chapter 17.



Part II

Applications

253





10

Some probabilistic models

10.1. Generating functions
In the present chapter, we consider some probabilistic models giving rise to
stable distributions. We present this material in a separate chapter for the
reason that these models are too schematic constructions deprived of those
particular details which could unambiguously orient readers on particular
applications. However, there is an advantage in this way: with a suitable
modification they can be applied to solving various, occasionally very far from
each other, problems. As a matter of fact, we have already worked enough
with such a model: it is the summation of random variables. Moreover, we
touched also the case where the number of terms is random and is distributed
by the Poisson law (Section 3.5). In essence, the models considered below are
based on the idea of summation as well, in various interpretations.

Before going to these models, we consider one more characteristic of ran-
dom variables used in the case where they take non-negative integer values.
Basically, it plays the same role as the characteristic function, but is more
convenient while working with integer-valued random variables.

DEFINITION 10.1.1. Let N be a random variable taking the values 0, 1, 2, …
with probabilities p0, p1, p2, … The function

ϕN(u) = EuN =
∞∑

n=0

unpn (10.1.1)

is called the generating function (g.f.) of the r.v. N.

Let us give some properties of g.f.’s.

(a) A g.f. ϕ(u) is defined for all u from the unit circle |u| ≤ 1 of a complex
plane; it is analytic for |u| < 1.

255
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(b) The equality

ϕ(1) = 1 (10.1.2)

is true.

(c) One and only one generating function ϕ(u) corresponds to each probabil-
ity distribution {p0, p1, p2, …}; one and only one probability distribution
{p0, p1, p2, …} corresponds to each function ϕ(u) which is analytic in the
circle |u| < 1, possesses non-negative coefficients when expanded in a
power series, satisfies (10.1.2), and

pn ≡ P{N = n} =
1
n!

ϕ(n)(0), n = 0, 1, 2, … (10.1.3)

(d) A g.f. ϕ(u) and all its derivatives ϕ (n)(u), n = 1, 2, 3, …, are non-negative,
non-decreasing, and convex on 0 ≤ u ≤ 1.

(e) For any natural n,

ϕ(n)(1) = EN[n] ≡ EN(N − 1)…(N − n + 1). (10.1.4)

The value on the right-hand side is called the nth factorial moment of a
r.v. N. For n = 1, it coincides with the expectation

EN = ϕ ′(1), (10.1.5)

and for n = 2, leads to the following expression for the variance:

Var N = ϕ ′′N(1) + ϕ ′N(1)−
[
ϕ ′N(1)

]2 . (10.1.6)

Since for u > 1 the function ϕN(u) may not be defined, its derivatives at
the point 1 are understood as the left derivatives.

(f) Let the nth factorial moment N be finite. Then

ϕ(u) =
n−1∑

k=0

ϕ(k)(1)
(u− 1)k

k!
+ Rn(u)

(u− 1)n

n!
; (10.1.7)

Rn(u) does not decrease for real u ∈ [0, 1], 0 ≤ Rn(u) ≤ ϕ(n)(1), |Rn(u)| ≤
ϕ(n)(1) for complex |u| ≤ 1, and Rn(u) → ϕ(n)(1) as s → 1.

(g) If N1, …, Nn are independent r.v.’s, then

ϕN1+…+Nn (u) = ϕN1(u)…ϕNn(u). (10.1.8)
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(h) Let K, N1, …, Nn be independent integer-valued random variables, where
N1, …, Nn, … are identically distributed. Then the g.f. of the sum SK =
N1 + … + NK of the random number K of the terms Ni is related with the
g.f.’s ϕN(u) and ϕK (u) by

ϕSK (u) = ϕK (ϕN(u)). (10.1.9)

This property is validated by replacing n by K in (10.1.8) followed by aver-
aging over K:

ϕSK (u) = EE(uSK | K) = E[ϕN(u)]K = ϕK (ϕN(u)). (10.1.10)

A more detailed consideration of generating functions and their applica-
tions can be found in (Sevastyanov, 1974; Uchaikin & Ryzhov, 1988), and
others.

Here E{X | k} stands for the conditional mathematical expectation of X
under the condition that K = k.

10.2. Stable laws in games
Let us consider the so-called fair game. Two players participate in the game.
The initial capital of the first player is equal to an integer m, the second one
is infinitely rich. Each of them wins or loses in each game with probability
1/2, irrespective of outcomes of previous games, and his capital increases or
decreases accordingly by one each time. Let m + Sk be the capital of the first
player after the kth game, and N(m) be the number of steps until he is ruined,
i.e.,

N(m) = min{k : m + Sk = 0}, N(0) = 0.

First of all, we show that N(m) is a proper random variable, i.e., a r.v.
taking a finite value with probability one. This means that with probability
one the first player will be ruined irrespective of what capital he began to play
with (the second player is infinitely rich and not threatened with ruin). We
assume that

p(m) = P{N(m) <∞}, p(0) = 1.

and denote by B1 the event ‘the first player wins a game’ and by B2, the event
‘the first player loses a game’. The law of total probability yields

p(m) = P{N(m) <∞ | B1}P{B1} + P{N(m) <∞ | B2}P{B2}. (10.2.1)

Because B1 implies the increase of the capital by one, and B2, its decrease by
one,

P{N(m) <∞ | B1} = P{N(m + 1) <∞} = p(m + 1),
P{N(m) <∞ | B2} = P{N(m − 1) <∞} = p(m− 1),
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and, due to the fair character of the game,

P{B1} = P{B2} = 1/2,

from (10.2.1) we obtain

p(m) = 1
2 [p(m + 1) + p(m− 1)]. (10.2.2)

Assuming that
∆(m) = p(m + 1)− p(m), z ≥ 0,

from (10.2.2) we obtain

∆(m)− ∆(m− 1) = 0, ∆(m) = const ≡ δ .

Since

p(m + 1) = p(0) +
m∑

k=1

∆(k) = p(0) + mδ

for all m, it is clear that δ can be nothing but zero. Hence

p(m) ≡ 1 for all m.

and therefore, the first player is ruined with probability one.
We consider now the distribution of the r.v. N ≡ N(1). The player starts

the game with one dollar, and each time he wins or loses one dollar with equal
probabilities. It is easy to realize that

N(2) = N1 + N2 + 1, (10.2.3)

where N1 and N2 are independent random variables distributed as N(1). Since
each of these events occurs after a unit of time, it is possible to write the
following stochastic relation:

N =

{
1 with probability 1/2.
N1 + N2 + 1 with probability 1/2.

Using it while evaluating the corresponding g.f.’s, we arrive at the algebraic
equation

ϕN(u) = EuN =
1
2

(
u + EuN1+N2+1

)
=

u
2

[
1 + ϕ2

N(u)
]

, (10.2.4)

whose solution is of the form

ϕN(u) =
[
1−

√
1− u2

]
/u. (10.2.5)
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Here the sign before the square root is chosen so that function (10.2.5) satisfies
Property (c). It is easy to see that ϕN(1) = 1, but ϕ ′N(1) =∞. The latter means
that the mathematical expectation of N is infinite:

EN =∞. (10.2.6)

In order to get the probability distribution

pn = P{N(1) = n},

one expands the square root in (10.2.5) in terms of u2:

ϕN(u) =
∞∑

k=1

(2k− 3)!!
(2k)!!

u2k−1.

Comparing this expression with the general formula

ϕN(u) =
∞∑

n=0

1
n!

ϕ(n)
N (0)un

and taking (10.1.3) into account, we obtain

pn =
(2k− 3)!!

(2k)!!
=

(n− 2)!!
(n + 1)!!

, n = 2k− 1, k = 1, 2, …, (10.2.7)

and
pn = 0, n is even.

In the same way one can also find the distribution of the time of gambler’s
ruin for any initial capital m:

pn(m) = P{N(m) = n} = 2−n m
n

(
n

(n−m)/2

)
(10.2.8)

provided that n and m are simultaneously even or odd, and

pn(m) = 0

if n and m are of different parity. For large m, however, evaluations can be
avoided if we notice that (10.2.3) also remains true for m > 2:

N(m) = N1 + … + Nm. (10.2.9)

Thus, the problem is reduced to the determination of the limiting distribu-
tion for the sum of independent r.v.’s with infinite mathematical expectation
(10.2.6). Using (10.2.7), we immediately obtain

P{N(1) > n} =
∑

k>(x+1)/2

p2k−1 ∼
√

2/πn−1/2, x →∞. (10.2.10)
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Therefore, the distribution of the r.v. N(1) belongs to the domain of attraction
of the stable law with density q(x; 1/2, 1) (Lévy law), and according to the
generalized limit theorem (Section 2.5)

P{N(m) < n} = P{N(m)/bm < n/bm} ∼ GA(n/bm; 1/2, 1), m →∞,
(10.2.11)

where
bm = b1(1/2)m2 = m2.

Another stable law manifests itself in the so-called StPetersburg game.
The game is to flip a coin until the head appears. The coin is symmetric, so
the random number N of the flip when the head appears the first time has the
probability distribution

P{N = n} = 2−n, n = 1, 2, …

As the head occurs, the player wins X = 2N dollars. This game was intro-
duced by Nicholas Bernoulli in the early 1700s, and is known as the StPeters-
burg paradox, because Daniel Bernoulli wrote about it in the Reviews of the
StPetersburg Academy. The question is how many dollars a player has to
risk (the ante) to play. In a fair game, the ante should be equal the expected
winning, but it is infinite:

EX =
∞∑

n=1

2n2−n =∞.

Feller found (see (Székely, 1986)) how to define the ante R in order that the
game would be fair. Supposing that the game is fair, where

P{|Xn/Rn − 1| < ε} → 1

as the number of games of the player n → ∞, he obtained that for this case
one should set

Rn = n ln2 n. (10.2.12)

Such unusual non-linear law for the ante stems from the theory of stable laws
Indeed,

P{X > x} = P{2N > x} = P{N > ln2 x}
=
∑

n≥ln2 x

2−n ≈ 2x−1

and according to the generalized limit theorem the random variable X belongs
to the domain of attraction of the stable law with parameters α = 1 and β ,
which yields (10.2.12) (see also (Shlesinger et al., 1993)).
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Figure 10.1.

10.3. Random walks and diffusion
The player’s fate in the above situation can be considered as a random function
of the integer variable, the number of the game, which will be called time. The
graph of a realization of such a function is presented in Fig. 10.1. Looking at
this, we see that the player who begins playing with one dollar wins one dollar
in the first game and has three dollars after the second game. Further, alas,
he was not lucky and in the seventh game he was ruined. However, he cannot
be considered as an unlucky person: the probability to hold out up to the 7th
game is vanishingly small, indeed.

Particular content of the given problem apart, we consider the graph given
in Fig. 10.1 as a trajectory of some particle making random unit jumps along
x-axis in every unit of time: +1 with probability 1/2 and −1 with the same
probability 1/2. Let the particle continue its movement in a predetermined
fashion also to the left-hand half of the axis. The event ‘the player is ruined’
corresponds, in this terminology, to the event ‘the particle passes the point
x = 0 for the first time’.

By permitting the particle to move also along the negative semi-axis, we
obtain a symmetric picture, and now can (for the sake of convenience) locate
it at initial time t = 0 at the origin x = 0. Assume now that time intervals
between jumps are equal to τ and the amplitude of each jump is equal to ξ .
Let p(x, t) stand for the probability to be at location x = ξk (k = 0, ±1, ±2, …) at
time t = τn (n = 0, 1, 2, …). It is clear that

p(x, t + τ) = 1
2 [p(x− ξ , t) + p(x + ξ , t)], (10.3.1)

p(x, 0) =

{
1, x = 0,
0, x ≠ 0,
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For τ and ξ small enough, we can expand the probabilities in terms of τ and ξ

p(x, t) +
∂p(x, t)

∂t
τ = p(x, t) +

1
2

∂2p(x, t)
∂x2 ξ2.

If τ → 0 and ξ → 0 so that

ξ2/(2τ) → D ≠ 0, (10.3.2)

we arrive at the well-known diffusion equation

∂p(x, t)
∂t

= D
∂2p(x, t)

∂x2 , (10.3.3)

describing the Brownian motion with the initial condition p(x, 0) = δ (x). It can
be decomposed into two equations: the continuity equation

∂p(x, t)
∂t

= −∂j(x, t)
∂x

(10.3.4)

and the Fick law

j(x, t) = −D∂p(x, t)/∂x. (10.3.5)

If we consider the first passage through the point a > 0, then a/ξ → ∞ as
ξ → 0, and for the first passage time T = Nτ we obtain:

lim
τ→0
ξ→0

P {N/bm < n/bm} = P{T < t} = GA(2Dt/a2; 1/2, 1).

Differentiating this relation with respect to time, one obtain the density func-
tion of the random variable T

pT(t) = (2D/a2)qA(2Dt/a2; 1/2, 1) =
a√

4πDt3
e−a2/(4Dt). (10.3.6)

This result can easily be obtained by solving diffusion equation (10.3.3)
with the zero boundary condition at the point x = a as well:

p(a, t) = 0. (10.3.7)

The zero condition arises due to the restriction of the process by the first
passage; to suppress other visits of this point, we assume that the particle dies
after the first visit. One can imagine an absorbing screen at the point x = a,
and the unknown distribution follows from (10.3.5):

pT(t) = −D
∂p(x, t)

∂x

∣∣∣∣
x=a

. (10.3.8)
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Instead of that, one can place the same additional source at the point x = 2a
and evaluate the difference between the two solutions:

p(x, t) =
1√

4πDt

[
e−x2/(4Dt) − e−(x−2a)2/(4Dt)

]
. (10.3.9)

Substituting this into (10.3.8), we obtain (10.3.7).
Let Θ be the moment when the particle leaves the interval [−a, a] for

the first time. In this case, the solution of equation (10.3.2) with boundary
conditions

p(a, t) = p(−a, t) = 0

is obtained by separating the variables and is of the form

p(x, t) =
1
a

∞∑

l=0

cos
[

(2l + 1)πx
2a

]
exp

{
−
[

(2l + 1)π
2a

]2
Dt

}
. (10.3.10)

The distribution of Θ is given by the relation similar to (10.3.8)

pΘ(t) = D

{
∂p(x, t)

∂x

∣∣∣∣
x=−a

− ∂p(x, t)
∂x

∣∣∣∣
x=a

}

=
πD
a2

∞∑

l=0

(−1)l(2l + 1) exp

{
−D

[
(2l + 1)π

2a

]2

t

}

It is easy to see that the density satisfies the normalization

∫ ∞

0
pΘ(t) dt =

4
π

∞∑

l=0

(−1)l

2l + 1
= 1.

The mathematical expectation of Θ is now finite:

Θ̄(a) ≡ EΘ =
∫ ∞

0
tpΘ(t) dt =

16a2

π3D

∞∑

l=0

(−1)l

(2l + 1)3 =
a2

2D
. (10.3.11)

It is useful to obtain this result without the use of the Fick law. The integral

I =
∫ a

−a
p(x, t) dx

differs from one, and the difference 1− I is equal to the probability P {Θ < t},
which is the distribution function FΘ(t) of the random time Θ:

∫ a

−a
p(x, t) dx = 1− FΘ(t) ≡ F̄Θ(t).
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The mean time can be expressed in terms of F̄Θ(t) as follows:

Θ̄(a) = −
∫ ∞

0
t(dF̄Θ/dt) dt =

∫ ∞

0
F̄Θ(t) dt.

Therefore,

Θ̄(a) =
∫ ∞

0
dt
∫ a

−a
dx p(x, t). (10.3.12)

Inserting (10.3.10) into this relation and integrating, we arrive at (10.3.11)
again.

Consider now the two-dimensional diffusion on a plane. The diffusion
equation in this case is of the form

∂p(r, t)
∂t

= D∆p(r, t),

where r is the two-dimensional vector with coordinates (x, y), and ∆ is the two-
dimensional Laplacian. Its solution for a particle starting the walk from the
origin at t = 0 is

p(r, t) =
1

4πDt
exp

{
− r2

4Dt

}
, r2 = x2 + y2. (10.3.13)

It is a mere product of two one-dimensional solutions

p(x, t) =
1√

4πDt
exp

{
− x2

4Dt

}
,

p(y, t) =
1√

4πDt
exp

{
− y2

4Dt

}
, (10.3.14)

which reflects the independence of Cartesian coordinates of the particle while
walking.

Let us draw the straight line x = a on this plane and look for the distribution
of the first passage coordinate Ya, i.e., the coordinate of the point where the
particle passes the line for the first time (Fig. 10.2). The distribution can be
represented as

pYa(y) =
∫ ∞

0
p(y, t)pT(t) dt, (10.3.15)

where pT(t) was obtained above. Substituting (10.3.6) and (10.3.14) into
(10.3.15), we arrive at the Cauchy distribution

pYa(y) =
a

4πD

∫ ∞

0
exp

{
− (a2 + y2)

4Dt

}
t−2dt =

a
π(a2 + y2)

.
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Figure 10.2.

Dealing with the three-dimensional diffusion, one can find the distribution
of the random coordinates Ya, Za of the point where the particle passes the
plane x = a for the first time:

pYaZa(y, z) =
a

(4πD)3/2

∫ ∞

0
exp

{
− (a2 + y2 + z2)

4Dt

}
t−5/2dt

=
a

2π(a2 + y2 + z2)3/2 , (10.3.16)

which is the two-dimensional Cauchy distribution. A similar result also takes
place in the case of N-dimensional diffusion: the distribution of the (N − 1)-
dimensional vector (X1…XN−1) corresponding to the first passage of the point
a by the component XN is given by the (N−1)-dimensional Cauchy distribution
(see (7.4.8))

p(x1…xN−1) =
a

(4πD)N/2

∫ ∞

0
exp

{
−
(

a2 +
N−1∑

i=1

x2
i

)/
(4Dt)

}
t−N/2−1dt

=
aΓ(N/2)

πN/2(a2 + x2
1 + … + x2

N−1)N/2 . (10.3.17)

10.4. Stable processes
The Brownian motion of a particle considered above belongs to the well-known
class of random processes with independent increments.

Recall that a random process X = X(t) on the real line is said to have
independent increments if for any values t0 ≤ t1 ≤ t2 ≤ … the increments
X(tn+1)− X(tn), n = 0, 1, 2, …, are independent random variables.
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The process X(t) with independent increments is called homogeneous if the
probability distribution of increments X(t)−X(s) depends only on the difference
t− s.

DEFINITION 10.4.1 ((Prokhorov & Rozanov, 1969)). A homogeneous process X(t)
with independent increments is called stable if its increments are distributed
by the stable law of the same type.

The Brownian motion is a Gaussian process, i.e., a stable process with
α = 2. Its characteristic function ƒ(k, t) satisfies the differential equation

∂ƒ(k, t)
∂t

= −k2Dƒ(k, t)

with the initial condition
ƒ(k, 0) = 1.

Its solution is of the form of the characteristic function of the normal law with
the product Dt playing the part of the parameter λ :

ƒ(2)(k, t) = e−Dt|k|2 .

A homogeneous random process X(t; α, β) with independent increments is
called the Lévy stable process if its increments are distributed according to
the Lévy stable law (Feller, 1966). We consider the strictly stable processes
satisfying the condition

X(t; α, β) d= t1/αY(α, β), t > 0, (10.4.1)

where Y(α, β) is the standardized strictly stable variable with characteristic
exponent α and skewness β .

In terms of distribution densities, relation (10.4.1) is expressed as follows:

p(x, t; α, β) = t−1/αq(xt−1/α ; α, β), (10.4.2)

where p and q stand for the probability densities of random variables X and Y
respectively.

If α = 2, then process (10.4.1) has the characteristic function

ƒ(k, t; 2, 0) = e−tk2
,

and is merely the Wiener process considered above. If α < 2 and β = 0, we
have a symmetric Lévy process with the characteristic function

ƒ(k, t; α) = e−t|k|α . (10.4.3)
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This process was considered in (Seshadri & West, 1982). We cite here some
results.

Let α be a rational number equal to m/n, where m and n are integers.
When m is even, we differentiate (10.4.3) successively n times with respect to
time and apply the inverse Fourier transformation to the resulting equation
to obtain

∂np(x, t)
∂tn = (−1)n+m/2 ∂mp(x, t)

∂xm . (10.4.4)

To ensure that the solutions of (10.4.4) are real and positive, they must satisfy
n initial conditions

p(x, 0), ∂p(x, t)/∂t|t=0 , …, ∂n−1p(x, t)/∂tn−1
∣∣∣
t=0

,

Though these sufficient initial conditions may be formally obtained from
(10.4.3), they are, in general, as hard to evaluate as the inverse Fourier trans-
form of the function ƒ(k, t; α) itself.

When m is odd, we differentiate (10.4.3) successively 2n times and, after
applying the inverse Fourier transformation

p(x, t) =
1

2π

∫ ∞

−∞
e−ikxƒ(k, t; m/n)dk,

obtain
∂2np(x, t)

∂t2n = (−1)m ∂2mp(x, t)
∂x2m .

The exact first passage time to reach the point x = ±a, starting from the
origin, is computed for the symmetric Lévy-process with α = 2/n in (Seshadri
& West, 1982). In this case, p(x, t) satisfies the equation

∂np(x, t)
∂tn = (−1)n+1 ∂2p(x, t)

∂x
,

with the boundary conditions

p(±a, t) = 0

and the initial condition
p(x, 0) = δ (x).

In addition, those n initial conditions on the derivatives of p(x, t) must be given
to guarantee that p(x, t) is real and positive. The solution p(x, t) is of the form
similar to (10.3.10):

p(x, t) =
1
a

∞∑

l=0

cos
[

(2l + 1)πx
2a

]
exp

{
−
[

(2l + 1)π
2a

]2/n
t

}
.



268 10. Some probabilistic models

 

 

 
0 x

t

Figure 10.3. Trajectory of the Gauss process (α = 2), ∆(t) ∝ t1/2

Now the Fick law cannot be expected to hold, and we have to go by the second
way in (10.3.12):

Θ̄(a) =
4(2a)2/n

π1+2/n

∞∑

l=0

(−1)l

(2l + 1)1+2/n .

The most important feature of the behavior of the first passage time is
resides in the first factor a2/n, 2/n = α. The second factor is a monotonic
increasing factor of n. When n = 1, we arrive at the result for the normal
diffusion process (10.3.11). When n = 2, we obtain the result for the Cauchy
process,

Θ̄(a) = a
(

8G
π2

)
,

where G is Catalan’s constant (0.915956…).
The scaling behavior, established above for one dimension, can be extended

to higher dimensions. For example, in two dimensions the mean first passage
time to a circle of radius a, and in the three dimensions to a sphere of radius
a, can be computed from the radially and spherically symmetric distribution
function respectively (Seshadri & West, 1982). The result is

Θ̄(a) ∼ aα , α = 2/n,

as obtained above.
Some random realizations of the trajectories of stable processes are plotted

in Figures 10.3–10.5 (the solid line shows the width of the diffusion packet
∆(t)).
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Figure 10.4. Trajectory of the Cauchy process (α = 1), ∆(t) ∝ t
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Figure 10.5. Trajectory of the symmetrized Lévy process (α = 1/2), ∆(t) ∝ t2

Now we consider the process with an arbitrary α ∈ (0, 2] using two forms
A and C. The characteristic functions

ƒA(k, t; α, β) =

{
exp{−t|k|α [1− iβ tan(απ/2) sign k]}, α ≠ 1, |β | ≤ 1;
exp{−t|k|}, α = 1, β = 0,

ƒC(k, t; α, δ ) = exp{−t|k|αe−iδπ/2 sign k}, |δ | ≤ min{α, 2− α},
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satisfy the evolution equations

∂ƒA(k, t; α, β)/∂t = −|k|α [1− iβ tan(απ/2) sign k]ƒA(k, t; α, β), α ≠ 1,
(10.4.5)

∂ƒA(k, t; 1, 0)/∂t = −|k|ƒA(k, t; 1, 0),

∂ƒC(k, t; α, δ )/∂t = −|k|αe−iδπ/2 sign kƒC(k, t; α, δ ) (10.4.6)

with the initial condition

ƒA(k, 0; α, β) = ƒC(k, 0; α, δ ) = 1.

We rewrite (10.4.5) in the form

1 + iβ tan(απ/2) sign k
|k|α [1 + β2tg2(απ/2)]

∂ƒA

∂t
= −ƒA.

Assuming
Ω2 = [1 + β2 tan2(απ/2)] cos(απ/2)

and writing F̂pA for ƒA, we obtain

cos(απ/2) + iβ sin(απ/2) sign k
|k|αΩ2 F̂

∂pA

∂t
= −F̂pA.

Comparing the left-hand side of this equality with the Fourier transform of
Feller’s potential (A.8.16) and inverting the transform, we arrive at the equa-
tion

Mα
u,v

∂pA

∂t
= −pA(x, t; α, β)

or

∂pA

∂t
= −(Mα

u,v)−1pA(x, t; α, β) (10.4.7)

with

u =
1 + β
2Ω2 ,

v =
1− β
2Ω2 .

We use the symbols for fractional integro-differentiation operator according to
(Samko et al., 1993).
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According to (A.8.11), evolution equation (10.4.7) can be rewritten in the
following explicit forms:

∂pA(x, t; α, β)
∂t

= − α
AΓ(1− α)

∫ ∞

−∞

1 + β sign(x− ξ )
|x− ξ |1+α

× [pA(x, t; α, β)− pA(ξ , t; α, β)] dξ , (10.4.8)

∂pA(x, t; α, β)
∂t

= − α
AΓ(1− α)

∫ ∞

0
[2pA(x, t; α, β)− (1 + β)pA(x− ξ , t; α, β)

− (1− β)pA(x + ξ , t; α, β)]ξ−1−αdξ (10.4.9)

where
A = [1 + β2 tan(απ/2)]−1.

In the case of a symmetric process (β = 0), the operator in the right-hand
side of (10.4.9) coincides with the Riesz derivative (A.8.9)

∂pA(x, t; α, 0)
∂t

= −DαpA(x, t; α, 0).

For β = 1, we have the one-sided stable process with the evolution equation

∂pA(x, t; α, 1)
∂t

= −[cos(απ/2)]−1Dα
+ pA(x, t, α, 1)

where Dα
+pA is the fractional Marchoud derivative (A.8.6).

To transform equation (10.4.6) for characteristic function to the correspond-
ing equation for the density pC(x, t; α, δ ), we rewrite it in the form

|k|−α−δ F̂
∂pC(x, t; α, δ )

∂t
= |k|δ e−iδπ/2 sign kF̂pC(x, t; α, δ )

and use (A.8.15) and (A.8.18); we obtain

Iα−δ ∂pC(x, t; α, δ )
∂t

= −Dδ
+pC(x, t; α, δ ),

or

∂pC(x, t; α, δ )
∂t

= −Dα−δDδ
+pC(x, t; α, δ ) (10.4.10)

In the symmetric case (δ = 0),

∂pC(x, t; α, 0)
∂t

= −DαpC(x, t, α, 0).
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In the extremely asymmetric case (δ = α), X(t; α, 1) > 0 for α < 1, and
(10.4.10) takes the form

∂pC(x, t; α, α)
∂t

= −Dα
0+pC(x, t; α, α), (10.4.11)

where Dα
0+ is given by (A.8.5). Performing the Laplace transformations, we

obtain for
p̃C(λ , t; α, α) =

∫ ∞

0
e−λxpC(x, t; α, α) dx

the equation
∂ p̃C(λ , t; α, α)

∂t
= −λ α p̃C(λ , t; α, α).

Under the initial condition

p̃C(λ , 0; α, α) = 1

this yields
p̃C(λ , t; α, α) = e−λ α t.

The cases considered above concern the domain α < 1. The transition to
the domain α > 1 can be performed with the help of the duality law which for
the case of stable processes takes the form

αP{X(t; α, δ ) > x} = P{0 < X(t′; α ′, δ ′) < (t′/x)α t}

where α ′ = 1/α, δ ′ = 1 + (δ − 1)/α, and t′ is an arbitrary positive number. Re-
garding t′ as a function of x and t and passing from probabilities to probability
densities, we obtain the expression

α
∫ ∞

x
p(x′, t; α, δ )dx′ =

∫ [t′(x,t)/x]αt

0
p(x′, t′(x, t); α ′, δ ′)dx′

which after differentiating with respect to x takes the form

p(x, t; α, δ ) = (t′/x)α [x−1 − (∂t′/∂x)/t′]tp((t′/x)α t, t′; α ′, δ ′)

− α−1
(t′/x)α t∫

0

∂p(x′, t′; α ′, δ ′)
∂t′

∂t′(x, t)
∂x

dx′. (10.4.12)

In the case where t′ does not depend on x, we obtain

p(x, t; α, δ ) = (t′/x)α (t/x)p((t′/x)αt, t′; α ′, δ ′).

If
t′(x, t) = x,
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then

p(x, t; α, δ ) = −α−1
∫ t

0

∂p(x′, x; α ′, δ ′)
∂x

dx′. (10.4.13)

Substitution of (10.4.12) into the right-hand side of (10.4.13) yields

∂p(x′, x; α ′, δ ′)
∂x

= −αx−α−1{g′(x′x−α ; α ′, δ ′)x′x−α + g(x′x−α ; α ′, δ ′)}

and

∫ t

0

∂p(x′, x; α ′, δ ′)
∂x

dx′ = −αx−1

{∫ tx−α

0
g′(z; α ′, δ ′)z dz +

∫ tx−α

0
g(z; α ′, δ ′) dz

}
,

where g′(z; α ′, δ ′) is the derivative of g(z; α ′, δ ′) with respect to z. After com-
puting the first integral in the right side by parts, we obtain

∫ t

0

∂p(x′, x; α ′, δ ′)
∂x

dx′ = −αx−1−α tq(tx−α , α ′, δ ′) = −αx−1tp(t, x; α ′, δ ′).
(10.4.14)

Finally, the following duality relation results from (10.4.13) and (10.4.14):

xp(x, t; α, δ ) = tp(t, x; 1/α, 1 + (δ − 1)/α), α ≥ 1. (10.4.15)

The use of this relation allows us to pass from evolution equations for α < 1
derived above to the equations for α > 1. We will illustrate it by means of the
following example.

Let us consider the Lévy process whose density p(x, t; 1/2, 1/2) satisfies
(10.4.11) with α = 1/2:

∂p(x, t; 1/2, 1/2)
∂t

= −D1/2
0+ p(x, t; 1/2, 1/2).

It satisfies the equation

∂2p(x, t; 1/2, 1/2)
∂t2 =

∂p(x, t; 1/2, 1/2)
∂x

(10.4.16)

as well. Duality relation (10.4.15) in this case is of the form

xp(x, t; 2, 0) = tp(t, x; 1/2, 1/2).

Inserting this into (10.4.16) and changing the variable x for t, we obtain

∂[(x/t)p(x, t; 2, 0)]/∂t = ∂2[(x/t)p(x, t; 2, 0)]/∂x2.
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Simple relations
(

∂
∂t
− ∂2

∂x2

)
p(x, t; 2, 0) =

(
1
t
− 4

∂
∂(x2)

)
p(x, t; 2, 0) = 0

lead us to the Einstein equation, as was to be shown.
However, evolution equations for the symmetric stable processes X(t; α, 0) ≡

X(t; α) with an arbitrary α can be derived immediately from the corresponding
equations for characteristic functions and are of the form

∂p(x, t; α)/∂t = −Dαp(x, t; α), p(x, t; α) ≡ p(x, t; α, 0),

which remain valid in the m-dimensional case, too:

∂pm(x, t; α)/∂t = −(−∆n)α/2pm(x, t; α), x ∈ Rn. (10.4.17)

In conclusion, we touch on (Seshadri & West, 1982; Allegrini et al., 1995;
Allegrini et al., 1996; West, 1990; West, 1994; West & Grigolini, 1997; West &
Seshadri, 1982), where the evolution equation is given as follows:

∂p(x, t)/∂t = const
∫ ∞

−∞
[1 + c sign(ξ − x)]

p(ξ , t)
|x − ξ |α+1 dξ .

This equation is evidently incorrect for all positive α because of the explicit
divergence of the integral. Just the presence of the difference p(x, t) − p(ξ , t)
under the integral in the correct equation (10.4.8) provides for its convergence
for α < 1.

10.5. Branching processes
Processes with independent increments possess an important property which
in terms of characteristic functions looks as follows: for any t0 < t′ < t

ƒ(k; t, t0) = ƒ(k; t, t′)ƒ(k; t′, t0).

After inverse Fourier transformation, we obtain

p(x; t, t0) =
∫

p(x− x′; t, t′)p(x′; t′, t0)dx′.

A generalization of the process leads us to the class of Markov processes de-
termined by the Chapman–Kolmogorov equation:

P(A, t; x0, t0) =
∫

P(A, t; x′, t′)P(dx′, t′; x0, t0), t0 < t′ < t, (10.5.1)
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where P(A, t; x0, t0) is the probability for a particle located at x0 at the moment
t0 to be found in the domain A at the moment t. Equation (10.5.1) asserts that
if the probability for the walking particle to be at the point x′ at the moment
t > t′ depends only on the variables (x′, t′) and does not depend on prehistory.

If the random coordinate X of the walking particle can take only discrete
values xi, for example xi = ±i, i = 0, 1, 2, …, then such a process is called the
Markov chain.

If t = 0, 1, 2, …, then the homogeneous process is completely determined by
the initial distribution

pi(0) = P {X(0) = i} (10.5.2)

and the one-step transition probabilities:

pij ≡ P {X(t + 1) = i|X(t) = j} .

Generally speaking, the probabilities pij can be arbitrary positive numbers
which obey the normalization

∞∑

i=−∞
pij = 1, (10.5.3)

and the Chapman–Kolmogorov equation takes the form of the set of simulta-
neous algebraic equations

pi(t) =
∞∑

j=−∞
pijpj(t− 1). (10.5.4)

If we assume

pij ≡ pj−i =





1/2, i− j = 1,
1/2, i− j = −1,
0 otherwise,

then we obtain equation (10.3.9) describing a one-dimensional jump-like walk-
ing of a particle. Certainly, the structure of the matrix pij is very simple here.

Let us construct a little more complicated matrix pij. As the set of states,
we take only non-negative i, i = 0, 1, 2, … Moreover, we assume that pi0 = 0
for all i ≠ 0, so p00 = 1, i.e., the trajectory of the process, once appeared at the
point i = 0, will never leave it. To construct the remaining part of the matrix
pij, we take some set of non-negative numbers qi, i = 0, 1, 2, …, which satisfy
the condition

∞∑

i=0

qi = 1, (10.5.5)
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and set

pij =

{
δi0, j = 0,∑

…
∑
{i1…ij} qi1…qij , j ≥ 1,

(10.5.6)

where {i1, …, ij} is the set of collections of non-negative integers obeying the
condition i1 + … + ij = i. It is easy to see that the matrix satisfies (10.5.3), and
therefore, can be taken as a transition matrix.

Despite of an apparent artificiality of matrix (10.5.6), the process defined
by this matrix admits a simple interpretation. Notice that the indices i and
j themselves can be thought of as the numbers of particles, so pij can be
interpreted as the probability that j particles of any generations produce i
particles in the next generation. Let j = 1, then it follows from (10.5.6) that
pi1 = qi, i.e., qi determine the probabilities that one particle produces i particles
in the next generation. If i = 0, then the particle dies; if i = 1, then it survives,
if i = 2, then it generates one more particle, etc. It is more convenient, however,
to consider that the particle dies in each generation and produces i descendants
of the same type. Let now j = 2; then

pi2 =
i∑

i1=0

qi1qi−i1 = q0qi + q1qi−1 + … + qiq0. (10.5.7)

If there are two particles in a state given, then the number i of offspring of these
particles can be obtained by various (but inconsistent) ways
(0, i), (1, i − 1), …, (i, 0), so the presence of a sum in (10.5.7) is quite clear.
But the fact that each term of the sum is a product of probabilities shows that
the particles generate their descendants independently of each other. It is an
intrinsic property of branching processes.

A branching process with discrete time is called the Galton–Watson pro-
cess, after the famous English scientists Sir Francis Galton, an explorer and
anthropologist, and a mathematician Henry Watson, who considered the prob-
lem of extinction of families in the end of XIX century. Galton gave a precise
mathematical formulation to the problem of extinction of families and per-
suaded Watson to take up the matter; so, their joint work On the Probability of
Extinction of Families came into light. This problem is formulated as follows.
In some society the number of sons of one father (who will have his surname
in future) is a random variable with distribution {qi}. It is assumed that the
numbers of sons of different fathers are independent. The sons, who become
fathers in further, will have their own sons with the same probabilities qi,
etc. Let there exist one ancestor who is the zero generation (t = 0). The first
generation (t = 1) consists of the sons, the second one includes all his grand-
sons inheriting his surname (i.e., the sons of his sons), etc. In this case, N(t),
t = 0, 1, 2 is the random size of the tth generation whose distribution is given
by probabilities

pi(t) = P{N(t) = i}.
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The limit p0(t) as t →∞ is called the extinction probability, and if this proba-
bility is equal to one, the process is called extinct. The process becomes extinct
if and only if the average number of sons of one father sons is no greater than
one and q1 < 1.

Thus, over unit time, each of alive particles produces in the next generation,
independently of each other, a random number N of particles with probability
P {N = i} = qi, i = 0, 1, 2, … Substituting (10.5.6) into (10.5.4), we obtain the
equation

pi(t) =
∞∑

j=0

∑

{i1,…,ij}
qi1…qijpj(t− 1),

which should be supplemented by the initial condition

pi(0) = Qi ≥ 0,
∞∑

i=1

Qi = 1. (10.5.8)

However, in view of the independent behavior of particles, it is enough to
consider the case with a single particle in the initial state

Qi = δi1,

which will be assumed in what follows. Sometimes they call a branching
process with one particle at t = 0 a cascade process, or simply a cascade.

Multiplying (10.5.8) by ui and summing over 0 ≤ i < ∞, we obtain the
equation for the generating function

ϕ(u, t) =
∞∑

j=0

[ϕ(u, 1)]jpj(t− 1) ≡ ϕ(ϕ(u, 1), t− 1). (10.5.9)

It is not hard to see that it can be represented in the equivalent form

ϕ(u, t) = ϕ(ϕ(u, t− 1), 1). (10.5.10)

It is worthwhile to notice that the equations for generating functions are of
more compact form than those for for probabilities (10.5.8), but they are non-
linear, so their analysis is not a simple problem.

We presented equations (10.5.9)–(10.5.10) for one particular characteristic
of the branching process, namely for the number of particles in the generation
at time t. To consider other characteristics, we show that there is no necessity
to use (10.5.9) to derive (10.5.10). One may only use the properties of branching
processes, as we found the generating function for the time of gambler’s ruin.
Indeed, N(t) relates to N(1) as follows:

N(t) =
N(1)∑

i=1

Ni(t− 1).
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We obtain herefrom

ϕ(u, t) = EuN(t) = Eu
∑N(1)

i=1 Ni(t−1) = E
{

EuN1(t−1)…uNk(t−1) | N(1) = k
}

= E[ϕ(u, t− 1)]N(1) = ϕ(ϕ(u, t− 1), 1),

which coincides with (10.5.10).
By using these equations we are able, in particular, to demonstrate that if

ϕ ′(1, 1) =
∞∑

n=1

nqn ≤ 1, (10.5.11)

in other words, if the mean number of offsprings of a single particle does not
exceed one, the process becomes extinct with probability one. In the case of
equality in (10.5.11) the process is called critical; in the case of inequality,
subcritical, and in the case of an inverse inequality, it is called supercritical.

We consider the number M0 of particles falling down into the state 0 (‘final’
particles) during the evolution of a critical cascade. It is clear that this problem
is solved more easily, since the generating function is of only one variable u; in
this case

M0 =

{
1 with probability q0,
M01 + … + M0k with probability qk.

and we obtain

ϕ0(u) = q0u +
∞∑

n=1

[ϕ0(u)]kqk. (10.5.12)

Let all qi but q0 and q2 be equal to zero; then

q0 = q2 = 1/2,

and (10.5.12) reduces to

ϕ0(u) = 1
2 [u + ϕ2

0 (u)]. (10.5.13)

Since
P {M0 = 0} = 0,

ϕ0(0) = 0, and equation (10.5.13) possesses the solution

ϕ0(u) = 1−
√

1− u. (10.5.14)

Expanding the square root in terms of u, we obtain

pn ≡ P {M0 = n} =
1
n!

ϕ(n)
0 (0) =

(2n− 3)!!
2nn!

, n = 1, 2, 3, … (10.5.15)
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Before dwelling upon interrelations between the obtained distribution and
stable laws, we turn to solving one more problem close to that mentioned
above. We consider the progeny M, assuming that the parent particle and its
descendants are different.

This model can be thought of as a rough scheme of development of a neu-
tron cascade in a homogeneous multiplying medium; then q0 is the capture
probability, q1 is the scattering probability and q2 is the fission probability
with production of two secondary neutrons. In this case M0 is the number of
captures in the random cascade and M is the number of all collisions including
captures.

The corresponding generating function satisfies the equation

ϕ(u) = u[qϕ(u) + (1− q)(1 + ϕ2(u))/2],

whose solution is of the form

ϕ(u) =
1− qu−

√
1− 2qu− (1− 2q)u2

(1− q)u
(10.5.16)

under condition
lim
u→0

ϕ(u) = 0.

Expanding the square root into a series and using property (10.1.3), we
obtain

pm ≡ P {M = m}

=
(1/(2q)− 1)m+1

1− q

m+1∑

k=km

(2k− 3)!!
(2k)!!

(
k

m− k + 1

)(
(2q)2

1− 2q

)k

, (10.5.17)

where

km =

{
(m + 1)/2 if m is odd,
m/2 + 1, if m is even.

It is easy to see that

lim
n→∞

n∑

m=1

pm = 1,

i.e., the progeny M of the critical cascade under consideration is finite with
probability one.

We put stress on the fact that, as q → 0, probabilities (10.5.15) vanish for
even m, whereas for odd m = 2n− 1, n = 1, 2, 3, …, they are of the form

pm =
(2n− 3)!!

2nn!
,

which coincides with (10.5.15).
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Having obtained explicit expressions for distributions (10.5.15) and
(10.5.17), we are able to determine the asymptotic behavior of the probabilities
P {M0 > m} and P {M > m} as m →∞. However, we can proceed in a simpler
way, recalling expressions for generating functions (10.5.14) and (10.5.15) with
the account of the fact that

ϕ(e−λ ) = Ee−λM =
∞∑

m=1

e−λmpm

is the Laplace transform of a discrete distribution pm. Then we obtain

1− ϕ0(e−λ ) =
√

1− e−λ ∼
√

λ ,

1− ϕ(e−λ ) ∼
√

2λ
1− q

as λ → 0. By virtue of the Tauberian theorems (see Section 5.3),

P {M0 > x} ∼ 1√
π

x−1/2

in the first case. and

P {M > x} ∼
√

2/π
1− q

x−1/2

in the second one.
Now the connection of these models with stable distributions becomes clear.

Indeed, if we consider a population of a large number n of independent cas-
cades, then the progenies

M0 =
n∑

i=1

M0i,

and

M =
n∑

i=1

Mi,

under a suitable normalization, have the Lévy distribution

P
{

4M0

n2 < x
}

→ GA(x; 1/2, 1), (10.5.18)

P
{

2(1− q)M
n2 < x

}
→ GA(x; 1/2, 1). (10.5.19)

It is shown in (Sevastyanov, 1957) that in the case of s different types of
particles one-sided stable distributions arise with α = 1/2r, 1 ≤ r ≤ s.



10.6. Point sources 281

Sevastyanov commented (10.5.18) in (Sevastyanov, 1974) as follows. Let us
imagine the branching process as some, say, chemical reaction, in which there
are active non-final particles and final particles being the terminal product of
the reaction. As far as in our model the particles produce other particles inde-
pendently of each other, it is natural to expect that the amount of the terminal
product of the reaction is proportional to the amount of active particles. This is
so indeed in the case where the process is non-critical. If the process is critical,
then, as we see from (10.5.18), a somewhat surprising phenomenon arises:
the amount of the final product of the reaction grows proportionally to the
second power of the amount of initial active particles, but the proportionality
coefficient is random and distributed by law (10.5.18).

10.6. The model of point sources:
two-dimensional case

In this and the following sections we consider a model originated from (Holts-
mark, 1919), used by Chandrasekhar and von Neumann (Chandrasekhar &
Neumann, 1941; Chandrasekhar & Neumann, 1943; Chandrasekhar, 1944a;
Chandrasekhar, 1944b), and then generalized by Zolotarev (Zolotarev, 1986).
We begin with a simple version of this model.

Let random points Xi(Xi, Yi) be distributed on the plane (x, y) as the homo-
geneous Poisson ensemble, i.e., let the following conditions be satisfied.

(1) For any domain U of the plane of a finite area S(U), the random number
of points N = N(U) falling into it has the Poisson distribution with mean

a = EN(U) = ρS(U), ρ = const, (10.6.1)

i.e., for any non-negative integer n

P{N = n} =
an

n!
e−a. (10.6.2)

(2) For any pair of non-intersecting domains U1 and U2 of the plane, the
numbers N1 = N(U1) and N2 = N(U2) of points falling into them are
independent random variables.

The above properties, as a matter of fact, mean that the position of any
finite group of particles (in particular, one particle) on the plane does not influ-
ence the positions of the remaining particles, and the conditional distribution
of a particle, provided that it has fallen in U, is uniform in U, i.e., has a density
equal to [S(U)]−1 inside U and equal to zero outside of U.

Let, further, Θ1, Θ2, … be independent random variables not depending
on Xi with distribution F(θ). A pair of random variables (Xi, Θi) is called a
random point source. Each source produces a field satisfying the principle of
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superposition: the field created by several sources is equal to the sum of fields
created by each of them separately.

We start with a scalar field and choose the function determining the field
created at the origin of coordinates by a source with parameters X = r and
Θ = θ as

v(r, θ) = θr−µ , r = |r|, µ > 1. (10.6.3)

The field created by all sources appeared in a circle UR of the radius R with
center at the origin is equal to the sum of the random number N(UR) of inde-
pendent random summands

W =
N(UR)∑

i=1

Vi =
N(UR)∑

i=1

v(Xi, Θi). (10.6.4)

Before proceeding further, we make several remarks.
The distribution function of a single summand is of the form

FV (v) =
2

R2

∫ R

0
F(vrµ )r dr,

so the density is

pV (v) =
2

R2

∫ R

0
p(vrµ)rµ+1dr, p(θ) = F′(θ). (10.6.5)

In particular, if Θ = c1 > 0 is non-random, then

pV (v) =
2c2/µ

1
µR2 v−2/µ−1, v > c1/Rµ . (10.6.6)

For Θ = −c2, c2 > 0, instead of (10.6.5) we obtain

pV (v) =
2c2/µ

2
µR2 |v|

−2/µ−1, v < −c2/Rµ . (10.6.7)

If the mean number of sources in the circle N̄ is large, then the fluctuations
in Poisson distribution can be neglected, and one can consider the sum of
a non-random number of terms instead of (10.6.4). Then it is clear that,
after appropriate centering and normalizing the sum (10.6.4), we arrive at the
extreme stable laws q(x; 2/µ, 1) in the case (10.6.6) and q(x; 2/µ,−1) in the case
(10.6.7), as N̄ →∞ (i.e., as ρ →∞ and R is fixed). It is also obvious that if

Θ =

{
c1 with probability 1/2,
−c2 with probability 1/2,
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then we obtain q(x; α, β), where

β =
c2/µ

1 − c2/µ
2

c2/µ
1 + c2/µ

2

,

and the characteristic index remains the same: α = 2/µ. It is determined by
the exponent µ of the denominator of the source function (10.6.3) and can vary
only in the case where the distribution of the random variable Θ has tails of
power type.

Let us choose the distribution p(θ) in the Zipf–Pareto form (3.3.10):

p(θ) =





νcθ−ν−1, θ > ε,
0, −ε < θ < ε,
νd|θ|−ν−1, θ < −ε.

(10.6.8)

Substituting this into (10.6.5), we obtain

pV (v) =





2νc
µν−2

{
R−2ε2/µ−νv−2/µ−1 − R−µνv−ν−1} , v > εR−µ ,

2νd
µν−2

{
R−2ε2/µ−ν|v|−2/µ−1 − R−µν|v|−ν−1} , v < −εR−µ .

If ν > 2/µ, then

pV(v) ∼





2νcR−2ε2/µ−ν

µν−2 v−2/µ−1, v →∞,

2νdR−2ε2/µ−ν

µν−2 |v|−2/µ−1, v → −∞,
(10.6.9)

and for W we obtain the stable distribution with α = 2/µ again. But if ν < 2/µ,
then in the asymptotics of large v in (10.6.8) other terms are leading as |v| →∞:

pV (v) ∼





2νcR−µν

2− µν
v−ν−1, v →∞,

2νdRµν

2− µν
|v|−µ−1, v → −∞,

(10.6.10)

and we arrive at the stable law with α = ν determined by (10.6.8).
The scheme considered here is nothing but summation of random variables

considered in Section 3.5.
The model of sources differs from this scheme in that the limit is considered

as R → ∞ and ρ = const, instead of the limit as R = const and ρ → ∞, which
the above notes concern.

Let us turn back to random variable (10.6.4). Its characteristic function is
given by (3.5.5):

ƒW(k; R) = exp{πρR2[ƒV (k; R)− 1]} (10.6.11)
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where

ƒV (k; R) =
2

R2

∫ ∞

−∞
dθ p(θ)

∫ R

0
dr r eikv(r,θ) (10.6.12)

is the characteristic function of a single term V. Substituting it into (10.6.11),
we obtain

ln ƒW(k; R) = 2πρ
∫ ∞

−∞
dθ p(θ)

∫ R

0
dr r [eikv(r,θ) − 1]. (10.6.13)

Splitting the outer integral into two integrals over the positive and negative
semi-axes, respectively, and passing to the new integration variable v, with
the use of relations (10.6.3) we obtain

ln ƒW(k; R) =
2πρ

µ

{∫ ∞

0
dθp(θ)θ2/µI(−2/µ)(k; θR−µ)

+
∫ ∞

0
dθp(−θ)θ2/µI(−2/µ)(−k; θR−µ)

}
, (10.6.14)

where

I(−α)(k; ε) =
∫ ∞

ε
[eikv − 1]v−α−1dv.

Using the obvious connection with the integrals I(−α)
s and I(−α)

c introduced in
Section 3.3, it is possible to make sure that the integral I(−α)(k, ε) converges to

lim
ε→0

I(−α)(k; ε) ≡ I(−α)(k; 0) = Γ(−α)|k|αeiαπ/2 sign k,

as ε → 0, provided that α ≡ 2/µ < 1. If, moreover, there exists the absolute
moment ∫ ∞

−∞
|θ|2/µp(θ) dθ = 〈|θ|2/µ〉,

then the limit of function (10.6.14) as R → ∞ exists, and is of the form of the
one-dimensional stable characteristic function

ln ƒW(k;∞) = −2πpΓ(1− α) cos(απ/2)|k|α [1− iβ tan(απ/2) sign k],
(10.6.15)

with parameters

α = 2/µ < 1, β =
∫∞

0 θ2/µp(θ)dθ − ∫∞0 θ2/µp(−θ)dθ∫∞
−∞ |θ|2/µp(θ)dθ

.



10.6. Point sources 285

To see what happens in the case where 〈|θ|2/µ〉 = ∞, we turn back to (10.6.8)
again. Inserting it into (10.6.14) and changing the order of integration, we
obtain

ln ƒW(k; R) =
2πρν

2− µν
{cR2−µνI(−ν)(k; εR−µ)− cε2/µ−νI(−2/µ)(k; εR−µ)

+ dR2−µνI(−ν)(−k; εR−µ)− dε2/µ−νI(−2/µ)(−k; εR−µ)}.

If ν > 2/µ and R →∞, the main contribution is due to the terms containing the
integrals I(−2/µ), and we obtain the well-known result (10.6.15). The moment
〈|θ|2/µ〉 should exists in this case. However, if ν < 2/µ, the other integrals are
in the lead:

ln ƒW(k; R) ∼ 2πρνR2−µν

2− µν

{
cI(−ν)(k; εR−µ) + dI(−ν)(−k; εR−µ)

}
, R →∞.

The content of the brackets can be transformed in the same way as we derived
(10.6.15), but the presence of the factor R2−µν at |k|ν results in the need for
re-normalization:

W′R = WRR2/ν−µ . (10.6.16)

In the limit as R → ∞, the random variable obeys the stable law with α = ν.
Thus, in the scheme under consideration the index α is the least of ν and
2/µ. This conclusion is true also in the case where min{ν, 2/µ} exceeds one.
Then the mathematical expectation 〈WR〉 = EWR exists and should be used for
centering the random variable WR; the rest of calculations practically remains
the same and leads to a stable distribution again.

Let us now pass from a scalar field to a vector one created by the same
ensemble of sources with the source function

v(r, θ) = θrr−µ−1, µ > 1,

where both v and r are two-dimensional vectors. The analogue of (10.6.13) in
this case is

ln ƒW(k; R) = 2πρ
∫ ∞

−∞
dθ p(θ)

∫ R

0
dr r[J0(kθr−µ)− 1].

The Bessel function is even; therefore, instead of (10.6.14), we obtain

ln ƒW(k; R) = −2πρk2/µ

µ

∫ ∞

0
dθ p̂(θ)θ2/µ

∫ ∞

kθR−µ
[1− J0(v)]v−2/µ−1dv,

where

p̂(θ) = p(θ) + p(−θ), θ > 0. (10.6.17)
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Because
1− J0(v)) ∼ v2/4, v → 0,

the inner integral converges for all µ > 1, and we obtain (in the case where
〈|θ|2/µ〉 <∞)

ln ƒW(k;∞) = −Ck2/µ , (10.6.18)

where
C =

2πρ
µ
〈|θ|2/µ〉

∫ ∞

0
[1− J0(v)]v−2/µ−1dv.

Thus, for any distribution p(θ) with a finite absolute moment of order 2/µ we
obtain the axially symmetric two-dimensional stable distribution with char-
acteristic function (10.6.18). Of course, it follows from the vector nature of
the field and from the homogeneity of the Poisson ensemble: the source with
parameter θ located at the point r creates the same field at the origin as the
source with parameter−θ located at the point−r. There will be no changes if
we replace negative values of parameters θ by positive ones, which is exactly
the sense of (10.6.17).

It is not hard to see that, as well as in the scalar case, the use of the
power law of distribution of parameter (10.6.8) with ν < 2/µ results in the
corresponding change of the characteristic exponent of the stable law, but it
still remains symmetric. Due to the symmetry, the necessity of centering of WR
disappears in the case α > 1, whereas for α = ν, as above, the re-normalization
of WR by formula (10.6.16) is required.

The extension to the three-dimensional case seems to be rather evident,
and we proceed to expanding the general model of sources.

10.7. Point sources: multidimensional case
Now we consider some domain U of finite volume in the n-dimensional Eu-
clidean space Rn; in particular problems, its part can be played by a domain
of physical space, space-time, phase space, etc. There is a countable set of
random point sources {Xi} in this space, and each of the sources generates a
m-dimensional vector field

Vi(x0) = v(x0; Xi, Θi), v ∈ Rm (10.7.1)

at a point x0 ∈ Rn. Here v(x0; x, θ) is a deterministic (non-random) function of
x0, x ∈ Rn, θ ∈ T, and Xi and Θi are random coordinates and parameter of the
ith source respectively.

We pose the following four assumptions concerning this system.

(a) The set of random points {Xi} constitutes a homogeneous Poisson en-
semble.



10.7. Point sources: multidimensional case 287

(b) For any domain U ⊂ Rn of finite volume u, the number of sources lying
in U, the positions X1, X2, … of these sources, and the values Θ1, Θ2, … of
the parameter θ characterizing them are independent random variables.

(c) The random variables Θ1, Θ2, … are distributed by one and the same law
P(dθ).

(d) For each domain U of finite volume, the random field generated at x0 by
the sources lying in U is the sum of random terms

W(x0, U) =
∞∑

i=1

v(x0; Xi, Θi)1(Xi; U) (10.7.2)

where

1(x; U) =

{
1, x ∈ U,
0, otherwise,

is the indicator function of the set U; the function v(x0; x, θ) takes values
lying in some subset C of the m-dimensional Euclidean space Rm.

The field generated by the whole system of sources is treated as the weak
limit of the field

WR(x0) ≡ W(x0; UR),

where UR is the intersection of the domain U with the sphere of radius R
centered at x0. To determine conditions for the existence of this limit and to
find its analytic description, we consider the question of the limit value, as
R →∞, of the characteristic function ƒR(k) of the variable WR(x0):

ƒR(k) =
∞∑

n=0

exp(−ρuR)
(ρuR)n

n!
ϕn

R(k) = exp {ρuR[ϕR(k)− 1]} . (10.7.3)

Here ρ is the mean density of the concentration of sources, uR is the volume
of the domain UR, and ϕR(k) is the characteristic function of a single random
term (10.7.1).

We rewrite the argument of the exponential of the last equality as

ln ƒR(k) = ρuR[ϕR(k)− 1] = ρ
∫

UR×T
[exp{i(k, v)} − 1]dx P(dθ). (10.7.4)

It can be transformed further by taking the function v = v(x0; x, θ) as a new
integration variable and introducing the measure

µ(B) = ρ
∫

B∗
dx P(dθ) (10.7.5)
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on Rm, where B is a Borel subset of C ⊆ Rm and B∗ = {(x, Θ) : v(x0; x, θ) ∈
B}. The use of this measure, obviously, presupposes the measurability of the
function v with respect to the pair (x, θ) for each x0 ∈ U.

From (10.7.3)–(10.7.5) we obtain

ln ƒR(k) =
∫

CR

[exp{i(k, v)} − 1]µ(dv), (10.7.6)

where
CR = {(x, z) : v(x0; x, θ) ∈ UR × T}.

Thus, the function ƒR(k) possesses the canonical Lévy representation of
characteristic functions of infinitely divisible distributions on Rm. The ques-
tion of the convergence of the integral in (10.7.6) does not arise, because
µ(CR) = ρuR, where uR is the volume of UR. Since the set CR, obviously,
does not shrink as R grows, the question of existence of the limit of ƒR(k) as
R →∞ is reduced to the question of existence of the limit of the integral

JR =
∫

CR

[exp{i(k, v)} − 1]µ(dv). (10.7.7)

Several essentially differing situations can occur. Let

LR =
∫

CR

v 1(v; |v| < 1)µ(dv).

Obviously, this integral (vector) exists for all R → ∞. We rewrite integral
(10.7.7) as

JR = i(k, LR) +
∫

CR

[
ei(k,v) − 1− i(k, v)1(v; |v| < 1)

]
µ(dv).

In the second term, the integration over CR can be replaced by integration over
C if we simultaneously replace the measure µ by the measure µR coinciding
with µ on CR and equal to zero outside this set. Furthermore, µR → µ as
R →∞, because CR does not shrink as R increases.

Since ln ƒR(k) = JR, ƒR(k) converges to some characteristic function ƒ(k) as
R →∞ if and only if (this follows from the general theory of infinitely divisible
laws in Rm)

(1) LR → L as R →∞, where L is a vector in Rm;

(2) D =
∫

C min{1, |v|2}µ(dv) <∞.

Under these conditions, the characteristic function ƒ(k) of the limit distri-
bution is of the form

ln ƒ(k) = i(k, L) +
∫

C

[
ei(k,v) − 1− i(k, v)1(v; |v| < 1)

]
µ(dv). (10.7.8)
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We indicate two cases where (10.7.8) takes a simpler form.
1. If

D1 =
∫

C
min{1, |v|}µ(dv) <∞,

then conditions 1 and 2 are satisfied, and

ln ƒ(k) =
∫

C
[exp(i(k, v))− 1]µ(dv). (10.7.9)

2. If condition 1 holds along with the condition

D2 =
∫

C
min{1, |v|}|v|µ(dv) <∞,

which immediately implies validity of condition 2, then

ln ƒ(k) = i(k, M) +
∫

C

[
ei(k,v) − 1− i(k, v)

]
µ(dv), (10.7.10)

where

M = L +
∫

|v|≥1
vµ(dv). (10.7.11)

In the case under consideration, the expression for the limit value L is not
necessarily of integral form required to interpret M as the mean value of the
limit distribution. If, nevertheless, such a representation of L exists, then it is
easy to transform (10.7.10).

What actually happens is that the violation of condition 2 breaks the exis-
tence of the limit distribution of WR(x0), even after centering. Therefore, we
consider the situation where condition 2 holds but condition 1 does not. In this
case, it makes sense to study not the random variable WR itself but its shift
W̃R = WR − LR. The corresponding weak limit W̃ of this variable as R → ∞
exists if and only if condition 2 holds, and the characteristic function ƒ̃ of the
random variable W̃ under condition 2 is of the form

ln ƒ̃(k) =
∫

C

[
ei(k,v) − 1− i(k, v)1(v; |v| < 1)

]
µ(dv). (10.7.12)

If the condition D2 < ∞ also holds, then WR can be shifted by the math-
ematical expectation MR = EWR, which is finite in our situation. With this
shift, the random variable ŴR = WR − MR converges weakly to the random
variable Ŵ with characteristic function ƒ̂ of the form

ln ƒ̂(k) =
∫ [

ei(k,v) − 1− i(k, v)
]

µ(dv). (10.7.13)

Various shifts of WR are carried out in the cases where WR itself has no
weak limit, i.e., in the cases where the field generated by the whole system
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of sources merely does not exist. Nevertheless, a practical meaning can be
assigned to the above construction of limit approximations of the distributions
of the random variables W̃R and WR. The point is that the appearance of
a domain U of infinite volume in the model is nothing but a mathematical
idealization. In actual practice, the domain U has a large but finite volume. In
this case we study random fluctuations of the field generated by the particles
in U with a certain constant component singled out in it. After separating
the constant component, we can simplify the computations by an appropriate
expansion of U, provided, of course, that this does not introduce essential
distortions into our calculations.

The limit distributions (10.7.8)–(10.7.10) and (10.7.12)–(10.7.13) consid-
ered above are infinitely divisible. It is natural to expect that in certain cases
we come against m-dimensional stable laws; this is completely determined
by the form of the measure defined by (10.7.5), which, in turn, depends on
the properties of the source functions v(x0, x, θ) and, to a lesser degree, on the
properties of the distribution P(dθ).

10.8. A class of sources generating stable
distributions

In this section we consider a class of source functions generating stable distri-
butions. It is connected with transformations of formula (10.7.9) accompanied
by the condition D1 < ∞, and of formulae (10.7.10) and (10.7.13) obtained
under the condition D2 <∞.

A semi-cone (with vertex at the origin) in the subspaceRn1 ofRn, 0 < n1 ≤ n,
is defined to be a set U1 such that if u1 ∈ U1 and c > 0, then cu1 ∈ U1 and
−cu1 ∉ U1. With this definition in mind, the following assumptions are made
about the set U and the points x0 at which the distributions of the random
variables W(x0), W̃(x0), and Ŵ(x0) are to be computed.

(i) The set Ux0 = {y : y = x− x0, x ∈ U} is either a semi-cone in Rn itself or a
direct product U1 × U2 of semi-cones U1 and U2 in orthogonal subspaces
R

n1 and Rn2 , n1 + n2 = n.

The first of these two cases is obviously reduced to the second if the
dimension n2 is allowed to take the value n2 = 0. This convention will
be followed below.

The decomposition of Rn into orthogonal subspaces corresponds to the
notation x = (x1, x2) for vectors x ∈ Rn where x1 ∈ Rn1 and x2 ∈ Rn2.

(ii) The source function v(x0; x, θ) is zero for all x ∉ U, is continuous in x at
all interior points of U, and is of the following structure there:

v(x0; x, θ) = |x1 − x0
1|−pD(|x2 − x0

2| |x1 − x0
1|−q, ⋅), (10.8.1)
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where the symbol ‘⋅’ indicates the dependence of D on x0, θ, and sj =
(xj − x0

j )/|xj − x0
j |, j = 1, 2, or on some of these variables.

The condition in (i) that Uj are semi-cones could be extended by allowing
Uj to be either a semi-cone or a cone with vertex at the origin. However, this
extension turns out to be connected with the only possible point x0 if Uj is
not the whole subspace Rnj . Anyway, the latter case is covered by assumption
(i) if Rnj is regarded as a limit case of an expanded semi-cone; therefore, the
indicated extension involves only a very special situation.

Further, we note that in the case where Uj = Rnj , the source function v
must be invariant under passage to the variable xj, i.e., it must depend only
on the difference xj − x0

j . In what follows, p > 0 and q ≥ 0 will be related to the
dimensions n1 and n2 of the subspaces by means of additional conditions.

We consider (10.7.9) with the condition D1 < ∞, after returning to the
variables x and θ:

ln ƒ(k) = ρ
∫

U×T

(
ei(k,v) − 1

)
dxP(dθ), (10.8.2)

D1 = ρ
∫

U×T
min(1, |v|)dxP(dθ) <∞.

In the integral (10.8.2), we pass to the polar system of coordinates in the
subspaces Rn by setting (j = 1, 2)

rj = |xj − x0
j |, xj − x0

j = rjsj,

where sj is a point on the surface of the unit sphere Sj centered at the origin.
We obtain

ω1 =
∫

U

(
ei(k,v) − 1

)
dx =

∫

S1

∫

S2

ω2 ds2 ds1,

where

ω2 =
∫ ∞

0

∫ ∞

0
[exp{i(k, r−p

1 D(r2/rq
1, ⋅))} − 1]rn2−1

2 rn1−1
1 dr2 dr1.

We replace r2 by r2rq
1, and, after changing the integration order, obtain

ω2 =
∫ ∞

0
rn2−1

2 dr2

∫ ∞

0
[exp(iξr−p

1 )− 1]rn1+n2q−1
1 dr1,

where ξ = (k, D(r2, ⋅)).
Substituting r1 for r−p

1 yields

ω2 =
1
p

∫ ∞

0
rn2−1

2 dr2

∫ ∞

0
(eiξr1 − 1)r−(n1+qn2)/p−1

1 dr1.
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If

α = (n1 + qn2)/p < 1, (10.8.3)

then the inner integral in the expression for ω2 converges, and
∫ ∞

0

(
eiξr1 − 1

)
r−α−1

1 dr1 = Γ(−α)|ξ |α exp {−i(απ/2) sign ξ} ,

which implies

ω2 =
Γ(−α)

p

∫ ∞

0
|(k, s)|α exp {−i(απ/2) sign(k, s)} |D|αrn2−1

2 dr2,

where s = D/|D|.
Let us introduce the measure χ on the unit sphere S in Rn by setting

χ(B) =
ρΓ(1− α)

αp

∫

s∈B
|D(r2, ⋅)|α rn2−1

2 dr2 ds1 ds2 P(dθ) (10.8.4)

for any Borel subset B of S (here the integration is also over all r2 and z).
Considering the expressions obtained for ω1 and ω2, we can rewrite the

right-hand side of (10.8.2) as

ln ƒ(k) = −
∫

S
|(k, s)|α exp {−i(απ/2) sign(k, s)} χ(ds), (10.8.5)

which corresponds to the canonical form of the characteristic function of an
n-dimensional stable law with parameter 0 < α < 1. The finiteness of the
complete measure χ(S) is an additional condition in the description of n-
dimensional stable laws. It is not hard to verify on the basis of (10.8.4) that
the condition χ(S) <∞ is equivalent to the condition D1 <∞.

The second case concerns transformation of the integral

ω =
∫

C

(
ei(k,v) − 1− i(k, v)

)
µ(dv)

in (10.7.10) and (10.7.13) under the condition D2 < ∞. Repeating above rea-
soning, we obtain

ω = ρ
∫

T
P(dθ)

∫

U

(
ei(k,v) − 1− i(k, v)

)
dx

= ρ
∫

T
P(dθ)

∫

S1

∫

S2

ω2 ds2 ds1,

where

ω2 =
∫ ∞

0

∫ ∞

0
[exp{i(k, r−p

1 D)} − 1− i(k, r−p
1 D)]rn2−1

2 rn1−1
1 dr2 dr1.
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After the substitution of r2rq
1 for r2, the quantity D becomes independent of r1,

and after the substitution of r1 for r−p
1 , the integral ω2 is transformed to

ω2 =
1
p

∫ ∞

0
rn2−1

2 dr2

∫ ∞

0

(
eiξr1 − 1− iξr1

)
r−α−1

1 dr1,

where ξ = (k, D(r2, ⋅)) and α = (n1 + qn2)/p. If 1 < α < 2, then the inner integral
converges; it turns out to be equal to

Γ(−α)|ξ |α exp {−i(απ/2) sign ξ} .

Consequently, introducing the measure χ just as in (10.8.4) but with the op-
posite sign, we arrive at the following expression for ω = ln ƒ(k) − i(k, M) and
ω = ln ƒ̂(k):

ω =
∫

S
|(k, s)|α exp{−i(απ/2) sign(k, s)}χ(ds). (10.8.6)

The finiteness of the complete measure χ(S) is equivalent to the condition
D2 <∞.

The cases above are among simplest. The stable laws are obtained also
on the basis of formulae (10.8.6) and (10.7.12), since in the final analysis the
question whether or not the limit distribution is stable is answered only by the
form of the spectral measure µ(dv), which is directly related to the form of the
function v(x0; x, θ). The laws with α = (n1 + qn2)/p = 1 also appear to be among
these somewhat complicated cases.

REMARK 10.8.1. We put stress on the fact that the field generated by a set of
particles is not necessarily homogeneous and isotropic. Its nature depends on
the structural characteristics of the source function. Therefore, in the general
situation the stable distributions computed for the value of the field W(x0) at
a point x0 or the value of the previously centered field Ŵ(x0) depend on x0,
even though the main parameter α of those distributions does not vary as x0

changes.
The distributions W(x0) and Ŵ(x0) do not depend on x0 in the case where

the influence function v possesses the property of homogeneity within the set
U:

v(x0, x, θ) = v(0, x− x0, θ). (8. 7)

This should be understood in the sense that v(x0, x + x0, θ) does not depend on
x0 within the bounds of the semi-cone U1 × U2, which also does not depend on
x0. In this situation, any interior points of the original region U can be chosen
to play the role of the points x0 ∈ Rn satisfying conditions (i) and (ii).

REMARK 10.8.2. Assumption (10.8.1) concerning the structure of the source
function can be generalized as follows.
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Let Rn = Rn1 × … × Rnk , where 0 < n1 ≤ n and nj ≥ 0, j = 2, …, k. In this
case, each vector x ∈ Rn can be written in the form x = (x1, …, xk), xj ∈ Rnj.

Assume further that Ux0 = U1 × … × Uk, where Uj are semi-cones in Rnj,
and that the source function v is equal to zero outside U and inside U can be
represented in the form

v(x0; x, θ) = |x1 − x0
1|−pD(|x2 − x0

2||x1 − x0
1|−q2 , …, |xk − x0

k||x1 − x0
1|−qk , ⋅).

(10.8.7)

Here p > 0, qj ≥ 0, and the symbol ‘⋅’ indicates (as in (10.8.1)) the dependence
on the collection of variables x0, θ, and sj = (xj − x0

j )/|xj − x0
j |, j = 1, …, k (or

some of them).
Just as in the case k = 2 considered in (10.8.1), the distributions of the

random variables W(x0), W̃(x0), and Ŵ(x0) in case (10.8.7) turn out to be stable
with parameter α = (n1 + q2n2 + … + qknk)/p. The reasoning is somewhat more
complicated than in the case of (10.8.1), but is basically the same.

REMARK 10.8.3. Assume that the function D in (10.8.1) is of the following
structure:

D(|x2 − x0
2|/|x1 − x0

1|q, ⋅) = ϕ(|x2 − x0
2|/|x1 − x0

1|q, x0, θ)ψ(s1, s2, x0),
(10.8.8)

where ϕ is a real-valued function, sj = (xj − yj)/|xj − yj|, and

ψ(−s1, s2, x0) = −ψ(s1, s2, x0) or ψ(s1,−s2, x0) = −ψ(s1, s2, x0).

Under appropriate conditions (i.e., the condition D1 <∞ for W and the condi-
tion D2 <∞ for Ŵ), the variables W(x0) and Ŵ(x0) in this case have spherically
symmetric distributions with characteristic functions of the form

exp(−λ |k|α ), 0 < α < 2,

where α = (n1 + qn2)/p, and λ is a constant depending on v and P(dθ).

REMARK 10.8.4. The question of the source functions which lead to stable dis-
tributions in the model of point sources is apparently not exhausted by func-
tions of types (10.8.1) and (10.8.7). It is hence of interest to look for other
types of functions v which generate stable laws. Another interesting direction
for investigation has to do with the desire to weaken the constraints (a)–(c) in
the general model. The following special case shows that the search in this
direction is promising indeed.

Let

v(x0; x, θ) = |x1 − x0
1|−pD(x2 − x0

2, ⋅), p > 0, (10.8.9)

where the symbol ‘⋅’ denotes the dependence on s1, s2, x0, and θ, and let
conditions (b) and (c) be replaced by the following conditions.
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(b∗) For any domain U1 of finite volume, the number of particles lying in U1
is independent of both the positions X1, X2, … of these particles and the
values Θ1, Θ2, … of the parameter θ characterizing them.

(c∗) The pairs (X1, Θ1), (X2, Θ2), … of random variables are independent and
identically distributed.

In the setting of the new conditions, we assume that the joint distribution
is of the structure

P(dx, dθ) = dx1Q(dx2, dθ). (10.8.10)

It turns out that in the case where conditions (10.8.9) and (10.8.10) are in
effect, the distributions of W(x0) and Ŵ(x0) are stable with parameter α = n1/p.
The functions ln ƒ(k) in (10.8.2) and ln ƒ̂(k) in (10.7.13) are evaluated by the
same scheme as above. The parameter α = n1/p varies in the interval (0, 1) if
the condition D1 <∞ is used, and in (1, 2) for D2 <∞.

If, by analogy with (10.8.8),

v(x0; x, θ) = |x1 − x0
1|−pϕ(|x2 − x0

2|, x0, θ)ψ(s1, s2, x0), (10.8.11)

where ϕ is real-valued and ψ is chosen so that

ψ(−s1, s2, x0) = −ψ(s1, s2, x0) or ψ(s1,−s2, x0) = −ψ(s1, s2, x0),
Q(dx1, dθ) = Q1(dr2, dθ)ds2,

then the distribution generated by v is spherically symmetric and stable, with
parameter varying between 0 and 2.
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11

Correlated systems and fractals

11.1. Random point distributions and generating
functionals

At the close of the previous chapter, we discussed stochastic properties of
fields generated by point sources randomly distributed in space according to
the Poisson ensemble model. There exist a large number of problems where
the assumption that the positions of sources are independent seems too strong
and even unacceptable. Certainly, different models of correlated points in
space can be constructed. We consider here one of them, namely the Markov
ensemble model. But, before proceeding we concentrate our attention on some
basic concepts of the theory of random point distribution following (Harris,
1963).

A finite set of different points x1, x2, …, xk belonging to a Borel subset inRn

(all subsets or domains used hereafter are Borel) is called point distribution.
Each point distribution generates an integer-valued function of domain A

N(A; x1, …, xk) ≡ N(A) =
k∑

i=1

1(xi; A). (11.1.1)

There exists a one-to-one correspondence between point distributions and
functions N(A). Therefore, we let the functions N(A) denote point distributions.

Let us consider now a statistical ensemble of point distributions. It can be
specified by setting the set of functions P(A1, …, Ak; n1, …, nk) defined for any
integer k, any set of integers n1, …, nk, and any set of domains A1, …, Ak, so
that

P(A1, …, Ak; n1, …, nk) = P{N(A1) = n1, …, N(Ak) = nk}.

The non-negative functions should satisfy some additional conditions (Harris,
1963; Sevastyanov, 1974).

297
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This way of specifying a random point distribution is not very suitable for
computations, and is not unique. A complete description of all stochastic prop-
erties of a random point distribution can be obtained by means of a generating
functional (GF):

Φ(u(⋅)) = E exp

{
∑

i
ln u(Xi)

}
= E exp

{∫
N(dx) ln u(x)

}
, (11.1.2)

where the random function N(dx) is an integer-valued random measure and
u(x) is some measurable function, |u(x)| ≤ 1. A detailed description of this
approach can be found in (Sevastyanov, 1974). We will give below only some
of the properties of GFs which are needed for understanding the following
presentation.

(1) A GF Φ(u(⋅)) exists for all measurable u(x) with |u(x)| ≤ 1. Its values at
simple functions

0 ≤ u(x) =
M∑

m=1

cm1(x; Am) ≤ 1, Ai ∩ Aj = ∅, i ≠ j,

uniquely determine a probability distribution of the random measure
N(⋅).

(2) If |u(x)| ≤ 1, then |Φ(u(⋅))| ≤ 1; if 0 ≤ u(x) ≤ 1, then 0 ≤ Φ(u(⋅)) ≤ 1.
Moreover,

lim
θ↓0

Φ(θ1(⋅;A)) = P{N(A) = 0},

lim
θ↑1

Φ(θ1(⋅;A)) = P{N(A) <∞}.

(3) Let random measures N1, N2, …, Nk be independent and N = N1 +…+Nk.
Then the corresponding GFs Φ1, Φ2, …, Φk and Φ are related to each other
as follows:

Φ(u(⋅)) = Φ1(u(⋅))…Φk(u(⋅)) =
k∏

i=1

Φi(u(⋅)). (11.1.3)

Very important characteristics of integer-valued random measures are
their factorial moments ϕ [n](A1, …, An). The first factorial moment is defined
as the expectation of N(A):

ϕ[1](A) = EN(A). (11.1.4)

The second factorial moment is

ϕ[2](A1, A2) = E[N(A1)N(A2)−N(A1 ∩ A2)]. (11.1.5)
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The third factorial moment is

ϕ[3](A1, A2, A3) = E[N(A1)N(A2)N(A3)−N(A1)N(A2 ∩ A3)
−N(A2)N(A1 ∩ A3)−N(A3)N(A1 ∩ A2) + 2N(A1 ∩ A2 ∩ A3)].

Let C1, …, Cm be disjoint domains. Let each of Ai coincide with some of
them, and let Cj occur nj times among A1, …, An. Then

ϕ[n](A1, …, An) = E[N[n1](C1)…N[nm](Cm)], (11.1.6)

where
N[n](C) ≡ N(C)[N(C) − 1]…[N(C)− n + 1]

and EN[n](C) is the nth factorial moment of the random integer N(C). This
concept was extended to arbitrary sets A1, …, An in (Sevastyanov, 1974).

The following property demonstrates the interconnection between factorial
moments and GFs.

(4) Let the random integer-valued measure N(A) possess finite factorial mo-
ments ϕ[1](A), …, ϕ[m](A1, …, Am). Then the GF Φ(u(⋅)) can be represented
in the form

Φ(u(⋅)) = 1 +
m−1∑

k=1

(−1)k

k!

∫
· · ·
∫

ū(x1)…ū(xk)ϕ[k](dx1, …, dxk) + Rm,
(11.1.7)

where ū(x) = 1−u(x) and Rm is the remainder term (Sevastyanov, 1974).

It is easy to see that setting

u(x) =

{
u = const, x ∈ A,
1, x ∉ A,

we reduce the GF Φ(u(⋅)) to the g.f. ϕ(u).
Following the common practice, we pass from the functions of sets to their

densities (assuming that they exist, of course) by means of the relation

ϕ[k](dx1, …, dxk) = ƒ[k](x1, …, xk)dx1…dxk.

As follows from (11.1.7), the densities ƒ[k](x1, …, xk) can be expressed in terms
of functional derivatives of GFs:

ƒ[k](x1, …, xk) =
δΦ(u(⋅))

δu(x1)…δu(xk)

∣∣∣∣
u=1

. (11.1.8)

Each of them is invariant under permutations of the arguments.
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In the case of non-intersecting dx1, …, dxk, from (11.1.6) it follows that
ƒ[k](x1, …, xk)dx1…dxk is the mean number of collections of random points of a
given random point distribution such that one of them falls into dx1, the other
falls into dx2 and so on, and ƒ[1](x) ≡ ƒ(x) is the average density (concentration)
of random points at x.

As an example, we consider a homogeneous Poisson ensemble. Let u(x) be
a simple function

u(x) =
M∑

m=1

um1(x; Am).

Inserting this into (11.1.2) and taking into account that

ln
M∑

m=1

um1(x; Am) =
M∑

m=1

ln um1(x; Am),

∫
N(dx)1(x; Am) = N(Am),

we obtain

Φ(u(⋅)) = E exp

{ M∑

m=1

ln umN(Am)

}
= E

M∏

m=1

uN(Am)
m

=
M∏

m=1

EuN(Am)
m =

M∏

m=1

exp{(um − 1)EN(Am)}

= exp

{ M∑

m=1

(um − 1)EN(Am)

}
= exp

{∫
[u(x)− 1]ƒ(x)dx

}
.
(11.1.9)

Multifold functional differentiation applied to (11.1.9) yields

ƒ[k](x1, …, xk) = ƒ(x1)…ƒ(xk).

Thus, for the Poisson ensemble the factorial moments of high orders are
factorized, which can be used to describe correlations in other ensembles in
terms of the differences

θ ′k(x1, …, xk) = ƒ[k](x1, …, xk)− ƒ(x1)…ƒ(xk).

For k = 2, the function θ ′2(x1, x2) ≡ θ2(x1, x2) reflects the simplest type of corre-
lations, namely the pair correlations. For k = 3, two types of correlations are
possible: where two particles are correlated and the third one is independent,
and where all the three particles are correlated. The corresponding terms in
θ ′3(x1, x2, x3) take the form ƒ(xi)θ2(xj, xk) and θ3(x1, x2, x3). To analyze possible
types in the general case, all the ways of partitioning the set {x1, …, xk} into
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non-intersecting subsets containing at least one particle should be considered.
Interpreting each subset or a group (cluster) as a collection of mutually corre-
lated particles being statistically independent of the particles of other subsets,
we obtain the following representation for factorial moment densities, which
is known as a group expansion:

ƒ[2](x1, x2) = ƒ(x1)ƒ(x2) + θ2(x1, x2),

ƒ[3](x1, x2, x3) = ƒ(x1)ƒ(x2)ƒ(x3) + ƒ(x1)θ2(x2, x3)
+ ƒ(x2)θ2(x1, x3) + ƒ(x3)θ2(x1, x2) + θ3(x1, x2, x3),

and so on. The functions θn(x1, …, xk) are called the irreducible n-particle
correlation functions, and each term in the expansions is called the correlation
form (Balescu, 1975).

A more detailed description of problems related to the GFs, functional
differentiation and multiparticle functions can be found in the monographs
(Tatarsky, 1971; Uchaikin & Ryzhov, 1988) and others.

We will present below some results obtained in (Uchaikin, 1977; Uchaikin
& Lappa, 1978; Uchaikin & Gusarov, 1997a; Uchaikin & Gusarov, 1997b;
Uchaikin & Gusarov, 1997c)

11.2. Markov point distributions
Let a random distribution N0(A) of particles be defined in a space, and let the
GF of this distribution be Φ0(u(⋅)):

Φ0(u(⋅)) = E exp
{∫

N0(dx) ln u(x)
}

(11.2.1)

Let, moreover, each of them generate its own random distribution denoted by
N(Xi → A). Then the cumulative distribution N(A) can be presented as the
sum

N(A) =
ν∑

i=1

N(Xi → A) (11.2.2)

where ν is the progeny, X1, …, Xν are the random coordinates of the particles,
and the terms with the fixed first arguments Xi = xi are statistically indepen-
dent.

Let us calculate the GF of this distribution by the formula of total mathe-
matical expectation. We first calculate the GF for a fixed distribution of initial
particles. According to (11.1.3),

Φ(u(⋅) | x1, …, xν) =
ν∏

i=1

G(xi → u(⋅)), (11.2.3)
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where G(xi → u(⋅)) is the GF of the distribution N(xi → A) including the point
xi. Calculating now the expectation of (11.2.3) in view of (11.1.2) and (11.2.1),
we obtain the following expression for the GF of cumulative point distribution:

Φ(u(⋅)) = E
ν∏

i=1

G(Xi → u(⋅))

= E exp

{ ν∑

i=1

ln G(Xi → u(⋅))

}

= E exp
{∫

N0(dx) ln G(x → u(⋅))
}

= Φ0(G(⋅ → u(⋅))).

With given Φ0(u(⋅)), the functional relation

Φ(u(⋅)) = Φ0(G(⋅ → u(⋅))) (11.2.4)

contains complete information about the random distribution of initial par-
ticles in space, and reflects the mutual independence of the families of de-
scendant particles. To find statistical properties of all the points, one should
have information concerning the evolution of the families, i.e., a particular
expression of the GF G(x → u(⋅)).

As the basis, we take the model which is convenient from the practical
(computational) viewpoint and is well developed in a mathematical sense. It
is the Markov ensemble model, yielding, in particular, a functional equation
for the GF G(x → u(⋅)).

According to this model, each particle Xi generates νi particles distributed
by the GF K(Xi → u(⋅)) independently of the others, and this process continues
with the same GF K(x → u(⋅)). The random point distribution looked for
consists of points of all generations including the initial points.

Thus, the point distribution generated by the particle Xi resembles (11.2.2):

N(Xi → A) = 1(Xi; A) +
νi∑

k=1

N(Xik → A), (11.2.5)

where {Xi1, Xi2, …, Xik, …, Xiνi} is a point distribution with the GF K(Xi → u(⋅)).
In the same way as we derived (11.2.4), we obtain

G(x → u(⋅)) = u(x)K(x → G(⋅ → u(⋅))). (11.2.6)

With known GFs Φ0 and K, relations (11.2.4) and (11.2.6) yield a complete
description of statistical properties of the point distributions under considera-
tion.
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We now assume that the parent particles are distributed as a homogeneous
Poisson ensemble with the mean density ƒ(x) = const. Then (11.2.4) is reduced
to (11.1.9):

Φ(u(⋅)) = exp
{

ρ0

∫
[G(x → u(⋅))− 1]dx

}
. (11.2.7)

If the parent particles produce no descendants, then

K(x → u(⋅)) = 1

and, by (11.2.6),
G(x → u(⋅)) = u(x).

In this case (11.2.7) is reduced to (11.1.9) with ƒ(x) = ρ0, i.e., we have a simple
homogeneous Poisson ensemble of independent particles.

Using (11.1.8), we can derive from (11.2.7) a relation between the irre-
ducible correlation functions θk and the factorial moment densities:

g[k](x → x1, …, xk) =
δkG(x → u(⋅))

δu(x1)…δu(xk)

∣∣∣∣∣
u=1

,

θk(x1, …, xk) = ρ0

∫
g[k](x → x1, …, xk) dx. (11.2.8)

If the process of evolution of the families is spatially homogeneous, then the
functions g[k](x → x1, …, xk) depend only on the differences x1 − x, …, xk − x,
therefore

g[k](x → x1, …, xk) ≡ g[k](x1 − x, …, xk − x),

ƒ = ρ0

∫
g[1](x) dx = const, (11.2.9)

θ2(x21) = ρ0

∫
g[2](x′, x21 + x′)dx′, x21 = x2 − x1,

θ3(x21, x31) = ρ0

∫
g[3](x′, x21 + x′, x31 + x′),

and so on.

11.3. Average density of random distribution
The first density (concentration)

ƒ(x) = EN(dx)/dx
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of a random point distribution is necessary (and sufficient) for computation of
the mathematical expectation of the additive functions

∑
h(Xi):

J ≡ E
∑

h(Xi) =
∫

h(x)ƒ(x) dx. (11.3.1)

To obtain the corresponding relations, it is necessary to take the functional
derivative of (11.2.4) and (11.2.6), and then set u(x) = 1; we thus obtain

δΦ(u(⋅))
δu(x)

=
δΦ0(F(u(⋅)|⋅))

δu(x)
, (11.3.2)

δΦ0(G(⋅ → u(⋅)))
δu(x)

=
∫ δΦ0(G(⋅ → u(⋅)))

δG(x′ → u(⋅))
δG(x′ → u(⋅))

δu(x)
dx′.

(11.3.3)

If u → 1, then G(⋅ → u(⋅)) → 1 and by virtue of (11.1.7) we obtain the relation

ƒ(x) =
∫

dx′ƒ0(x′)g(x′ → x) (11.3.4)

whose physical sense is obvious. The function

g(x′ → x) ≡ g[1](x′ → x)

is a source function, since it describes the concentration of particles at the
point x of the family generated by one parent particle appeared at x′, and ƒ0(x)
is the concentration of parent particles at x.

Differentiating the second relation of (11.2.6) in a similar way,

δG(x → u(⋅))
δu(x1)

= δ (x− x1)K(x → G(⋅ → u(⋅))) + u(x)
δK(x → G(⋅ → u(⋅)))

δu(x1)

and following (11.3.3), we obtain

δG(x → u(⋅))
δu(x1)

= δ (x− x1)K(x → G(⋅ → u(⋅)))

+ u(x)
∫ δK(x → G(⋅ → u(⋅)))

δG(x′ → u(⋅))
δG(x′ → u(⋅))

δu(x1)
dx′ (11.3.5)

Setting here u(x) = 1, we arrive at the integral equation

g(x → x1) = δ (x− x1) +
∫

k(x → x′)g(x′ → x1)dx′ (11.3.6)

with

k(x → x′) ≡ δK(x → u(⋅))
δu(x′)

∣∣∣∣
u=1
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which is the average spatial density of the offspring of the particle x.
Substituting (11.3.4) into (11.3.1), we obtain

J =
∫

dx h(x)
∫

g(x′ → x)ƒ0(x′) dx′.

Changing the integration order and introducing

ƒ+(x) =
∫

dx′ h(x′)g(x → x′), (11.3.7)

for (11.3.1) we obtain

J =
∫

ƒ0(x)ƒ+(x) dx, (11.3.8)

where the function ƒ+(x), in view of (11.3.6), satisfies the equation

ƒ+(x) = h(x) +
∫

k(x → x′)ƒ+(x′) dx′. (11.3.9)

Formulae (11.3.7)–(11.3.9) provide us with a possibility to compute the math-
ematical expectations of any additive function of random point distribution if
the characteristics ƒ0(x) and k(x → x′) are known. However, this representa-
tion is not unique.

Assuming that the Neumann series for the integral equation (11.3.6) con-
verges (say, the condition

∫
k(x′ → x)dx = c < 1 holds), we represent its solution

as

g(x′ → x) = δ (x− x′) +
∞∑

i=1

k(i)(x′ → x), (11.3.10)

where the function of two variables k(i)(x′ → x) is the kernel of equation (11.3.6)
if i = 1, and is the (i− 1)th convolution of such kernels if i > 1:

k(1)(x′ → x) = k(x′ → x),

k(i)(x′ → x) =
∫

k(i−1)(x′ → x′′)k(x′′ → x)dx′′.

Substituting expansion (11.3.10) into (11.3.4) we obtain

ƒ(x) = ƒ0(x) +
∞∑

i=1

∫
ƒ0(x′)k(i)(x′ → x) dx′. (11.3.11)

Being rewritten in the form

ƒ(x) = ƒ0(x) +
∫ [

ƒ0(x′) +
∞∑

i=1

∫
ƒ0(x′′)k(i)(x′′ → x′)dx′′

]
k(x′ → x) dx′
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this relation leads us to another integral equation for the average density
(concentration) of particles:

ƒ(x) = ƒ0(x) +
∫

ƒ(x′)k(x′ → x) dx′, (11.3.12)

which, together with (11.3.1) allows to find the mathematical expectation of
any additive function of random point distribution.

The existence of these two forms is well known and widely used in modern
transportation theory, where this phenomenon is referred to as the duality
principle, (11.3.12) is called the basic transport equation, (11.3.9), the adjoint
(in the Lagrange sense) equation, and its solution ƒ+(x) is called the adjoint
function or importance (Case & Zweifel, 1967; Kolchuzhkin & Uchaikin, 1978;
Lewins, 1965; Marchuk, 1980).

It follows from (11.3.6) that

∫
g(x′ → x) dx = 1 +

∫
dx′′k(x → x′′)

∫
g(x′′ → x) dx.

If k(x → x′′) is invariant under the translation

k(x → x′′) = k(x′′ − x),

then

∫
g(x′ → x)dx =

1
1−

∫
k(x) dx

≡ 1
1− c

. (11.3.13)

Thus, the total mean density (11.3.4) with ƒ0(x) = const is finite only if

c ≡
∫

k(x) dx < 1.

11.4. Correlation functions

We begin our investigation of correlations generated by the considered model
with

θ2(x1, x2) = ρ0

∫
g[2](x → x1, x2) dx. (11.4.1)
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Differentiating (11.3.5) once more, we obtain

δ2G(x → u(⋅))
δu(x2)δu(x1)

= δ (x1 − x)
∫ δK(x → G(⋅ → u(⋅))

δG(x′ → u(⋅))
δG(x′ → u(⋅))

δu(x2)
dx′

+ δ (x2 − x)
∫ δK(x → G(⋅ → u(⋅))

δG(x′ → u(⋅))
δG(x′ → u(⋅))

δu(x1)
dx′

+ u(x)

{∫∫ δ2K(x → G(⋅ → u(⋅))
δG(x′ → u(⋅))δG(x′′ → u(⋅))

δG(x′ → u(⋅))
δu(x1)

δG(x′′ → u(⋅))
δu(x2)

dx′dx′′

+
∫ δK(x → G(⋅ → u(⋅))

δG(x′ → u(⋅))
δ2G(x′ → u(⋅))
δu(x1)δu(x2)

dx′
}

.

Setting u(x) = 1, we arrive at the integral equation for the second factorial
moment density for a single cascade:

g[2](x → x1, x2) = δ (x1 − x)
∫

k(x → x′)g(x′ → x2) dx′

+ δ (x2 − x)
∫

k(x → x′)g(x′ → x1) dx′

+
∫

dx′
∫

dx′′k[2](x → x′, x′′)g(x′ → x1)g(x′′ → x2)

+
∫

dx′k(x → x′)g[2](x′ → x1, x2). (11.4.2)

Equation (11.4.2) can be considered as a special case of (11.3.9) with

h(x) ≡ h(x; x1, x2) = δ (x1 − x)
∫

k(x → x′)g(x′ → x2) dx′

+ δ (x2 − x)
∫

k(x → x′)g(x′ → x1) dx′

+
∫

dx′
∫

dx′′k[2](x → x′, x′′)g(x′ → x1)g(x′′ → x2),

where x1 and x2 are fixed parameters. By virtue of (11.3.7), the solution of this
equation is of the form

g[2](x → x1, x2) = g(x → x1)
∫

k(x1 → x′)g(x′ → x2) dx′

+ g(x → x2)
∫

k(x2 → x′)g(x′ → x1) dx′

+
∫

dx′g(x → x′)
∫

dx′′
∫

dx′′′k[2](x′ → x′′, x′′′)g(x′′ → x1)g(x′′′ → x2). (11.4.3)



308 11. Correlated systems and fractals

Substituting (11.4.3) into (11.4.1) and taking (11.2.9) into account, we arrive
at the expression

θ2(x1, x2) = ρ
{∫

k(x1 → x′)g(x′ → x2) dx′ +
∫

k(x2 → x′)g(x′ → x1) dx′

+
∫

dx′
∫

dx′′k̄[2](x′, x′′)g(x′ → x1)g(x′′ → x2)
}

, (11.4.4)

where

k̄[2](x′, x′′) =
∫

k[2](x → x′, x′′) dx.

Making use of (11.3.6), (11.3.10) with

g′(x′ → x) =
∞∑

i=1

k(i)(x′ → x),

we can represent the result in the form

θ2(x1, x2) = ρ
{

g′(x1 → x2) + g′(x2 → x1)

+
∫

dx′
∫

dx′′k̄[2](x′, x′′)g(x′ → x1)g(x2 → x′′)
}

. (11.4.5)

Taking multi-fold functional derivatives of both sides of (11.2.6) rewritten
in the form

G(x → u(⋅)) = u(x) +
∞∑

n=1

1
n!

∫
dx1…

∫
dxnk[n](x → x1, …, xn)

×
[
u(x)G(x1 → u(⋅))…G(xn → u(⋅))

]
(11.4.6)

using formula (A.12.1) and setting u(x) = 1, we obtain the following system of
simultaneous equations for factorial moment densities of arbitrary orders:

g[n](x → 1, …, n) s=
∫

d1′k(x → 1′)g[n](1′ → 1, …, n) + hn(x → 1, …, n),
(11.4.7)

where

h1(x → 1) = δ (x, 1)
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and

hn(x → 1, …, n) = nδ (x, 1)
∫

d1′k(x → 1′)g[n−1](1′ → 2, …, n)

+
n∑

m=2

1
m!

∫
d1′…

∫
dm′k[m](x → 1′, …, m′)

×
∑

n1…nm≥1

{(
n

n1…nm

)
δNm ,ng[n1](1′→1, …, n1) …g[nm](m′→Nm−1 + 1, …, n)

+nδ (x, 1)

(
n− 1

n1…nm

)
δNm,n−1g[n1](1′→2, …, n1+1)…g[nm](m′→Nm−2 + 2, …, n)

}
,

Nm = n1 + … + nm, n > 1.
Here we use the notations 1, 2, … and 1′, 2′, … for x1, x2, … and x′1, x′2, …, re-

spectively, and δ (x, 1) for δ (x−x1). Recall also that s= means the symmetrization
of the right-hand side:

ƒ(x1, …, xn) s= g(x1, …, xn)

means

ƒ(x1, …, xn) =
1
n!

n∑′

i1…in

g(xi1 , …, xin),

where the prime indicates the omission of terms with two or more coinciding
indices.

Since the g[1](x → 1) ≡ g(x → 1) obeys the equation

g(x → 1) =
∫

d1′k(x → 1′)g(1′ → 1) + δ (x, 1), (11.4.8)

it can be used as the Green function for all other equations (11.4.7), and we
obtain their solutions in the recurring form:

g[n](x → 1, …, n) s=
∫

dx′g(x → x′)hn(x′ → 1, …, n).

If no branching occurs, all k[m], m ≥ 2, vanish, and we obtain a simple
result for functions θn. Inserting the function

hn(x → 1, …, n) = nδ (x, 1)
∫

d1′k(x → 1′)g[n−1](1′ → 2, …, n)

into (11.4.7), we obtain

g[n](x → 1, …, n) s= ng(x → 1)
∫

d1′k(1 → 1′)g[n−1](1′ → 2, …, n), n ≥ 2.
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Direct substitution shows that the system of equations is satisfied by the
solutions

g[n](x → 1, …, n) s= n! g(x → 1)g′(1 → 2)…g′(n− 1 → n), (11.4.9)

where
g′(x → x′) =

∫
dx′′k(x → x′′)g(x′′ → x′)

satisfies the equation

g′(x → x′) =
∫

dx′′k(x → x′′)g′(x′′ → x′) + k(x → x′) (11.4.10)

that follows from (11.4.8). Thus, by virtue of (11.2.8) and (11.3.13), we obtain

θk(x1, …, xk) s= ρk!g′(1 → 2)…g′(k− 1 → n), (11.4.11)

where

ρ =
ρ0

1− c
= const. (11.4.12)

Two important properties of the models considered follow herefrom.
First, the correlation functions of all orders k > 2 are expressed in terms of

θ2:

θk(x1, …, xk) s=
ρk!

(2ρ)k−1 θ2(x1, x2)…θ2(xk−1, xk),
(11.4.13)

θ2(x1, x2) = 2ρg′(x1 → x2). (11.4.14)

Second, multiplying (11.4.10) by 2ρ, we see that correlation function
(11.4.14) satisfies the integral equation

θ2(x1, x2) =
∫

dx′k(x1 → x′)θ2(x′, x2) + 2ρk(x → x′), (11.4.15)

which is nothing but the Ornstein–Zernike equation (see, e.g. (Stell, 1991)).

11.5. Inverse power type correlations and stable
distributions

To demonstrate how this model generates long-range correlations of the in-
verse power type, we consider a three-dimensional homogeneous case with
spherically symmetric

k(r1 → r2) = cp(r2 − r1), c ≤ 1,
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where p(r), which satisfies the condition
∫

p(r)dr = 1

and depends only on r = |r|, can be interpreted as the transition probability
density, whereas the constant c can be thought of as the survival probability.

With these assumptions in mind, we write the following equation for the
function ƒc(r) = cg′(r), which is also spherically symmetric:

ƒc(r) = p(r) + c
∫

p(r′)ƒc(r− r′)dr′. (11.5.1)

The most investigated case of this equation is related to neutron transportation
problem (Case & Zweifel, 1967) where

p(r) =
e−r

4πr2 . (11.5.2)

The corresponding solution is expressed in the form

ƒc(r) =
1

4πr

{
e−r/ν0

ν0N0
+
∫ 1

0

e−r/ν

νN(ν)
dν

}
,

where

N(ν) = ν[(1− cν Arth ν)2 + c2π2ν2/4],

N0 = (c/2)ν3
0

{
[c/(ν2

0 − 1)]− [1/ν2
0]
}

; (11.5.3)

ν0 ≈
{√

3(1− c)[1− (2/5)(1− c)]
}−1

(11.5.4)

for c close to 1.
It is easy to see that ƒc(r) ∼ ƒas

c (r) for r →∞, where

ƒas
c (r) =

1
ν0(c)N0(c)

e−r/ν0(c)

4πr
, c < 1,

ƒas
1 (r) =

3
4πr

, c = 1.

Thus, the solution has two quite different asymptotic expressions for c < 1 and
c = 1. But the results of numerical calculations presented in Fig. 11.1 allow
us to re-unite these two cases. One can see that in the case where c is very
close to 1 the true function ƒ(r) follows first ƒas

1 (r) and then changes into ƒas
c (r)

beyond some distance ras(c), so the closer c is to 1, the greater ras(c) and the
more domain of validity of expression ƒas

1 (r) for the function ƒ(r) with c ≠ 1.
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Figure 11.1. The function ƒas
1 (r) (dashed line) plays the role of intermediate

asymptotics for ƒc(r) with c close to 1 (solid lines 2 (c = 0.9), 3
(c = 0.99), 4 (c = 0.999), 5 (c = 0.9999), and 6 (c = 0.99999)).

This means that the subcritical cascade with c close to 1 looks like critical one
on a large but limited scale.

Mandelbrot investigated a similar problem in connection with the descrip-
tion of random distribution of galaxies in space (Mandelbrot, 1975; Mandelbrot,
1977). As known from observations, their two-point correlations have a long
asymptotic tail

θ2(r) ∝ r−3+γ

with 1 < γ < 2. Using the walk process he considered the solution of the
equation under conditions c = 1 and

p(r) =

{
0, r < ε,
(α/4π)εα r−3−α , r > ε.

(11.5.5)

Using the Fourier transformation, Mandelbrot concluded that

ƒ1(r) ∼ Cr−3+α , r →∞, (11.5.6)

where C is a constant (see also (Peebles, 1980)).
To look at this problem more closely we consider the solution of (11.5.1)

with the transition probability density p(r) which is a very stable density itself,

p(r) = q3(r; α).
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Representing its solution as Neumann’s series

ƒc(r) =
∞∑

n=1

cn−1p(n)(r)

and keeping in mind that for stable distribution

q(n)
3 (r) = n−3/αq3(n−1/αr; α)

we arrive at

ƒc(r) =
∞∑

n=1

cn−1n−3/αq3(n1/αr; α)

=
∞∑

n=1

cn−1n−3/αρ3(n−1/αr; α), r = |r|. (11.5.7)

Using (7.2.16) and changing the order of summation in the case c < 1 we
obtain

ƒc(r) =
1

2π2r3

∞∑

n=1

(−1)n−1

n!
Γ(nα + 2) sin(nαπ/2)Φ(c,−n, 1)r−nα , (11.5.8)

where

Φ(c,−n, 1) =
∞∑

k=1

ck−1kn.

In particular,

Φ(c,−1, 1) = (1− c)−2,

Φ(c,−2, 1) = (c + 1)(1− c)−3,

Φ(c,−3, 1) = (c2 + 4c + 1)(1− c)−4,

Φ(c,−4, 1) = (c3 + 11c2 + 11c + 1)(1− c)−5,

Φ(c,−5, 1) = (c4 + 26c3 + 66c2 + 26c + 1)(1− c)−6.

The asymptotic behavior of (11.5.8) far away from the origin is governed by
the first term of the series:

ƒas
c (r) = (2π2)−1Γ(α + 2) sin(απ/2)(1− c)−2r−3−α , r →∞.

As c → 1,
Φ(c,−n, 1) ∼ n! (1− c)−1−n
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and

ƒc(r) ∼ (2π2)−1
∞∑

n=1

(−1)n−1Γ(nα + 2) sin(nαπ/2)(1− c)−1−nr−3−nα , c → 1.

However this result is not applicable to the case c = 1, which should be treat-
ed separately. Setting c = 1 in (11.5.7) and applying the Euler–Maclaurin
summation formula, we obtain

ƒ1(r) =
∞∑

n=1

n−3/αρ3(n−1/αr; α)

=
∫ ∞

1
ψ(x)dx +

1
2

ψ(1)−
∞∑

m=0

B2m

(2m)!
ψ (2m−1)(1),

(11.5.9)

where

ψ(x) = x−3/αρ3(x−1/α r; α)

=
1

2π2

∞∑

n=1

[
(−1)n−1

n!
Γ(nα + 2) sin(nαπ/2)r−nα−3

]
xn

and B2m are the Bernoulli numbers.
The leading asymptotic term is due to the integral

ƒ1(r) ∼
∫ ∞

1
x−3/α ρ3(x−1/αr; α) dx

= αr−3+α
∫ r

0
x−α+2ρ3(x) dx

∼ αr−3+α ρ3(2− α; α), r →∞,

where ρ3(s; α) is the Mellin transform of the radial function ρ3(r; α). Using
(7.5.8), we obtain

ƒas
1 (r) = (4π)−3/2(r/2)−3+αΓ((3− α)/2)/Γ(α/2),

which is immediately transformed to

ƒas
1 (r) = (2π2)−1Γ(2− α) sin(απ/2)r−3+α . (11.5.10)

The asymptotic expansion of (11.5.9) is thus of the following form:

ƒ1(r) = (2π2)−1



Γ(2− α) sin(απ/2)r−3+α

+
∞∑

n=1 (odd)

Γ(nα + 2) sin(nαπ/2)Anr−nα−3



 , (11.5.11)
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where

An =
1

n!2
− 1

(n + 1)!
−

(n+1)/2∑

m=1

B2m

(2m)!(n− 2m + 1)!
.

In particular, A1 = −1/12, A3 = 1/720, A5 = −1/30240, A7 = 1/1209600,
A9 = −1/47900160, and so on. The leading term (11.5.10) and two terms of the
sum in (11.5.11) were found in (Slobodenyuk & Uchaikin, 1998).

In view of asymptotics (11.5.8), (11.5.11), one can estimate the distance
r0, where the solution behaves like the leading asymptotics of type r−3±α . By
requiring the contribution of correction terms in (11.5.8), (11.5.11) to be small
in comparison with the leading one (to be not greater than β ⋅ 100%), we obtain

r0 =
(
| cos(πα/2)| (1 + c)Γ(2 + 2α)

(1 − c)βΓ(2 + α)

)1/α
c < 1,

r0 =
(

Γ(2 + α)
12βΓ(2− α)

)1/(2α)
, c = 1.

11.6. Mandelbrot’s stochastic fractals
Following (Uchaikin et al., 1998a), we continue the study of infinite trajectories
(c = 1) generating infinite sets of points X1, X2, X3, … randomly distributed in
R

3. The function g′(r) can be considered as a conditional mean density of
neighbours of the point X0 placed at the origin X0. The corresponding GF of
the set with X0 = r satisfies the equation

G′(r → u(⋅)) =
∫

dr′p(r → r′)u(r′)G′(r′ → u(⋅)). (11.6.1)

To make all points of the set statistically equivalent, we add the symmetric
(in the statistical sense) part X−1, X−2, X−3, … Owing to the spherically sym-
metric character of the distribution p(r) of increments Xk − Xk−1 and their
independence, the left-hand part of the trajectory can be constructed in the
same way as the right-hand part X1, X2, X3, … Namely, X−1 is chosen from the
distribution p(r), then X−2 = X−1 + ∆X, where ∆X is chosen from the same dis-
tribution p(r) independently of X−1 and so on. As a result we have an infinite
to both sides trajectory {…, X−3, X−2, X−1, 0, X1, X2, X3, …}. All the points are
statistically equal now, and the conditional characteristics of the random point
distribution relative to each of the points are the same. The characteristics
can be found from the GF

F(u(⋅)) = G′2(0 → u(⋅)). (11.6.2)

Thus, the mean density of neighbours

ƒ(r) =
δF(u(⋅))

δu(r)

∣∣∣∣
u=1

= 2g′(r), (11.6.3)
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and the expected number of neighbours in the sphere of radius R centered at
any point is

〈N(R)〉 = 8π
∫ R

0
g′(r)r2dr.

Substituting here g′(r) from (11.5.6), we arrive at the asymptotic expression

〈N(R)〉 ∼ ARα , R →∞, 0 < α < 2. (11.6.4)

It is obvious that the random point distribution possesses some peculiari-
ties. Indeed, it may be thought of as a homogeneous set because all its points
are stochastically equivalent but the conditional density (11.6.3)

ƒ(r) = g′(r) ∼ 2Cr−3+α , r →∞, 0 < α < 2, (11.6.5)

is not homogeneous.
Scale invariance plays the fundamental role in many natural phenomena

and is often related to the appearance of irregular forms which cannot be
described by means of usual differential geometry. A classic example is given
by the Brownian motion which led Jean Perrin (Perrin, 1909) to understanding
the physical relevance of non-differentiable curves and surfaces.

The necessity of introducing a new class of geometrical objects, the fractals,
has subsequently arisen in various problems. Indeed, some aspects of ‘fractal-
ity’ were already present in the ideas of some scientists at the beginning of this
century like Perrin himself, Hausdorff, Wiener, Richardson, but the concept
of ‘fractal object’ was explicitly formulated and made popular in the scientific
community in the recent decade or so by Mandelbrot.

A rough definition of a fractal object can be given by referring to the scale
invariance displayed by these structures. In this sense, we say that a fractal is
a geometric structure which looks always the same (at least in the statistical
sense) irrespective of the resolution at which it is observed (Borgani, 1995,
p. 49).

A more formal and correct definition of a fractal set, as given by Mandelbrot
(Mandelbrot, 1983), consists in that it is a mathematical object whose fractal
(Hausdorff) dimension DH is strictly greater than its topological dimension DT.
Thus, for a fractal point distribution in a d-dimensional ambient space, DT = 0
and 0 < DH ≤ d. The fractal dimension DH = d characterizes a space-filling
and homogeneous distribution. As an example of the latter, a homogeneous
Poisson ensemble can be given, for which

〈N(R)〉 = (4/3)πρR3. (11.6.6)

Note that in this case there is no difference whether or not the counting sphere
is centered at any point of the set or at any other point of space.

Formulae (11.6.4) and (11.6.6) led Mandelbrot to another definition of a
fractal dimension. Concerning the distribution of galaxies in the Universe,
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he write in Is there a global density of matter? , that to define and measure
density, one starts with the mass M(R) in a sphere of radius R centered on
Earth. The approximate density, defined as

M(R)/[(4/3)πR3],

is evaluated. After that, the value of R is made to tend toward infinity, and the
global density is defined as the limit toward which the approximate density
converges.

But need the global density to converge to a positive and finite limit? If
so, the rate of convergence leaves a great deal to be desired. Furthermore,
the estimates of the limit density had behaved very oddly. As the depth of the
world perceived by telescopes increased, the approximate density diminished
in a surprisingly systematic manner. According to de Vaucouleurs (1970), it
has remained ∝ RD−3. The observed exponent D is much smaller than 3, the
best estimate on the basis of indirect evidence being D = 1.23.

The thesis of de Vacouleurs is that the behavior of the approximate density
reflects reality, meaning that M(R) ∝ RD. This formula recalls the classical
result that a ball of radius R in a Euclidean space of dimension E has the
volume ∝ RE. We encounter the same formula for the Koch curve, with the
major difference that the exponent is not the Euclidean dimension E = 2 but a
fraction-valued fractal dimension D. For the Cantor dust on the time axis (for
which E = 1), M(R) ∝ RD .

All these precedents suggest very strongly that the de Vacouleurs’ exponent
D is a fractal dimension (Mandelbrot, 1983, p.85).

Mandelbrot used the walk model described above (with one-sided trajec-
tories) to simulate such a distribution. The random walk model of the distri-
bution of galaxies implements any desired fractal dimension D < 2 using a
dust, i.e., a set of correct topological dimension DT = 0. To achieve this goal,
a random walk is used wherein the mathematical expectation 〈U2〉 is infinite,
because U(= |∆X|) is a hyperbolic random variable, with an inner cutoff at
u = 1. Thus, for u ≤ 1, P {U > u} = 1, while for u > 1 P {U > u} ∝ u−D, with
0 < D < 2.

A major consequence is that 〈M(R)〉 ∝ RD when R � 1. It allows any
dimension likely to be suggested by fact or theory (Mandelbrot, 1983, p.289).

Using this approach as a basis for fractal interpretation of the random
set of points {…, X−3, X−2, X−1, 0, X1, X2, X3, …} and understanding 〈…〉 as
averaging over the whole ensemble of random realizations, we consider some
properties of the random fractal.

As follows from (11.6.1) and (11.6.2), the nth factorial moment density is

ƒn(r → 1, …, n) s=
n∑

k=0

(
n
k

)
g′[k](r → 1, …, k)g′[n−k](r → k + 1, …, n)
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and the nth factorial moment of the random number M of points occurring in
the sphere UR of radius R is

〈M[n]〉 =
∫

UR

…
∫

UR

ƒ[n](0 → z1, …, zn) dr1…drn

=
n∑

k=0

(
n
k

)
〈N[k]〉〈N[n−k]〉 (11.6.7)

where N is the random number of points generated in the sphere by the ‘one-
sided’ trajectory.

In view of (11.6.5),

〈N[k]〉 = k!
∫

UR

…
∫

UR

g′(0 → r1)…g′(rk−1 − rn) dr1…drk

∼ k! (4πA/3)kRαkKk(α), R →∞,

where

K0(α) = 1, K1(α) = (3/4π)
∫

U1

r−3+αdr,

Kk(α) = (3/4π)k
∫
· · ·
∫

Uk
1

(r1r1,2…rk−1,k)−3+αdr1dr2…drk, k > 1,
(11.6.8)

rij = |ri − rj|.

Before discussing the algorithm to calculate multiple integrals (11.6.8), we
note that (11.6.7) has the asymptotics

〈M[n]〉 ∼ (4πA/3)nRαnQn(α), R →∞,

where

Qn(α) =
n∑

k=0

Kk(α)Kn−k(α).

Asymptotically,
〈M[n](R)〉 ∼ 〈Mn(R)〉, R →∞,

and the moments of the normalized random variable

Z =
M(R)
〈M(R)〉 (11.6.9)

do not depend on the radius R:

〈Zn〉 ∼ n!
Qn(α)

(Q1(α))n , R →∞. (11.6.10)
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As a result, the asymptotic distribution of M(R) can be rewritten in the
following scaled form:

P {Z = m/〈M(R)〉} ∼ 1
〈M(R)〉Ψα

(
m

〈M(R)〉

)
, R →∞, (11.6.11)

where Ψα (z) is the density of the distribution of (11.6.9) with the moments
(11.6.10):

〈Zn〉 =
∫ ∞

0
znΨα (z) dz, 〈Z〉 = 1.

11.7. Numerical results
Now we turn back to the problem of calculation of multiple integrals (11.6.8)
following (Uchaikin et al., 1998a). We consider the set of functions

v(α)
n (r) =

∫

U1

· · ·
∫

U1

(|r− r1|r1,2…rn−1,n)−3+α dr1dr2…drn

such that
Kn(α) = (3/4π)nv(α)

n (0).

The functions are recursively interrelated as follows:

v(α)
n (r) =

∫

U1

F(α)(r− r′)v(α)
n−1(r′)dr′, F(r) = r−3+α , v(α)

0 (r) = 1.
(11.7.1)

Taking the spherical symmetry of functions F and v(α)
n into account, we can

represent (11.7.1) as

w(α)
n (r) =

∫ 1

0
F(α)(r, r′)w(α)

n−1(r′) dr′, w(α)
n (r) = rv(α)

n (r), (11.7.2)

where

F(α)(r, r′) =
2π

α − 1

[
(r + r′)α−1 − |r− r′|α−1

]
, α ≠ 1,

F(1)(r, r′) = 2π
[
ln(r + r′)− ln |r− r′|

]
.

It is easy to see that Kn(α) is expressed in terms of w(α)
n as follows:

Kn(α) = (3/4π)n
[
dw(α)

n (r)/dr
]

r=0
. (11.7.3)

This representation is convenient for sequential numerical calculation of
Kn(α) for α > 1 while using the standard technique of numerical integration.
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The situation becomes even more simple in the case α = 1. Equation (11.7.1)
can be transformed into

v(1)
n (r) =

2π
r

∫ 1

0
ln
|r′ + r|
|r′ − r|v

(1)
n−1(r′) dr′,

v(1)
1 (r) =

2π
r

{
r +

1
2

(1− r2) ln
|1 + r|
|1− r|

}
.

Expanding v(1)
n (r) into power series, we arrive at the recurrence relation

v(1)
n (r) = 2πv(1)

n−1(0)

(
2−

∞∑

i=1

r2i
(

1
2i− 1

− 1
2i + 1

))

− (4π)2v(1)
n−2(0)

∞∑

i=1

1
(2i− 1)(2i + 1)2 ;

hence

v(1)
n (0) = 4πv(1)

n−1(0)− (4π)2v(1)
n−2(0)

∞∑

i=1

1
(2i− 1)(2i + 1)2 ,

v(1)
0 (0) = 1, v(1)

1 (0) = 4π.

In the domain α ≤ 1, the integrand possesses a singularity at the point r′ = r
causing an increase in error in the course of numerical integration. To avoid
the trouble, we transform (11.7.2) into

∫ r

0
w(α)

n (r′)dr′ = W(α)
n (r)− 4π

α(α − 1)

∫ 1

0
r′αw(α)

n−1(r′) dr′,

W(α)
n (r) =

2π
α(α − 1)

∫ 1

0

[
(r + r′)α − (r− r′)|r− r′|α−1

]
w(α)

n−1(r′) dr′;

hence (11.7.3) can be rewritten as

Kn(α) = (3/4π)n
[
d 2W(α)

n (r)/dr2
]

r=0
.

The numerical results for Kn(α) are presented in Table 11.1.
Using formula (11.6.10), we calculate 〈Zn〉 (see Table 11.2). As one can

see, the relative fluctuations grow as α decreases. Also it can be seen from
Table 11.2 that the following relation holds for the moments 〈Zn〉:

〈Zn〉 =
(
A(α)n + B(α)

)
〈Zn−1〉.

This relation is the characteristic property for the gamma distribution

Ψα (z) =
1

Γ(λ )
λ λ zλ−1e−λz;
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Table 11.1. The coefficients Kn(α) for a single trajectory. The values in brackets
are taken from (Peebles, 1980). The values with asterisks are the
data for α = 1.23 from (Peebles, 1980).

Kn α
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

K1 12.0 6.00 4.00 3.00 2.40 2.00 1.71 1.50
K2 140 34.0 14.6 7.80 4.88 3.31 2.42 1.88

(34.0) (7.82) (5.02)∗ (3.31) (1.88)
K3 163 ⋅ 10 185 50.4 19.1 9.38 5.22 3.30 2.29

(9.5)∗

K4 188 ⋅102 985 168 45.8 17.7 8.13 4.46 2.78
K5 215 ⋅103 516 ⋅10 554 108 33.2 12.6 6.03 3.38

Table 11.2. The moments 〈Zn〉 for the paired trajectory. The lower values are
results of the Monte-Carlo simulation.

〈Zn〉 α
0.25 0.50 0.75 1.00 1.25 1.50 1.75

Z2 1.49 1.44 1.41 1.37 1.35 1.33 1.33
1.51 ± 0.07 1.40 ± 0.06 1.36 ± 0.06

Z3 2.93 2.70 2.55 2.36 2.29 2.22 2.22
3.04 ± 0.25 2.52 ± 0.21 2.38 ± 0.21

Z4 7.18 6.18 5.59 4.95 4.71 4.51 4.54
7.5 ± 1.0 5.7 ± 0.8 5.3 ± 0.9

Z5 21.0 16.7 14.4 12.2 11.4 10.8 11.0
22 ± 4 16 ± 3 15 ± 5

hence we obtain
〈Zn〉 =

(
n
λ

+ 1− 1
λ

)
〈Zn−1〉.

The parameter of gamma distribution λ can be expressed in terms of 〈Z2〉:

λ (α) =
1

〈Z2〉 − 1
=

1
σ2

Z
,

that is, the parameter of gamma distribution is determined by the variance
σ2

Z ≡ σ2
N /〈N〉2.

We also perform Monte-Carlo simulation of random trajectories with tran-
sition probability (11.5.5) for α = 0.5, 1.0, 1.5. The points are counted inside
the sphere of radius R � a. The trajectory is broken when coming out the
boundary of the sphere of the radius Rmax = 1� R. As a result of simulation,
the function Ψα (z) and moments 〈Z〉, …, 〈Z5〉 for α = 0.5, 1.0, 1.5 are obtained.
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In Fig. 11.2, the results of simulation are shown for R = 0.05, 0.1 and 0.2,
α = 1.0. It is immediately seen from this histogram that the results of simu-
lation are independent of R. All histograms are satisfactorily described by the
gamma distribution.

In conclusion, we should emphasize that, because of fractal self-similarity,
the fluctuations of point count inside the sphere (centered around any fractal
point) do not vanish with increasing the radius but remain essential at all
scales.

11.8. Fractal sets with a turnover to homogeneity
Now, two questions arise:

(1) Can one construct a random point distribution which is a fractal on small
scales and homogeneous on large scales?

(2) Can one construct such distributions with fractal dimension 2 < D < 3
which are observed for example in a turbulence problem (Takayasu,
1984)?

We begin with the first question. P. Coleman and L. Pietronero wrote,
concerning the simulation of universe, that a sample which is fractal on small
scales and homogeneous on large scales is constructed as follows: A number
of random locations are chosen in a large volume. Since the locations are
Poisson-distributed, they will have an average separation λ0. Each of these
locations is the starting point for constructing a fractal whose sample length
scales up to the limiting value λ0 (Coleman & Pietronero, 1992, p.334).

It is evident that, rigorously speaking, this large volume must be infinite,
otherwise boundary effects are observed. But if the volume is infinite, then
only two cases are possible: either c < 1, and then g′(r) ∝ r−3−α , or c = 1 and
then g′(r) ∝ r−3+α , but ∫

g′(r) dr =∞.

The first case is not a fractal on any scales; in the second case we cannot use
the standard correlation analysis based on the functions (11.4.12) because of
divergence of the prefactor

ρ =
ρ0

1− c
→∞, c → 1.

To investigate the problem in more detail, numerical calculations of g′(r)
are performed for c close to 1 (Uchaikin & Gusarov, 1997b). Spherically sym-
metric stable distributions are used as the kernel p(r). These calculations
demonstrate that a certain finite domain exists where the function g′c(r) co-
incides numerically with g′1(r) while c is close enough to 1. So, there is a



11.8. Fractal sets with a turnover to homogeneity 323

(c)

0.5 1 1.5 2 2.5 3 3.5 4

z

ψ (z)

0

0.2

0.4

0.6

0.8

1

(b)

0.5 1 1.5 2 2.5 3 3.5 4

z

ψ (z)

0

0.2

0.4

0.6

0.8

1

(a)

0.5 1 1.5 2 2.5 3 3.5 4

z

ψ (z)

0

0.2

0.4

0.6

0.8

1

Figure 11.2. The distribution density of the scaled random variable Z =
N(R)/〈N(R)〉 for α = 0.5 (a), α = 1.0 (b), α = 1. 5 (c). Histograms
are the results of Monte-Carlo calculations of 1000 realizations
(a = 10−3): for R = 0.05 (—), for R = 0.1 (- - -), and for R = 0.2 (· · · ).
The smooth solid curves show the gamma distribution Ψα (z).
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Figure 11.3. The function g′c(r) (solid lines) and its leading asymptotic term
(dashed lines) for α = 0.5 and c = 1 (1), c = 0.9 (2), c = 0.99
(3)

remarkable fact that the larger the mean number of steps of the trajectory
(1 − c)−1, the longer the region where the asymptotic formula of g′1(r) for the
infinite trajectory can be approximately used. Stated differently, if the survival
probability c is close to 1, formula (11.5.6) plays the role of an intermediate
asymptotic expression, whose applicability interval is the larger the closer c is
to 1. So, a finite trajectory can be considered as having, in some region, the
properties of infinite, and it is possible to construct random point distributions
with fractal properties on a large scale and with a finite density

ρ =
ρ0

1− c
(see Figures 11.3–11.5).

The answer to the second question is also positive. To demonstrate this,
one have to return to the branching cascades (Section 11.4). In this case θ2 is
determined by (11.4.5). We choose k[2](r → r1, r2) in the form

k[2](r → r1, r2) = c2k(r1 − r)k(r2 − r);

then (11.4.5) takes the form

θ2(r1, r2) = ρ
{

g′(r1 → r2) + g′(r2 → r1) + c2

∫
g′(r → r1)g′(r → r2) dr

}

= 2ρg′(r12) + c2ρg′[2](r12),
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Figure 11.4. The same as in Fig. 11.3, for α = 1 and c = 1 (1), c = 1 − 10−1 (2),
c = 1− 10−2 (3), c = 1− 10−3 (4), c = 1− 10−4 (5)
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Figure 11.5. The same as in Fig. 11.4, for α = 1. 5
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where the symmetry of the function g′(r1 − r2) = g′(r12) was used. If c = 1 and
p(r) is a stable distribution with the characteristic function e−kα

, the Fourier
transform of g′(r) is of the form

g̃′(k) =
e−kα

1− e−kα .

The convolution
g′(2)(r12) =

∫
g′(r → r1)g′(r → r2) dr

has the squared Fourier transform

g̃′(2)(k) =
e−2kα

(1− e−kα )2 ∼ k−2αe−2kα
, k → 0.

Thus, for large r we obtain

g′(2)(r) ∼ 2
(2π)2r2

∫ ∞

0
sin kre−2kα

k1−2αdk

=
1

2π2 Γ(2(1− α)) sin(απ)r2α−3, r →∞.

Here α, as before, belongs to the interval (0, 2), and in the case where α ∈
(1, 3/2) we obtain the fractal dimension D = 2α ∈ (2, 3).

Therefore, to construct random point distributions with the fractal dimen-
sion D > 2, one have to use the branching Lévy walk process with α = D/2
(Uchaikin et al., 1998b).

In conclusion, we give some results of numerical simulations of two-
dimensional point distributions (Figures 11.6–11.9). The reader can see the
difference between the Poisson distribution and the stochastic fractal with
α = 1 as well as the fractal with turnover to homogeneity at large scales.
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Figure 11.6. Two-dimensional point distribution: Poisson’s ensemble
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Figure 11.7. Two-dimensional point fractal distribution with α = 1
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Figure 11.8. Two-dimensional fractal set with a turnover to homogeneity
(α = 1).
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Figure 11.9. The part of the distribution in Fig. 11.8 (encircled) looks like fractal
(Fig. 11.7).



12

Anomalous diffusion and chaos

12.1. Introduction
As we have seen above, the classical diffusion in a three-dimensional homoge-
neous medium is described by the equation

∂p(r, t)
∂t

= D∆p(r, t). (12.1.1)

under the initial condition

p(r, 0) = δ (r); (12.1.2)

its solution possesses the two important properties:

(1) automodelling (scaling), i.e.,

p(r, t) = (Dt)−3/2q((Dt)−1/2r); (12.1.3)

(2) the diffusion packet width ∆ =
√
〈X2〉 grows as t1/2.

Non-homogeneities of the medium where the process goes can have two
types of effects on diffusion properties:

• it may affect only the diffusivity D as compared with the homogeneous
medium; or

• it may alter in various ways the laws of diffusion themselves, e.g. the
diffusion packet width may no longer grow in time as t1/2, and its shape
may no longer be described by the Gaussian (8.4.10). In the last case, we
deal with anomalous diffusion.

331
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In actual reality, there exists a large number of processes where the width
of diffusion packet grows in time faster or slower than t1/2. As a rule, this
width grows as a power

∆(t) ∝ tν, (12.1.4)

but

ν ≠ 1/2. (12.1.5)

Slowed-up diffusion (subdiffusion) with ν < 1/2 occurs in disordered ma-
terials and trapping phenomenon in condensed matter physics. Enhanced
diffusion (superdiffusion) with ν > 1/2 arises in such cases as phase diffusion
in the chaotic regime of a Josephson junction, chaos-induced turbulent dif-
fusion, the relation between the root-mean-square characteristic length of a
polymer and the number of monomer units, diffusion of a Brownian particle
in a pure shear flow as well as in a turbulent flow field and so on (see reviews
(Isichenko, 1992; Bouchaud & Georges, 1990; Klafter et al., 1996; Shlesinger
et al., 1993) and references therein).

There exist two approaches to the description of such processes. One of
them is based on Gibbs’ concept of a statistical ensemble. It assumes that the
inhomogeneous medium with diffusivity D(r) varying irregularly in space is
one of a large number of copies forming the statistical ensemble. In this case,
the solution of the equation

∂p(r, t)
∂t

= ∇(D(r)∇p(r, t))

is thought of as a random function of r, t; for comparing with data observed,
the ensemble averaging should be performed:

∂
∂t
〈〈p(r, t)〉〉 = ∇〈〈D(r)∇p(r, t)〉〉.

To obtain 〈〈p(r, t)〉〉 on the right-hand side of the equation, one usually uses
the perturbation theory or other approximation technique.

Thus, the anomalous diffusion is interpreted as a superposition of ordinary
diffusion processes in inhomogeneous media (the dispersive theory).

The second approach assumes that anomalous transport properties arise
on microscopical scales, and describes them in terms of a walk involving ran-
dom free paths and random waiting times in traps. On this assumption, the
superdiffusion arises as a result of a broad distribution of free paths (Lévy
flight), whereas the subdiffusion is caused by a broad distribution of waiting
times (Lévy traps).

We consider here the second approach known as the CTRW (continuous
time random walk) theory. But before proceeding, we give two illustrative
examples of anomalous diffusion.
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12.2. Two examples of anomalous diffusion
The first of them is the diffusion of passive particles in a turbulent flow field
investigated by Monin (Monin, 1955; Monin, 1956; Monin & Yaglom, 1975). A
pair of particles placed at the points x1(0) and x2(0) at the moment t = 0 is
considered, and the distribution p(r, t) of the relative vector R(t) = X1(t)−X2(t)
is calculated according to the integral equation

p(r, t) =
∫

A(r− r′, t)p(r′, 0) dr′. (12.2.1)

For the particles which are initially very close to each other, we take

p(r, 0) = δ (r),

and the Fourier transformation of (12.2.1) yields

ƒ(k, t) = A(k, t)ƒ(k, 0) = A(k, t) =
∫

eikrA(r, t) dr.

Assuming that

(1) A(k, t) = a(ck2/3t) in a quasi-asymptotic time domain (tmin < t < tmax);

(2) the integral operators Ât with kernels A(r, t) generate a semigroup:

Ât1Ât2 = Ât1+t2 ,

Monin obtained

ƒ(k, t) = e−c|k|2/3t. (12.2.2)

This is nothing but the characteristic function of the spherically symmetric
stable distribution with α = 2/3. Function (12.2.2) satisfies the equation

∂ƒ
∂t

= −c|k|2/3ƒ.

Rewriting the corresponding equation for p(r, t) in the form

∂p
∂t

= L̂p (12.2.3)

Monin interpreted L̂ as a linear operator ‘proportional to Laplacian raised to
the power 1/3’ (Monin & Yaglom, 1975).

As we know, the second moment of the distribution diverges; but if we
redefine the width ∆ by virtue of a given probability P{|X| < ∆} = const, then
we arrive at the superdiffusion mode

∆(t) ∝ t3/2.
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The second example is taken from (Akhiezer et al., 1991) dealing with mul-
tiple scattering of charged particles in a crystal. In the case under studying,
unlike an amorphous medium, multiple scattering occurs by atomic groups
rather than by single atoms, i.e., by crystal atom strings located parallel to the
crystallographic axis near which a particle moves. The process is studied using
the model of random strings, where it is assumed that the representation of
particle scattering in the periodic field of atom strings can be replaced by that
of collisions with irregularly located but, nevertheless, parallel atom strings.
Besides, an elementary object defining the interaction of a particle with a
crystal is its interaction with a single atom string, whereas the interaction
with different atom strings can be considered using the methods of statistical
physics.

When a fast particle collides with an atom string, its scattering occurs
mainly along the azimuthal angle ϕ in the (x, y) plane orthogonal to the string
axis (the z-axis). As a consequence of multiple scattering by different strings,
the particles are redistributed over the angle ϕ (Fig. 12.1). We denote the
particle distribution density in a crystal over the azimuthal angle ϕ at depth
z as p(ϕ, z), ∫ π

−π
p(ϕ, z)dϕ = 1.

To derive the distribution, the authors of (Akhiezer et al., 1991) used the kinetic
equation

∂p(ϕ, z)
∂z

= naψ
∫ ∞

−∞
db[p(ϕ + ϕ(b), z)− p(ϕ, z)], (12.2.4)

where n is the atomic density, a is the interatomic distance along the z-axis, b
denotes the string impact parameter, ϕ(b) is the particle deflection function in
the atom string field and ψ is the angle of incidence of a beam onto a crystal
with respect to the crystal axis (the z-axis).

Equation (12.2.4) was introduced in (Golovchenko, 1976; Beloshitskii &
Kumakhov, 1973) to describe scattering of positively charged particles in a
crystal at small angles ψ . The solution of (12.2.4) satisfying the condition
p(ϕ, 0) = δ (ϕ) is of the form

p(ϕ, z) =
1

2π

∞∑

k=−∞
cos(kϕ) exp

{
−naψz

∫ ∞

−∞
db[1− cos(kϕ(b))]

}
.
(12.2.5)

An important numerical characteristic of particle scattering in a crystal is
the mean square scattering angle

〈ϑ2(z)〉 = 4ψ2
∫ π

−π
dϕ p(ϕ, z) sin2(ϕ/2).
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Figure 12.1. The geometry of channeling: multiple scattering of a fast particle
by atom strings (taken from (Akhiezer et al., 1991))

Using (12.2.5), we obtain

〈ϑ2(z)〉 = 2ψ
[
1− exp

{
−2nazψ

∫ ∞

−∞
db sin2(ϕ(b)/2)

}]
. (12.2.6)

If

〈ϕ2〉 = 2nazψ
∫ ∞

0
db ϕ2(b)� 1,

then in the range of angles ϕ ∼ 〈ϕ2〉1/2 or less, the sum in (12.2.5) can be
replaced by an integral. In this case, the particle distribution over the angle ϕ
will be of Gaussian form

p(ϕ, z) =
1√

2π〈ϕ2〉
exp

{
ϕ2

2〈ϕ2〉

}
. (12.2.7)

Fig. 12.2 taken from (Akhiezer et al., 1991) presents the results of calcula-
tions of the function

η(ψ , z) =
√
〈ϑ2〉/〈ϑ2

a 〉, (12.2.8)

where 〈ϑ2
a 〉 is the mean space angle of particle scattering in an amorphous (ho-

mogeneous) medium. Calculations were performed for positrons and electrons
with energy E = 30 GeV moving in silicon crystals of z = 50µm thickness in
the vicinity of the 〈111〉 axis.
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Figure 12.2. Orientation dependence of the mean value of the angle of scattering
by silicon crystal atom strings for (a) positrons and (b) electrons;
solid lines are the random strings approximation; the symbols 4
and ◦ denote the result of the numerical simulation of particle scat-
tering in the periodic field of atom strings for different orientations
of the crystal x and y axes with respect to the incident beam (taken
from (Akhiezer et al., 1991))

We give the details from the cited work to discuss a possible factor re-
sponsible for such a difference between the results of the numerical simula-
tion (triangles and circles) and the random string approximation according to
(12.2.4) (solid line). Let us look at Fig. 12.1 again. While a particle moves
along the z-axis, its angle ϕ remains almost the same, or stated differently, the
coordinate ϕ is in a trap. When the particle comes into collision with a string,
the coordinate ϕ comes into moving. This is illustrated by (12.2.4). Moreover,
its first term ∂p(ϕ, z)/∂z shows that the random free path of the particle be-
tween sequential collisions with strings is distributed exponentially. It is quite
possible that the last assumption causes the observed difference, because it
is well known that in the case of ordered location of spheres the distribution
of free paths can have a long tail of the inverse power kind (Bouchaud & Le
Doussal, 1985; Bouchaud & Georges, 1990; Bunimovich & Sinai, 1981). As a
free path along z-axis is equivalent to the waiting time for ϕ, we arrive at the
subdiffusion model producing the diffusion packet with width smaller than in
the normal case (12.2.7).

12.3. Superdiffusion
The Lévy process considered in Section 10.4 seems to be a very natural gener-
alization of the normal diffusion process to superdiffusion mode. It preserves
the first property of the diffusion process noted at the beginning of Section 12.1
and replaces the second one by the relation ∆ ∝ t1/α which for α ≤ 2 charac-
terizes the superdiffusion modes. The shape of the diffusion packet becomes
different from the Gaussian one, but remains to be of stable distribution type.

However, there exists some problem which we are going to discuss here.
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The problem is that in the case α < 1 the width of the diffusion packet grows
faster than in the ballistic regime (i.e., in free motion with finite speed). This
obviously non-physical result is caused by the self-similarity of the Lévy pro-
cess in which there is no place for the concept of a free motion velocity. And
the matter is not only in the condition α < 1 when this effect becomes more
bright, it is exhibited up to the limiting value α = 2. At any time as much
as close to the initial time (when the particle is at the origin of coordinates),
the distribution p(r, t) is different from zero in the whole space (in the normal
diffusion theory this ‘imperfection’ was noticed by Einstein).

To avoid this effect, we pass from the Lévy process to a random walk of a
particle with a finite speed of a free motion v.

We consider the following model. At the time t = 0, the particle is at the
origin r = 0 and stays there during a random time T0; then it travels along
a random vector R1 at a constant velocity v and stays again in rest during a
random time T1; then the process continues in a similar way. All the random
variables T0, R1, T1, R2, T2, … are independent, the times Ti have the same
probability density of exponential form

q(t) = µe−µt, µ > 0,

and the three-dimensional vectors R are also identically distributed with the
density p(r).

It is more convenient sometimes to talk about a set of independent tra-
jectories instead of one particle, treating p(r, t) as a density of the number of
particles.

The density p(r, t) consists of two components p0(r, t) and pv(r, t) relating
the particles being in rest (in traps) or in motion respectively:

p(r, t) = p0(r, t) + pv(r, t). (12.3.1)

An increment of the density of p0(r, t) in time dt

dp0(r, t) = p0(r, t + dt)− p0(r, t),

consists of two parts. The first part is negative, it is caused by the particles
leaving traps,

[dp0(r, t)]− = −µp0(r, t)dt,

The second one is positive, it is brought by particles falling down into traps:

[dp0(r, t)]+ =
∫

dr′p(r′)µp0(r− r′, t− r′/v)dt.

As a result, we come to the following equation for p0(r, t):

∂p0

∂t
= −µp0 + µ

∫
dr′p(r′)p0(r− r′, t− r′/v). (12.3.2)
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We recall that p(r)dr is the probability for the particle leaving trap at the
origin of coordinates to undergo the first collision in the volume dr = dS ⋅ dr.
Let P(r)dS be the probability that the particle crosses the element dS of the
sphere of radius r without interaction on a path r. The contribution to the
density pv of the particle is equal to (1/v)P(r)δ (t − r/v). Replacing here r by
r′ and applying this result to all the particles leaving traps and occurring at
time t at the point r, we obtain

pv(r, t) =
1
v

∫
dr′

∫
dt′P(r′)δ (t′ − r′/v)µp0(r− r′, t− t′)

=
1
v

∫
dr′P(r′)µp0(r− r′, t− r/v′). (12.3.3)

In the three-dimensional space with exponential distribution of r, equa-
tions (12.3.2)–(12.3.3) describe the non-stationary transport of neutrons with
delay and, to within some details (absence of absorption and scattering, con-
stancy of a velocity), are equivalent to equations (1.13)–(1.14) of (Shykhov,
1973). If µ → 0, then ρ0 → 0, and (12.3.3) turns into time-dependent one-
velocity kinetic equation with isotropic scattering widely used in neutron
physics (Beckurts & Wirtz, 1964; Davison, 1957; Case & Zweifel, 1967). So,
we call (12.3.2)–(12.3.3) the kinetic equations.

In the limit v = ∞, another term of sum (12.3.1) remains different from
zero:

p(r, t) = p0(r, t).

It satisfies the Kolmogorov equation

∂p
∂t

= −µp + µ
∫

dr′p(r′)p0(r− r′, t), (12.3.4)

describing the generalized Poisson process (Feller, 1966).
Returning to the probabilistic interpretation of the equations, we rewrite

the general initial condition as

p(r, 0) = p0(r, 0) = δ (r).

Applying the Fourier transformation with respect to coordinates, we trans-
form (12.3.4) to the equation for the characteristic function ƒ(k, t) of the distri-
bution p(r, t):

∂ƒ
∂t

= −µ
[
1− ϕ(k)

]
ƒ(k, t), ƒ(k, 0) = 1. (12.3.5)

The solution of equation (12.3.5) is of the form

ƒ(k, t) = exp {−
[
1− ϕ(k)

]
µt} , (12.3.6)
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and its asymptotic behavior as t →∞ is determined by the behavior of ƒ(k) for
small k.

If the second moment of the distribution p(r)
∫

p(r)r2dr = σ2 (12.3.7)

is finite, then
1− ϕ(k) ∼ (σ2/2)k2, k → 0,

and the characteristic function (12.3.6) in the domain of large t behaves as

ƒ(k, t) ∼ ƒas(k, t) = exp
{
−
(

µtσ2/2
)

k2
}

. (12.3.8)

Since
∂ƒas(k, t)

∂t
= −

(
µσ2/2

)
k2ƒas(k, t),

the asymptotic density pas(r, t) satisfies the ordinary diffusion equation

∂pas

∂t
= D∆pas(r, t)

with the diffusivity
D = µσ2/2,

and the initial condition
pas(r, 0) = δ (r).

We cite this, generally speaking, trivial fact to emphasize that the asymp-
totic behavior of the solution of (12.3.4) under condition (12.3.7) is an exact
solution of the diffusion equation.

If the second moment (12.3.7) is infinite, but the condition
∫

r>R
p(r)dr ∼ AR−α , R →∞, α < 2, (12.3.9)

holds true, then
1− ϕ(k) ∼ A′kα , k → 0,

and we obtain

ƒ(k, t) ∼ ƒas(k, t) = exp
{
−µtA′kα} , t →∞,

instead of (12.3.8). This expression immediately leads us to the three-
dimensional spherically symmetric stable distribution

pas(r, t) = (Dt)−3/αq3(r(Dt)−1/α ; α), (12.3.10)

where D = µA′.
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Solution (12.3.10) can be obtained also in a simpler way with the use of
properties of stable laws: under condition (12.3.9) the normalized sum of a
large number n of independent random vectors Ri

Sn = (b1n1/α )−1
n∑

i=1

Ri, (12.3.11)

is distributed by the stable law with the characteristic α. The distribution
of random number N of terms at time t is given by the Poisson law with the
average value 〈N〉 = µt and the relative fluctuations (µt)−1/2. So, as µt → ∞,
it is possible to replace n in (12.3.11) by µt. Because after such a replacement
sum (12.3.11) turns into the random vector X(t) pointing to a particle position
at time t, one can write

X(t) d= (Dt)1/αY(α), D = bα
1 µ,

where Y(α) is a random vector with the symmetric stable density q3(r; α).
Thus, we arrive at (12.3.10) again.

To correct for an influence of a finite velocity of free motion, it is necessary
to perform the simultaneous asymptotic analysis of (12.3.2) and (12.3.3) as
t →∞. Since the rigorous calculations are somewhat cumbersome, we confine
the presentation to an elementary derivation leading to the same result.

In the case of a finite velocity v, the sum

Sn = (b1n1/α )−1
n∑

i=1

Ri

takes the random time

Θ =
n∑

i=1

(Ti + Ri/v).

In the case α > 1, the expectation a = ER is finite, and for large n it is possible
to set

Θ ≈ t = n(1/µ + a/v) (12.3.12)

due to the law of large numbers. Obtaining herefrom

n = (1 + µa/v)−1µt

and introducing

tv = (1 + µa/v)−1t, (12.3.13)

we arrive at (12.3.10) with t replaced by tv:

pas(r, t) = (Dtv)−3/αq3

(
r(Dtv)−1/α ; α

)
, α > 1. (12.3.14)
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This result is physically obvious: the presence of a finite velocity of free motion
decelerates the expansion of a diffusion packet as compared with the case
v =∞. The replacement of the time t by a smaller tv is due to this deceleration
(in an asymptotic sense).

As the diffusivity and the time enter the asymptotic density as a product,
(12.3.14) can be rewritten as

pas(r, t) = (Dvt)−3/αq3

(
r(Dvt)−1/α ; α

)
, α > 1,

where
Dv = (1 + µa/v)−1D.

As shown in Section 8.4, function (12.3.10) satisfies fractional differential equa-
tion (8.4.8), which allows us to write

∂pas

∂t
= −Dv(−∆)α/2pas(r, t) (12.3.15)

provided that v <∞.
Thus, the finiteness of velocity influences only the diffusivity in the equa-

tion; its solution remains a spherically symmetric stable law. But this con-
clusion is fair only under the condition α > 1, which has been used to replace
(12.3.12). If α < 1, the situation is essentially different: there is no linear
transformation which could transform the solution with v <∞ into a solution
with v =∞.

The last conclusion can be easily understood. The width of a diffusion
packet of a particle with v = ∞ grows as t1/α . A finite velocity makes the
density vanish outside the sphere of radius vt. Therefore, if α > 1, then the
influence of the last (ballistic) constraint becomes weak as time grows, since
the diffusion radius grows slower than the ballistic one. However, by passing
to the domain α < 1 the situation becomes inverse and the diffusion radius
predominates. Being bounded by the radius vt, a solution with v < ∞ has a
completely different form as compared with a stable distribution. Obviously,
this means that equation (12.3.15) with Laplacian raised to the power α/2 for
α < 1 is generally inapplicable to the description of real diffusion processes.

The Monte-Carlo simulation of the one-dimensional particle walk confirms
the conclusion above: with α = 3/2, the replacement of D with Dv guarantees
the asymptotic goodness-of-fit of solutions of (12.3.4) and (12.3.15) whereas
with α = 1/2 the solutions are essentially different (see Figures 12.3–12.4).

Let us sum up the abovesaid.

• The superdiffusion equation describes the asymptotic behavior of a gen-
eralized Poisson process with instantaneous (jump-like) independent in-
crements, whose absolute value is distributed with density p(r) ∝ r−α−1,
0 < α < 2.
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Figure 12.3. The superdiffusion packet in the case α = 3/2. The histograms are
Monte-Carlo results, the curves are the stable distributions, the
straight lines show ballistic constraints

• The solutions of the equation belong to the class of spherically symmetric
stable distributions q3(r; α).

• For α ∈ [1, 2], this equation describes also the asymptotic behavior of a
walking particle with a finite free motion velocity v (provided that D is
replaced by Dv = (1 + µa/v)−1D, where a is the mean free path, and 1/µ
is the mean waiting time).

• For α < 1, the superdiffusion packet spreads in space faster than the
packet of freely moving particles, and solutions of the diffusion equation
(12.3.15) and kinetic equation (12.3.4) have completely different asymp-
totic expressions.

The last serves as a basis for the conclusion about inapplicability of su-
perdiffusion equations to the description of real physical processes in the do-
main α < 1.
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Figure 12.4. The same as in Fig. 12.3 but for α = 1/2

12.4. Subdiffusion
Now we consider another model. As before, let there exist two possible states
and let one of them be the state of rest (trapping). But in contrast to the
preceding case, the other state is ordinary diffusion with diffusivity D:

ρ(r, t) = (4πDt)−3/2e−r2/(4Dt).

Let q1(t) be the distribution density of random diffusion time, q0(t) be the
distribution of waiting time, and let both these times be independent. This
process is described by the following simultaneous equations:

p0(r, t) = Q0(t)δ (r) +
∫ t

0
dτ q0(τ)p1(r, t− τ), (12.4.1)

p1(r, t) = Q1(t)ρ(r, t) +
∫ t

0
dτ q1(τ)ρ(r, τ) ∗ p0(r, t− τ),

(12.4.2)

where
Qi(t) =

∫ ∞

t
qi(τ)dτ,
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and ∗ denotes the convolution operation with respect to spatial variables:

ρ(r, τ) ∗ p0(r, t− τ) =
∫

ρ(r′, τ)p0(r− r′, t− τ) dr′. (12.4.3)

Assuming that the spatial distribution of traps is a homogeneous Poisson
ensemble, i.e.,

q1(τ) = µe−µτ , (12.4.4)

we can find necessary and sufficient conditions for the subdiffusion mode to
occur. Introducing, for the sake of brevity, the notation

si(t) =
∫

r2pi(r, t) dr,

we write the equations that follow from (12.4.1)–(12.4.2)

s0(t) =
∫ t

0
dτq0(τ)s1(t− τ), (12.4.5)

s1(t) = Q1(t)at +
∫ t

0
dτq1(τ)[aτ + s0(t− τ)], (12.4.6)

where

a = 6D. (12.4.7)

Substituting (12.4.4) into (12.4.6) and using the Laplace transformation

si(λ ) ≡ s̃i(λ ) =
∫ ∞

0
e−λ tsi(t)dt,

we arrive at the algebraic equations for the transforms:

s0(λ ) = q0(λ )s1(λ ),

s1(λ ) =
a

λ (µ + λ )
+

µ
µ + λ

s0(λ )

with the solution

s0(λ ) =
aq0(λ )

λ {λ + µ[1− q0(λ )]} , (12.4.8)

s1(λ ) =
a

λ {λ + µ[1− q0(λ )]} . (12.4.9)

It is worthwhile to notice that the passage to continuous ordinary diffusion is
carried out by setting µ = 0 in the last equation, which yields

s1(λ ) ∼ a
λ 2 , λ → 0, s1(t) ∼ at, t →∞, (12.4.10)
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which correlates well with the normal diffusion.
Due to the Tauberian theorems, the relation

si(t) ∼ Aitω , t →∞, (12.4.11)

yields

si(λ ) ∼ Γ(α + 1)Aiλ−ω−1, λ → 0, (12.4.12)

and vice versa. Substituting (12.4.12) into (12.4.8) and (12.4.9), and solving
the equations obtained for 1− q0(λ ), we arrive at the necessary condition for
the subdiffusion to occur:

1− q0(λ ) ∼ bλ ω , λ → 0, b =
a

µΓ(ω + 1)A
, (12.4.13)

and A1 = A2 = A (the asymptotic behavior of a subdiffusion package width
does not depend on the initial state of a particle). By virtue of invertibility of
the Tauberian theorems, condition (12.4.13) is sufficient as well.

To reformulate the condition for the density q0(τ), we again call for the
Tauberian theorems and apply them to the functions Q0(t) and
Q0(λ ) = (1− q0(λ ))/λ . We obtain

Q0(t) =
∫ ∞

t
q0(τ)dτ ∼ Bt−ω , t →∞, B =

a
µ[Γ(1− α)]2A

or, for the density,

q0(t) ∼ ωBt−ω−1, t →∞. (12.4.14)

Thus, in the model with exponential distribution of diffusion times (12.4.4)
subdiffusion arises in the case where the waiting time distribution has inverse
power tail (12.4.14) with ω < 1. In particular, this means that the average
waiting time should be infinite:

∫ ∞

0
τq0(τ)dτ =∞, ω < 1. (12.4.15)

If it is finite, ∫ ∞

0
τq0(τ)dτ ≡ τ0,

then q0(λ ) behaves as follows:

q0(λ ) ∼ 1− τ0λ , λ → 0. (12.4.16)

Substituting (12.4.16) into (12.4.9), we see that in this case

s1(λ ) ∼ a
λ 2[1 + µτ0]

, λ → 0,
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and the trapping effect reduces only the diffusivity factor

D →
D

1 + µτ0
,

keeping the packet form unchanged.
To investigate the spatial probability distribution in a subdiffusion packet

we apply the Fourier–Laplace transformation

pi(k, λ ) =
∫ ∞

0
dt
∫

dr exp{−λ t + ikr}pi(r, t) (12.4.17)

to (12.4.1) and (12.4.2), which yields

p0(k, λ ) = [1− q0(λ )]/λ + q0(λ )p1(k, λ ),
p1(k, λ ) = ρ(k, λ + µ)[1 + µp0(k, λ )].

The solution is

p0(k, λ ) =
1− q0(λ )[1− λρ(k, λ + µ)]

λ [1− µq0(λ )ρ(k, λ + µ)]
, (12.4.18)

p1(k, λ ) =
ρ(k, λ + µ) {λ + µ[1− q0(λ )]}

λ [1− µq0(λ )ρ(k, λ + µ)]
. (12.4.19)

We recall that
ρ(k, t) = e−k2Dt;

hence
ρ(k, λ + µ) =

1
λ + µ + Dk2 .

Using condition (12.4.13) in formulae (12.4.18), (12.4.19), for the leading
asymptotic terms we obtain the expression

pas(k, λ ) =
λ ω

λ [D′k2 + λ ω ]
, D′ = D/(µb), (12.4.20)

regardless of the initial conditions. Now, inverting transformation (12.4.17)
and changing the integration variables, we see that the density pas(r, t) is
expressed in a scalable way:

pas(r, t) = (D′tω )−3/2Ψ(r(D′tω )−1/2), (12.4.21)

where

Ψ(r) =
1

(2π)4i

∫
dk
∫

dλ
λ ω−1 exp {λ − ikr}

λ ω + k2 . (12.4.22)
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We issue the identity

1
λ ω + k2 =

∫ ∞

0
e−[λ ω+k2]ξ dξ .

With this, we bring (12.4.22) to the form

Ψ(r) =
1

(2π)4i

∫ ∞

0
dξ
∫

dk e−ikr−k2ξ
∫

eλ−ξλ ω
λ ω−1dλ

=
1

2πi

∫ ∞

0
dξξ−3/2q3(rξ−1/2; 2)

∫
eλ−ξλ ω

λ ω−1dλ .

Calculating the inner integral by parts

J ≡
∫

eλ−ξλ ω
λ ω−1dλ =

1
ξω

∫
eλ−ξλ ω

dλ

we obtain

Ψ(r) =
1

ω2πi

∫
dλeλ

∫ ∞

0
dξe−ξλ ω

ξ−5/2q3(rξ−1/2; 2).

The subdiffusion distribution (12.4.21) can be derived, as well as the usual
diffusion distribution, by simple probabilistic reasoning based on the use of the
limit theorem in its generalized form. If the independent random variables Ti
are distributed with density g0(t) satisfying (12.4.14), the normalized sum

Sn =
n∑

i=1

Ti/
[
nBΓ(1− ω)

]1/ω

for large n is distributed with the density qB(t; ω , 1). In other words, the density
q(n)

0 (t) for the sum
∑n

i=1 Ti of a large number of terms n has the asymptotic form

q(n)
0 (t) ∼ [nB∗]−1/ω qB

(
(nB∗)−1/ω t; ω , 1

)
,

where
B∗ = BΓ(1− ω).

Neglecting the diffusion time of particle while evaluating the distribution
of N as the observation time t →∞, we obtain

P{N = n} ≈ Q(n)
0 (t)−Q(n+1)

0 (t)

= GB

(
(nB∗)−1/ω t; ω , 1

)
− GB

([
(n + 1)B∗

]−1/ω t; ω , 1
)

.

Representing the argument of the subtrahend as
[
(n + 1)B∗

]−1/ω t =
[
nB∗

]−1/ω t−
[
nB∗

]−1/ω t(nω)−1
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and expanding it into a series, we arrive at the asymptotical expression

P{N = n} ∼
[
nB∗

]−1/ω t(nω)−1qA
([

nB∗
]−1/ω t; α, 1

)
, t →∞.

With fixed N = n, the conditional distribution of the particle coordinate is
expressed in terms of the ordinary diffusion density by the relation

p(r, t | n) ∼ p(r, n/µ)

Here the random time of diffusion is replaced by the average value n/µ for rea-
sons well understood. Averaging now over the number of continuous diffusion
acts

p(r, t) =
∑

n
p(r, t | n)P{ν = n}

and passing from summation over n to integration over ξ =
[
nB∗

]−1/ω t, we
arrive at the same result (12.4.21).

The obtained distribution possesses all spatial moments expressible in an
explicit form. Let

m2n(t) =
∫

r2npas(r, t) dr,

M2n =
∫

r2nΨ(r) dr.

It follows from (12.4.21) that they are inter-related as

m2n(t) = (D′tω )nM2n,

where
M2n =

∫ ∞

0
qB(t; ω , 1)t−nωdt

∫
r2nq3(r; 2) dr

is the product of moments of the two stable distributions qB(t) and q3(r; 2). The
negative moments of qB(t; ω , 1) exist and are

∫ ∞

0
t−nωqB(t; ω , 1)dt =

Γ(n)
ωΓ(nω)

.

For the other moments,

∫
r2nq3(r; 2)dr =

22n+1
√

π
Γ(n + 3/2);

hence

m2n(t) =
22n+1Γ(n)Γ(n + 3/2)D′n√

πωΓ(nω)
tωn.
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12.5. CTRW equations
We saw above that the superdiffusion and subdiffusion regimes arise as large
time asymptotics from some walk processes. Following this way, we consider
now a more general case of walk with arbitrary distributions of free path and
waiting time of a walking particle. This approach is known as the CTRW
(continuous-time random walks) theory (Shlesinger et al., 1982; Montroll &
Shlesinger, 1982b; Montroll & West, 1979; Montroll & Scher, 1973).

A walk in three-dimensional space which we are going to consider is defined
in the following way.

(1) There exist only two possible states of a particle: the state of rest (trap-
ping) i = 0 and the state of moving i = 1 with a constant speed v (flight):
v0 = 0, v1 = v.

(2) The external source produces only one particle at the origin r = 0 at the
time t = 0. The particle is born in the state of rest with the probability
p0 and in the state of moving with the probability p1. In the last case,
the angular distribution of the particles satisfies the probability density
W(ΩΩΩ):

∫
W(ΩΩΩ) dΩΩΩ = 1. (12.5.1)

(3) The free path distribution for the state of moving and the waiting time
distribution for the state of rest are given by the densities p(ξ ) and q(τ)
respectively.

(4) After each collision, the particle is trapped with probability c ≤ 1, or it is
immediately scattered the probability 1− c:

p01 = c, p11 = 1− c, p10 = 1, p00 = 0.

(5) The random direction ΩΩΩ of the scattered or trap-leaving particle is dis-
tributed as the primary direction

W11(ΩΩΩ′ → ΩΩΩ) = W10(ΩΩΩ′ → ΩΩΩ) = W(ΩΩΩ)

no matter what the preceding direction ΩΩΩ′ was.

We are interested now in the function p(r, t) giving the probability distribu-
tion of the particle position r at time t. In order to obtain the desired equations,
we consider first the two-group model with slow (v0) and fast (v1 = v) states of
the particle and then let v0 → 0. Taking

W01(ΩΩΩ′ → ΩΩΩ) = W(ΩΩΩ)
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for slow particles and using assumptions (2)–(5) for them, we obtain

p(r, t) =
∫

dΩΩΩ
{∫ t

0
dτQ(τ)ƒ0(r− v0ΩΩΩτ, ΩΩΩ, t− τ)

+ (1/v)
∫ vt

0
dξ P(ξ )ƒ1(r−ΩΩΩξ , ΩΩΩ, t− ξ /v)

}
, (12.5.2)

ƒ0(r, ΩΩΩ, t) =
{

c
∫ vt

0
dξp(ξ )

∫
dΩΩΩ′ƒ1(r−ΩΩΩ′ξ , ΩΩΩ′, t− ξ /v) + p0δ (r)δ (t)

}
W(ΩΩΩ),
(12.5.3)

ƒ1(r, ΩΩΩ, t) =
{

(1− c)
∫ vt

0
dξp(ξ )

∫
dΩΩΩ′ƒ1(r−ΩΩΩ′ξ , ΩΩΩ′, t− ξ /v)

+
∫ t

0
dτq(τ)

∫
dΩΩΩ′ƒ0(r− v0ΩΩΩ′τ, ΩΩΩ′, t− τ) + p1δ (r)δ (t)

}
W(ΩΩΩ).
(12.5.4)

Denoting the braced functions by F0(r, t) and F1(r, t) respectively, we write

ƒi(r, ΩΩΩ, t) = Fi(r, t)W(ΩΩΩ).

Substitution of this expression into (12.5.2) yields

p(r, t) =
∫ t

0
dτ
∫

dΩΩΩQ(τ)W(ΩΩΩ)F0(r− v0ΩΩΩτ, t− τ)

+ (1/v)
∫ vt

0
dξ
∫

dΩΩΩP(ξ )W(ΩΩΩ)F1(r−ΩΩΩξ , t− ξ /v).

On the other hand, the functions Fi(r, t) satisfy the equations following from
(12.5.3)–(12.5.4):

F0(r, t) = c
∫ vt

0
dξ p(ξ )

∫
dΩΩΩW(ΩΩΩ)F1(r−ΩΩΩξ , t− ξ /v) + p0δ (r)δ (t),

F1(r, t) = (1− c)
∫ vt

0
dξ p(ξ )

∫
dΩΩΩW(ΩΩΩ)F1(r−ΩΩΩξ , t− ξ /v)

+
∫ t

0
dτ q(τ)

∫
dΩΩΩW(ΩΩΩ)F0(r− v0ΩΩΩτ, t− τ) + p1δ (r)δ (t).

Letting v0 → 0 and taking normalization (12.5.1) into account, we arrive at
the final result

p(r, t) =
∫ t

0
dτQ(τ)F0(r, t− τ) + (1/v)

∫
dr′P(r′)F1(r− r′, t− r′/v),

(12.5.5)

F0(r, t) = c
∫

dr′p(r′)F1(r− r′, t− r′/v) + p0δ (r)δ (t), (12.5.6)

F1(r, t) = (1− c)
∫

dr′p(r′)F1(r− r′, t− r′/v)

+
∫ t

0
dτq(τ)F0(r, t− τ) + p1δ (r)δ (t), (12.5.7)
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where
P(r′) = P(ξ )W(r′/ξ )/ξ2, p(r′) = p(ξ )W(r′/ξ )/ξ2, ξ = |r′|,

and Fi(r, t) vanish for t < 0.
In order to reduce the equations to the one-dimensional case, we have to

take
W(ΩΩΩ) = c1δ (ΩΩΩ− e) + c2δ (ΩΩΩ + e)

where c1, c2 > 0, c1 + c2 = 1 and e is the unit vector of the x-axis along which
the particle is walking. In the symmetric case c1 = c2 = 1/2, and we obtain

p(r′) = (1/2)p(ξ )δ (y′)δ (z′), ξ = |x′|.

Introducing the one-dimensional density

p(x, t) =
∫∫ ∞

−∞
p(x, y, z, t) dy dz,

from (12.5.5)–(12.5.7) we obtain

p(x, t) =
∫ t

0
dτ Q(τ)F0(x, t− τ)

+ (2v)−1
∫ vt

0
dξP(ξ )[F1(x− ξ , t− ξ /v) + F1(x + ξ , t− ξ /v)],

(12.5.8)

F0(x, t) = (c/2)
∫ vt

0
dξp(ξ )[F1(x− ξ , t− ξ /v) + F1(x + ξ , t− ξ /v)] + p0δ (x)δ (t),

(12.5.9)

F1(x, t) = [(1− c)/2]
∫ vt

0
dξp(ξ )[F1(x− ξ , t− ξ /v)

+ F1(x + ξ , t− ξ /v)] +
∫ t

0
dτq(τ)F0(x, t− τ) + p1δ (x)δ (t).

(12.5.10)

For better understanding of the equations, we refer to the space-time di-
agram given in Fig. 12.5. Every random trajectory is made up of a set of
segments, each parallel to one of the straight lines x = 0, x = vt, x = −vt.
Hence the density p(x, t) is split into the terms

p(x, t) = p(0)(x, t) + p(+)(x, t) + p(−)(x, t).

Since F0(x, t) dx dt is the probability for the particle to fall into trap in the
space-time domain dx dt and Q(τ) is the probability to wait here longer than τ,
we obtain

p(0)(x, t) =
∫ t

0
dτQ(τ)F0(x, t− τ).
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Figure 12.5.

This is the first term of sum (12.5.8). Reasoning along similar lines for moving
particle, we arrive at the others.

To explain (12.5.9), we refer to the diagram again. As one can see, the
density F0(x, t) for t > 0 in turn is split into two parts: F(+)

0 (x, t) and F(−)
0 (x, t)

relating to the particles moving before collision to the right and to the left
respectively. With this in mind, we immediately obtain

F(+)
0 (x, t) = (c/2)

∫ vt

0
dξp(ξ )F1(x− ξ , t− ξ /v),

F(−)
0 (x, t) = (c/2)

∫ vt

0
dξp(ξ )F1(x + ξ , t− ξ /v),

where p(ξ )dξ is the probability that the random free path falls into (ξ , ξ + dξ ).
Similar reasoning clears up the sense of (12.5.10), too.

12.6. Some special cases
Let v =∞, c = 1 and p0 = 1. The walking particle hence begins its history from
the quiescent state and falls in traps after each jump. If we set q(τ) = δ (τ− 1),
(12.5.5)–(12.5.7) take the form

p(r, t) =
∫ 1

0
dτ F0(r, t− τ), (12.6.1)

F0(r, t) =
∫

dr′p(r′)F0(r− r′, t− 1) + δ (r)δ (t).
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The latter equation has the solution

F0(r, t) =
∞∑

k=0

pk(r)δ (t− k), (12.6.2)

where

p(k)(r) =
∫

dr′p(r′)p(k−1)(r− r′),

p(1)(r) ≡ p(r), p(0)(r) = δ (r).

Substitution of (12.6.2) into (12.6.1) yields

p(r, t) =
∫ t

t−1
dt′F0(r, t′) = p([t])(r), (12.6.3)

where [t] stands for the integer part of t; (12.6.3) is merely the distribution
density of the sum S[t] of a fixed number [t] of independent random vectors ri:

S[t] =
[t]∑

i=1

Ri.

We immediately conclude that

p(r, t + 1) =
∫

dr′p(r′)p(r− r′, t), t > 0,

is merely the Chapman–Kolmogorov equation, which can be rewritten as

p(r, t + 1)− p(r, t) =
∫

dr′p(r′)[p(r− r′, t)− p(r, t)],

and conforms with equation (5) from (Chukbar, 1995), where only the one-
dimensional case was considered.

We take now q(t) = µe−µτ under the same rest conditions:

p(r, t) =
∫ t

0
dτµ̃e−µτF0(r, t− τ), (12.6.4)

F0(r, t) = δ (r)δ (t) + µ
∫

dr′p(r′)p(r− r′, t), (12.6.5)

which yield the integral equation

p(r, t) = p(r)e−µt + µ
∫ t

0
dτe−µτ

∫
dr′p(r′)p(r− r′, t− τ).
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By differentiation with respect to t, we bring it to the form of the forward
Kolmogorov equation (Feller, 1966):

∂p
∂t

= −µp(r, t) + µ
∫

dr′p(r′)p(r− r′, t), p(r, 0) = δ (r).

Its solution is

p(r, t) =
∞∑

k=0

wk(t)p(k)(r), (12.6.6)

where

wk(t) =
(µt)k

k!
e−µt

is the Poisson distribution. This means that density (12.6.6) determines the
distribution of the sum SN of a random Poisson’s number N of independent
random vectors Ri distributed with density p(r):

SN =
N∑

i=1

Ri.

Let us consider the one-dimensional symmetric walk with deterministic
unit step and an arbitrary distribution of waiting time under the conditions
v =∞, p0 = 1, and c = 1. From (12.5.8)–(12.5.10) it follows that in this case

p(x, t) =
∫ t

0
dτQ(τ)F0(x, t− τ), (12.6.7)

F0(x, t) = δ (x)δ (t) + (1/2)
∫ t

0
dτq(τ)[F0(x− 1, t− τ) + F0(x + 1, t− τ)].

(12.6.8)

Substituting (12.6.8) into (12.6.7) and changing the integration order, we ob-
tain

p(x, t) = Q(t)δ (x) + (1/2)
∫ t

0
dτ′q(τ′)

×
∫ t−τ′

0
dτQ(τ)

[
F(x− 1, t− τ − τ′) + F(x + 1, t− τ − τ′)

]
.

By (12.6.7),

∫ t−τ′

0
dτQ(τ)

[
F(x− 1, t− τ − τ′) + F(x + 1, t− τ − τ′)

]

= p(x− 1, t− τ′) + p(x + 1, t− τ′),
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hence

p(x, t) = Q(t)δ (x) + (1/2)
∫ t

0
dτ q(τ)[p(x− 1, t− τ) + p(x + 1, t− τ)].

(12.6.9)

If many particles are born at the initial time with the distribution density
n0(x) = n(x, 0), then the density

n(x, t) =
∫ ∞

−∞
p(x− x′, t)n0(x′) dx′

satisfies the equation

n(x, t) = n0(x)Q(t) + 1
2

∫ t

0
dτq(τ)[n(x− 1, t− τ ′) + n(x + 1, t− τ′)],

which follows from (12.6.9).
Let us turn to the three-dimensional walk with c = 1, and p0 = 1. In this

case, (12.5.6)–(12.5.7) are reduced to

F0(r, t) =
∫

dr′
∫

dt′w(r′, t′)F0(r− r′, t− t′) + δ (r)δ (t),
(12.6.10)

F1(r, t) =
∫

dτq(τ)F0(r, t− τ) + δ (r)δ (t),

w(r, t) = p(r)q(t− r/v). (12.6.11)

Let us split the density p(r, t) into two components: p0(r, t) related to the
quiescence state and p∗(r, t) related to the motion state. It is easily seen that

p0(r, t) =
∫

dτ Q(τ)F0(r, t− τ), (12.6.12)

p0(r, t) =
∫

dr′
∫

dt′w(r′, t′)p(r− r′, t− t′) + Q(t)δ (r).
(12.6.13)

Relations (12.6.10), (12.6.12), and (12.6.13) are identical to (17), (18), and
(19), respectively, from (Klafter et al., 1987) devoted to continuous-time random
walk models with coupled memories. As shown in (Compte, 1996; Compte et
al., 1997), the long-time (or long-distance) limit behavior of the distribution is
described in terms of fractional equations (see also (Nigmatullin, 1986)).

Reverting to the Fourier–Laplace space, (r, t) → (k, λ ), (12.6.13) becomes

p0(k, λ ) = w(k, λ )p0(k, λ ) + Q(λ )

with the solution

p0(k, λ ) =
Q(λ )

1− w(k, λ )
=

1− q(λ )
λ (1− w(k, λ ))

,
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where
w(k, λ ) =

∫
dr
∫

dt eikr−λ tp(r)q(t− r/v).

In the limit as v →∞, we obtain decoupled memory,

w(k, λ ) = p(k)q(λ ),

and arrive at the Montroll–Weiss result (Montroll & Weiss, 1965)

p(k, λ ) =
1− q(λ )

λ [1− p(k)q(λ )]
. (12.6.14)

12.7. Asymptotic solution of the Montroll–Weiss
problem

The above presentation allows us to express the asymptotic solution of the
Montroll–Weiss problem in terms of stable distributions.

Under conditions (12.3.9) and (12.4.13), the asymptotic expression for the
Montroll–Weiss transform p(k, λ ) in the domain of small values of its argu-
ments takes the form

pas(k, λ ) =
λ ω−1

λ ω + Dkα , D = b/A′, (12.7.1)

which yields the corresponding density in the scalable (automodel) form:

pas(r, t) =
1

(2π)4i

∫
dk
∫

dλ e−ikr+λ tpas(k, λ )

= (Dtω )−3/2Ψ(α ,ω)
{

(Dtω )−1/2r
}

, (12.7.2)

where

Ψ(α ,ω)(r) =
1

(2π)4i

∫
dk
∫

dλe−ikr+λ λ ω−1

λ ω + kα . (12.7.3)

Four cases arise here.

CASE 1 (α = 2, ω = 1). This case concerns the normal diffusion. Recall that it
covers all CTRW processes with arbitrary distributions p(r) and p(t) possessing
the finite moments

∫
p(r)r2dr = σ2, (12.7.4)

∫ ∞

0
p(t)t dt = τ. (12.7.5)
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The integrand in (12.7.3) has a simple pole at the point λ = −k2; hence

1
2πi

∫ a+i∞

a−i∞

1
λ + k2 eλ dλ = e−k2

,

and

Ψ(2,1)(r) = (4π)−3/2e−r2/4 ≡ q3(r; 2) (12.7.6)

is the three-dimensional stable distribution with α = 2 (Gaussian).

CASE 2 (α < 2, ω = 1). This case is referred to as the Lévy flight with inverse
power type distribution p(r) ∝ r−α−3 and an arbitrary distribution p(t) of
waiting times T possessing a finite first moment (12.7.5). It does not differ
from the first case with the exception of the pole position, being now λ = −kα .
This leads us to the spherically symmetric stable distribution

Ψ(α ,1)(r) = q3(r; α). (12.7.7)

Thus, we have the superdiffusion solution discussed in Section 12.3.

CASE 3 (α = 2, ω < 1). This is the case of Lévy trapping with the inverse power
type distribution p(t) ∝ t−ω−1 and an arbitrary distribution p(r) possessing a
finite second moment (12.7.4). Now λ = | − kα |1/ω is a branch point, and the
residue method cannot be used. Following the way used in Section 12.4, we
obtain the same result:

Ψ(2,ω)(r) =
∫ ∞

0
qB(t; ω , 1)q3(rtω/2; 2)t3ω/2dt. (12.7.8)

CASE 4 (α < 2, ω < 1). This is the case of Lévy flight and Lévy trapping. Pro-
ceeding as in the third case we obtain

Ψ(α ,ω)(r) =
∫ ∞

0
qB(t; ω , 1)q3(rtω/α ; α)t3ω/α dt. (12.7.9)

This is the complete asymptotic solution of the Montroll–Weiss problem.
It is worthwhile to notice that the above-obtained asymptotic expressions

(12.7.2) with (12.7.7)–(12.7.9) correlate well with fractional differential equa-
tions.

Indeed, as one can see from (12.7.1) the Fourier–Laplace transform of
pas(r, t) satisfies the equation

λpas(k, λ ) = −Dλ 1−ω kαpas(k, λ ) + 1. (12.7.10)

The case ω = 1 has been considered in Section 12.3, where the fractional
equation

∂pas(r, t)
∂t

= −D(−∆)α/2pas(r, t) + δ (r)
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r r

Ψ(1,1/2) Ψ(2,1/2)

Figure 12.6. The three-dimensional solution Ψ(1,1/2)(r) (1) compared with the cor-
responding Cauchy density (7.2.7) (2), and the three-dimensional
solution Ψ(2,1/2)(r) (1) compared with the corresponding Gauss den-
sity (7.2.8) (2)

was established. Now we have to apply the fractional derivative with respect
to time. Inverse transformation of (12.7.10) yields

∂pas(r, t)
∂t

= −D(−∆)α/2 ∂1−ω pas(r, t)
∂t1−ω = δ (r)δ (t). (12.7.11)

Another equivalent form of the anomalous diffusion equation can be obtained
with the use of the equation

λ ω pas(k, λ ) = −Dkαpas(k, λ ) + λ ω−1 (12.7.12)

following from (12.7.10):

∂ωpas(r, t)
∂tω = −D(−∆)α/2pas(r, t) +

t−ω

Γ(1− ω)
δ (r). (12.7.13)

The solutions of both of these equations are of the form (12.7.6)–(12.7.9).
The functions ψ (1,1/2)(r) and ψ (2,1/2) are plotted in Fig. 12.6 compared with the
Cauchy and Gauss densities respectively.

12.8. Two-state model
In the above cases, we thought of particles that move at a constant velocity for a
random time (or displacement), then stop and choose a new direction and a new
time of sojourn at random according to given probabilities. They refer to this
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model as the velocity model. If the particle performing one-dimensional walk
without trapping proceeds its motion in the same direction, the observer may
not distinguish whether the particle has stopped at all or has simply continued
its motion until it stops and changes direction. Thus, there exists a one-to-
one correspondence between the set of trajectories and the set of sequences of
turn points {xi, ti} on the space–time plane, and it is enough to consider only
these points of a trajectory. This case is called the two-state model (Zumofen
& Klafter, 1993).

The CTRW approach described in Section 12.5 with regard to the velocity
model can be easily adapted to the two-state model. Let us take for the sake of
simplicity v = 1 and label with R the state with a positive velocity (the particle
moves to the right), and by L, the state with a negative velocity (the particle
moves to the left). As a consequence, we obtain

p(x, t) = pR(x, t) + pL(x, t) (12.8.1)

where the terms

pR(x, t) =
∫ (t+x)/2

0
dξ PR(ξ )ƒRL(x− ξ , t− ξ ), (12.8.2)

pL(x, t) =
∫ (t−x)/2

0
dξ PL(ξ )ƒLR(x + ξ , t− ξ ) (12.8.3)

are expressed in terms of the distributions of free paths

PA(x) =
∫ ∞

x
pA(ξ )dξ , A = L, R,

and the space–time distributions of turn points ƒAB(x, t). We recall that
ƒAB(x, t) dx dt is the average number of turn points B → A in the domain
dx dt for a single trajectory. These functions satisfy the equations similar to
(12.5.9)–(12.5.10):

ƒRL(x, t) =
∫ (t−x)/2

0
dξpL(ξ )ƒLR(x + ξ , t− ξ ) + qRδ (x)δ (t),

(12.8.4)

ƒLR(x, t) =
∫ (t+x)/2

0
dξpR(ξ )ƒRL(x− ξ , t− ξ ) + qLδ (x)δ (t).

(12.8.5)

Here qR and qL are the probabilities of the initial direction, and the limits
of integrals are defined more accurately as compared with those in (12.5.9)–
(12.5.10).
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The Fourier–Laplace transformation of (12.8.1)-(12.8.5) yields

p(k, λ ) ≡
∫ ∞

0
dt
∫ t

−t
dx e−λ t+ikxp(x, t) = pR(k, λ ) + pL(k, λ ),

pR(k, λ ) = PR(λ − ik)ƒRL(k, λ ),
pL(k, λ ) = PL(λ + ik)ƒLR(k, λ ),

ƒRL(k, λ ) = pL(λ + ik)ƒLR(k, λ ) + qR,
ƒLR(k, λ ) = pR(λ − ik)ƒRL(k, λ ) + qL.

Here

pA(λ ) =
∫ ∞

0
e−λξ pA(ξ ) dξ ,

PA(λ ) =
∫ ∞

0
e−λξ PA(ξ ) dξ = [1− pA(λ )]/λ .

After straightforward transformations we obtain

p(k, λ ) =
{

1− pR(λ − ik)
λ − ik

[pL(λ + ik)qL + qR]

+
1− pL(λ + ik)

λ + ik
[pR(λ − ik)qR + qL]

}
[1− pL(λ + ik)pR(λ − ik)]−1.

It is easy to see that the expression satisfies the normalization

p(0, λ ) =
1
λ

.

Choosing now

qR = qL = 1/2,
pL(λ ) ∼ pR(λ ) ∼ 1− aλ − bλ α , λ → 0,

with 1 < α ≤ 2, we conclude that

p(k, λ ) ∼ 1
λ + D|k|α , λ → 0, D = const > 0.

Therefore, we obtain the asymptotic solution

pas(k, t) = e−D|k|αt, (12.8.6)

which is the characteristic function of the symmetric stable distribution with
α ∈ (1, 2]. The case α = 2 corresponds to the normal diffusion, whereas other
values of α are associated with superdiffusion.
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12.9. Stable laws in chaos
One of the promising applications of the anomalous diffusion theory leading
to stable laws may be the chaos problem.

The word ‘chaos’ comes from the Greek ‘χαoζ ’. Originally it had the mean-
ing of infinite space which existed before all other appeared. In modern natural
sciences, this word means a state of disorder and irregularity (Schuster, 1984).
Semantically, this concept can be considered as an opposite one to the word
‘order’, but the nature is more complicated. Poincaré (1892) (Poincaré, 1892)
discovered that chaotic mechanical motion can arise from a regular one de-
scribed by Hamiltonian equation. 70 years later, meteorologist E.N. Lorenz
(1963) (Lorenz, 1963) demonstrated that even a simple system of three non-
linear equations of the first order can lead to completely chaotic trajectories.
These are examples of a deterministic or Hamiltonian chaos, when chaotic mo-
tion is generated by non-linear systems uniquely determining it by its known
prehistory. The first cause of the chaotic behavior is the property of non-linear
system trajectories initially close to each other to move away of each other
exponentially fast (Schuster, 1984). Thus it becomes impossible to predict
long-term behavior of such systems.

During last decades, it becomes clear that this phenomenon is often to be
found in nature and plays an important role in many processes. Here is the
list of them being far from completion (taken from (Schuster, 1984)):

• the forced pendulum ((Humiéres et al., 1982));

• fluids near the turbulence threshold (Swinney & Gollub, 1981);

• non-linear optics and lasers (Haken, 1975; Hopf et al., 1982);

• Josephson junction (Cirillo & Pedersen, 1982);

• chemical reactions (Simoyi et al., 1982);

• three (or more) body problem (Hellemann, 1980);

• charged particle accelerators (Hellemann, 1980);

• channeling of particles in crystals (Kimball et al., 1988; Akhiezer et al.,
1991);

• interacting non-linear waves in plasma (Wersinger et al., 1980);

• biological models of population dynamics (May, 1976);

• stimulated cardiac oscillator (Glass et al., 1983).
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The impossibility to predict long-time chaotic motion stimulated the de-
velopment of the stochastic approach to its description (Zaslavsky & Chirikov,
1971). The reason for this can be quantitatively explained by considering the
‘standard map’ due to Chirikov–Taylor (Chirikov, 1979). This map is obtained
while considering the periodically kicked rotor:

yn+1 = yn + K sin xn, xn+1 = xn + yn+1, (12.9.1)

where y and x are the rotational momentum and the phase of the rotor, re-
spectively, and n, corresponding to the nth kick instance, plays the role of
discrete time. If K � 1, then the phase x, taken always in (0, 2π), changes
randomly. Averaging over the phase, from equation (12.9.1) one can easily get
the moments 〈∆y〉 = 0, 〈(∆y)2〉 = K2/2, where 〈⋅〉 means averaging over x in
the interval (0, 2π). These simple expressions lead eventually to the diffusion
(Fokker–Planck–Kolmogorov) equation

∂p(y, t)
∂t

= D
∂2p(y, t)

∂y2 , D = K2/4,

which describes the slow evolution of the momentum distribution function
p(y, t). This is the simplest manner in which a kinetic description arises in a
dynamical system with chaotic behavior. It is due to the randomness of the
fast variable phase, generated by non-random equations such as (12.9.1) above
(Shlesinger et al., 1993, p. 32). Considering a similar example and arriving at
the normal diffusion too, H. Schuster (Schuster, 1984, §2.3) concludes that the
diffusion arises not due to the action of a random force as in Brownian motion
but because the system ‘forgets’ its prehistory in the course of chaotic motion.

In reality, however, the situation proves to be more complicated. The
models considered in (Afanasiev et al., 1991; Chaikovsky & Zaslavsky, 1991;
Zaslavsky & Tippett, 1991; Shlesinger et al., 1993; Zaslavsky, 1994a; Zaslavsky,
1994b; Zaslavsky & Abdullaev, 1995) reveal that the phase space pattern can
be described as a connected domain with chaotic dynamics inside (stochastic
sea or stochastic webs) and islands immersed into the sea or webs. The islands
are filled of nested invariant Kolmogorov–Arnold–Moser curves and isolated
stochastic layers, and form a fractal set of non-zero measure. Particle motion
inside the stochastic sea or along the stochastic webs can be described as a
random process being the result of a complicated competition between traps
and flights which depends on the number of degrees of freedom, phase space
topology, closeness to the singularity, and other anomalous properties of the
dynamics.

This process is characterized by the law

∆(t) ∝ tµ

with transportation exponent µ that can be different from the normal case
µ = 1/2 and consequently exhibits the anomalous diffusion behavior.
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In the review (Shlesinger et al., 1993), the connection between the theory
of Lévy processes (Lévy flight) and dynamical chaos was described, and the
phenomenon of the anomalous transportation was considered to be the result
of a Lévy-like process rather than that of a Gaussian-like process. For the one-
dimensional case, Zaslavsky (Zaslavsky, 1992) derived a generalized Fokker–
Planck–Kolmogorov equation which was fractional in time and space, and
covered both superdiffusion and subdiffusion types of the process:

∂ωp(x, t)
∂tω =

∂α

∂(−x)α [A(x)p(x, t)] +
1
2

∂2α[B(x)p(x, t)]
∂(−x)2α ,

where
∂αg(x, t)

∂xα ≡ 1
Γ(−α)

∫ x

−∞
(x− ξ )−α−1g(ξ , t) dξ

is one of the definitions of the fractional derivative (Oldham & Spanier, 1974).
Multidimensional spherically symmetric anomalous diffusion is described

by equations derived in previous sections and leading to stable distribution as
their solutions.

To conclude this section, we would like to notice that long before the begin-
ning of systematical numerical investigations of diverse maps in connection
with the chaos problem, the algorithms called the random number generators
were invented and widely used in Monte-Carlo calculations. As an example,
we give the residual (or congruential) method of D.H. Lehmer (Lehmer, 1949).
It is based on the map

xi = mi/M, mi = ami−1 (mod M), (12.9.2)

where m0, a, and M are some given integers. Sequence (12.9.2) possesses a
period not exceeding M. The most important property of such sequences is that
for very large M and appropriate values of m0 and a, the sequence x0, x1, x2, …
looks like a sequence of independent uniformly distributed on (0, 1] random
variables U0, U1, U2, …. Therefore, statistical tests do not distinguish them
from true random numbers Ui, although their dynamical origin is evident for
us. Consequently, we can say that the dynamical chaos has been widely used in
numerous Monte-Carlo calculations for about a half of century, and moreover,
it forms the heart of the method!

Supplementing (12.9.2) by the relation

Sn =
n∑

i=1

yi, yi = ƒ(xi), (12.9.3)

where ƒ(x) is a monotonically increasing function on (0, 1) such that

ƒ(x) ∼ −(x/d)−1/µ , x → 0,

ƒ(x) ∼ [(1− x)/c]−1/µ , x → 1,
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from dynamical map (12.9.2)–(12.9.3) we immediately obtain a diffusion pro-
cess (as n →∞) which is normal for µ ≥ 2, or an anomalous one (Lévy process)
for µ < 2.
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Physics

13.1. Lorentz dispersion profile
The most familiar to physicists stable law (excepting the Gaussian law) is the
Cauchy law which describes, in particular, the natural widening of a spectral
line of a charge under the action of quasi-elastic force.

According to classical electrodynamics (Larmor, 1897), the charge e in one-
dimensional motion x(t) emanates energy per unit time as

I =
2
3

e2

c3

[
ẍ(t)
]2 , (13.1.1)

where c is the light speed, and the dots above x(t) stand for differentiation with
respect to time. The effective brake force created by this radiation is equal to

Frad =
2
3

e2

c3
...x (t).

If the applied force is quasi-elastic, that is,

F = −mω2
0 x,

then the equation of motion is of the form

mẍ(t) + mω2
0 x(t) = (2/3)(e2/c3)

...x (t).

If the brake force described by the right-hand side of this equation is small as
compared with the quasi-elastic one, the solution is

x(t) = x0 exp {iω0t− γ t/2} , (13.1.2)

where γ is the classical damping factor

γ =
2e2

3mc
ω2

0 .

365
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According to the Larmor formula (13.1.1) and expression (13.1.2), the total
average energy radiated in all directions per unit time is

〈I〉 =
2

3c3 〈(ẍ(t))2〉 ∝ 〈[x(t)]2〉,

By virtue of the Rayleigh theorem (Rayleigh, 1889),

〈I〉 =
∫ ∞

0
I(ω) dω ,

where

I(ω) = |x̃(ω)|2, (13.1.3)

and

x̃(ω) =
∫ ∞

−∞
x(t)e−iωtdt (13.1.4)

is the Fourier transform of the function x(t). Substituting (13.1.2) into (13.1.4),
we obtain

x̃(ω) =
x0

i(ω − ω0) + γ /2
,

and then, by (13.1.3), we obtain the energy distribution in linear frequency

I(ω) ∝ ƒ(ω) ≡ ∆
π[∆2 + (ω − ω0)2]

, (13.1.5)

where ∆ = γ /2, and the integral of the function ƒ(ω) over −∞ < ω <∞ is equal
to one (Lorentz, 1906; Lorentz, 1909).

Distribution (13.1.5), known as the Lorentz dispersion profile, is nothing
but the Cauchy distribution with center at ω0. From the quantum viewpoint,
ƒ(ω) dω is the probability that a radiated photon has a frequency belonging to
the interval (ω , ω + dω). While an isolated atom is concerned, the only reason
of spectral line widening is the radiation loss given by formula (13.1.1).

In actual reality, an atom can be considered as an unperturbed harmonic
oscillator until it collides with a perturbing particle. Such collisions lead to
the change in phase and, probably, in amplitude of oscillation. If the collisions
are distributed in time according to Poisson law with average interval τ, then
the probability for random interval to be between t and t + dt is defined by

p(t) dt =
1
τ

e−t/τ dt.

For a large collision frequency, the damping factor γ can be neglected, and the
radiation spectrum can be written as

I(ω) ∝
∫ ∞

0
dt p(t)|x̃t(ω)|2,
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where

x̃t(ω) =
∫ t

0
x(t)e−iωtdt = x0

∫ t

0
ei(ω0−ω)tdt.

Carrying out the integration, we obtain

|x̃t(ω)|2 ∝ (ω0 − ω)−2 sin2((ω0 − ω)t/2)

and therefore,

I(ω) ∝ 1
(ω0 − ω)2τ

∫ ∞

0
e−t/τ sin2((ω0 − ω)t/2) dt.

The evaluation of the last integral yields a formula which coincides with
(13.1.5), where the parameter ∆ is now defined not by the damping but by
the collision frequency:

∆ = 1/τ.

There are also other reasons causing the spectral line widening: heat
motion of radiating atoms which changes the observable frequency due to the
Doppler shifts and leads to the Gaussian profile; Stark widening caused by an
electrical field of ambient atoms. We consider the last effect in more detail.

13.2. Stark effect in an electrical field of randomly
distributed ions

For hydrogen-like atoms, the frequency shift ∆ω induced by the electrical
field with intensity E is a linear function of E (linear Stark effect) (Stark,
1913). For other atoms, the linear dependence is observed only in strong
fields; in the weak ones, ∆ω is proportional to E2 (square-law Stark effect).
The radiating atoms, located in different places, are exposed to an action of
fields created by various microscopic environments. As a simple model of this
situation, they usually consider a single atom placed in a random electrical field
E with distribution density p(E). We denote the three-dimensional distribution
density of E by p(E). In the absence of reasons generating an anisotropy, the
distribution E is considered as a spherically symmetric, with density

w(E) = 4πp(E)E2 (13.2.1)

Let the shift of the linear frequency ν = ω/(2π) be a monotonically growing
function of E,

ν = ν0 + g(E);

then distribution (13.2.1) induces the profile of the spectral line

ƒ(ν) = w(g−1(ν − ν0))dg−1(ν − ν0)/dν, (13.2.2)
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where g−1(ν) is the inverse to g(E) function. In the linear case,

g(E) = g1 ⋅ E,

and (13.2.2) takes the form

ƒ(ν) = w((ν − ν0)/g1)/g1, (13.2.3)

and in the case of the square-law,

g(E) = g2E2;

hence

ƒ(ν) = 1
2 w(

√
(ν − ν0)/g2)/

√
(ν − ν0)g2. (13.2.4)

Thus, the problem is reduced to the evaluation of function (13.2.1).
It was solved in 1919 by Holtsmark (Holtsmark, 1919) under the assump-

tion that the given number of point sources of the field (point charges, dipoles
or quadrupoles) is distributed within a spherical volume centered at the atom,
uniformly and independently of each other.

In the case of point charges (ions) ej located at rj, the electric field intensity
at the origin

E = −
N∑

j=1

ejrj/r3
j , rj = |rj| (13.2.5)

where N is the number of charges given in the spherical volume VR = (4/3)πR3.
Holtsmark assumed that ej = e are deterministic, but we think of ej as indepen-
dent random variables. The characteristic function of random vector (13.2.5)
is

ƒ(k; R) =
[
ϕ(k, R)

]N , (13.2.6)

ϕ(k; R) =
1

VR

〈∫

VR

e−iekr/r3
dr
〉

, (13.2.7)

where 〈…〉 means averaging over the random charge e.
Substituting (13.2.7) into (13.2.6) and introducing ρ = N/VR standing for

the density of ions, we obtain

ƒ(k; R) =
〈

V−1
R

∫

VR

e−iekr/r3
dr
〉ρVR

.

Since 〈∫

VR

dr
〉

= VR,
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we are able to rewrite ƒ(k; R) as

ƒ(k; R) =
{

1− V−1
R

〈∫

VR

[
1− e−iekr/r3

]
dr
〉}ρVR

. (13.2.8)

Letting R →∞ under the condition ρ = const, we arrive at the formula

ƒ(k) ≡ lim
R→∞

ƒ(k; R) = exp{−ρψ(k)}, (13.2.9)

where

ψ(k) =
〈∫

VR

[
1− e−iekr/r3

]
dr
〉

. (13.2.10)

Since the integral over the whole sphere is the integral of an odd function, the
integrand is of order O(r−4), r → ∞, and the integral entering into (13.2.10)
converges absolutely.

In formula (13.2.10), we pass from integration over the coordinate space to
integration over the intensity space in accordance with the equality

E = −er/r3. (13.2.11)

The corresponding Jacobian is

∂E
∂r
≡ ∂(Ex, Ey, Ez)

∂(x, y, z)

= −e3

∣∣∣∣∣∣

r−3 − 3x2r−5 −3xyr−5 −3xzr−5

−3xyr−5 r−3 − 3y2r−5 −3yzr−5

−3xzr−5 −3yzr−5 r−3 − 3z2r−5

∣∣∣∣∣∣

= 2e3r−9.

Expressing r via E with the use of (13.2.11), we obtain for a volume element

dr = |∂E/∂r|−1dE = 1
2 |e|

3/2E−9/2dE,

so (13.2.10) can be rewritten as

ψ(k) = 1
2 〈|e|

3/2〉
∫ [

1− eikE
]

E−9/2dE

= 1
2 〈|e|

3/2〉
∫ [

1− cos kE
]

E−9/2dE.

Let us calculate the last integral in the spherical coordinates with z-axis di-
rected along the vector k:

ψ(k) = 4π〈|e|3/2〉
∫ ∞

0
dE E−5/2

∫ +1

−1
dt
[
1− cos(ktE)

]

= 2π〈|e|3/2〉
∫ ∞

0
dE E−5/2

[
1− (kE)−1 sin(kE)

]

= 2π〈|e|3/2〉k3/2
∫ ∞

0
(x− sin x)x−7/2dx.
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By integration by parts, the last integral is reduced to
∫ ∞

0
(x− sin x)x−7/2dx =

8
15

∫ ∞

0
x−1/2 cos xdx = (4/15)

√
2π;

hence

ψ(k) = (ak)3/2, a = 2π(4/15)2/3〈|e|3/2〉2/3,

ƒ(k) = e−ρ(ak)3/2
.

Thus, we arrive at the three-dimensional symmetric stable law with α = 3/2
whose density is

p(E) =
1

(2π)3

∫
e−ikE−ρ(ak)3/2

dk

=
1

(2π)2E

∫ ∞

0
e−ρ(ak)3/2

sin(kE)k dk. (13.2.12)

Introducing the dimensionless intensity

εεε = E/(aρ2/3),

and using formulae (13.2.1) and (13.2.12), we obtain the distribution

H(ε) =
2

πε

∫ ∞

0
e−(x/ε)3/2

x sin x dx. (13.2.13)

Formula (13.2.13) is referred to as the Holtsmark distribution.
In view of (13.2.1), the distribution of the absolute value of the field inten-

sity is of the form

w(E) = (aρ)−2/3H((ρa)−2/3E); (13.2.14)

therefore, profiles (13.2.3) and (13.2.4) induced by the considered mechanism
are of the form

ƒ(ν) = (aρ)−2/3H((ρa)−2/3(ν − ν0)/g1)/g1.

in the case of the linear Stark effect, and

ƒ(ν) = 1
2 (aρ)−2/3H

(
(ρa)−2/3

√
(ν − ν0)/g2

)
/
√

(ν − ν0)g2

in the case of the square-law effect.
Thus, the distribution derived by Holtsmark is related to the observable

structure of spectral lines, though it is necessary to say that experiments re-
veal the combined impact of all reasons on the line width. As calculations show
(Lang, 1974), the center of the profile is formed by the Doppler mechanism of
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widening, giving the normal distribution, and the far wings coincide with the
Lorentz distribution. It is understandable that it should be so indeed, be-
cause the Holtsmark distribution (αH = 3/2) occupies an intermediate position
between the Cauchy distribution (α = 1) and the normal law (α = 2).

Let us concentrate our attention on some properties and numerical results
concerning the Holtsmark distribution.

First, the above distribution of the electric field intensity does not depend
on the signs of charges. Indeed, a uniform distribution of one charge e in a
sphere of radius R yields, according to (13.2.7),

ϕ(k; R) = 3R−3
∫ R

0

sin(ek/r2)
ek

r4dr,

so the characteristic function of the intensity generated by it does not vary if
e is replaced by −e.

The following property is typical for the stable laws differing from the
normal one: the Holtsmark distribution is basically formed by the nearest
ion. To make sure of this, we obtain the distribution function of the intensity
created by a single ion uniformly distributed in the volume VR:

F(E) = P{|e|r−2 < E} = P
{

r >
√
|e|/E

}

= 1− R−3(|e|/E)3/2, E > |e|/R2.

The distribution function of the contribution of the nearest of N = ρVR inde-
pendent ions is equal to the Nth power of the function for a single ion:

F(E; N) =
[
1− R−3(|E|/e)3/2

]ρVR
=
[(

1− 1
y

)y](4/3)π(|e|/E)3/2ρ
.

As N →∞ and ρ = const, hence we obtain

F(ε;∞) = e−(ε0/ε)3/2
,

where ε is chosen as above and

ε0 = (5/2)/ 3
√

5π.

The distribution density of ε is

p(ε) = F′(ε;∞) = (3/2)e−(ε0/ε)3/2
(ε/ε0)−5/2/ε0. (13.2.15)

It is easy to see that the constant ε0 is related to the average value ε by the
formula

ε = Γ(1/3)ε0 ≈ 2.68ε0.

The comparison of the true Holtsmark density function H(ε) and the den-
sity function of the leading contribution p(ε) is shown in Fig. 13.1.
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Figure 13.1. Distribution of the field created by the nearest neighbor (2) com-
pared with distribution of the total field (i.e., the Holtsmark distri-
bution) (1)

13.3. Dipoles and quadrupoles
If we deal not with plasma consisting of ions but with gas of neutral atoms, then
the electric field is generated by dipole moments dj of atoms (or quadrupole
moments if the dipole ones are zero). In this case

E =
∑

j

(
dj

r3
j
− 3rj(rjdj)

r5
i

)
. (13.3.1)

Formula (13.2.9) remains true, but the function ψ(k) takes the form

ψ(k) =
〈∫ [

1− exp
{

i
kd
r3 − 3i

(kr)(rd)
r5

}]
dr
〉

.

Denoting by ΩΩΩ, ΩΩΩk, and ΩΩΩd the unit vectors r/r, k/k, and d/d, respectively,
and assuming that the angular distribution of dipoles is isotropic, we can
rewrite the last formula as

ψ(k) =
1

4π

〈∫
dΩΩΩd

∫
dΩΩΩ

∫ ∞

0

[
1− exp

{
ikdφ(ΩΩΩ, ΩΩΩk, ΩΩΩd)r−3

}]
r2dr

〉
,

(13.3.2)

where
φ(ΩΩΩ, ΩΩΩk, ΩΩΩd) = ΩΩΩkΩΩΩd − 3(ΩΩΩkΩΩΩ)(ΩΩΩ, ΩΩΩd).

The vector ΩΩΩk does not vary during integration, and the result of integration,
due to the mentioned isotropy, does not depend on it:

ψ(k) = ψ(k).
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For the same reason ψ(k) is real-valued, so (13.3.2) can be represented as

ψ(k) =
1

4π

∫
dΩΩΩd

∫
dΩΩΩ
∫ ∞

0

[
1− cos

{
kdφ(ΩΩΩ, ΩΩΩk, ΩΩΩd)r−3

}]
r2dr.

The inner integral is easily calculated:
∫ ∞

0

[
1− cos

{
kdφ(ΩΩΩ, ΩΩΩk, ΩΩΩd)r−3

}]
r2dr = (πd/6) |φ|k,

and we arrive at the formula

ψ(k) = ck (13.3.3)

where
c =

d
24

∫
dΩΩΩd

∫
dΩΩΩ|φ(ΩΩΩ, ΩΩΩk, ΩΩΩd)|.

Substituting (13.3.3) into (13.2.9), we obtain

ψ(k) = e−ρck,

and see that the electric field intensity generated by the Poisson ensemble
of isotropically distributed dipoles is described by three-dimensional Cauchy
distribution:

p(E) =
1

(2π)3

∫
e−ikE−(ρc)kdk =

ρc
π2[(ρc)2 + E2]2 .

The distribution of the magnetic field created by a similar ensemble of point
magnets (magnetic dipoles) is also of the same form.

If the dipole moment of neutral atom is zero, then the field generated by it is
defined by its quadrupole moment. The absolute value of the quadrupole field
decreases as r−4, so the total intensity of the field generated by the Poisson
ensemble of isotropically distributed quadrupoles possesses the characteristic
function

ψ(k) = e−ρck3/4

corresponding to the three-dimensional symmetric stable law with α = 3/4.
In Fig. 13.2 taken from (Holtsmark, 1919) the distributions of the absolute

value of the intensity w(E) for all three cases are shown.

13.4. Landau distribution
When a fast charged particle (electron, positron, proton) passes through some
substance layer of thickness z, its final energy (after exiting the layer) E is
smaller than the initial E0 due to the ionization loss:

Q = E0 − E. (13.4.1)
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Figure 13.2. The distributions of fields created by ions, dipoles, and quadrupoles
(Holtsmark, 1919)

The simplest model of this process can be formulated as follows: a fast particle
moves through the layer along a straight line and gives to each electron, being
at the distance r away from its trajectory, the energy q = q(r). The r is called
the impact parameter, and the function q(r) decreases when it grows. In the
domain of values q which are much larger than the ionization energy εI, the
electrons are supposed to be free, and for them

q(r) = Ar−2.

On the other hand, the lost energy cannot exceed the initial energy E0, but
for a thin layer the energy loss is small as compared with E0, and this re-
striction can be neglected. If Ar−2 ≤ εI, ionization is impossible, and the fast
particle interacting with an atom as a whole does not lose its energy. One can
approximately assume that

q(r) =

{
Ar−2, r < RI,
0, r ≥ RI,

(13.4.2)

where RI =
√

A/εI.
Thus, the energy loss in a layer of thickness z looks as the sum

Q =
∑

i
Ar−2

i , ri < RI. (13.4.3)

over all electrons of the layer which are inside the cylinder of radius RI
(Fig. 13.3. The surface electron number density ρ relates to the volume one n
by the formula ρ = nz. The random distribution of electrons on the plane is
supposed to be a homogeneous Poisson ensemble.
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E0 E0 −Q
RI

ri

Figure 13.3. Passage of a fast charged particle through a thin layer (dots repre-
sent electrons)

Under the indicated conditions, the characteristic function of random vari-
able (13.4.3) takes the form

ƒQ(k) = exp

{
−2πρ

∫ RI

0

[
1− eikAr−2

]
r dr

}

coinciding with (10.6.13) if we set

p(θ) = δ (θ − A)

and µ = 2. But the special case with µ = 2 was not considered; we dwell upon
this situation here following (Landau, 1944).

Passing to the variable q under the integral sign we obtain, in accordance
with (13.4.2),

ƒQ(k) = exp
{
−ρ

∫ ∞

εI

[
1− eikq

]
W(q) dq

}
, (13.4.4)

where
W(q) = πA/q2.

In (Landau, 1944), (13.4.4) is written in terms of the Laplace transform of the
kinetic equation for distribution density p(q, z) as a function of layer thickness:

∂p
∂z

=
∫ ∞

εI

w(q′)
[
p(q− q′, z)− p(q′, z)

]
dq′ (13.4.5)

with the boundary condition

p(q, 0) = δ (q).
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Here w(q) = nW(q) is the differential cross-section of the energy loss per unit
path length. It follows from (13.4.5) that the Laplace transform

p̃(λ , z) =
∫ ∞

0
e−λqp(q, z) dq

satisfies the equation

∂ p̃
∂z

= −
[∫ ∞

εI

(
1− e−λq

)
w(q) dq

]
p̃(λ , z), p̃(λ , 0) = 1.

Its solution is

p̃(λ , z) = exp
[
−z
∫ ∞

εI

w(q)
[
1− e−λq

]
dq
]

, (13.4.6)

which coincides with (13.4.4).
While evaluating the integral I, Landau splits it into two parts: over (εI, ε)

and over (ε,∞). The former—I1—is represented as

I1 =
∫ ε

εI

w(q)
[
1− e−λq

]
dq ≈ λ

∫ ε

εI

qw(q) dq,

which corresponds to the average energy loss per unit length
∫ ε

εI

qw(q) dq = πnA ln ε/εI

The latter integral

I2 = nπA
∫ ∞

ε

[
1− e−λq

]
dq/q2

is transformed by integration by parts

I2 = nπA

{
1
ε

(
1− e−λε

)
+ λ

∫ ∞

ε

e−λq

q
dq

}

and for λε � 1 by changing the variable x = λε is reduced to

I2 = πnAλ

{
1 +

∫ 1

λε

dx
x

+
∫ 1

0

e−x − 1
x

dx +
∫ ∞

1

e−x

x
dx

}
.

The sum of the two last integrals in braces is equal to −C, where C = 0.577…
is Euler’s constant, so

I2 = πnAλ (1− C− ln λε) .
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r v

Figure 13.4. The geometry of small-angle scattering

Thus,

z
∫ ∞

εI

w(q)
[
1− e−λq

]
dq = λ (1− C− ln(λεI))ζ ,

where ζ = πnAz.
The distribution density for the energy loss (Landau distribution) is of the

form

p(q, z) =
1
ζ

ψ(ξ ), (13.4.7)

where

ψ(ξ ) =
1

2πi

∫ i∞+σ

−i∞−σ
eu ln u+ξudu (13.4.8)

and

ξ =
q− ζ(ln(ζ /εI) + 1− C)

ζ
.

Changing the integration variable in (13.4.8), we conclude that the distribu-
tion has the characteristic function of form (3.4.18), and hence the Landau
distribution is the stable law with α = 1 β = 1.

For the first time this fact was noted in (Uchaikin & Topchii, 1978)
where distribution (13.4.8) was obtained by summing the random (Poisson-
distributed) number of random variables. The domain of its validity is inves-
tigated in detail in (Asoskov et al., 1982) by experiment (see also (Dudkin et
al., 1989)).

13.5. Multiple scattering of charged particles
Multiple elastic scattering of charged particles passing through a layer can be
considered in the same way as above. For a small-angle approximation,

v ∼ Br/r2, B = const,

which characterizes the deviation of the particle caused by the nuclei of a single
atom being at the point r (Fig. 13.4).
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In this case, the total deviation of the particle
∑

i vi leaving the layer is
given by the characteristic function

ƒ(k) = exp

{
−ρ

∫ R

0

∫ 2π

0

[
1− eik(B/r) cos ϕ

]
r dr dϕ

}

= exp

{
−2πρ

∫ R

0

[
1− J0(kB/r)

]
r dr

}

∼ exp
{
−2πz

∫ ∞

0

[
1− J0(kθ)

]
w(θ)θdθ

}
, R →∞,

(13.5.1)

where θ = |v|,

w(θ) = nB2θ−4, (13.5.2)

and ρ, n, and z are the same as in Section 13.4. The last formula (13.5.2)
is merely the well-known Rutherford cross-section reduced to the small-angle
region.

For small scattering angles corresponding to the large impact parameters r,
the screen influence of the electron shell of the atom decreases the deviation. In
(Molière, 1947; Molière, 1948), this effect is taken into account by introducing
into the integrand the factor q(θ) equal to 1 for the angles θ greater than the
screening angle χ and tending to zero as θ → 0. We represent the characteristic
function (13.5.1) as

ƒ(k) = exp
{
−2η

∫ ∞

0

[
1− J0(kθ)

]
q(θ)θ−3dθ

}
, (13.5.3)

where
η = πB2ρ = πB2nz.

As in the previous case, the integral is separated into two parts corresponding
to the intervals (0, χ) and (χ,∞). Within the former, the Bessel function is
expanded into series

I1 ≡
∫ χ

0

[
1− J0(kθ)

]
q(θ)θ−3dθ ≈ (k2/4)

∫ χ

0
q(θ)θ−1dθ ,

and after integration by parts we obtain

I1 = (k2/4)
[
ln χ −

∫ χ

0
q′(θ) ln θdθ

]
.

We keep in mind that

lim
θ→0

q(θ) ln(θ) = 0, q(χ) = 1.
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The integral in the square brackets is usually denoted by ln χa + 1/2; thus,

I1 = (k2/4)
[
ln(χ/χa)− 1/2

]
. (13.5.4)

The second integral

I2 =
∫ ∞

χ

[
1− J0(kθ)

]
θ−3dθ

by the change of variable x = kθ and subsequent integration by parts is reduced
to

I2 = (k2/4)
{

2(kχ)−2 [1− J0(kχ)
]

+ (kχ)−1J1(kχ)

− ln(kχ)J0(kχ) +
∫ ∞

kχ
ln xJ1(x)dx

}
.

Since the lower integration limit is small here, we use the approximate ex-
pressions

1− J0(kχ) ≈ (kχ)2/4, J1(kχ) ≈ kχ/2,
∫ ∞

kχ
ln xJ1(x)dx ≈

∫ ∞

0
ln xJ1(x)dx = −C + ln 2,

where C is Euler’s constant. Then

I2 ≈ (k2/4)
[
1− ln(kχ) + ln 2− C

]
. (13.5.5)

Summing (13.5.4) and (13.5.5), and substituting the result into (13.5.3), we
obtain

ln ƒ(k) = −η
(
1/2 + ln 2− C− ln(kχa)

)
k2/2.

We set √
ηk = y;

then the obtained expression can be rewritten as

ln ƒ(k) = −
(

bθ − ln(y2/4)
)

y2/4,

where
bθ = ln

(
η/χ2

a

)
+ 1− 2C.

Passing to the constant Bθ related to bθ by the formula

Bθ = bθ + ln Bθ ∼ bθ ∝ ln z, z →∞,

we obtain
ln ƒ(k) = −u2/4 +

(
u2/(4Bθ )

)
ln
(

u2/4
)

,
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where
u =

√
Bθ ⋅ y.

Performing the inverse Fourier transformation, we arrive at the formula

2πp(θ , z)θdθ = ψ(θ̃ , Bθ )θ̃dθ̃,

where

ψ(θ̃ , Bθ ) =
∫ ∞

0
J0(θ̃u)e−u2/4 exp

{(
u2/(4Bθ )

)
ln(u2/4)

}
u du,

θ̃ = θ/
√

ηBθ .

Expanding the second exponential under the integral sign into the series, we
obtain

ψ(θ̃ , Bθ ) =
∞∑

n=0

B−n
θ ψn(θ̃), (13.5.6)

where

ψθ (θ̃) = (n!)−1
∫ ∞

0
J0(θ̃u)e−u2/4

[
(u2/4) ln(u2/4)

]n
u du. (13.5.7)

Formulae (13.5.6)–(13.5.7) are called the Molière distribution.
The leading (for large thickness z) term of the expansion is the normal

distribution, therefore

pas(θ , z) = (πηBθ )−1 exp
{
−θ2(Bθ η)−1

}
, (13.5.8)

where the width of the angle distribution

∆ = (Bθη)1/2

increases together with the layer thickness z by the law

∆ ∝
√

z ln z. (13.5.9)

Since the speed of particle motion along the z-axis, practically, does not
change, this coordinate can be interpreted as time, and the process of small
angle multiple scattering itself, as diffusion in the two-dimensional space.
From this point of view, formula (13.5.8) allows us to talk about anomalous
diffusion. The anomaly manifests itself by deviation of law (13.5.8) from the
normal case ∆ ∝ √z, although the form of distribution (13.5.7) still remains
normal. Such a type of anomality arises because the variance of single term
ui

Var ui = 2π
∫ ∞

0
θ2w(θ)θ dθ
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diverges but this divergence, according to (13.5.2), is of logarithmic type. In
other words, we deal with the limiting case of summation of the terms with
α = 1 (see Section 2.5) leading to the normal law.

In the actual reality, the scattering angle θ is restricted by the mass ratio
for the incident particle and electron, and besides, the very small-angle ap-
proximation holds true only in the domain of small angles θ � 1. Therefore,
result (13.5.6)–(13.5.8) should not be considered as absolute (in application
to a particular problem), and one should rather use it as some intermediate
asymptotics valid in a certain thickness interval (zmin, zmax). Indeed, experi-
ments show the existence of such an area (Starodubtsev & Romanov, 1962).

13.6. Fractal turbulence
In (Takayasu, 1984) a vortex model of the fully developed turbulence is pro-
posed, which regards the turbulence as the velocity field generated by ran-
domly fractally distributed sources of circulation such as vortex filaments.
The idea is inspired by Mandelbrot’s comments on the Holtsmark distribu-
tion: If we regard the stars as point vortices and the gravitational field as the
velocity field, then we can expect that Holtsmark’s method is also applicable
to the turbulence. In order to consider the effect of the fractal structure of
the turbulence, we generalize Holtsmark’s method in the case that the point
vortices distribute fractally (Takayasu, 1984).

The velocity u(r) at a point r is given by the Biot–Savart law

u(r) =
N∑

j=1

uj,

uj ≡ −
wj × (r− rj)
4π|r− rj|3

,

where rj and wj denote the position and the vorticity of the jth vortex. The
velocity distribution is expressed as

WN(u) =
1

8π3

∫
dqe−iquW̃N(q),

W̃N(q) =
N∏

j=1

∫
dwj

∫
drjeiqujpj(rj, wj),

where pj(rj, wj) governs the probability density of occurrence of the jth vortex
at the position rj with the vorticity wj.

In order to take account for the effect of fractal structure of turbulence,
they postulate that the vortices are distributed uniformly over a random D-
dimensional fractal domain, the number of vortices within a sphere of radius
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R, N(R), is statistically proportional to RD and may be expressed as

N(R) = η
πD/2

Γ(1 + D/2)
RD.

Here η is a constant standing for the density of vortices in the fractal domain,
and Γ(x) is the gamma function.

The fractal dimension of the real turbulence is estimated both experimen-
tally and theoretically to be 2.6 ± 0.1; hence 2 < D < 3 in contrast to the
distribution of galaxies in the Universe, where 1 < D < 2. Neglecting the
spatial correlations among the vortices, i.e., taking pj(rj, wj) in the form

pj(rj, wj) =
Γ(1 + D/2)

πD/2RD p(wj)

on the fractal set, and performing calculation according to Holtsmark’s method,
one arrives at a spherically symmetric three-dimensional stable distribu-
tion with characteristic D/2. In the same manner, for a small light particle
which drifts with the field element, the anomalous diffusion law takes place:
〈|X(t)|〉 ∝ t2/D. A similar result is obtained for an electron in a uniformly mag-
netized plasma: the electron motion perpendicular to the magnetic field is the
Lévy process with characteristic D/2:

〈|R⊥(t)−R⊥(0)|〉 ∝ t2/D.

Even in the case where the particles are distributed uniformly in R3, that
is, in the case D = 3, the motion of the electron is still anomalous. This
might indicate a connection with the anomalous electron transport phenomena
observed experimentally in many fusion devices of magnetic confinement.

13.7. Stresses in crystalline lattices
As is well known, crystalline structures distinguish themselves by a rigid
geometric arrangement of their atoms. However, this idealized representation
of crystals turns out to be valid only in very small parts of them. Actual crystals
always have various disturbances in their structure, either because there are
sometimes extraneous atoms at a prescribed location, or because there are no
atoms at some locations.

Such anomalies in crystalline lattices are called dislocations. They may be
scattered in the body of a crystal, but they may also be concentrated, forming
lines and even surfaces of complicated configurations. We consider the case of
identical point dislocations uniformly scattered in the body of a crystal with
average density ρ (Poisson’s ensemble).

The stress tensor σmn at some point (for example at the origin) is a function
of dislocations coordinates X1, X2, …:

σmn = σmn(X1, X2, …).
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As far as the superpositional principle holds true, the function can be repre-
sented in the form of a sum

σmn =
∑

i
Smn(Xi)

where Smn(r) is the stress tensor generated at the origin by a single dislocation
placed at the point r. In the general case of a non-isotropic elastic medium
and various models of dislocations

Smn(r) = Amn(ΩΩΩ)r−3,

where ΩΩΩ = r/r. Following the above way, we obtain the characteristic function
ƒmn(k) of the random stress tensor σmn in the infinite solid body

ƒmn(k) = exp
{

ρ
∫ ∞

0
dr r2

∫
dΩΩΩ

{
cos[kAmn(ΩΩΩ)r−3]− 1

}
dΩΩΩ
}

= exp {−ρamnk} ,

where
amn =

π
6

∫
|Amn(ΩΩΩ)|dΩΩΩ.

Therefore the random stress tensor σmn is distributed by the one-dimensional
Cauchy law.

13.8. Scale-invariant patterns in acicular
martensites

The name martensite is used to denote metastable configurations in a wide
variety of systems ranging from metals to polymeric crystals and crystalline
membranes. We give here some results from (Rao & Segupta, 1996) devoted
to acicular martensites occurring in Fe–C and Fe–Ni systems. Pure Fe exists
in three crystalline phases at atmospheric pressures, denoted by α (ferrite), γ
(austenite) and δ . The room temperature structure of Fe is BCC (α), which
when heated to a temperature of 910◦C, undergoes a structural change to the
FCC (γ ) phase. Further heating to 1400◦C transforms it back to BCC (δ ). Fast
quenching can preempt the equilibrium solid state transformation γ → α by
the formation of a martensite. Alloying elements, e.g. C and Ni, are known to
facilitate the formation of this metastable phase. The kinetic and structural
features of such martensites are discussed in (Rao & Segupta, 1996).

The model under consideration is restricted to two dimensions. The trans-
formed two-dimensional austenite region is bounded by a one-dimensional
grain boundary, taken to be a square of size L. Following a quench below
Tms, the austenite region becomes unstable to the production of critical size
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martensite nuclei. It is reasonable to assume that the spatial distribution of
the nuclei is homogeneous (in the absence of correlated defects) and uncorre-
lated (in the absence of auto catalysis). The detailed substructure of the grain
is irrelevant to the study; the high aspect ratio then allows us to represent
the lens-shaped grain as a straight line. The model should be viewed as being
coarse-grained over length scales corresponding to the width of the martensite
grains. This provides a small length scale cut-off, ε.

Thus at time t = 0, one starts with p nuclei, uniformly distributed within
a square of size L. Once nucleated, the points grow out as lines whose lengths
grow with constant velocity v. The tips of these lines grow out with slopes
±1, with equal probability. As these lines grow, more nuclei are generated at
rate I (rate of production of nuclei per unit area). The nucleation events are
uniformly distributed in time—thus p nuclei are born at each instant until
a total nucleation time tN; so, finally, a total of N lines are nucleated. A tip
of a line, l, is defined as the Euclidean distance between the two tips that
have stopped due to a collision with other lines or the boundary. After a time
t > tN , when all the lines have stopped growing, one asks for the stationary
probability distribution of line lengths, p(l).

There are three time scales which describe the entire physics: tv =
(N/L2)−1/2v−1, tI = L−2I−1 and tN. Taking tI as a unit of time, one can con-
struct the dimensionless variables t̃v = tv/tI and t̃N = tN/tI. As shown in (Rao
& Segupta, 1996), there are two extreme geometrical limits. When t̃−1

v , nucle-
ation of N grains occurs in one single burst. The numerically computed p(l)
peaks at the characteristic length scale ∝ (N/L2)−1/2 and is described by the
gamma distribution,

p(x) =
aµxµ−1e−ax

Γ(µ)
.

Here x = l/(N/L2)−1/2 and a = 1.64 ± 0.02 and µ = 4.59 ± 0.1. The lower
bound for the exponent µ can be argued to be 3. The simulated microstructure
in this limit shows grains of comparable sizes. The other geometric limit
is obtained as t̃−1

v → ∞. In this limit, subsequent nuclei partition space
into smaller and smaller fragments, leading to a scale-invariant probability
distribution which shows an extremely good fit to a stable distribution q(x; α, 1)
with α ≈ 1.51 ± 0.03 (Rao & Segupta, 1996).

13.9. Relaxation in glassy materials
Relaxation in amorphous materials, like glassy materials or viscous liquids,
is the time-dependent change in any macroscopic material property R(t) (den-
sity, entropy, optical properties, or structural factor) following a perturbation
(change in temperature, stress, electric, or magnetic field).

It is observed that experimental relaxation behavior in many glassy mate-
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rials correlates well with the Williams–Watts function

R(t) = exp{−(t/τe)α}, 0 < α < 1, (13.9.1)

where α and τe are some constants for a given material: α is the slowness index,
and τe is the effective relaxation time. This contrasts to the conventional Debye
exponential form

R(t) = exp{−t/τ0}, (13.9.2)

where τ0 is the Debye relaxation time.
The interest in relaxation problem caused by both theoretical and techno-

logical reasons provides a number of models explaining the universality of for-
mula (13.9.1). Following (Weron & Weron, 1985; Weron & Weron, 1987; Weron,
1986), we consider one of them leading to stable distributions.

The statistical approach interprets the non-exponential relaxation behav-
ior (13.9.1) of the material in terms of a superposition of exponentially relaxing
processes (13.9.2):

R(t) =
∫ ∞

0
e−t/τp(τ) dτ, (13.9.3)

where p(τ) is the density of a distribution of relaxation times τ across different
atoms, clusters, or degrees of freedom. If µ = τ0/τ, where τ0 is a single relevant
relaxation time associated with Debye relaxation, then µ is called the relax-
ation rate and is interpretable as dimensionless time. Substituting s = t/τ0
into (13.9.3), we obtain

R(τ0s) =
∫ ∞

0
e−sµτ0µ−2p(τ0/µ) dµ =

∫ ∞

0
e−sµw(µ) dµ, (13.9.4)

where

w(µ) = τ0µ−2p(τ0/µ) (13.9.5)

is the density of a distribution of dimensionless rates. Since this approach
is microscopically arbitrary, one may consider the random variables µi = τi

0,
i = 1, …, n, as the possible relaxation rates of elements in a given complex
material. Here n indicates the total number of the elements in the system, and
µi are independent and identically distributed by (13.9.5) random variables.

Under these hypotheses,

µ =
n∑

i=1

µi,

and to use the limit theorem in the case of a large number of terms n, we need
to introduce the normalization

µ ′ =
1
bn

( n∑

i=1

µi − an

)
, bn > 0. (13.9.6)
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As seen from (13.9.4) and (13.9.1),
∫ ∞

0
µw(µ) dµ = −τ0 ⋅ R(0) =∞.

Thus, if the variable µ ′ has a limit distribution, it should be a stable distribu-
tion with α < 1 and β = 1. Then

an = 0, bn = b1n1/α

and

w(µ) = bnq(bnµ; α, 1), 0 < α < 1. (13.9.7)

Substituting (13.9.7) into (13.9.4) and recalling the generalized limit theorem
(Section 2.5), we arrive at formula (13.9.1).

As observed in (Weron, 1986), the statistical approach explains the uni-
versal character of formula (13.9.1) as the consequence of the use of universal
limit law in macroscopic behavior of the relaxing system.

13.10. Quantum decay theory
The problem considered above is closely related to the general quantum decay
theory.

In quantum mechanics, the state of an unstable physical system is de-
scribed by the so-called state vector |ψ(t)〉, which is a solution of the time-
dependent Cauchy problem for the Schrödinger equation

i
∂
∂t
|ψ(t)〉 = H|ψ(t)〉, (13.10.1)

where H is the Hamiltonian operator (Hermitian operator) corresponding to
the system, and |ψ(0)〉 is a given initial state vector. The units are chosen
so that the Planck constant ~ = 1. Let {|ϕE〉, |ϕk〉} be the complete system of
eigenvectors of the operator H (|ϕE〉 corresponds to the absolutely continuous
component of its spectrum, and |ϕk〉 corresponds to the discrete component),
i.e.,

H|ϕE〉 = E|ϕE〉, 〈ϕE′ |ϕE〉 = δ (E′ − E),
H|ϕk〉 = Ek|ϕk〉, 〈ϕk|ϕl〉 = δkl,

where δ (E′ − E) is the Dirac delta function, and δkl is the Kronecker symbol.
We are interested in the probability P(t) that at a time t the system is in

the initial state |ψ0〉. According to the laws of quantum mechanics,

P(t) = |〈ψ(0)|ψ(t)〉|2 .
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Solving the Cauchy problem (13.10.1) for the Schrödinger equation, we assume
that 〈ψ(0)|ψ(0)〉 = 1. In this case, the Fock–Krylov theorem (Krylov & Fock,
1947) yields

ƒ(t) = 〈ψ(0)|ψ(t)〉 =
∑

k

|ck|2 exp(−iEkt) +
∫ ∞

0
|c(E)|2 exp(−iEt) dt,

(13.10.2)

where ck and c(E) are the Fourier coefficients in the expansion of the vector
|ψ(0)〉 in the complete system {|ϕE〉, |ϕk〉} of eigenvectors

|ψ(0)〉 =
∑

k

ck|ϕk〉 +
∫ ∞

0
c(E)|ϕE〉dE.

Thus, ƒ(t) can be interpreted as the characteristic function of some distribution
having discrete components (probabilities of isolated values) |ck|2 and absolute-
ly continuous component (i.e., density) |c(E)|2. Instability of the system means
that the probability P(t) = |ƒ(t)|2 of the system returning to the original state
at time t tends to zero as t →∞.

Since ƒ(t) is a characteristic function, |ƒ(t)| → 0 only if the discrete compo-
nents of the spectrum of H are missing, i.e., ck = 0. In this case

ƒ(t) =
∫ ∞

0
ω(E) exp(−iEt) dE, (13.10.3)

where ω(E) = |c(E)|2 denotes the density of the energy distribution of the
decaying physical system described by equation (13.10.1).

It turns out that for a very broad class of unstable physical systems the
densities ω(E) are meromorphic functions (see (Krylov & Fock, 1947)). For a
number of reasons, the case of a function ω(E) having only two simple poles
(they are complex conjugated in view of the condition ω(E) ≥ 0) is of great
interest. In this case it is obvious that

ω(E) = A[(E− E0)2 + Γ2]−1, E ≥ 0,

where A is a normalizing constant, and E0 and Γ are the most probable value
and the measure of dispersion (with respect to E0) of the system’s energy.
For actual unstable systems1 the ratio Γ/E0 is very small, as a rule (10−15,
or even smaller). Therefore, to compute P(t) we can, without adverse effects,
replace the lower limit 0 in integral (13.10.3) by −∞, after which the density
function ω(E) and the probability P(t) connected with it take the approximate
expressions

ω(E) ≈ Γ
π

[(E− E0)2 + Γ2]−1,

P(t) = |ƒ(t)|2 ≈ exp(−2Γt).
1An example of such a system is a neutron with an average lifetime of 18.6 min decaying at

the end of its lifetime into a photon, an electron, and a neutrino (n → p + e + ν).
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It is clear from the first relation (the Lorentz distribution of the energy of the
unstable system) that we are dealing with the Cauchy distribution, and it is
clear from the second relation that the lifetime for unstable systems of the
type under consideration behaves according to the exponential law.

Thus, the Cauchy law appears here only as a more or less good approx-
imation of the real energy distribution for unstable systems. And there are
situations where the replacement of 0 by −∞ in (13.10.3) is unacceptable,
because the corresponding law P(t) of decay of the system differs essentially
from the exponential law.

We give here a result of (Hack, 1982). Imposing the constraint normally
applied in quantum theory that the self-adjoint Hamiltonian H is lower semi-
bounded, i.e., that the energy spectrum is bounded below, Hack established
that P(t) cannot decay exponentially fast as t →∞, i.e.,

P(t) > Ce−at

for t > T, where C, a and T are positive constants.
The following theorem is proved in (Weron & Weron, 1985).

THEOREM 13.10.1. The non-decay probability function for many-body weakly
interacting quantum system is of the form

P(t) = exp {−atα} , a > 0, 0 < α < 1.

Representing the amplitude ƒ(t) as

ƒ(t) = 〈ψ | exp(−Dt)|ψ〉 =
∫ ∞

0
exp(−Et)p(E) dE

where D is the development operator governing the dynamic evolution of the
quantum system under investigation and p(E) is the probability density of the
state |ψ〉 associated with the continuous spectrum of the development operator
D, the authors conclude that we observe an arbitrariness in the specification
of ψ and p(E). In general, one considers ψ to represent a decaying state for
a many-body system, and therefore the number of components in the system
should not influence the decay. In other words, the same decaying law should
be obtained for one portion or several portions of the system. Consequently, in a
weakly interacting quantum system, microscopic energies can be considered as
independent identically distributed energy random variables. The microscopic
energy distribution p(E) dE associated with the decaying system is identified to
be the limit distribution of normalized sums of the microscopic energy random
variables. By the limit theorem (Gnedenko & Kolmogorov, 1954), it is well
known that the limit p(E) dE has α-stable distribution 0 < α ≤ 2. Since p(E)
is associated from the above construction with the development operator D, it
has to have positive support. This holds only when p(E)dE has a completely
asymmetric (β = 1, 0 < α < 1) stable distribution (Weron & Weron, 1985).
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13.11. Localized vibrational states (fractons)
The inelastic scattering of extended-electronic states off running-wave (phonon)
states is well investigated (Ziman, 1962). The analogous quantity, but for lo-
calized vibrational states is calculated in (Entin-Wohlman et al., 1985) (see
also (Lévy & Souillard, 1987; Terao et al., 1992; Yakubo & Nakayama, 1989)).
Localization can occur by virtue of the geometrical connectivity properties of
the atomic network, in which case one refers to the vibrational excitations as
fractons. Only the vibrations of random fractal networks were considered for
which localization of the vibrational states occurred if the fracton dimension-
ality, d, was less than 2. In this model, the density of states is governed by
d, and the vibrational localization length scales with a negative power of fre-
quency. One expects 1 < d < 2 for a mechanical model where scalar elasticity
is dominant. In the case of a purely mechanical rotationally invariant model,
d can be less than unity, implying a weak divergence of the vibrational density
of states with decreasing frequency. Impurities in an otherwise translation-
ally invariant atomic network can also result in vibrational localization. One
refers to these excitations as localized phonons.

Throughout (Entin-Wohlman et al., 1985), the results are expressed in
terms which are equally applicable to a vibrational structure with only ‘scalar’
forces between vibrational atoms and for the structures for which purely me-
chanical central and ‘bending’ forces are appropriate. Both assumptions lead
to identical scalable forms for the dispersion law and density of vibrational
states, with only the constant θ, involved in the range dependence of the force
constant, changing its value. In particular, the range dependence of the scalar
force constant, Ks, depends on θ as

Ks ∝ r−D−2−θ ,

where D is the fractal dimension. The force constant, Kc,b, for central and
bending forces varies as

Kc,b ∝ r−ζ̃E .

Hence, if one identifies θc,b = ζ̃E + D−2, all the results for scalar forces go over
directly to those one would have found for central and bending forces.

In particular, the spatial Fourier transform of the overlap of two wave
functions φa(r) of the same mode index a was evaluated:

Ia(k) =
∫

dreikrIa(r), (13.11.1)

Ia(r) =
∫

dr′φa(r + r′)φ∗
a(r′). (13.11.2)

In order to evaluate Ia(k) within the fracton regime, they write the fracton
wave-function assuming simple exponential localization:

φa(r) = Aa exp
{
−(1/2)(r/λa)dφ

}
, (13.11.3)
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where Aa is the normalization coefficient, and dφ characterizes the localization
of the vibrational wave function in a fractal network. From (13.11.1) and
(13.11.2), it follows that

Ia(k) = |φa(k)|2,

where φa(k) is the Fourier transform of the wave function in (13.11.3):

φa(k) = 2AaπD/2(2/k)D/2−1
∫ ∞

0
exp

{
−(1/2)(r/λa)dφ

}
JD/2−1(qr)rD/2dr.

(13.11.4)

Formulae (13.11.3) and (13.11.4) labelled in (Entin-Wohlman et al., 1985) by
(11) and (13), respectively, are nothing but the characteristic function and the
distribution density of multivariate spherically symmetric stable law expanded
to the fractional dimension D (see (7.5.5)).

13.12. Anomalous transit-time in some solids
Measurements of the transient photocurrent I(t) in organic and inorganic
amorphous materials including metallic films and semiconductors display
anomalous transport properties. The long tail of I(t) indicates a dispersion
of carrier transit times. However, the shape invariance of I(t) to electric field
and sample thickness is incompatible with traditional concepts of statistical
spreading, i.e., a Gaussian carrier packet. We consider the problem following
(Tunaley, 1972; Scher & Montroll, 1975).

If a metallic film is sufficiently thin, the material will be essentially in the
form of conducting islands separated by small distances. However if the islands
are randomly scattered, some possible paths will be effectively blocked. A
similar situation exists in problems of percolation, but in the present treatment
the carriers are allowed only to jump in the direction of the applied field, and
so the number of available paths is already severely restricted. Furthermore,
one does not assume that a path is either open or closed but the probability of a
jump is always finite though it may be very small. Thus the model is relevant
to the case where the influence of an applied field dominates the situation
rather than thermal excitations.

For the sake of simplicity one can consider point sites although in a thin
metallic film the sites will of course have a finite area. Following (Tunaley,
1972) we adopt a quasi-classical approach and assume that the carriers have to
jump from one site to the next by a tunneling process. The lattice is aperiodic
to the extent that no resonant modes for electrons or holes exist except at the
sites so that the probability of an electron, for example, to jump from one site
to another one ‘far away’ in one step is extremely small. It is assumed that the
sites are distributed at random so that the distance between a site chosen at
random and its nearest neighbor has a finite mean and variance.

To illustrate the process, we consider a two-dimensional thin film composed
of small metallic islands grown on randomly scattered nuclei. The time Ti for a
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carrier to jump from one island to another will have a probability distribution
which is exponential,

FTi (t) = 1− exp(−t/τ), (13.12.1)

where τ is the average time for a jump. However, τ will depend on the random
distance X between islands, and so it is a random variable Θ. It is assumed
(Harper, 1967) that Θ is related to X, the island spacing, by

Θ = β[exp(γ X)− 1], (13.12.2)

where β is inversely proportional to the applied potential gradient. Jumps in
a direction opposite to the potential gradient are not allowed in this model,
and the carriers are supposed to be independent.

Because Θ increases so rapidly with X, jumps to the nearest neighbor
island only need be considered, so that X becomes the separation distance
of the nearest neighbor in the forward direction. Since the field is greatest
in the forward direction provided that the islands are equipotential, the two-
dimensional problem can be reduced to the one-dimensional one with some
approximation. For one-dimensional islands, the distribution of the gap X
between two islands is exponential:

FX (x) = 1− exp(−µx), (13.12.3)

where µ−1 is the average island spacing.
Combining (13.12.2) and (13.12.3) for the distribution of the time constants

Θ yields

FΘ(t) = P
{

β[eγ X − 1] < t
}

= P
{

X <
1
γ

ln(1 + t/β)
}

= 1− exp
{
−µ

γ
ln(1 + t/β)

}

= 1− (1 + t/β)−ν, (13.12.4)

where ν = µ/γ . The total time for a carrier to reach the point x is the sum of a
random number N of independent times Ti, i = 1, …, N for jumps. In view of
(13.12.3), the sites (points of waiting) constitute the Poisson ensemble, and

P {N = n} = e−aan/n!

with a = µx. Hence the Laplace transform of the distribution density pT(t, x)
of the total time T is

pT(λ , x) = exp {−µx[1− q(λ )]} (13.12.5)
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where
q(λ ) =

∫ ∞

0
e−λ tq(t) dt,

and

q(t) = dFΘ(t)/dt =
ν

β(1 + t/β)ν+1 . (13.12.6)

The nth moment of the distribution
∫ ∞

0
tnq(t)dt = νβnB(n + 1, ν − n− 1)

exists as soon as ν > n + 1. If ν > 3, then

q(λ ) ∼ 1− Θ̄λ + Θ2λ 2/2, λ → 0. (13.12.7)

Inserting (13.12.7) into (13.12.5) as x → ∞, we obtain the asymptotic expres-
sion

pT(λ , x) ∼ exp
{
−µx(Θ̄λ − Θ2λ 2/2)

}
, λ → 0,

which yields, after inversion, the normal distribution

pT(t, x) =
1√

2πµxσΘ
e−(t−µxΘ̄)2/2µxσ2

Θ

with σ2 − Θ = Θ2 − Θ̄2. This is merely the result of applying the central
limiting theorem to the sum T1 + … + TN . There is no necessity of performing
some additional calculations to understand that in the case 1 < ν < 2 the
random value (T−µxΘ̄)/(b1(µx)ν) is distributed according to the stable density
qA(x; ν, 1) and in the case 0 < ν < 1 the value T/(b1(µx)1/ν) has a one-sided
stable distribution, as follows from the generalized central limit theorem.

Such kind of the transit time distributions are observed in many materi-
als (Scher & Montroll, 1975).

13.13. Lattice percolation
The notion of percolation was introduced in (Broadbent & Hammersley, 1957)
as opposing to the diffusion. While diffusion assumes a random walk of a
particle in a regular environment, percolation consists in a regular motion
(of a liquid or electricity) in a random environment. As a model of such an
environment, they usually take a periodic lattice whose each site is ‘occupied’
with probability p and empty with probability 1−p. The totality of the occupied
sites together with their nearest neighbors forms a cluster. The standard
problems of percolation theory are the study of distribution of sizes and other
geometric characteristics of the clusters; the determination of the so-called
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a

b

Figure 13.5. Percolation on a two-dimensional lattice (the backbone is shown in
heavy lines, the dangling ends in light lines

percolation threshold, p = pc, when the cluster becomes infinite, and so on.
Along with the site percolation, the bond percolation is studied, with clusters
of connected conducting bonds. The bonds are conducting with the probability
p and, correspondingly, blocked with the probability 1 − p. The model is
used for investigation of the problem of the electrical conductivity of a random
resistor network. For this problem, another object is relevant—the ‘backbone’
of an infinite percolation cluster defined as the network of unblocked connected
bonds, through which one can go to infinity by at least two non-intersecting
paths.

In other words, the backbone is a set of bonds through which the electric
current would flow if a voltage is applied to the cluster at infinitely remote
electrodes. The rest of the cluster is referred to as a collection of ‘dead’ or
‘dangling ends’. A dangling end can be disconnected from the cluster by cutting
a single bond (see Fig. 13.5).

The effect of ‘dead ends’ on the diffusion and drift of particles along per-
colation cluster is studied in the frame of a simplified model called the ‘comb
structure’ (Fig. 13.6). The ‘teeth’ of this comb behave as traps in which x-
coordinate of the particle stays for some time while y-coordinate diffuses along
the tooth. For infinitely deep teeth, the waiting time distribution q0(t) is sim-
ply the distribution of the first return time at the origin of a one-dimensional
Brownian motion (see Section 10.7)

q0(t) ∝ t−3/2, t →∞.

Thus the diffusion of the particle along x-axes asymptotically does not differ
from the subdiffusion process described in Section 12.4.
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Figure 13.6. A comb-like structure

This problem was introduced in (Nigmatullin, 1986). The equation with
the fractional time derivative of the order 1/2 was obtained, and the correct
asymptotic behavior of 〈x2(t)〉 ∝ t1/2 was obtained by means of generating
function technique, but the Green function was approximated by the Gauss
law. The correct Green function obtained in (Arkhincheev & Baskin, 1991)
coincides, up to the scale factor, with

pas(x, t) = (Dt1/2)−1/2Ψ(2,1/2)
{

(Dt1/2)−1/2x
}

=
1

2π
√

Dt

∫ ∞

0
e−

τ2
4t−

x2
4Dτ τ−1/2dτ,

which is a one-dimensional analogue of (12.7.8) with ω = 1/2.
In general, the scope of the percolation theory is large enough. As not-

ed in (Isichenko, 1992), a list of problems which percolation theory has been
applied to includes hopping conduction in semiconductors (Seager & Pike,
1974; Shklovskii & Efros, 1984), gelation in polymers (de Gennes, 1979; Fam-
ily, 1984), electron localization in disordered potentials (Ziman, 1969; Ziman,
1979; Thouless, 1974), the quantum Hall effect (Trugman, 1983), flux vor-
tex motion (Trugman & Doniach, 1982), and intergrain Josephson contacts
(Gurevich et al., 1988) in superconductors, the gas-liquid transition in colloids
(Safran et al., 1985), permeability of porous rocks (Sahimi, 1987; Thompson
et al., 1987) and of fractured hard rocks (Balberg et al., 1991), plasma trans-
port in stochastic magnetic fields (Kadomtsev & Pogutse, 1979; Yushmanov,
1990; Isichenko, 1991), turbulent diffusion (Gruzinov et al., 1990), epidemic
processes (Grassberger, 1983), and forest fires (MacKay & Jan, 1984).

13.14. Waves in medium with memory
In the statics of a solid body, the strain ε at some point is related to the stress
σ at the same point by the formula (for the sake of simplicity, we restrict our
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consideration to the one-dimensional case)

ε = σ/E

where E > 0 is the elasticity modulus. The same relation is of frequent use in
dynamics as well:

ε(t) = σ(t)/E.

Nevertheless, the domain of applicability of the last relation is limited: in
dynamic processes, the medium strain depends not only on the stress σ(t) at
a given time t, but on the prehistory σ(τ), τ < t, as well. In other words, ε(t)
becomes a functional of σ(⋅). This idea lies in the heart of the theory of residual
elasticity, whose most elaborated model is linear:

ε(t) =
[

σ(t) +
∫ t

−∞
K(t− τ)σ(τ)dτ

]
/E. (13.14.1)

Considering relation (13.14.1) as an integral equation in σ(t),

σ(t) = −
∫ t

−∞
K(t− τ)σ(τ)dτ + Eε(t)

and assuming that the Neumann series converges, we obtain

σ(t) = E
[

ε(t)−
∫ t

−∞
R(t− τ)ε(τ) dτ

]
,

where

R(t) =
∞∑

n=1

(−1)n−1K(n)(t).

The functions K(t) and R(t) defined for t > 0 are referred to as the creepage
kernel and the relaxation kernel respectively. They are usually assumed to be
non-negative and monotonically decreasing (the last assumption is called the
hypothesis about memory decay (Lokshin & Suvorova, 1982). Experiments
demonstrate that, as t → 0, these functions rapidly increase, which gives us
grounds to make use of singular (i.e., growing without bounds as t → 0) kernels
that satisfactorily simulate the experimental data in a certain time interval
0 < a < t < b.

Let u(x, t) describe the strain of the one-dimensional medium, ρ be its
density and ƒ(x, t) be the volume stress density. Then the behavior of a residual
elastic medium is determined by the known simultaneous equations

ρ
∂2u(x, t)

∂t2 =
∂σ(x, t)

∂x
+ ƒ(x, t), (13.14.2)

∂u(x, t)/∂x = ε(x, t), (13.14.3)



396 13. Physics

complemented by the constitutive equation

σ(x, t) = E
[

ε(x, t)−
∫ t

−∞
R(t− τ)ε(τ, x)dτ

]

= E
[
ε(x, t)− R(t) ∗ ε(x, t)

]
, (13.14.4)

where ∗ denotes the convolution in time. Substituting (13.14.4) into (13.14.2)
and eliminating ε(x, t) from the resulting relation with the use of (13.14.3), we
arrive at the equation

∂2u
∂t2 −

∂2u
∂x2 + R ∗

∂2u
∂x2 = ƒ/ρ, (13.14.5)

where E/ρ is taken equal to one. In (Lokshin & Suvorova, 1982) it was estab-
lished that, taking the creepage kernel as

K(t) = k
t−α
+

Γ(1− α)
+

k2

4
t−α
+

Γ(1− α)
∗

t−α
+

Γ(1− α)
(13.14.6)

where k > 0, 0 < α < 1, and

t−α
+ ≡

{
t−α , t > 0,
0, t < 0,

the fundamental solution g(x, t) of equation (13.14.5) differs from zero in the
domain |x| ≤ t and is expressed in terms of the function

uα (t) =
1

2πi

∫ γ +i∞

γ−i∞
e−λ α+λ tdλ , γ > 0, (13.14.7)

as follows:

g(x, t) =
1
2

∫ h(x,t)

0
uα (ξ ) dξ +

k
4

∫ t

|x|
dτ

(t− τ)−α

Γ(1− α)

∫ h(x,τ)

0
uα(ξ ) dξ ,

where

h(x, t) =
t− |x|

(k|x|/2)1/α .

Function (13.14.7) is nothing more nor less than the density of a one-sided
stable law q(x; α, 1); therefore,

g(x, t) =
1
2

G(h(x, t); α, 1) + +
k
4

∫ t

|x|
dτ

(t− τ)−α

Γ(1− α)
G(h(x, τ); α, 1).

A similar result is obtained in (Schneider & Wyss, 1989) in terms of fractional
wave equation equivalent to (13.14.5)–(13.14.6).
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13.15. The mesoscopic effect
The term ‘mesoscopic’ is used to speak about a physical system containing
a large a large amount of elements, which is too large to trace details of its
evolution but, at the same time, is not large enough to apply the methods
of statistical mechanics. The distinguishing feature of a mesoscopic system
consists of a high level of fluctuations of its characteristics.

The mesoscopic physics is a very young but fast growing direction, which
has been noticed by the Nobel Prize Committee: the 1998 Physics Nobel Prize
went to Robert B. Laughlin of Stanford, Horst L. Stormer of Columbia, and
Daniel C. Tsui of Princeton for their work on the fractional quantum Hall
effect—two-dimensional phenomena at the interface between two semicon-
ductor crystals. The reader can gain a rough idea of the problems covered by
this line of investigation from the Proceedings of the conferences (Mesoscopic
Systems, 1998). We restrict our presentation to a brief formulation of one of
such problems considered in (Raikh & Ruzin, 1987).

We consider a flat layer of finite area playing the role of a potential barrier
which electrons can tunnel through. In (Raikh & Ruzin, 1987) it was noted
that this model is used to describe various phenomena in the p–n barrier,
but the base qualitative results hold true in other situations. The problem
consists of the fact that the barrier parameters undergone random spatial
fluctuations that are due to, say, the roughness of the boundary surface or ran-
dom fluctuations of the impurity density. Since the transparency of the barrier
depends exponentially on its parameters, even small fluctuations can result in
a great dispersion of the local transparency as a function of the coordinates of
the layer surface. The points with anomal high local transparency are called
‘punctures’; their number N and their transparencies Vi are random variables
that determine the dispersion of the resulting transparency W of specimen.
Because, nevertheless, Vi and W are well lower one, we are able to use the
additive approximation, i.e.,

W =
N∑

i=1

Vi,

and the conditions W < 1 and Vi < 1 can be dropped, in the same way as
we neglected the constraint Q < E0 in Section 13.4. If we assume that the
number of punctures N is distributed by the Poisson law and Vi do not de-
pend on N and are independent, we necessarily arrive at the two-dimensional
model of sources considered in Section 10.6. Indeed, formula (9) of (Raikh
& Ruzin, 1987) coincides with (10.6.13), whereas the density of transparency
distribution (formula (Π.3.1))

pW(w) =
1

2πi

∫
dλe−λ α+λw

is nothing more nor less than the density of a one-sided stable law with α < 1;



398 13. Physics

it relates to the cross-section area A by the formula

α = (2 ln A)2/Q2
0

containing a constant Q0 � 1 determined by the band-gap energy εg and the
average impurity density n:

Q0 ∝ ε5/4
g n−1/2.

13.16. Multiparticle production
The problem of multiple hadronic production in heavy ion collisions was ap-
proached by means of several kinds of models since the early days of the
discovery of strongly interacting particles. A large amount of experimental
data were obtained up to now; however, one cannot say that their theoretical
interpretation is satisfactory. The problem is caused by somewhat limited un-
derstanding of the production mechanism of multiparticle final states, which
is related to the involved problems of confinement and non-perturbative quan-
tum chromodynamics

Three basic properties of multiparticle production processes give reason to
talk about anomalous fluctuations in them.

(1) The mean number of produced particles 〈N〉 increases as Eν with the
collision energy E, where α is essentially less than the expected value
α = 1.

(2) The distribution of the scalable random variable Z = N/〈N〉 is not getting
narrower while 〈N〉 grows, but stays the same (the Koba–Nielsen–Olesen
scaling).

(3) One of the produced particles takes away about a half of the total energy
independently of 〈N〉 (the leading effect).

It is accepted to consider that all these properties result from dynamic
reasons.

Multiple hadronic production processes are usually visualized as proceed-
ing in two main steps. First, a number of more or less well-defined intermediate
objects such as strings or fireballs is formed. Their hadronization follows: usu-
ally one says that strings ‘fragment’ and fireballs ‘decay’ into finally observed
hadrons. That terminology reflects the essential dynamic difference between
them: strings are supposed to be essentially one-dimensional, whereas fire-
balls are three-dimensional objects. However, confrontation with experimental
data washed out this difference substantially: strings are now allowed to ‘bend’
in phase space before fragmentation (so they can produce more hadrons than
before), whereas fireballs are usually forced to decay anisotropically (therefore
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reducing their hadronic multiplicities). In both cases, the agreement with data
is claimed as satisfactory.

The last fact can be interpreted as an indirect indication that kinematics,
i.e., the conservation laws, may play a noticeable role here.

Let us consider the following model discussed in (Uchaikin & Litvinov,
1985). In the spirit of the multiperipherical ideas, we assume that virtual
particles arise successively with independent identically distributed energies
E1, E2, … and when the sum Sn =

∑n
i=1 Ei falls into the interval (E, E + ∆E), the

virtual particles become real. If the sum Sn jumps over the interval, it starts
all over again.

The random multiplicity N has the probability distribution

pn(E) = P {N = n} = P {Sn ∈ ∆E}
/ ∞∑

n=1

{Sn ∈ ∆E}

= p(n)(E)

/ ∞∑

n=1

p(n)(E).

Let the distribution density p(E) possess a finite variance σ2,
∫ ∞

0
E2p(E)dE = σ2 + ε2, ε =

∫ ∞

0
Ep(E)dE.

It is clear that for large E the expected N is large, too, and one can use the
normal approximation for the convolution

p(n)(E) ∼ 1√
2πnσ

e−(E−nε)2/(2nσ2), n →∞.

Therefore,
pn(E) ∼ c(E)e−(n−E/ε)2/(2Eσ2ε−3), E →∞,

where c(E) is the normalizing constant. As one can see, the mean multiplicity
grows linearly with energy

〈N〉 ∼ E/ε,

and the relative fluctuations vanish:
√

DN/〈N〉 ∼ σ√
εE

→ 0, E →∞.

Now we assume that

p(E) ∼ αaE−α−1, E →∞, α < 1. (13.16.1)

Using the generalized limit theorem (Section 2.5) and taking the relation be-
tween YB(α, β) and YA(α, β) (Section 3.7) into account, we obtain

pn(E) ∼ C(E)
[naΓ(1− α)]1/α qB

(
E

[naΓ(1− α)]1/α ; α, 1
)

, E →∞.
(13.16.2)
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The moments 〈Nk〉 can be computed by replacing the summation

〈Nk〉 =
∑

n
nkpn(E)

by integration

〈Nk〉 ∼ αEαk+α−1C(E)
[aΓ(1− α)]k+1

∫ ∞

0
x−kα−αqB(x) dx =

αEαk+α−1C(E)Γ(k + 1)
[aΓ(1− α)]k+1αΓ((k + 1)α)

.

The normalization function

C(E) = aΓ(α)Γ(1− α)E1−α

is determined from the condition 〈N0〉 = 1, the mean multiplicity is of the form

〈N〉 ∼ Γ(α)
aΓ(1− α)Γ(2α)

Eα , (13.16.3)

and the higher moments satisfy the relation

〈Nk〉
〈N〉k ∼

Γ(α)Γ(k + 1)
Γ((k + 1)α)

(
Γ(2α)
Γ(α)

)k

. (13.16.4)

The obtained relations show that for α < 1 all three properties of multipar-
ticle production appear together in this model (the third property is an intrinsic
one for a sum of random terms with distribution (13.16.1), see Section 3.6).
Moreover, if we take α = 1/2, we can find from (13.16.2) that

pz(z) ≈ πz
2

e−πz2/4.

This formula is exactly the same formula which was obtained as fitting to some
experimental data in the case where 〈N〉 ∝ E1/2 (Anoshyn et al., 1979).

Another application of stable distribution to the multiple production prob-
lem can be found in (Brax & Peschanski, 1991; Lagutin & Raikin, 1995).

13.17. Tsallis’ distributions
At the end of this chapter, we present interesting results obtained by Tsallis
(Tsallis et al., 1995). As it is well known, the statistical mechanics can be
constructed on the basis of the Boltzmann–Gibbs entropy

S(p(⋅)) = −
w∑

i=1

pi ln pi → −
∫ ∞

−∞
dx p(x) ln p(x).
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We choose kB = 1. The normal distribution

p(x) =
1√
2πσ

e−x2/(2σ2)

is derived by optimizing the entropy with the constraints
∫ ∞

−∞
dx p(x) = 1

and
〈x2〉 =

∫ ∞

−∞
dx x2p(x) = σ2.

Tsallis (Tsallis, 1988) generalized the Boltzmann–Gibbs statistics and intro-
duced the following expression for the generalized entropy:

ST
q =

(
1−

w∑

i=1

pq
i

)
/(q− 1)

which resembles the Renyi entropy

SR
q =

(
ln

w∑

i=1

pq
i

)
/(1− q).

One can easily verify that

SR
q =

ln[1 + (1− q)Sq]
1− q

, lim
q→1

ST
q = lim

q→1
SR

q = −
∑

i
pi ln pi.

As Tsallis and co-workers assert, the extended formalism based in this defi-
nition of entropy has remarkable mathematical properties: among others, it
preserves the Legendre transformation structure of thermodynamics, it leaves
the Ehrenfest theorem, von Neumann’s equation, and Onsager’s reciprocity
theorem form-invariant for all values of q.

Writing the new entropy for continuous distribution in the form

ST
q (p(⋅)) =

1−
∫∞
−∞ d(x/σ)[σp(x)]q

q− 1

and using the Lagrange method under the conditions
∫ ∞

−∞
dx p(x) = 1,

∫ ∞

−∞
dx x2[p(x)]q = σ3−q,
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Tsallis and collaborators obtained for 1 < q < 3

p(x) = A(q)
1

[1 + β(q− 1)x2]1/(q−1) (13.17.1)

and for −∞ < q < 1, the same formula on the segment |x| ≤ 1/
√

β(1− q) and 0
otherwise.

As one can see, in case q = 2 the distribution coincides with a stable
distribution (Cauchy). Other distributions given by this formula are not stable,
but in the domain 5/3 < q < 3 they have the asymptotic tails of the same order
as symmetric stable laws with α = (3− q)/(q− 1).

13.18. Stable distributions and renormalization
group

The term ‘renormalization group’ (RG) is usually employed to denote approach-
es which apparently do not have much in common. An essential part of the
renormalization group is to develop a strategy for dealing with problems that
have multiple scales of length. The central concept of such a strategy is to
break the main problem down into a sequence of subproblems, with each sub-
problem involving only a single characteristic length scale (Wilson, 1979).

The fact that stable distributions are fixed points of a RG transformation
seems to have been first noted by G. Jona-Lasinio (Jona-Lasinio, 1975). He
considered the random variables Xi as the possible values of a collection of con-
tinuous spins on a one-dimensional lattice. The index i indicates the position
of the spin in the lattice. The problem is then to determine a ‘good’ variable
for describing the collective, i.e., macroscopic behavior of the system.

We divide the lattice in blocks of length n. The total spin of each block is

Sn =
n∑

i=1

Xi.

In (Jona-Lasinio, 1975),
Zn = b−1

n Sn

was introduced as a ‘good’ variable with a convenient normalization factor bn
to damp its values at large n. Denoting by Rn the operation of constructing the
characteristic function ƒ(k) of the common distribution of the Xi, they obtain

Rn(ƒ) = ƒn(k/bn)

and then conclude that a ‘good’ choice of bn will be one for which

lim
n→∞

Rn(ƒ) = lim
n→∞

ƒn(k/bn) = ϕ(k),
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where ϕ(k) is a smooth function but not a constant. The situation may be
illustrated with the help of a simple example. Let the characteristic function
of the initial distribution be of the form

ƒ(k) = exp

{
−
∞∑

m=1

am|k|αm

}
, am > 0.

Then

Rn(ƒ) = exp

{
−n

∞∑

m=1

am|k|αmb−αm
n

}
.

If we choose bn according to

bn ∼ n1/α , (13.18.1)

all terms, except the first, will disappear from the sum in the exponential, and
we obtain

lim
n→∞

Rn(ƒ) = exp {−a|k|α} .

On the other hand, if we take bn which increases more rapidly than n1/α ,

lim
n→∞

Rn(ƒ) = 1,

which corresponds to a δ -function in the Z variable. Finally, if bn increases
slower than n1/α , the limit distribution will be different from zero only at
infinity. Therefore, in this example (13.18.1) gives the only ‘good’ choice for bn.

Notice that the stable characteristic function ƒα (k) = exp {−a|k|α} satisfies
for bn = n1/α and for arbitrary n

Rn(ƒα ) = ƒα ,

i.e., it is a fixed point of the transformation Rn.
We are able to show that the ‘collective’ behavior of our one-dimensional

lattice of spins is described by a distribution belonging to a rather restrict-
ed class, i.e., the class of stable distributions which is parameterized by the
characteristics α (Jona-Lasinio, 1975).

This idea is discussed also in (Nonnenmacher, 1989; West, 1994; Zaslavsky,
1994a).
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14

Radiophysics

14.1. Transmission line
This section is devoted to a model for a homogeneous electrical line, which can
be, for example, an electrical cable or a circuit of cascaded four-pole networks.
A number of properties of such a line can be described with the use of the so-
called time function F(t, λ ), t ≥ 0, which shows the reaction of a line of length
λ > 0 to a perturbation of step function type at the initial time. Its derivative
with respect to time is called the pulse reaction, and its Fourier transform, the
frequency characteristic of the line.

It is known from electrical circuit theory that, when a homogeneous line of
length λ = λ1 +λ2 is partitioned into sequentially connected sections of lengths
λ1 and λ2, its time function F(t, λ ) is formed from the time functions F(t, λ1)
and F(t, λ2) of the separate parts via their convolution, i.e.,

F(t, λ1 + λ2) = F(t, λ1) ∗ F(t, λ2),

which is equivalent to multiplication of the corresponding frequency charac-
teristics:

ƒ(ω , λ1 + λ2) = ƒ(ω , λ1)ƒ(ω , λ2).

Hence it follows that for any λ > 0

ƒ(ω , λ ) = ƒλ (ω , 1). (14.1.1)

The quantities

a(ω , λ ) = −ℜ ln ƒ(ω , λ ) = λa(ω , 1),
b(ω , λ ) = ℑ ln ƒ(ω , λ ) = λb(ω , 1),

called, respectively, the damping and the phase of the frequency characteristic,
are closely related to the function ƒ(ω , λ ).

405
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It turns out that the cases where the time function of the line does not
decrease on the time axis t > 0 are not rare. If, in addition, the damping at
zero frequency (ω = 0) is equal to zero, then the time function F(t, λ ) can be
regarded as a distribution function concentrated on the half-line t > 0. In
this case, (14.1.1) implies that F(t, λ ) is an infinitely divisible distribution with
characteristic function ƒ(ω , λ ) of the form

ln ƒ(ω , λ ) = λ
(

iωγ +
∫ ∞

0
(eiωu − 1) dH(u)

)
, γ ≥ 0.

For frequency characteristics of this form, the phase b(ω , λ ) can be recov-
ered from the damping a(ω , λ ) to within the term ωγλ .

Thus, if a(ω , λ ) = λc|ω|α , where 0 < α ≤ 2 and c is a positive constant, then
the corresponding phase is of the form

b(ω , λ ) = λc(ωγ + |ω|α tan(απ/2) sign ω), γ ≥ 0,

while the time function F(t, λ ) related to that frequency characteristic is a
stable distribution, i.e.,

F(t, λ ) = GA(t; α, 1, γ , cλ ). (14.1.2)

Certain forms of cables which have a power character of damping are
known in electrical circuit theory. For example, a(ω , λ ) = λc|ω|1/2 for the so-
called non-inductive and coaxial cables. Consequently, according to (14.1.2),
the time function of such cables is of the form

F(t, λ ) = GA(t; 1/2, 1, γ , cλ ) = 2[1− Φ(cλ (t− cγλ )−1/2)],

where Φ is the distribution function of the standard normal law. The pulse
reaction F′t(t, λ ) in the case possesses the simple explicit expression (Lévy’s
density)

F′t(t, λ ) =
cλ√
2π

(x− cγλ )−3/2 exp

{
−c2λ 2

2
(x− cγλ )−1

}
.

A similar result is obtained in the analysis of noise accumulation in the
relay repeater line. It is established that the deviation of the noise value from
the average is usually due to ‘spike’ at some place of the line, whereas the
noise accumulated in the remaining part of the line is comparatively small.
After partitioning the line into n equal segments and representing the total
noise as the sum of independent random contributions on these segments, in
(Sindler, 1956) it is concluded that the noise distribution is determined by a
stable law, provided that the probability of a spike in a segment behaves as a
power function and the number of the constituent segments is large enough.
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14.2. Distortion of information phase
The following example concerns the calculation of the performance of systems
of radio relay stations (in the engineering practice, they are called radio relay
communications lines). In a mathematical setting, the part of the general
problem which we give our attention to takes its origin from (Siforov, 1956),
and its solution with the use of stable laws makes up the content of several
papers, of which (Sindler, 1956) must be regarded as the main one. The
transmission of high-quality radio communications over great distances (for
example, television transmissions) poses for engineers not only the problem of
relaying high-frequency radio signals that can be received only within sight
of the transmitter, but also the problem of eliminating noise distortions. The
following seems to be one of the simplest models where it is possible to trace
both the effects arisen themselves and the ways of their quantitative analysis.

We consider a vector a ∈ R2 rotating with a large angular velocity ω. The
projection of a onto the x-axis at time t, under the condition that its motion
began from the position defined by the angle ϕ, is the periodic function

ax(t) = |a| cos(ωt + ϕ).

The oscillatory excitation at the output of the radio transmitter is described
by the function ax(t), where |a| is the amplitude of the radio signal (its power
is proportional to |a|2), ω is its frequency, and ωt + ϕ is its phase (at time
t). The quantities |a| and ω stay constant at the transmitter output, while
transmission of the useful signal is accomplished by modulating the phase of
the signal, i.e., by changing ϕ.

If the radio signal were received by the receiver without change, then its
information content—the phase shift ϕ—would be recovered without difficul-
ties. However, in actual circumstances the radio signal comes to the receiver
in a somewhat distorted and weakened form. This is due to the scattering and
absorbing radio waves by the atmosphere. The radio waves hence reach the
receiver with modified phases. Taken alone, the changes are small; hence, that
in combination with the large frequency ω and the fact that there are many
such changes, we arrive at a distribution that is close to uniform with respect
to the phases of the vectors associated. As a result, the two-dimensional vector
X describing the received signal has the nature of a random vector with a circu-
lar normal distribution. Hence the length |X| of X has a Rayleigh distribution
with density

p(x) = D−2x exp(−x2/2D2), x ≥ 0, (14.2.1)

where D2 is the variance of the components of X.
The influence of the set noise can be represented by adding to X a two-

dimensional random vector Y having the circular normal distribution with
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variance of the components equal to σ2. The vector X + Y possesses a phase
differing from that of X by an angle ψ determined by

tan ψ =
|Yt|
|X + Yr|

ξ (Yt), −π < ψ < π, (14.2.2)

where Yr and Yt are the radial and tangential components of Y with respect to
X, and ξ (Yt) is a random variable determined by the direction of Yt taking the
values +1 and −1 with probabilities 1/2 each. Since the whole phenomenon
evolves in time, the vectors X and Y and the angle ψ determined by them
depend on t, i.e., are random processes. The processes X(t) and Y(t) (and,
consequently, ψ(t)), which are connected with different sections of the relay,
can be regarded as independent and stationary.

The total distortion ψ̄ of the information phase ϕ at time t after passage
of N sections of the relay is determined (if the delay in passing from section to
section is ignored) by the equality

tan ψ̄ (t) = tan(ψ1(t) + … + ψN(t)), −π < ψ̄ < π. (14.2.3)

The distribution of ψj(t) is symmetric for each t, as seen from (14.2.2).
Therefore,

Eψj(t) = 0.

The quantity ψ̄(t), obviously, possesses the same property. With this property
in mind, the value of the standard deviation becomes a measure characterizing
the level of noise in the transmission. For example, on an interval of 1 sec,

Ψ2 =
∫ 1

0
ψ̄2(t) dt.

The estimation of Ψ2 is a complicated problem in the analytic setting. It can
be simplified, though. Indeed, in view of (14.2.3),,

Ψ2 ≤
∫ 1

0
(ψ1(t) + … + ψN(t))2dt

=
∑

i

∫ 1

0
ψ2

j (t) dt +
∑

ij

∫ 1

0
ψi(t)ψj(t) dt. (14.2.4)

Then, because the stationary processes ψj(t) are independent and Eψj(t) = 0,
which implies

∫ 1

0
ψi(t)ψj(t) dt ≈ Eψi(t)ψj(t) = 0, i ≠ j,

we can drop the second term from (14.2.4), and consider the sum

∑

i

∫ 1

0
ψ2

j (t) dt (14.2.5)
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as an estimator of Ψ2. The constituents of this sum, in turn, admit a simplified
approximate expression, provided that εj = σj/Dj are taken to be small, where
σ2

j and D2
j are the variances of the components of Yj and Xj related to the jth

part of the relay. Indeed, by (14.2.2),
∫ 1

0
ψ2

j (t)dt =
∫ 1

0
arctan2

(
εj|Uj|
|Vj + εjU′j|

)
dt,

where Uj = Ytj/σj, U′j = Yrj/σj, and Vj = Xj/Dj. Therefore,

∫ 1

0
ψ2

j (t) dt ≤
∫ 1

0

ε2
j |Uj|2

|Vj + εjU′j|2
dt ≈

∫ 1

0
ε2

j
|Uj|2
|Vj|2

dt.

The next step in simplifying the estimator Ψ̃2 has to do with the circum-
stance that the vectors Vj(t) and Uj(t) vary with sharply different intensity.
For example, Vj(t) is practically constant on a time interval of the length being
considered, while Uj(t) performs an enormous number of rotations on the same
interval (of the order of 106). For this reason,

∫ 1

0
ε2

j
|Uj(t)|2
|Vj(t)|2

dt ≈
ε2

j

|Vj|2
∫ 1

0
|Uj(t)|2dt

≈
ε2

j

|Vj|2
E|Uj(1)|2 = ε2

j |Vj|−2.

Consequently, a simplified estimator of Ψ2 can be represented as the sum

Ψ̃2 =
∑

j

ε2
j |Vj|−2,

where the εj are constants small in magnitude, and Vj are independent random
vectors distributed by the normal law with identity covariance matrix. Thus,
as an estimator Ψ̃2 of the random variable Ψ2 we take a sum of N independent
random variables ε2

j |Vj|−2 whose distribution functions are of the form (as
follows from (14.2.1))

Fj(x) = exp(−ε2
j /2x), x > 0.

Since the terms ε2
j |Vj|−2 are small, while their number is large enough, the

distribution of Ψ̃2 can be well approximated by an infinitely divisible law whose
spectral function is not difficult to compute. Indeed, H(x) = 0 if x < 0, and

H(x) ≈
∑

j

(Fj(x)− 1) ≈ − 1
2

∑

j

ε2
j x−1

if x > 0. This spectral function corresponds, according to (3.5.16), to the stable
distribution with parameters α = 1 and β = 1.
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14.3. Signal and noise in a multichannel system
In radiolocation theory, the following scheme is well known (Dobrushin, 1958).

Let there be n channels fed by a random voltage Xi each, i = 1, …, n.
The random variables Xi are independent and identically distributed by the
Rayleigh law

pXi(x) = (2x/λi)e−x2/λi , x ≥ 0,

where
λi = EX2

i .

As concerns the parameters λi, there exist two rival hypotheses.

HYPOTHESIS A (signal absence). All λi are identical and equal to d > 0. This
means that the source of voltages Xi consists of mere noise, and d is the average
noise intensity in the channel.

HYPOTHESIS B (signal presence). All λi, excepting λj, are equal to d, whereas

λj = d + d̄,

where d̄ > 0. The index j is random, and takes each of n possible values
equiprobably. Therefore, the source feeding all channels, excepting the jth
one, is a mere noise, whereas the voltage in the jth channel is provided by the
sum of a signal and a noise. The quantity d̄ is the average power of the signal.
We neglect the possibility of simultaneous occurrence of a signal in several
channels.

The joint distributiuon density of X1, …, Xn under the hypotheses A and B
is of the form

pA(x1, …, xn) =
n∏

i=1

(2xi/d)e−x2
i /d,

pB(x1, …, xn) =
1
n

n∑

j=1

[
2xj/(d + d̄)

]
e−x2

j /(d+d̄)∏

i≠j

(2xi/d)e−x2
i /d.

respectively. Considering the likelihood ratio pB/pA, we conclude that the
optimal test to distinguish the hypotheses A and B is based on the statistic

ϕ(X1, …, Xn) =
n∑

j=1

exp

{
d̄

d(d + d̄)
X2

j

}
.

We introduce the ratio
β = d̄/d,
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where β is a dimensionless characteristic of the ratio of the average signal
power to the average noise intensity. It is easily seen that, if Xi is distributed
by the Rayleigh law with parameter λi, then

Yj = exp

{
d̄

d(d + d̄)
X2

i

}

satisfies the relations

P {Y > x} = x−γ , 1 ≤ x <∞,

γ =
d(d + d̄)

d̄λi
=

(1 + β)d
βλi

.

Under hypothesis A, the statistic ϕ(X1, …, Xn) is distributed exactly as the sum

Sn = Y1 + … + Yn (14.3.1)

of n independent summands Yi,

P {Yi > x} = x−(1+β)/β , 1 ≤ x <∞, (14.3.2)

whereas under hypothesis B that statistic is distributed as

S̃n = Z + Y2 + … + Yn, (14.3.3)

where Z, Y2, …, Yn are independent, and

P {Yi > x} = x−(1+β)/β , 1 ≤ x <∞,

P {Z > x} = x−β , 1 ≤ x <∞. (14.3.4)

As expected, the distribution of the statistic ϕ(X1, …, Xn) depends on the pa-
rameter β only.

It is well known that any test to distinguish hypotheses is based on deter-
mination of two complementary sets ΩA and ΩB in the n-dimensional space
such that if {X1, …, Xn} ∈ ΩA, hypothesis A is taken to be true, otherwise, if
{X1, …, Xn} ∈ ΩB, then hypothesis B is accepted. The probability

∫∫

ΩB

pA(x1, …, xn) dx1…dxn

of acceptance of hypothesis B in the case where hypothesis A is true is referred
to as the false alarm probability. The probability

∫∫

ΩB

pB(x1, …, xn) dx1…dxn



412 14. Radiophysics

of acceptance of hypothesis B in the case where it is true is referred to as the
right signal detection probability.

Let F and D be given, where 0 < F ≤ D < 1. We say that we are able to
distinguish the hypotheses with probabilities F and D, if there exists a test
to differentiate these hypotheses such that the false alarm probability does
not exceed F, whereas the right signal detection probability is no smaller than
D. The general theorems of mathematic statistics imply that it is sufficient
to consider tests based on the statistic ϕ, which was done in (Dobrushin,
1958). Following this way, the ability to discriminate the hypotheses with
given probabilities depends on the parameters n and β only.

We fix n, F, and D. From continuity considerations, it is obvious that
there exists boundary βn(F, D) such that for β ≥ βn(F, D) the hypotheses dis-
tinguishing with probabilities F and D is possible, whereas for β < βn(F, D)
the hypotheses are indistinguishable. If for β = βn(F, D) we make use of an
optimal test based on the likelihood ratio to distinguish hypotheses A and B,
then for some y the test with hypothesis region

ΩA = {ϕ(x1, …, xn) < y}

yield errors exactly equal to F and D.
The quantity βn(F, D) determining the least excession of the signal power

above the noise which allows for signal detection against the background of
the noise with given probabilities of errors was studied in (Dobrushin, 1958):

• for any fixed F and D, as n →∞,

βn(F, D) ∼ ln n

ln
(

1−F
D−F

) − 1 +

∫ K
−∞ ln(K − x)q(x; 1, 1)dx

(1− F) ln
(

1−F
D−F

) ,

where q(x; 1, 1) is the stable density with characteristic function

g(k; 1, 1) = exp
{∫ ∞

0

(
eiku − 1− iku

1 + u2

)
du
u2

}
,

and K is a solution of the equation
∫ ∞

K
q(x; 1, 1) dx = F;

• for any fixed D and n, as F → 0,

βn(F, D) ∼ ln F − ln n
ln D

− 1.

The base point is the application of the generalized limit theorem to sums
(14.3.1) and (14.3.3) of the addends distributed by the Zipf–Pareto law.
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14.4. Wave scattering in turbulent medium
The theory of multiple wave scattering is exposed in monographs (Tatarsky,
1971; Rytov et al., 1978; Ishimaru, 1978), and others. We concern here the
problem only in its most simple formulation.

The wave field u(r, t) is supposed to be scalar and monochromatic:

u(r, t) = u(r)e−iωt,

and the medium inhomogeneities to be time-independent. Under the indicat-
ed conditions the wave propagation through the inhomogeneous medium is
described by the Helmholtz equation

∆u(r) + k2
0ε(r)u(r) = 0, (14.4.1)

where k0 is the wave number in the non-perturbed medium, and ε(r) is the
optical dielectric constant at the point r. For randomly distributed inhomo-
geneities, ε(r) can be represented as

ε(r) = ε̄ + ε̃(r),

where ε̄ = const is the ensemble-averaged ε(r). We thus rewrite the Helmholtz
equation as

∆u(r) + k2
0ε̄u(r) = −k2

0ε̃(r)u(r). (14.4.2)

Let u0(r) describe the primary wave that satisfies the non-perturbed Helmholtz
equation

∆u0(r) + k2
0ε̄u(r) = 0

and G(r, r′) be the non-perturbed Green function

∆G(r, r′) + k2
0ε̄G(r, r′) = δ (r− r′).

Assuming that k0 and G satisfy the necessary boundary conditions, we derive
from (14.4.2) the integral equation for the wave field

u(r) = u0(r)− k2
0

∫
G(r, r′)ε̃(r′)u(r′)dr′

which possesses the solution in the form of the Neumann series

u(r) =
∞∑

n=0

un(r),

where the terms satisfy the recurrence relation

un+1(r) = −k2
0

∫
G(r, r′)ε̄(r′)un(r′) dr′.
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Here u0(r) is the non-perturbed (non-scattered) field, u1(r) is the scattered
field, u2(r) is the double-scattered field, etc.

In the case of transparent medium, i.e., where ε(r) is real-valued, the
relation

div(u∗∇u− u∇u∗) = 0

follows from (14.4.1). Consequently, under an appropriate choice of the nor-
malization factor a, the vector

j =
a

2ik0
(u∗∇u− u∇u∗) =

a
k0

ℑ(u∗∇u)

can be interpreted as the energy flux density.
Let us introduce the cross-section as the characteristics of single scattering:

w(θ) =
dP1/dΩΩΩ

Vj0
,

where dP1/dΩΩΩ is the mean power scattered within the unit spherical angle at
angle θ with the initial direction, V is the scattering volume, and

j0 =
a
k0
|ℑ(u∗0∇u0)|

is the absolute value of energy flux.
The random field of fluctuations ε̃(r) is called statistically homogeneous

and isotropic if the correlation function

ψε(r1, r2) ≡ 〈ε̃(r1)ε̃(r2)〉

depends only on the distance r = |r1 − r2|. The spectral density of such
fluctuations

Φε(q) =
1

8π3

∫
Ψε (r)e−iqrdr

is also a function of a single variable q = |q|. The differential cross-section
is expressed through the spectral density by the relation (Rytov et al., 1978,
(26.11))

w(θ) = (1/2)πk4
0Φε(q).

where q = 2k0 sin(θ/2).
Within the inertial wave number interval corresponding to the Kolmogorov

2/3 law, the spectral density of turbulent fluctuations is described by the power
law (Rytov et al., 1978, (26.31))

Φε (q) = Cq−11/3, C = const, (14.4.3)

and, consequently, for small angles

w(θ) = (1/2)πk4
0C[2k0 sin θ/2]−11/3 ∼ Dθ−11/3, D = const. (14.4.4)
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Figure 14.1. The bivariate stable distribution q2(v; 5/3) with the corresponding
Gauss distribution

Assuming the random inhomogeneities to be uniformly distributed in the
space, we can use again formula (13.5.1), substituting the differential scat-
tering cross-section (14.4.4)

ƒ(k) = exp
{
−2πzD

∫ ∞

0
[1− J0(kθ)]θ−8/3dθ

}
. (14.4.5)

Formula (14.4.5) coincides with (33.20) of (Rytov et al., 1978), which is used to
analyze the eikonal fluctuations in the turbulent atmosphere, and, at the same
time, (14.4.5) agrees with formula (10.6.18) with µ = 6/5. Therefore, the small-
angle (v = ΩΩΩ0 −ΩΩΩ, |v| � 1) distribution of the radiation scattered by a layer
of turbulent medium is a bivariate axially symmetric stable distribution with
α = 2/µ = 5/3. The corresponding density is shown in Fig. 14.1, compared with
the normal distribution. The ‘width’ of the obtained distribution behaves like
z3/5, i.e., it diffuses noticably faster than in the case of normal two-dimensional
diffusion (z1/2). We encounter here an example of superdiffusion (Chapter 12).

Of course, the remarks made at the end of the previous section remain
true: one should interpret this result as some intermediate asymptotics, the
question about its existence and area of applicability should be answered ex-
perimentally.
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14.5. Chaotic phase screen
Following (West, 1990), we consider the statistical properties of a freely prop-
agating plane wave whose phase is specified on a transverse line at z = 0. The
wave is propagating in the positive z direction with constant frequency ω and
wavelength λ = 2π/k with amplitude v(x, z) such that

v0(x) = exp {ikΨ(x)} z = 0+, (14.5.1)

where the phase shift Ψ(x) is merely a function of the transverse coordinate x.
The observed scintillations in the amplitude and phase of the received wave
result from interference of phase points along the wave front in the z = 0 plane
as the wave propagates away from the boundary. The interference pattern is
determined by the assumed statistical properties of Ψ(x).

The propagation of the wave field in free space can be determined by solv-
ing the wave equation (14.4.1), which is often approximated by a parabolic
equation of the form of the one-dimensional Schrödinger equation

[
2ik

∂
∂z

+
∂2

∂x2 + k2

]
u(x, y, z) = 0. (14.5.2)

Here
v(r) = u(x, z)eikz/z1/2,

and one neglects terms that fall off faster than z−1/2. The direction of prop-
agation (z) in (14.5.1) plays the role of time in the actual Schrödinger equa-
tion. whereas the boundary condition (14.5.1), the role of initial condition for
(14.5.2).

The solution of the parabolic equation (14.5.2), subject to the boundary
condition of (14.5.1), is given by the elementary diffraction integral

u(x, z) = eikz
(

k
2πiz

)1/2 ∫ ∞

−∞
dx′ exp

{
i

k
2z

(x− x′)2
}

u0(x′). (14.5.3)

Equation (14.5.3) describes the diffraction of the phase front away from the
phase-screen point (x′, 0) to the observation point (x, z). The mean field detected
at (x, z) is determined by averaging of (14.5.3) over an ensemble of realizations
of the phase fluctuations

〈u(x, z)〉 = eikz
(

k
2πiz

)1/2 ∫ ∞

−∞
dx′ exp

{
i

k
2z

(x− x′)2
}
〈u0(x′)〉. (14.5.4)

Under the integral sign, we have the average field emerging from the phase
screen

〈u0(x)〉 = 〈u(x, 0+)〉 = 〈exp {ikΨ(x)}〉. (14.5.5)
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The coherence between the wave field at the point (x + ξ , z) and at (x, z) is given
by

〈u(x + ξ , z)u∗(x, z)〉

=
k

2πz

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2 exp

{
i

k
2z

[(x + ξ − x1)2 − (x− x2)2]
}
〈u0(x1)u∗0(x2)〉.

(14.5.6)

If we assume that Ψ(x) is a homogeneous random process with independent
increments, then

Ψ(x) = Ψ(0) +
∫ x

0
dΨ(x′),

where Ψ(0) is the reference phase at x = 0 taking to be zero, so that (14.5.5)
becomes

〈u0(x)〉 =
〈

exp
{

ik
∫ x

0
dΨ(x′)

}〉
. (14.5.7)

To evaluate the mean, we replace the integral by a sum over n subintervals,
each of length ∆x = x/n� x, and write

I = lim
n→∞

〈n−1∏

j=0

exp

{
ik
∫ (j+1)∆x

j∆x
dΨ(x′)

}〉

= lim
n→∞

n−1∏

j=0

∫ ∞

−∞
exp {ik∆Ψj(∆x)} p(∆Ψj, ∆x)d∆Ψj.

This integral is just the characteristic function for small phase shift ∆Ψj(∆x) ≡
Ψ[(j + 1)∆x]−Ψ(j∆x):

I = lim
n→∞

n−1∏

j=0

p̃(k, ∆x), (14.5.8)

p̃(k, ∆x) =
∫

eik∆Ψj(∆x)p(∆Ψj, ∆x)d∆Ψj.

Setting
p̃(k, ∆x) ∼ 1− γ |k|α∆x = 1− γ |k|αx/n,

we derive from (14.5.8)
I = exp {−γ |k|αx} ,

which is a stable characteristic function.
The two-point correlation function of wave field at the boundary

〈u0(x1)u∗0(x2)〉 =
〈

exp
{

ik
[∫ x1

0
dΨ(x′)−

∫ x2

0
dΨ(x′)

]}〉
(14.5.9)
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is calculated in a similar way:

〈u(x + ξ , z)u∗(x, z)〉 = exp {−γ kα |ξ |} .

The discussion of physical corollaries of the above presentation can be
found in (West, 1990; Wong & Bray, 1988).
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Astrophysics and cosmology

15.1. Light of a distant star
Since ancient times, and for many centuries, the only source of information
about the Universe was the light. One of the classical effects in general rela-
tivity, tested experimentally, is the bending of light beams in the gravitational
field. During the recent decades, much attention was paid to this phenomenon
due to the discovery of gravitational lens. When the light moves through the
intergalaxy space, its deviation from a straight line is noticeable only if circum-
stances are favorable for it, namely, if the light ray goes sufficiently close to a
source of gravitational field and then the gravitational lensing effect appears.
In other cases the deviations caused by the galaxy fields are somewhat small.
However, as a result of a long distance passed by the light, these small devia-
tions accumulate and also become observable that leads to the displacements
of apparent positions of light sources on the celestial sphere. The evaluation
of statistical characteristics of a light trajectory in the field of randomly dis-
tributed point masses was performed in (Pyragas et al., 1986), whose results
are discussed here.

The light ray subjected to the mass m at a distance r from the straight line
which it moved along before interaction with the mass undergoes the deviation
on a small angle v = ΩΩΩ−ΩΩΩ0,

v ∝ m
(

r/r2
)

, (15.1.1)

where v and r are two-dimensional vectors in the plane perpendicular to the
primary direction. The gravitational sources distribution is supposed to be
homogeneous Poisson ensemble. Performing the calculations, in (Pyragas et
al., 1986) the model of sources was essentially used. As a result, they obtain
a logarithmically divergent variance of the random deviation angle of a ray
passed a certain path. Observing that this divergence is created by the nearest
source, they remove a small neighborhood along this ray from consideration,
and get a finite mean square angle on the path z proportional to z ln z.

419
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It is easy to see that the problem is identical to the charged particle scat-
tering problem considered in Section 13.5. So, we can assert that the angle
distribution of a light ray multiply scattered by gravitational field of station-
ary randomly distributed point masses is described by the Moliére distribution.
We intentionally say here about stationarity. In principle, there exists another
possibility connected with changing the position of a light source. It is motion
of mass creating the deflecting gravitational field. A more detailed analysis
shows that in actual case the contribution of nearest neighbors, though hardly
accountable, is more essential and leads not to logarithmic but power-type
divergences of mean-square quantities (Pyragas et al., 1986, p. 83).

The power-type divergence of the mean square angle of scattering per unit
path length

2π
∫ θ

0
w(θ)θ2θ dθ ∝ θγ , 0 < γ < 2, θ →∞,

makes it evident that the distribution w(θ) has the power-type tail of the form

w(θ) ∝ θ−(4−γ ),

and consequently, we arrive at the problem of the kind already considered
in Section 11.6. Its solution is the two-dimensional axially symmetric stable
distribution with α = 2− γ whose width grows as z1/α with the path passed by
the light.

A much more interesting situation arises in connection with refusing from
the homogeneous Poisson ensemble and introducing the long-distance corre-
lations of fractal type. The combination of power-type free path distribution
with power-type scattering angle distribution leads to the model of anoma-
lous diffusion described in fractional derivative equations whose solutions are
expressed through stable distributions (Section 12.7).

15.2. Cosmic rays
One of the central questions in astrophysics of cosmic rays is the question
about their origin. Now there are weighty reasons to consider that the cosmic
rays with energy E < 1017 eV have, mainly, the galactic origin. It is also
supposed that the most probable cosmic ray sources are supernova bursts.

Using experimental data about cosmic ray fluctuations near the Earth and
taking a certain transportation model into account, one can obtain some esti-
mates for space-time source density. In (Lagutin & Nikulin, 1995) devoted to
this problem, the random source distribution is assumed to be of homogeneous
Poisson type, and the transportation process is described in the framework of
the diffusion model. Let us discuss this approach in more detail.

We place the origin at the observation point and consider the field created
here at t = 0 by all bursts inside the sphere UR of radius R during the time
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interval (−T, 0). In diffusion approximation, the angle distribution of particles
at some point is the sum of two terms

Φ(ΩΩΩ) =
1

4π
[Φ0 + 3ΩΩΩj].

The former, isotropic component does not depend on the direction and is pro-
portional to the concentration of cosmic ray particles n; the latter, anisotropic
component gives the linear dependence on cosine of the angle between the
direction of travel of measured particles ΩΩΩ and the vector of diffusion current
density j. We denote by n(r, t) the diffusion propagator giving the concentra-
tion of particles at the point r = 0 at the time t = 0 from the unit source at the
point r at the moment −t. Assuming, for the sake of simplicity, the diffusivity
D = 1/4, we write

n(r, t) = (πt)−3/2e−r2/t. (15.2.1)

The vector j is related to this density by the Fick law

j = D∇n(r, t) = (1/4)n′(r, t)r/r, (15.2.2)

where the prime denotes the derivative with respect to r. This expression
differs from the common one by the sign because of the inverse direction of the
position vector r headed to the source from the observation point.

The random sources {Xi, Ti} (Xi ∈ UR, Ti ∈ (0, T)) generate the concentra-
tion

N =
∑

i
n(Xi, Ti), (15.2.3)

and the current density

J =
∑

i
j(Xi, Ti). (15.2.4)

It is not hard to see that

EN = ρ
∫ T

0
dt
∫

UR

dr n(r, t)

=
2ρ√

π

{
T
∫ R2/T

0
e−ξ ξ1/2dξ + R2

∫ ∞

R2/T
e−ξ ξ−1/2dξ

}
,

where ρ is the four-dimensional density in UR × (0, T); it tends to∞ as T →∞
and R →∞. It is of convenience, therefore, to subtract this from (15.2.3) and
pass to the random variable

Ñ = N − EN.
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Due to the evident symmetry,
EJ = 0.

We rewrite the characteristic function for the pair of random variables Ñ, J

ƒ(q, k) = EeiqÑ+ikJ

in the form

ln ƒ(q, k) = ρ
∫

R3

∫ ∞

0

{
ei(qn+kj) − 1− iqn

}
dr dt.

Integrating with respect to the angular variable ΩΩΩr = r/r and taking (15.2.2)
into account. we obtain

ln ƒ(q, k) = 4πρ
∫ ∞

0
dt
∫ ∞

0
dr r2

{
eiqn sin kj

kj
− 1− iqn

}
. (15.2.5)

where n = n(r, t) and j = |j(r, t)| = (1/4)|n′(r, t)| are determined by formulae
(15.2.1) and (15.2.2).

To find the characteristic function of isotropic fluctuations Ñ, we let k → 0
in (15.2.5); then

ln ƒ(q) ≡ ln ƒ(q, 0) = 4πρ
∫ ∞

0
dt
∫ ∞

0
drr2 {eiqn − 1− iqn} .

Recalling (15.2.1) and introducing

ξ = r2/t, τ = |q|(πt)−3/2,

we obtain

ln ƒ(q) = −
(

4
3π3/2

)
|q|5/3

∫ ∞

0
dτ τ−8/3

∫ ∞

0
dξ ξ1/2

×
{

1− exp[iτe−ξ sign q] + iτe−ξ sign q
}

.

Calculation of the double integral leads us to the conclusion that the isotropic
part of fluctuations Ñ is distributed by the stable law with α = 5/3, β =
1. The reader can find the details in (Zolotarev, 1986; Lagutin & Nikulin,
1995; Lifshits, 1956). The distribution of the second (anisotropic) component
was not found in the explicit form in (Lagutin & Nikulin, 1995) but on the
basis of numerical calculations and dimension reasoning it was concluded that
the magnitude J = |J| is distributed by the one-dimensional stable law with
α = 5/4 and β = 1. Let us verify this.

Setting q = 0 in (15.2.5), we obtain the expression for the characteristic
function of vector J

ln ƒ(k) ≡ ln ƒ(0, k) = −4πρ
∫ ∞

0
dt
∫ ∞

0
dr r2

{
1− sin kj

kj

}
. (15.2.6)
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By virtue of (15.2.2)

j = (1/4)|n′(r, t)| = (r/2)π−3/2t−5/2e−r2/t.

Let us pass from the variables r, t to

ξ = r2/t, η = (1/2)π−3/2t−2k

respectively. Because in these variables

jk = η
√

ξe−ξ ,

r2 dr =
(k/η)3/4

2(2π3/2)3/4 ξ1/2dξ ,

dt = − k1/2

2(2π3/2)1/2 η−3/2dη,

we reduce characteristic function (15.2.6) to

ƒ(k) = exp
{
−Ck5/4

}
, (15.2.7)

where

C =
πρ

(2π3/2)5/4

∫ ∞

0
dη η−9/4

∫ ∞

0
dξ ξ1/2

[
1− sin(η

√
ξe−ξ )

η
√

ξe−ξ

]
.

One can easily demonstrate that this improper integral converges. Thus, the
characteristic exponent of the stable law describing the distribution of the
current density vector J is equal to 5/4 indeed, but this is a three-dimensional
spherically symmetric stable distribution. The distribution of the magnitude
J = |J|, in contrast to the statement of (Lagutin & Nikulin, 1995), is not a one-
dimensional stable law, and cannot be, due to the mere fact that the magnitude
of the sum of two vectors is not equal to the sum of their magnitudes.

Another interesting problem arises in connection with fluctuations of the
total energy of all cosmic ray particles in a given volume V of the space. As
theoretical calculations show, the energy spectrum of the particles emitted by
supernovae has a long power tail (Lang, 1974)

Sth(E) dE ∝ E−2.5dE.

The all-particle spectrum arising from measurements shows the same behavior
with a somewhat different exponent:

Sexp(E) dE ∝ E−2.75dE

(Petrera, 1995). Anyway, we deal here with the distribution of inverse power
type

S(E) dE ∝ E−α−1dE, 1 < α < 2,
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which stretches for a few orders up to 1017 ÷ 1018 eV. Consequently, on the
assumption that the particles are distributed in the space according to the
homogeneous Poisson ensemble we obtain that the total energy

EV =
N(V)∑

i=1

Ei

of all particles in the volume V is a random variable similar to Y(α, 1) (see
Section 2.1) with infinite variance. The relative width δ = ∆EV /EEV decreases
as

δ ∝ V1/α−1,

i.e., essentially slower than in the case of a finite variance where δ ∝ V−1/2.

15.3. Stellar dynamics
The general analysis of the statistical aspects of the fluctuating gravitational
field arising from a random distribution of stars was performed by S. Chan-
drasekhar and J. von Neumann (Chandrasekhar & Neumann, 1941; Chan-
drasekhar & Neumann, 1943; Chandrasekhar, 1944a; Chandrasekhar, 1944b)
and provided the necessary basis for several problems of stellar dynamics.
Thus, the notion of the time of relaxation of a stellar system is intimately
connected with the influence of such fluctuations in the gravitational field on
the motion of stars. Also the dynamic problems presented by star clusters
can be treated satisfactorily only in the framework of such a model. The com-
mon characteristic of all these problems is that individual stars are subject
to the changing influence of a varying local stellar distribution. So, one may
formulate the problem in terms of point sources.

Point masses mi (stars) placed at ri generate at the origin the gravitational
field of intensity

F =
∑

i

Gmi

r3
i

ri. (15.3.1)

Under assumption that the system of stars is a homogeneous Poisson en-
semble, Holtsmark’s results can be readily adapted to the gravitational case.
However, the specification of the Holtsmark distribution does not characterize
the essential features of the fluctuating field. An equally important aspect of
the problem is the fluctuation rate and the related questions concerning the
probability after-effects (Chandrasekhar & Neumann, 1941, p. 490). These
later problems are essentially more complicated than the establishment of the
stationary distribution. By virtue of (15.3.1),

f =
dF
dt

=
∑

i
Gmi

(vi

r3 −
ri(rivi)

r5
i

)
,
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where vi denotes the velocity of the typical field star,

vi = dri/dt.

The fluctuation rate can be specified in terms of the distribution p(F, f) which
gives the joint probability of a given field intensity F and the associated change
rate f. This bivariate distribution was computed in (Chandrasekhar & Neu-
mann, 1941) under the additional assumption that random velocities vi are
independent of each other and of other random variables and distributed by
Maxwell law. We briefly review some results.

Taking a sphere of radius R and setting then R → ∞ under the condition
ρ = const, we obtain

p(F, f) =
1

(2π)6

∫
dK

∫
dkei(KF+kf)ϕ(K, k),

ϕ(K, k) = exp {−ρψ(K, k)} ,

ψ(K, k) =
〈∫ {

1− exp
[
iGmr−3rK + iGm

(
r−3v− 3r−5(r, v)r

)]}
dr
〉

Here the angular brackets stand for averaging over masses and velocities of
stars.

It is clear that
∫

p(F, f) df =
1

(2π)3

∫
dKe−iKFϕ(K, 0)

is Holtsmark’s distribution, and
∫

p(F, f) dF =
1

(2π)3

∫
dk e−ikfϕ(0, k)

is the trivariate Cauchy’s distribution (with the isotropic distribution of the
velocity v). Chandrasekhar and von Neumann obtained the asymptotic distri-
butions

ψ(K, k) = aK3/2 + bk2K−3/2 sin2 γ + O(k4), k →∞.

ψ(K, k) = ck + d(λ cos2 γ + µ)K2k−1/3 + O(K4), K →∞,

where γ is the angle between the vectors K and k,

a = (4/15)(2π)3/2G3/2〈m3/2〉,
b = (1/4)(2π)3/2G1/2〈m1/2v2〉,
c = (2/3)π2Q0G〈mv〉,
d = G5/3〈m5/3v−1/3〉,
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and λ , µ, and Q0 are absolute constants (Chandrasekhar & Neumann, 1941,
(281)). The characteristic function obtained was used for evaluation of the sec-
ond conditional moments of the longitudinal (with respect to F) and transversal
component of f̄

f2
‖(F) =

8ab
π

ε1/2

H(ε)

∫ ∞

0
e−(x/ε)3/2

(sin x− x cos x)x−5/2dx,

f2
⊥(F) =

4ab
π

ε1/2

H(ε)

∫ ∞

0
e−(x/ε)3/2

(x2 sin x + x cos x− sin x)x−5/2dx,

and also for its absolute value:

f2(F) =
4abε1/2

H(ε)
G(ε), ε = a−2/3F,

G(ε) =
2
π

∫ ∞

0
e−(x/ε)3/2

x−1/2 sin x dx,

It was shown, in particular, that

f2
‖(F) ∼ f2

⊥(F), F → 0,

f2
‖(F) ∼ 4f2

⊥(F), F →∞.

From here the following conclusion was made in (Chandrasekhar & Neumann,
1941, p. 507): for weak fields the probability of a change’s occurring in the field
acting at a given instant of time is independent of the direction and magnitude
of the initial field, while for strong fields the probability of a change’s occurring
in the direction of the initial field is twice as great as in a direction at right
angles to it.

The physical sense of this is quite clear. A weak field results from a fluc-
tuation of a symmetric configuration of stars about the point considered. We
should therefore expect the changes to follow, to be equally likely in all di-
rections. On the other hand, a strong field acting at a point implies a highly
asymmetric configuration of stars about the point, and consequently changes
are more likely to occur in the direction of the initial field than in other direc-
tion.

The magnitude f2(F) plays the important role while estimating the average
life time of the given state F. The state F means that at a given instant t
(F = F0 with t = 0) at some fixed point the intensity of the gravitational field
is equal to F. As a result of star movements, the change of state happens
(Fig. 15.1). The average life time of the state introduced by Chandrasekhar
with exponential representation of falling down correlations is of the form

T = [f2(F)]−1/2F =

√
(ρa)1/3

4b
ε3/2H(ε)

G(ε)
.
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tt1 t2 t3

F

Figure 15.1. Due to the motion of the stars, the force applied to a star observed
gradually changes with time (Chandrasekhar & Neumann, 1941)
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Figure 15.2.

Assuming
T0 = 0.32〈m3/2〉1/6〈m1/2v2〉−1/2ρ−1/3,

we introduce the dimensionless life time

τ(ε) = T/T0 =

√
ε3/2H(ε)

G(ε)
.

Using the asymptotic expressions for H(ε) and G(ε) it is possible to show that

τ(ε) ∼ ε, ε → 0,

τ(ε) ∼
√

15/8ε−1/2, ε →∞.

The results of numerical computations of the function τ(ε) are shown in
Fig. 15.2 (Chandrasekhar & Neumann, 1941).
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15.4. Cosmological monopole and dipole
The contemporaneous average density of the Universe is written in the form

ρ0 = 1.88 ⋅ 10−29Ω0h2 g cm−3,

where h is the dimensionless parameter connected with the uncertainty of
Hubble’s constant H,

0.5 ≤ h ≤ 1,

and Ω0 is the cosmological density parameter. It is accepted to consider that
the modern value of the parameter lies in the interval

0.03 ≤ Ω0 ≤ 1.

As a first approximation, the Universe looks like a uniform Hubble flow with
the relative velocity

v = H(t)r,

forming the background for observations of peculiar motions of galaxies. As-
suming that the gravitational instability is the cause of the observed peculiar
motions, these local deviations from a uniform Hubble flow provide a pow-
erful tool for studying the local mass distribution and hence estimating the
cosmological parameter Ω0.

Using linear perturbation theory, the peculiar velocity vp can be related to
the peculiar acceleration g via

vp ∝ w(Ω0)g,

where w(Ω0) measures the logarithmic rate of growth of the mass fluctuation
at the present epoch (Peebles, 1980). Calculations yield (Plionis et al., 1993)

vp = dconv
Ω0.6

0
3b
|D|
M

(≤ dconv),

where M and D are the monopole and dipole moments obtained from observa-
tions via the relations

M =
1

4π

n∑

i=1

1
φ(ri)

1
r2

i
,

D =
3

4π

n∑

i=1

1
φ(ri)

ri

r3
i

.

Here ri are the positions of galaxies, φ(ri) is a selection function to take into
account the fact that at different distances we sample different portions of the
luminosity function, dconv is the depth at which the dipole converges to its final
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value and b is the bias factor that relates galaxy to mass overdensities. The
factor Ω0.6

0 arises when one uses the theory of linear gravitational instability
to relate the peculiar velocity to the gravitational acceleration (Peebles, 1980).

Sometimes, Monte-Carlo simulation of the values is performed on the as-
sumption that the positions ri are distributed by the homogeneous Poisson
law. Supposing, for the sake of simplicity,

MR =
1

4π

∑

i

1
r2 1(ri; UR),

DR =
3

4π

∑

i

ri

r3
i

1(ri; UR),

where UR is a sphere of radius R centered at the observation point r = 0, one
can write the characteristic function

ƒ(q, k) = EeiqMR+kDR

for the bivariate density p(MR, DR)

ln ƒ(q, k) = ρ
∫

UR

{
ei(qMR+kDR) − 1

}
dr.

Setting here q = 0 and then letting R → ∞ we arrive at the Holtsmark
distribution for D, and in the case where k = 0 we obtain the one-dimensional
stable distribution with α = 3/2 and β = 1 for MR − EMR. The fact

lim
R→∞

EMR =∞

is known as the Olbers paradox, and unfortunately its solution is obtained
without using stable laws (see (Harrison, 1990)).

A number of authors analyze the dependence of observed cosmological
dipole DR on R interpreting its saturation as an evidence for homogeneity
of the Universe; some authors interpret the saturation as an evidence for
isotropy of the Universe. For a complete review of this discussion we refer the
reader to (Coleman & Pietronero, 1992; Sylos Labini, 1994; Baryshev et al.,
1994; Borgani et al., 1994; Martinez & Jones, 1990). In any case, this quantity
bears a direct relation to the Cosmological Principle which can be formulated
in the following way: Except for local irregularities, the Universe presents the
same aspect, from whatever point it is observed (Kourganoff, 1980).

The dependence of DR on R for some fractal models of the Universe was
investigated in (Sylos Labini, 1994; Uchaikin & Korobko, 1997a).

15.5. The Universe as a rippled water
The local constituents of the Universe (from stars to clusters of galaxies) cor-
respond to discrete particles, such as atoms or molecules of statistical physics.
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Nevertheless, considering (as in hydrodynamics) only large-scale motions one
can ignore the discrete nature of these ‘particles’ and treat the constituents of
the Universe as a continuous fluid.

The density distribution arising at the non-linear stage of gravitational in-
stability is similar to intermittence phenomena in acoustic turbulence. Initial-
ly small-amplitude density fluctuations transform into thin dense pancakes,
filaments, and compact clumps of matter. A similar process is the distribution
of light reflected or refracted from rippled water (see also Section 11.7). The
similarity of gravitational instability to acoustic turbulence is highlighted by
the fact that the late non-linear stages of density perturbation growth can be
described by Burger’s equation (Shandarin & Zeldovich, 1989) which is well
known in the theory of turbulence. We cite here the paper (Hu & Woyczynski,
1995) where stable distributions are used.

In this work, the one-dimensional Burgers equation

∂v/∂t + v∂v/∂x = ν∂2v/∂x2

is considered, where v(t, x) is the velocity and the small constant ν is the
viscosity which is supposed to simulate the gravitational adhesion. The initial
velocity potential

V(x) =
∫ x

0
v(0, y) dy

is chosen in the form

V(x) =
∞∑

i=−∞
eZi δ (x− Xi),

where {Xi} is the standard Poisson point process on the real line, and random
variables

Zi =
n∑

j=0

cjYi+1−j

form a strictly stationary sequence of moving averages of independent and
identically distributed symmetric stable variables Yi with 1/2 < α < 2. The
solution random field of the Burgers equation with these initial data can be
written in the form

v(t, x) =
∑

i(x− Xi)g(t, x, Xi)eZi

t
∑

i g(t, x, Xi)eZi

where
g(t, x, y) = (4πνt)−1/2 exp

{
−(x− y)2/(4νt)

}

is the usual Gaussian kernel.
The following theorem is proved in the paper (Hu & Woyczynski, 1995).
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THEOREM 15.5.1. Let the initial velocity potential be
∫ x

−∞
v(0, y) dy =

∑

i
eZi δ (x− Xi),

where {Xi} is the standard Poisson process on R and {Zi} = {c1Yi + c0Yi+1}
with {Yi} being independent identically distributed symmetric stable random
variables (1/2 < α < 2) and independent of the Poisson ensemble. Then, for
each x ∈ R, the random field v satisfying the Burger equation

∂v/∂t + v∂v/∂x = ν∂2v/∂x2

satisfies the asymptotic condition

v(t, x) P∼ −x− Xi∗
t

, t →∞,

where Xi∗ = Xi∗(x, t) is the point where the random field g(t, x, Xi)eZi attains its
maximum, i.e.,

g(t, x, Xi∗)eZi∗ = max
i

g(t, x, Xi)eZi .

This establishes analytically the existence of a one-dimensional version of
the net-like structures in the fluid model of matter distribution in the Universe.

15.6. The power spectrum analysis
It is often useful to analyze the statistics of the galaxy distribution in Fourier
space, instead of in configuration space, as done by correlation functions. For
this purpose, the Fourier transform ∆̃(k) of the relative fluctuation density field
∆(r) is introduced, which leads to the power spectrum P(k) being connected to
the correlation function ξ (r) via the relation

P(k) ∝ 〈|∆̃(k)|2〉 ∝
∫

eikrξ (r) dr (15.6.1)

(we omit here the inessential for understanding normalizing constant) There
are several reasons for the importance of the power spectrum P(k) in statis-
tics. First, it (or its Fourier transform) completely specifies a homogeneous
and isotropic Gaussian random field. The fields are very popular among cos-
mologists (Bertschinger, 1992) because the inflation theory predicts that the
initial density fluctuation field is a Gaussian random field, and naturally, be-
cause calculations are somewhat easy. Another reason for the importance of
the power spectrum is that it measures the mean-square amplitude of density
fluctuations as a function of wavelength λ = 2π/k.
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Figure 15.3. Power spectrum P(k) from the Lick Observatory catalogue (taken
from (Fry, 1994)) (the dashed line shows P(k) ∼ k−1.41; the solid
line shows approximation (15.6.3))

A particular simple model often used for approximation of observed data
is given by the power law shape

P(k) ∝ kn, (15.6.2)

with n > −3 in order to allow for the convergence of the integral of P(k) at
large wavelength (Borgani, 1995). The value n = 1 for the spectral index
corresponds to the scale-free Harrison–Zeldovich spectrum that describes the
fluctuations generated in the framework of the canonical inflationary scenario.
Inverting (15.6.1), for ξ (r) we obtain

ξ ∝
∫

kneikrdk = 4π
Γ(n + 3)

n + 2
sin[(n + 2)π/2]r−(n+3).

Thus, the detected power law shape for the 2-point function,

ξ (r) ∝ r−1.8,

turns into a constant logarithmic slope of the power spectrum, with spectral
index n = −1. 2, at least at scales r ≤ 10h−1 Mpc.

The power spectrum P(k) (from the Lick Observatory catalogue (Fry, 1994))
plotted in Fig. 15.3, goes as P(k) ∼ kn with index n ≈ −1.4 for 5 ≤ k ≤ 30
(k in units of ‘waves per box’, physical wavelengths are λ = 260h−1 Mpc/k).
Evidently, this approximation is not very accurate and is used mainly because
of a simple form. With the same or even better result one can use other
approximation formulae.
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Figure 15.4. The structure function g(r) = 1 + ξ (r) obtained from CfA galaxy red-
shift survey, sample S65 (the open circles and asterisks represent
the results of two different procedures for corrections (Martinez &
Jones, 1990); the dotted line is the best-fit power law and the solid
line is a result of the use of (15.6.4) (Uchaikin, 1997))

Let us consider the formula

P(k) = A
e−(bk)α

1− ce−(bk)α , (15.6.3)

where A, b, c, and α are positive constants. In spite of its explicit difference
from (15.6.2) the formula gives a good fit to the experimental data by choosing
appropriate values of the parameters (in this case α = 1.5, c = 0.99, b = 0.018,
and A = 10−5).

To show why we take such a way of approximation, we rewrite (15.6.3) as

P(k) = ce−(bk)α
P(k) + Ae−(bk)α

.

Inverting it, we obtain, in view of (15.6.1),

ξ (r) = cb−3
∫

q3(r′/b; α)ξ (r− r′)dr′ + Ab−3q3(r′/b; α) (15.6.4)

where q3(r; α) is the three-dimensional spherically symmetric stable distribu-
tion. Thus we immediately arrive at the scheme described in Chapter 11 (see
(11.4.15)).

The application of (15.6.4) to fitting the CfA (Center for Astrophysics) data
is carried out in (Uchaikin, 1997), which is the source of Fig. 15.4.
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Figure 15.5. The observed distribution of Z = N(R)/〈N(R)〉 taken from (Coles et
al., 1993) and its approximation by the gamma distribution Ψ(z)
(15.7.1)

15.7. Cell-count distribution for the fractal
Universe

The numerical calculations performed in Section 11.7 yield the distribution of
N(R) for the stochastic fractal model

P {N(R) = n} ∼ 1
〈N(R)〉Ψ

(
n

〈N(R)〉

)
, R →∞, (15.7.1)

where

Ψ(z) =
1

Γ(λ )
λ λ zλ−1e−λz

is the gamma distribution.
Distributions of N(R) called the cell-count distributions are obtained from

galaxy catalogs by means of a not very reliable procedure. Nevertheless, it is
interesting to compare the fractal cell-count distribution (15.7.1) with the data
observed. To do this, we take the Lick sample data presented in (Coles et al.,
1993). Computing 〈N(R)〉, we find Ψobs(z), and calculation of 〈N2(R)〉 gives us
a possibility to find the parameter λ in approximation formula (15.7.1). The
two distributions presented in Fig. 15.5 have turned out to be very close to each
other.
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15.8. Global mass density for the fractal Universe
One of important parameters characterizing models of the Universe is the
global mass density

ρ = lim
R→∞

[M(R)/V(R)], (15.8.1)

where M(R) is the total mass within a sphere of radius R and V(R) is the
volume of the sphere. For models being homogeneous (at least on large scales)
this limit exists and is not zero. Let us see what kind of results one can get for
fractal models.

We begin with the deterministic fractal described in (Coleman & Pietronero,
1992). Starting from a point occupied by an object and counting how many
objects are within a volume characterized by a certain length scale, we get
N0 point-like objects within a radius R0, N1 = qN0 objects within a radius
R1 = kR0, N2 = qN1 = q2N0 objects within R2 = kR1 = k2R0, and so on. In
general, we have

Nn = qnN0, (15.8.2)
Rn = knR0, (15.8.3)

where q and k are some constants. By taking the logarithm of (15.8.2) and
(15.8.3), and dividing one by the other, we obtain

Nn = CRD
n (15.8.4)

with
C = N0R−D

0 , D =
ln q
ln k

,

where C is the proportionality coefficient related to the lower cutoffs N0 and
R0 of the fractal system, that is, the inner limit where the fractal system ends,
and D is the fractal dimension (D < 3). If we smooth out the point structure,
we obtain

N(R) = CRD. (15.8.5)

Assuming that all objects have the same mass m, we get

ρ(R) ≡ M(R)/V(R) = [3mC/(4π)]R−γ , γ = 3−D.

Hence,

ρ = lim
R→∞

ρ(R) = 0 (15.8.6)

for the fractal structure. This fact is known as the third postulate of the pure
hierarchy fractal conception: for a pure hierarchy the global mass density is
zero everywhere.
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The situation is the same if the masses mi are independent identically
distributed random variables with Emi = 〈m〉 <∞:

〈ρ(R)〉 ≡ 〈M(R)/V(R)〉 = [3〈m〉C/(4π)]R−γ .

However, astronomical observations show that in a very large range of
masses the density p(m) is of the form

p(m) = αAm−α−1, 0 < m0 < m, (15.8.7)

where α is smaller than 1 (Press & Schechter, 1974). We assume, moreover,
that (15.8.1) holds true for all m > m0. Introducing

ρ(R) =
N(R)∑

i=1

mi/V(R) = [3/(4π)]R−3
N(R)∑

i=1

mi, (15.8.8)

we are able to reduce the problem of finding 〈ρ〉, which is infinite, to the
problem of investigation of the distribution of random variable (15.8.8). In
the case where α < 1, distribution (15.8.7) belongs to the domain of normal
attraction of a one-dimensional standardized stable law qA(x; α, 1); thus

P

{ N∑

i=1

mi/bN < x

}
⇒ GA(x; α, 1), N →∞, (15.8.9)

where

bN = b1N1/α , (15.8.10)

b1 = [AΓ(1− α) cos(απ/2)]1/α . (15.8.11)

Denoting the probability density of random variable (15.8.8) by pρ(x; R)
and recalling (15.8.9), we obtain the asymptotic expression for large values of
N(R)

pρ(x; R) ∼ [4πR3/(3bN(R))]qA(4πR3x/[3bN(R)]; α, 1), N(R) →∞.
(15.8.12)

Substituting (15.8.5) into (15.8.10) and inserting the result into (15.8.11), we
obtain

pρ(x; R) ∼ QR3−D/αqA(QR3−D/αx; α, 1), R →∞, (15.8.13)

where
Q = 4π/(3b1C1/α ).
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In view of (15.8.13), the probability density of the random conditional mass
density possesses a non-degenerate limit as R →∞ for α = D/3:

pρ(x; R) →
R→∞

pρ(x) ≡ Qq(Qx; α, 1), (15.8.14)

The aggregate considered above seems too artificial to be used as a mod-
el of mass distribution in the Universe. The stochastic fractal described in
Section 11.6 is more appropriate for this purpose. In this case

pρ(x; R) = 〈pρ(x; R, N(R))〉,

where pρ(x; R, N(R)) is the density conditioned by a fixed value N(R) and 〈…〉
stands for averaging over the random variable distributed by the law

P {N(R) = n} ∼ 1
〈N(R)〉ΨD

(
n

〈N(R)〉

)
, R →∞

with

ΨD(z) =
λ λ zλ−1

Γ(λ )
e−λz. (15.8.15)

Taking (15.8.13) into account, we obtain

pρ(x; R) ∼ QR3−D/α
∫ ∞

0
z−1/αqA(QR3−D/αxz−1/α ; α, 1)ΨD(z) dz.

Therefore, the non-degenerate limit of the distribution of ρ exists under the
condition α = D/3 again:

pρ(x) = Q
∫ ∞

0
z−1/αqA(Qxz−1/α ; α, 1)ΨD(z) dz.

Re-scaling the independent variable Qx → x and recalling (15.8.15), we arrive
at the expression

pρ(x) = [Γ(λ )]−1λ λ
∫ ∞

0
zλ−1−1/αqA(xz−1/α ; α, 1)e−λzdz. (15.8.16)

It is easy to verify that this result satisfies the normalization
∫∞

0 pρ(x) dx = 1.
Astronomical observations show that D ≈ 1.16 ÷ 1.40 (Martinez & Jones,

1990). Taking, for the sake of simplicity, D = 1.5, we obtain α = 0.5, which
coincides approximately with αobs = 0.5 ÷ 0.6 obtained from the luminosity
observations (Borgani, 1995). In this case, one can use an explicit form of the
stable density

qA(x; 1/2, 1) =
1√
2π

x−3/2e−
1
2x ;
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Figure 15.6. The graphs of probability distribution density pρ(x) for the deter-
ministic fractal—solid line, the single LM fractal—dashed line, and
the coupled LM fractal—dotted line (Uchaikin & Korobko, 1997a)

(15.8.16) thus takes the form

pρ(x) =
λ λ xλ /2−1
√

2πΓ(λ )

∫ ∞

0
t(λ−3)/2e−λ (x/t)1/2

e−
1
2t dt.

Using formula (3.462) from (Gradshtein & Ryzhik, 1963), we can rewrite the
result as

pρ(x) =
2λ λ xλ /2−1
√

πΓ(λ )
Γ(λ + 1)e(λ 2x)/4D−(λ+1)(λ

√
x)

where D(x) is the parabolic cylinder function and λ = 1.5 for a single fractal
and λ = 3 for a coupled fractal. The graphs of pρ(x) for deterministic fractal,
single and coupled stochastic fractals are represented in Fig. 15.6. As we can
see, the distributions are broad enough with the same asymptotics x−3/2.

We have a ground to suppose that the model can be used for description
of the property of the Universe, but how can the random behavior of GMD be
interpreted? In any case, the following assertion seems to be highly plausible:
fractal cosmology should be stochastic. It follows from the main attribute of a
fractal, namely, from its self-similarity. If a fractal is stochastic at some scale,
then it should be stochastic at all scales. In other words, there is no scale at
which the Universe could be described in terms of deterministic continuous
medium.

However, it is impossible not to admit that the fractal model of the Universe
is a very extreme kind of possible models requiring revision of not only the
method of usual analysis of observation data but the Cosmological Principle
itself.
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Stochastic algorithms

16.1. Monte-Carlo estimators with infinite variance
The key idea of Monte-Carlo method is based on the law of large numbers and
can be formulated as follows. Let us have a need to calculate, even though
somewhat approximately, some value J (say, an integral). We do not know the
value but we can generate a sequence of independent identically distributed
random variables Z(1), Z(2), … about which it is known that their mathematical
expectation is finite and strictly equal to the unknown value J:

EZ = J.

The law of large numbers says that in this case the value J can be estimated
by the arithmetic mean as an unbiased estimator

Jn =
1
n

n∑

j=1

Z(j)

with the error
∆Jn = Jn − J

being random and decreasing in the probabilistic sense as n grows. The point
is an estimation of the error characteristics. Of course, if

EZ2 = σ2 + J2 <∞

exists, we have an ordinary statistical problem with well known methods of
its solution, but if

EZ2 =∞

we can find ourselves in the domain of attraction of some stable law.

439
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Following (Ermakov & Mikhailov, 1976), we consider the summation of the
series

J =
∞∑

k=1

k−1−γ , γ > 0. (16.1.1)

Although the Monte-Carlo technique is not the best one for such simple prob-
lems, it is useful to consider the algorithm which can serve as a prototype for
similar algorithms in more complicated problems and to see how stable laws
arise here.

Let K be an integer-valued random variable with probability distribution

P {K = k} =
1

k(k + 1)
, k = 1, 2, …,

and
Z = (K + 1)K−γ .

It is not hard to see that the mathematical expectation of this random variable

EZ =
∞∑

n=1

(k + 1)k−γ

k(k + 1)
=
∞∑

n=1

k−1−γ = J

coincides with (16.1.1) sought for, therefore

Jn =
1
n

n∑

j=1

Z(j)

is an unbiased estimator of sum (16.1.1) if the terms are independent. The
variance of Z

Var Z =
∞∑

k=1

(k + 1)k−2γ−1 − J2

for γ ≤ 1/2 appears to be infinite. As concerns the probability

P {Z > z} = P
{

(K + 1)K−γ > z
}
∼ P

{
K > z1/(1−γ )

}
∼ z−1/(1−γ )

we conclude that the random variable Z belongs to the domain of attraction of
the stable law with

α =
1

1− γ
∈ (1, 2]

and β = 1. In this case, the measure of the statistical error is not a variance
being infinite but the width of an interval containing the given probability of
the stable distribution.
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16.2. Flux at a point
The problem of particle transport through a medium, in general, is formulated
as follows. A source given emits N independent particles, each distributed in
the space with the three-dimensional distribution density s(r)

∫
s(r)dr = 1.

The trajectory of the particle is a broken line whose nodes form a homogeneous
terminating Markov chain with transition probability p(r → r′) and survival
probability under collision c(r). In actual reality these characteristics depend
on the energy and the direction of movement of the particle, but we omit these
details in order not to over-complicate the formulae. In this simple case, the
collision density ƒ(r) satisfies the equation of type (10.3.11)

ƒ(r) = ƒ1(r) +
∫

c(r′)ƒ(r′)p(r′ → r) dr′, (16.2.1)

where ƒ1(r) is the first collision density defined by the source distribution with
normalization

∫
ƒ1(r) dr =

∫
s(r) dr = N. (16.2.2)

By virtue of linearity of (16.2.1), its solution for the source emitting N particles
is obtained by multiplying the solution for a unit source by N, so in what follows
we assume N = 1.

Let us have a need to calculate some linear functional of the solution of
equation (16.2.1)

J =
∫

h(r)ƒ(r) dr. (16.2.3)

The problem can be solved in the following way: by the probabilities ƒ1(r),
c(r), and p(r → r′), the random trajectory {X1, …, XN} is simulated, and the
function

Z =
N∑

i=1

h(Xi), (16.2.4)

is evaluated, whose value is then averaged over ensemble of N independent
trajectories:

Jn =
1
n

n∑

j=1

Z(j) =
1
n

n∑

j=1

Nj∑

i=1

h(X(j)
i ). (16.2.5)
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If the interaction cross-section is Σ, the scattering cross-section is Σs and
the scattering is isotropic; then

c(r) = Σs/Σ,

p(r → r′) =
Σ

4π|r− r′|e
−Σ|r−r′|2 .

Let us assume that it is necessary to find the particle flux at a certain point,
which, for convenience, is chosen to be the origin. This flux can be divided into
two parts: the non-scattered flux evaluation, which for a given source is easy
to perform, and the scattered flux J, expressed through the collision density
ƒ(r) by formulae (16.2.3) with estimator

h(r) =
c

4πr2 e−Σr (16.2.6)

entering into unbiased estimator (16.2.4). It is easy to see that EJn = J but

EJ2
n =∞,

i.e., the variance is infinite. To see this, the second moment of only one of
the terms of (16.2.4) should be calculated, because all terms are positive and
accounting for the others cannot compensate its divergence. Let us consider
the first term of sum (16.2.4), provided that ƒ1(r) does not vanish at the point
r = 0. Then

Eh2(X1) =
c2

(4π)2

∫
e−2Σrr−4ƒ1(r) dr

=
c2

(4π)2

∫ ∞

0
e−2Σrφ1(r)r−2dr =∞, (16.2.7)

where
φ1(r) =

∫

4π
ƒ1(rΩΩΩ) dΩΩΩ.

We consider now the asymptotic behavior of the probability

P {h(X1) > z} =
∫

h(r)>z
ƒ1(r)dr ∼ ƒ1(0)

∫

4πr2<c/z
dr

=
c3/2

6
√

π
ƒ1(0)z−3/2, z →∞. (16.2.8)

Thus, if the estimator of (16.2.4) contained only the first term, i.e., were the
estimator of the single-scattered flux, then all terms in sum (16.2.5) would be
independent and, by virtue of the generalized limit theorem, it could be stated
that the random variable

Yn =
Jn − J

∆n
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with

∆n = c[ƒ1(0)/3]2/3(2n)−1/3 (16.2.9)

for large n is distributed by the stable law with α = 3/2 and β = 1:

Yn → YA(3/2, 1), n →∞. (16.2.10)

The situation with estimator (16.2.4) including dependent random vari-
ables is a more complicated problem. This problem was stated in (Kalos, 1963)
and solved in (Uchaikin & Lappa, 1976a; Uchaikin & Lappa, 1976b; Uchaikin
& Lappa, 1978); the result is formulated as follows:

P

{ N∑

i=1

h(Xi) > z

}
∼
∫

h(r)>z
ƒ(r) dr ∼ c3/2

6
√

π
ƒ(0)z−3/2, z →∞.

(16.2.11)

The only difference between relations (16.2.11) and (16.2.8) consists of replace-
ment of the first collision density ƒ1(r) with the density of all collisions ƒ(r).
Formula (16.2.10) remains valid if the same change is made in ∆n:

∆n = c[ƒ(0)/3]2/3(2n)−1/3. (16.2.12)

The result given by (16.2.11) and (16.2.12) means that the probability to
find two or more nodes of the trajectory in a close vicinity of the observation
point is asymptotically small as compared with the single-node probability. In
other words, the outliers of sum (16.2.4), which determine the limit distribution
of sample mean (16.2.5), are generated by only one of the nodes of trajectory
and thus the large terms in sum (16.2.5) are statistically independent. The
probability for any node of the trajectory to appear in the volume element dr
about r is equal to ƒ(r) dr, which explains the replacement indicated above.

16.3. Examples
The following questions arise from the foregoing results.

(1) How fast is the limiting stable distribution reached in typical problems
of transport theory?

(2) How much is the difference between distributions of the random variable

Yn =
Jn − J

∆n

and of the random variable

Y ′n =
Jn − J

∆′n
,

where the prime means that ∆′n includes the approximate estimate ƒ′(0)
instead of the exact value ƒ(0) unknown in a real situation?
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Let Φ(0) be the flux at the origin of coordinates; then

ƒ(0) = ΣΦ(0) = ΣΦ0(0) + ΣJ. (16.3.1)

Here we partition the flux into the non-scattered component Φ0(0) supposed
to be known and the scattered one J whose finding is the goal of Monte-Carlo
calculations. Changing in (16.3.1) the scattered component for its estimator
Jn, we obtain

ƒ′(0) = ΣΦ0(0) + ΣJn.

This value enters into ∆′n instead of ƒ(0):

∆′n = c[ƒ′(0)/3]2/3(2n)−1/3.

The answers to questions above depend on the problems under considera-
tion and are hard to be formulated in a general form. Here we will be satisfied
with considering some simple example. A non-absorption sphere of radius R is
lighted on by plane radiation flux with the density s0 (the number of particles
falling on the sphere is equal to πR2s0); it is necessary to find the radiation
flux at the center of the sphere. This problem posed by G.A. Mikhailov for
pedagogical purposes, has a curious solution (Ermakov & Mikhailov, 1976). It
turns out that, independently of interaction cross-section Σ (Σ = Σs and c = 1
due to the absence of absorption) and of the radius of the sphere, the flux at
its center is the same as if the sphere is absent at all:

Φ(0) = s0.

This does not mean, however, that the sphere does not have any effect on
the radiation. The particles falling on the sphere are scattered inside it, and
the partition of the flux Φ(0) into the non-scattered Φ0(0) and the scattered J
components depends on ΣR. Assuming Σ = 1, we write these formulae:

Φ0(0) = s0e−R,

J = s0[1− e−R].

In what follows we need the density of collisions and it is, of course, also equal
to s0:

ƒ(0) = ΣΦ(0) = s0.

This problem was used in (Uchaikin & Lappa, 1976b; Uchaikin & Lappa, 1978)
for experimental investigation of the questions posed.

For the sake of convenience, the quantity s0 is set equal to (πR2)−1, which
corresponds to the falling of one particle on the sphere. The distribution of
random variable Yn is estimated over series of 400 independent samplings of
n trajectories each. The comparison with the limit distribution is performed
with the χ2 test used. Fig. 16.1 shows the values of χ2 against the number of
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Figure 16.1. The χ2 test shows that the results of Monte-Carlo calculations agree
with (16.2.10) (- - - indicates the critical value χ2

0.95 = 22.4 for 13
degrees of freedom)

trajectories n for the spheres of three different radii (scattering is assumed to be
isotropic). The number of degrees of freedom equals 13, and the corresponding
value χ2

0.95 = 22. 4 is depicted by dashed line. One can see from the figure that
for n > 200 (R = 1 and R = 3) and for n > 600 (R = 6) the goodness-of-fit test
does not distinguish the distribution of estimator Yn from the limiting one. In
this case, the true value ƒ(0) = (4πR)−2 is used in the parameter of distribution
width ∆n.

The distribution of the estimator Y ′n is also obtained with the use of the
same trajectories for calculating ƒ′(0). It turns out that the χ2 test can distin-
guish the distributions of random variables Y ′n and Y(3/2, 1) even for n = 1000.
However, this difference is caused, mainly, by the different behavior of dis-
tribution tails, and has little effect on the width of distributions. The typical
result is presented in Fig. 16.2 for R = 3, n = 700. The value χ2 is equal to 21.8
for distribution of Yn and is equal to 129 for distribution of Y ′n (the number of
degrees of freedom is still 13), but the distribution functions itself within the
interval, say, from −1 to 4, differ inessentially.

16.4. Estimation of a linear functional of a solution
of integral equation

In the preceding sections, we considered the Markov model for random walks
whose trajectory is a homogeneous terminating Markov chain X1, X2, …, XN,
where the first point X1 is distributed with the entry density ƒ1(x); the
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Figure 16.2. The distribution function of Yn (open circles) and of Y ′n (filled circles)
for n = 700, obtained by the Monte-Carlo method; the solid curve
represents GA(x; 3/2, 1)

transition probability density p(x′ → x) and the termination probability
p0(x) = 1− c(x). The unbiased estimator for the functional

J =
∫

h(x)ƒ(x) dx (16.4.1)

of the solution of the non-homogeneous integral equation

ƒ(x) = ƒ1(x) +
∫

dx′k(x′ → x)ƒ(x′) (16.4.2)

with the kernel
k(x′ → x) = c(x′)p(x′ → x)

is

Z =
N∑

i=1

h(Xi). (16.4.3)

The algorithm can be, in principle, considered as a numerical (statistical)
method for solving the integral equations. However, this equation is of a
rather specific form constrained by the conditions

ƒ1(x) ≥ 0,
∫

ƒ1(x) dx = 1,

k(x′ → x) ≥ 0,
∫

k(x′ → x) dx = c(x′) ≤ 1. (16.4.4)
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To get rid of these constraints, we consider an arbitrary function of the
Markov chain instead of (16.4.3)

Z = hN(X1, …, XN). (16.4.5)

The probability for the particle to undergo the first collision in the element dx1,
the second in the element dx2, …, and to be absorbed in the last nth collision
in the element dxn is given by the product

ƒ1(x1) dx1 k(x1 → x2) dx2…k(xn−1 → xn) dxn p0(xn).

As a consequence, the mathematical expectation of r.v. (16.4.5) is

Z̄ ≡ EZ =
∫

dx1ƒ1(x1)h1(x1)p0(x1)

+
∞∑

n=2

∫
dx1…

∫
dxnƒ1(x1)k(x1 → x2)…k(xn−1 → xn)p0(xn)hn(x1, …, xn).

(16.4.6)

Each term of this sum contains the factor ƒ1(x1) under the sign of integral
with respect to variable x1, so the result can be represented as

Z̄ =
∫

dx1ƒ1(x1)Z̄1(x1) (16.4.7)

where

Z̄1(x1) = p0(x1)h1(x1)

+
∞∑

n=2

∫
dx2…

∫
dxnk(x1 → x2)…k(xn−1 → xn)p0(xn)hn(x1, …, xn).

This value is, evidently, estimator (16.4.5) averaged over the ensemble of tra-
jectories with a fixed coordinate of the first collision. Factoring out k(x1 → x2)
from the integral, we obtain

Z̄1(x1) = p0(x1)h1(x1) +
∫

dx2k(x1 → x2)Z̄2(x1, x2), (16.4.8)

where

Z̄2(x1, x2) = p0(x2)h2(x1, x2)

+
∞∑

n=3

∫
dx3…

∫
dxnk(x2 → x3)…k(xn−1 → xn)p0(xn)hn(x1, …, xn)

is the value of Z averaged over the ensemble of trajectories with fixed coordi-
nates x1 and x2 of the two first collisions. Proceeding similarly, we arrive at
the recurrence relation

Z̄n(x1, …, xn) = hn(x1, …, xn)p0(xn) +
∫

dxn+1k(xn → xn+1)Z̄n+1(x1, …, xn, xn+1)
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which, together with formula (16.4.6) allows us to write the mathematical
expectation Z̄ in the form of an infinite series equivalent to (16.4.6).

Under some conditions, the derived recurrence relation for Zn can be trans-
formed into simultaneous equations in a limited number of functions. Let
hn(x1, …, xn) be of the form

hn(x1, …, xn) =
n∑

i=1

Wi(x1, …, xi)ϕ1(xi), (16.4.9)

where

Wi(x1, …, xi) = v(x1)w(x1, x2)…w(xi−1, xi) = Wi−1(x1, …, xi−1)w(xi−1, xi)
(16.4.10)

for i > 1, and W1(x1) = v(x1). Functions (16.4.9) generalize the simple additive
estimator (16.4.3) but, in contrast to the general case (16.4.5), have a rather
specific structure permitting, by minimal means, to formulate Monte-Carlo
algorithm to solve integral equations.

Representing expression (16.4.9) as

hn(x1, …, xn) = v(x1)ϕ1(x1) + v(x1)[w(x1, x2)/v(x2)]
n∑

i=2

Wi−1(x2, …, xi)ϕ1(xi)

= v(x1) {ϕ1(x1) + [w(x1, x2)/v(x2)]hn−1(x2, …, xn)} ,

fixing the two first arguments and changing x3 → X3, …, xn → Xn, we average
the estimator over the remaining variables, and obtain

Z̄2(x1, x2) = v(x1)
{

ϕ1(x1) + [w(x1, x2)/v(x2)]Z̄1(x2)
}

(16.4.11)

System (16.4.8) and (16.4.11) completely determines both Z̄1(x) and Z̄2(x1, x2).
Substituting (16.4.11) into (16.4.7) and introducing

ϕ(x) = Z̄1(x)/v(x), (16.4.12)

we obtain

ϕ(x) = ϕ1(x) +
∫

dx′k(x → x′)w(x1, x′)ϕ(x′). (16.4.13)

In view of (16.4.7) and (16.4.12), the mathematical expectation of the estimator

Z =
N∑

i=1

Wi(X1, …, Xi)ϕ1(Xi) (16.4.14)

is

J =
∫

dx g(x)ϕ(x), (16.4.15)
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where

g(x) = ƒ1(x)v(x). (16.4.16)

Thus, we arrive at the following conclusion. Functional (16.4.15) of the
solution of the non-homogeneous integral equation

ϕ(x) = ϕ1(x) +
∫

dx′K(x, x′)ϕ(x′) (16.4.17)

is equal to the mathematical expectation of function (16.4.14) of the Markov
chain trajectory with the entry density ƒ1(x), the transition density p(x → x′),
and the termination probability p0(x) = 1 − c(x), provided that the weight
factors Wi(x1, …, xi) are

Wi(x1, …, xi) = v(x1)w(x1, x2)…w(xi−1, xi)

with

v(x) = g(x)/ƒ1(x),

w(x, x′) = K(x, x′)/[c(x)p(x → x′)].

Thus, we obtain an algorithm to estimate functional (16.4.15) of the solu-
tion of integral equation (16.4.7) by Monte-Carlo method. A more detailed in-
formation can be found in (Ermakov, 1975; Ermakov & Mikhailov, 1976; Sobol,
1973; Spanier & Gelbard, 1968).

We give here only the following remarks. If the integral equation is such
that

K(x, x′) ≥ 0,
∫

K(x, x′)dx′ = c(x) < 1

for any x, the factor g(x) is non-negative with the normalization
∫

g(x)dx = 1,

then we can take the function g(x) as the entry density ƒ1(x), 1 − c(x) as
the termination probability, and [c(x)]−1K(x, x′) as the transition probability
density. Then

Wi(x1, …, xi) = 1,

and we obtain the additive estimator

Z =
N∑

i=1

ϕ1(Xi) (16.4.18)
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of the functional

J =
∫

g(x)ϕ(x) dx =
∫

ƒ1(x)ϕ(x) dx (16.4.19)

of the integral equation solution

ϕ(x) = ϕ1(x) +
∫

dx′k(x → x′)ϕ(x′), (16.4.20)

with
k(x → x′) = K(x, x′).

Although this case resembles that considered in Section 15.2, an attentive
reader can reveal some difference: estimator (16.4.3) uses the function h(x)
determining functional (16.4.1), and the non-homogeneous term of (16.4.2) is
used as the source density of trajectories, while estimator (16.4.18) uses the
non-homogeneous term of equation (16.4.20), and the function g(x) = ƒ1(x)
determining the functional is used as the source. Moreover, the kernels of
integral equations (16.4.2) and (16.4.20) are normalized by integration with
respect to the second argument x, but in (16.4.20) it is an integration variable,
while in the integral term of equation (16.4.2) x is a parameter.

These distinctions result from the duality principle mentioned in Sec-
tion 10.3: integral equation (16.4.20) is adjoint to (16.4.2). Expanding their
solutions into the Neumann series and substituting the expansions into func-
tionals J, we can easily see that these two approaches are equivalent indeed.
Let us demonstrate that the above-described approach to estimating a func-
tional of an integral equation solution can yield an infinite variance and stable
distribution as n → ∞ even in the case where the estimating function h(x)
is limited. For this purpose we consider the degenerate case again, which
allows us to obtain analytical results by simple means but has, of course, only
pedagogical value (Uchaikin & Lagutin, 1993).

Let
ϕ1(x) = 1,

and let non-negative kernel depend only on the difference of arguments

K(x, x′) = K0(x′ − x)

and satisfy the condition ∫
K0(x)dx = q < 1.

In this case, ϕ(x) does not depend on x, too, and the integral equation (16.4.17)
takes the algebraic form

ϕ = 1 + qϕ; (16.4.21)
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hence
ϕ =

1
1− q

.

Let, moreover, g(x) ≥ 0 and ∫
g(x) dx = 1.

Taking this function as the first collision density

ƒ1(x) = g(x)

we obtain

v(x) = 1,

J =
∫

dxƒ1(x)ϕ(x) = ϕ =
1

1− q
. (16.4.22)

The survival probability c on the trajectory is supposed to be constant and the
transition probability density p(x → x′) is accepted to be proportional to the
equation kernel:

p(x → x′) = K(x, x′)/q.

Under these assumptions, w(x, x′) takes the simple form

w(x, x′) = q/c,

as well as the estimator itself:

Z =
N∑

i=1

(q/c)i−1 =
1− (q/c)N

1− q/c
. (16.4.23)

A clear physical sense can be assigned to the problem. A particle emitted by a
source moves through an infinite homogeneous medium undergoing collisions
with survival probability q. In this case, expression (16.4.22) together with
equation (16.4.21) yields the mean number of collisions (including the final
one) along such a trajectory. This process can be directly simulated using the
probability q. The probability distribution of the number of collisions N is

P {N = n} = (1− q)qn−1, (16.4.24)

and the mathematical expectation and variance of estimator are

EN =
∞∑

n=1

(1− q)qn−1n = (1− q)−1,

Var N = (1− q)−2q (16.4.25)
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respectively.
Passage to (16.4.23) means that we are solving the same problem with the

use of not the ‘natural’ but ‘artificial’ trajectories, where the survival probabil-
ity c is different from q and, as a result, estimator (16.4.23) also differs from
the simple estimator Z = N in the case of natural trajectories or, as they say,
in the case of imitation.

The distribution of N for artificial trajectories is obtained from (16.4.24) by
replacement of q with c:

P {N = n} = (1− c)cn−1;

thus,

EZ2 =
∞∑

n=1

1− (q/c)n

1− q/c
(1− c)cn−1,

EZ2 =
∞∑

n=1

[1− (q/c)n]2

(1− q/c)2 (1− c)cn−1.

These sums can be easily computed. The former

EZ = (1− q)−1

means unbiasedness of the estimator: despite the use of artificial trajecto-
ries, we obtain the correct result corresponding to the natural trajectories.
Evaluation of the latter sum yields

Var Z =
(1− c)q2

(1− q)2(c− q2)
. (16.4.26)

Taking the ratio of variances

Var Z
Var N

=
(1− c)q
c− q2 ,

we see that it is smaller than one if c > q: the artificial elongation of trajectories
gives a decrease of variance per a trajectory. In the domain q2 < c < q, the
variance of Z exceeds the natural variance, and for c = q2 it becomes infinite.

Let us look at the domain c < q2. Rewriting the estimator Z as

Z =
(q/c)N − 1

q/c− 1
,

we find the asymptotic expression for the probability of large deviations

P {Z > z} = P
{

(q/c)N − 1 > z(q/c− 1)
}
∼ P {N > nz} , z →∞,
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where
nz ≈ ln[z(q/c− 1)]/ ln(q/c).

Since

P {N > nz} =
∞∑

n=nz

(1− c)cn−1 = cnz−1,

we obtain

P {Z > z} ∼ bz−α , z →∞, (16.4.27)

where

b = (q/c− 1)−α /c,

α =
| ln c|

| ln c| − | ln q| . (16.4.28)

In the domain 0 < c < q2, α takes values from the interval (1, 2); therefore,
(16.4.27) means that we deal with the domain of attraction of the stable law
with α ∈ (1, 2) given by (16.4.28) and β = 1.

Note that in this case the outlier of Z arises not from a single collision of
the trajectory but is generated by all collisions of the trajectory.

16.5. Random matrices
In conclusion, we consider an example taken from the theory of random ma-
trices (see (Girko, 1990)). Let a system of linear algebraic equations be

Ξnxn = W, n = 1, 2, …, (16.5.1)

where Ξ = (X (n)
ij ) is an n × n matrix with random elements X (n)

ij , and Wn = (W(n)
i )

is a random vector. As we know, there is a unique solution of (16.5.1) if
det Ξn ≠ 0, and

xn = (x(n)
j ) = Ξ−1

n Wn.

In the case where det Ξn = 0, a solution of (16.5.1) can fail to exist, and in
this situation we agree to assign xn = 0. For large values of n, solving linear
equations becomes a very laborious computational problem, and the following
limit approximation can provide us with a certain amount of information.

We assume that for each n the random variables X (n)
ij and W(n)

j , i, j =
1, …, n are independent, EX (n)

ij = EW(n)
j = 0, Var X (n)

ij = Var W(n)
j = 1, and

supn,i,j E(|X(n)
ij |5 + |W(n)

j |5) are finite. Then the following limit relations hold
true for any 1 ≤ i, j ≤ n, i ≠ j:

lim P
{

x(n)
i < ξ

}
= lim

n→∞
P
{

x(n)
i /x(n)

j < ξ
}

=
1
2

+
1
π

arctan ξ = GA(ξ , 1, 0). (16.5.2)
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It turns out that a similar limit distribution arises if we consider the joint
distributions of any finite number of components of the solution xn. Namely,
under the same assumptions

lim
n→∞

P
{

x(n)
i1

< ξ1, …, x(n)
ik

< ξk

}
= π−(k+1)/2Γ

(
k + 1

2

)∫

uj<ξj

(1 + |u|2)−(k+1)/2du

for any fixed k, i.e., the limiting law turns out to be a k-dimensional Cauchy
distribution.

It is worth mentioning that the Cauchy distribution (both one-dimensional
and multidimensional) occurs in various problems more frequently than other
stable laws, and compares favorably with the normal law only. The special
position of the Cauchy law, like that of the normal law, can be observed also in
the analytic setting.

To these laws we could also add the Laplace distribution, assigning α = 0
to it by convention (there are well-known grounds for this; see, for exam-
ple, relation (3.6.1)). The symmetric laws with integer α thereby distinguish
themselves from other stable laws by their significance.

The Lévy law with α = 1/2, β = 1, and γ = 0 can also occur fairly often in
actual problems. Both the Cauchy law and the Lévy law are closely connected
with the normal law. This becomes obvious from the fact that the ratio N1/N2
of independent random variables distributed by the standard normal law has
a Cauchy distribution, while the random variable N−2

1 has a Lévy distribution.

16.6. Random symmetric polynomials
We conclude this chapter with the results of (Zolotarev & Szeidl, 1992) devoted
to the investigation of limit distributions of random symmetric polynomials.

Let Pn(x), x = (x1, …, xn) ∈ Rn, n ≥ 1, be a sequence of symmetric poly-
nomials of degree kn ≥ k ≥ 2. Let X1, X2, … be any sequence of independent
identically distributed random variables with a common distribution function
F. We assume that F possesses the following asymptotic property:

1− F(ξ ) = (a + o(1))ξ−αL(ξ ), F(−ξ ) = (b + o(1))ξ−αL(ξ ) (16.6.1)

as ξ →∞, where α > 0, a, b ≥ 0, max(a, b) > 0, and L(ξ ) is a non-negative slow-
ly varying function at infinity. We form the sequence of random polynomials
Tn = P(X), X = (X1, …, Xn), n ≥ 1, which we center and rescale by a sequence of
real-valued constants An and Bn ≠ 0 as follows:

T̆n = (Tn − An)/Bn, n ≥ 1.

Assume that for some choice of the constants, T̆n converges in distribution
to some non-degenerate random variable T, that is,

T̆n
d

→ T, n →∞. (16.6.2)
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In (Zolotarev & Szeidl, 1992), an analytic representation of the density
pT(y) is obtained. It arises from a special class of symmetric polynomials Pn
and the corresponding family of distributions F.

Let us add the following assumption on Pn and Xj to those made above:

(P) Pn are homogeneous polynomials;

(F) the distribution function F belongs to the domain of attraction of a sym-
metric stable law with parameter 0 < α < 2, i.e., we have a = b in
(16.6.1); without loss of generality, we may set a = b = 1/2.

The consideration is based on the so-called canonical representation of
symmetric polynomials, which, in the case of a homogeneous symmetric poly-
nomial Pn of degree kn = s, is of the form

Pn(x) = Qn(y), y = (y1, …, ys), (16.6.3)

where
yν = xν

1 + … + xν
n

and

Qn(y) =
∑

i1+2i2+…+sis=s

an(i1, …, is)y
i1
1 …yis

s . (16.6.4)

It is clear that the domain of admissible values of the vector y in (16.6.3)
coincides with the set

R
k
0 = {y = (y1, …, ys) : y2j ∈ R+ = [0,∞), y2j+1 ∈ R1}.

We assume that there exists a non-zero function Q(y) defined on Rk
0, k ≥ 2,

such that for any y ∈ Rk
0

(Q) Qn(y) → Q(y) as n →∞
The limit function Q must be, of course, a polynomial of degree no less than

k and with the same structure (16.6.4). We assume that it is of degree k.
In the general case, the polynomials Qn and their limit Q are neither homo-

geneous nor symmetric, but they possess a specific ‘Λ-homogeneity’ property
as follows:

λQn(y) = Qn(Λny), λQ(z) = Q(Λz) (16.6.5)

for any λ > 0 and y ∈ Rkn
0 , n ≥ 1, z ∈ Rk

0, where Λn = (λ ν/kn δνµ) and Λ = (λ ν/kδνµ)
are diagonal matrices of order kn and k respectively.

In fact, the polynomial Q may depend on a subset of the variables yν.
Denote by N the set of indices of yν, 1 ≤ ν ≤ k, which Q depends on,

y′ = {yν : ν ∈ N } ∈ R′, y′′ = {yν : ν ∉ N } ∈ R′′,
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and let k′ denote the dimension of R′.
By using this notation, we represent Q as

Q(y) = Q∗(y′) + (0′′, y′′), y = y′ × y′′ ∈ Rk
0,

where 0′′ is zero vector from R′′, and (⋅, ⋅) stands for the usual scalar product.
We assume that two additional properties of the polynomial Q hold:

(Q1) the set N contains odd numbers only;

(Q2) B∗ =
∫

R′

exp(−Q∗(y′)) dy′ <∞.

As corollary of these assumptions, we obtain the following properties of Q:

(Q3) the degree of the polynomial Q is an even number, i.e., k = 2m, m ≥ 1;
consequently, the dimension k′ of the space R′ equals to m;

(Q4) as the polynomial Q(y) may depend on components y2j+1 only, we can
consider in Q(y) vectors y ∈ Rk instead of vectors y ∈ Rk

0; moreover, in
this case the space R′ is the space Rm.

Properties (16.6.5) and (Q3) imply that for any λ > 0 the function
exp(−λQ∗(y′)) is integrable over R′ as well. Another corollary of (Q2) states
that, if W = W(y′) is a polynomial, then the function W exp(−λQ∗) is absolutely
integrable over R′.

In view of these corollaries we conclude that for any λ > 0 the function
exp(−λQ(y)) = exp(−Q(Λy)) can be represented in the form of the Fourier
transform

exp(−λQ(y)) =
∫

exp(i(Λy, x))G(x) dx, y ∈ Rk, (16.6.6)

where G(x) = G∗(x′)δ (x′′), δ is the Dirac function, and G∗(x′) is a bounded and
absolutely integrable function on Rm

In view of (16.6.3), the random polynomials Tn can be represented in the
form

Tn = Pn(X) = Qn(Sn), n ≥ 1,

where

Sn = (Snν : 1 ≤ ν ≤ k),
Snν = Xν

1 + … + Xν
n.

It is not difficult to see that the asymptotic property (16.6.1) carries over
to the distribution Fν of Xν

1 , for each 2 ≤ ν ≤ k, but with different parameters,
and different L. Namely, taking (F) into account, we obtain, as ξ →∞,

1− Fν(ξ ) ∼ Fν(−ξ ) ∼ ξ−α/νL(ξ1/ν)
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for odd ν, and
1− Fν(ξ ) ∼ 2ξ−α/νL(ξ1/ν), Fν(−ξ ) = 0

for even ν.
Thus, Fν belongs to the domain of attraction of a stable law with parameter

αν = α/ν < 1, 2 ≤ ν ≤ k.
Therefore, under the additional assumption (F) on F made above, we can

assert the existence of positive constants dnν, n ≥ 1, such that

S̆nν = d−1
nν Snν

d
→ Yν (16.6.7)

as n → ∞ for each 1 ≤ ν ≤ k, where Yν has a stable distribution with param-
eter α/ν. In fact, methods of the classical theory of limit theorems (see, e.g.
(Gnedenko & Kolmogorov, 1954)) enable us to choose the constants to be of the
form dnν = (dn)ν, where dn = (nL(n1/α ))1/α .

We denote by Dn, n ≥ 1, the sequence of constant diagonal matrices (dν
nδνµ)

of order k defined by the above constants dn. It is clear that random vectors Sn,
n ≥ 1, are in fact the cumulative sums of independent identically distributed
random vectors:

Sn =
∑

1≤j≤n

vj, vj = (Xν
j : 1 ≤ ν ≤ k).

Therefore, we can consider the random vectors S̆n = D−1
n Sn, n ≥ 1, as a

sequence of matrix normalized sums of independent identically distributed
random vectors; hence. as n →∞,

S̆n
d

→ Y = (Yν : 1 ≤ ν ≤ k). (16.6.8)

Consequently, the limit random vector Y has an operator stable distribution
in Rk. The characteristic functions corresponding to the operator stable dis-
tributions have usually a very complicated analytic form, but for the case we
consider the characterisctic function ƒY of the limit vector Y can be expressed
by essentially simpler formulae (Szeidl, 1986)

ƒY(t) = exp
{

1
2

∫
(eiq − 1)|ξ |−1−αdξ

}

where
t = (t1, …, tk) ∈ Rk, q = t1ξ + t2ξ2 + … + tkξk.

Denote by t∗ a vector from Rk with components t2j = 0, 2j ≤ k. Obviously,
ℑ ln ƒY(t∗) = 0; hence uY(t) = −ℜ ln ƒY(t) = − ln ƒY(t) for any t = t∗.

The function uY(t) is strictly positive for any t ≠ 0. Moreover, for any λ > 0
and t ∈ Rk the following equalities are true:

uΛY(t) = uY(Λt) = λ γ uY(t), (16.6.9)
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where Λ is the matrix defined in (16.6.5) and γ = α/k < 1 because α < 2, k ≥ 2.
We will need also the following lower bound for the function uY: there

exists a constant ρ > 0 such that for any t ∈ Rk

uY (t) ≥ ρ min
(
|t|α/(k+1), |t|α/(2k)

)
. (16.6.10)

Equalities (16.6.9) are elementary. Equality (16.6.10) has a more complicated
proof, but it can be obtained as a corollary of Lemma 3 from (Szeidl, 1990). We
consider the random variables

T̆n = d−k
n Tn = d−k

n Qn(Sn), n ≥ 1.

In view of (16.6.5), (16.6.8), and assumption (Q), we can assert that, as n →∞,

T̆n = Qn(D−1
n Sn) = Qn(S̆n)

d
→ T = Q(Y).

Thus, condition (16.6.2) is satisfied, and we may consider the problem of ana-
lytic representation of the distribution of the random variable T.

We consider the two-sided Laplace transformation

ϕT(λ ) = E exp(−λT) = E exp(−λQ(Y)), λ > 0.

By using (16.6.5), (16.6.6), and (16.6.9), we can transform ϕT(λ ) as follows:

ϕT(λ ) = E exp(−Q(ΛY)) = E
∫

exp(i(ΛY, x))G(x) dx

=
∫

ƒΛY(x)G(x) dx =
∫

R′

exp(−λ γ uY(x∗))G∗(x′) dx′.

The function

L(λ , x′) = exp(−λ γ uY(x∗)), uY(x∗) = u∗Y(x′), γ = α/k > 1,

considered as a function of λ > 0, is the one-sided Laplace transform of the
density q(ξ ; γ , 1, uY) of a one-sided stable law which vanishes for ξ < 0 (see
Section 4.2). For ξ > 0 it can be expressed as an absolutely convergent series

q(ξ ; γ , 1, uY) =
1
π

∞∑

r=1

(−1)r−1 Γ(rγ + 1)
Γ(r + 1)

sin(πγ r)ur
Yξ−γ r−1. (16.6.11)

Thus,

ϕT(λ )
∫∫

Rk×R+
q(ξ ; γ , 1, uY)G(x) dx =

∫∫

R′×R+
e−λξ q(ξ ; γ , 1, u∗Y)G∗(x′) dξ dx′.

(16.6.12)
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LEMMA 16.6.1. The integrand in double integral (16.6.12) is an absolutely in-
tegrable function on R′ × R+.

PROOF. As a corollary to the obvious properties

q(ξ ; γ , 1, c) = c−1/γ q(c−1/γ ξ ; γ , 1, 1), c > 0,

q(ξ ; γ , 1, 1) ≤ h =
1
π

Γ
(

1 +
1
γ

)(
cos

πγ
2

)−1/γ

we obtain

q(ξ ; γ , 1, u∗Y) ≤ h(u∗Y)−1/γ . (16.6.13)

In view of (16.6.10), we obtain the upper bound

q(ξ ; γ , 1, u∗Y) ≤ cw(x′), x′ ∈ R′, c = hρ−1/γ ,

where
w(x′) = max

(
|x′|−k/(k+1), |x′|−1/2

)
.

Therefore, for integral (16.6.12) the following upper bound holds true:

c
∫∫

R′×R+
e−λξ w(x′)|G∗(x′)|dξ dx′ =

c
λ

∫

R′

w|G∗|dx′.

We divide the last integral into two parts:
∫

R′

=
∫

|x′|≤1
+
∫

|x′|>1
= I1 + I2.

Since the function |G∗| is bounded by some constant M (see (Q2) and (16.6.6)),
we conclude that

I1 ≤ M
∫

|x′|≤1
|x′|−k/(k−1)dx′ = c′M.

On the other hand, as G∗ is absolutely integrable in R′, we see that

I2 =
∫

|x′|>1
|x′|−1/2|G∗|dx′ ≤

∫
|G∗(x′)|dx′ <∞.

These bounds imply the validity of the lemma.

Let us formulate the main result of this section.

THEOREM 16.6.1. Under the above constraints imposed on the polynomials Pn,
their limit Q and the distribution function F, we assert that the limit FT(ξ )
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possesses a bounded and continuous density pT(ξ ) which is equal to zero for
ξ < 0 and has the analytic representation

pT(ξ ) =
∫

R′

q(ξ ; γ , 1, u∗Y)G(x′) dx′, ξ ∈ R1, (16.6.14)

where
R
′ = {x′ = (x1, x3, …, x2m−1), x2j−1 ∈ R1},

the function G∗(x′) is defined by (16.6.6), and q is the density of a one-sided
stable law with parameters γ = α/k < 1,

u∗Y =
∫ ∞

0
(1− cos(x1ξ + x3ξ3 + … + x2m−1ξ2m−1))ξ−1−αdξ .

PROOF. Let us turn back to representation (16.6.12). By virtue of Lem-
ma 16.6.1, the integrand in that integral is an absolutely integrable function.
Hence we can change the order of integration, that is,

ϕT(λ ) =
∫ ∞

0
e−λξ

∫

R′

q(ξ ; γ , 1, u∗Y)G∗(x′) dx′ dξ .

The inner integral exists for any ξ ∈ R1 and vanishes for ξ ≤ 0, because the
function ξ possesses the same property. Uniqueness of the Laplace integral
representation implies that the density pT(ξ ) exists and can be represented in
form (16.6.14).

Boundedness of pT(ξ ) in fact was established in the proof of Lemma 16.6.1.
The uniform convergence of the integral in (16.6.14) is implied by the inequality
(see (16.6.13) and thereafter)

∫

|x′|≥N
q(ξ ; γ , 1, u∗Y)G∗(x′) dx′ ≤ c

∫

|x′|≥N
G∗(x′) dx′, N ≥ 1.

Because q is a continuous function of ξ , the uniform convergence of the
integral in (16.6.14) implies the same property for pT.

REMARK 16.6.1. We have proved that PT(ξ ) = 0 for ξ ≤ 0. This implies, obvi-
ously, almost-sure non-negativity of the random variable T = Q(Y). As a corol-
lary to this, we obtain that assumptions (Q1) and (Q2) imply non-negativity of
the polynomial Q(Y), Y ∈ Rk. Moreover, non-negativity of Q implies that its
degree k should be even.

REMARK 16.6.2. In representation (16.6.14), the integrand qG∗ is the product
of two factors which play quite different roles. Indeed, q is defined by the
distribution function F and by the value of the degree k. Conversely, the factor
G∗ is completely defined by the polynomial Q alone. The phenomenon of such
a separation of roles of the factors in the representation of pT was observed
in (Szeidl, 1990) for the representation of the characteristic function ƒT in
essentially more general cases.
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REMARK 16.6.3. By substituting formally representation (16.6.11) of the den-
sity q into (16.6.14), we can write for ξ > 0

pT(ξ ) =
1
π

∑

r≥1

(−1)r−1 Γ(rγ + 1)
Γ(r + 1)

sin(πγ r)Hrξ−rγ−1, (16.6.15)

where
Hr =

∫
(u∗Y)rG∗(x′) dx′, r = 1, 2, …

For the case where conditions (Q1), (Q2) are satisfied, the function G∗(x′)
tends to zero at an exponential rate as |x′| → ∞. Because the function u∗Y(x′)
increases at a polynomial rate, the integrals Hr should be finite. In this case
we can consider (16.6.15) as a representation of pT by a series which may be
convergent or asymptotic.

To illustrate Theorem 16.6.1, we consider an example. In view of (Q1),
(Q2), and non-negativity of the polynomial Q∗ following from them, we can
write the general form of the polynomials Q∗(y′), y′ ∈ R′, for k = 2, 4, 6:

k = 2 (m = 1, y′ = (y1)) : Q∗(y′) = a1(y1), a1 > 0;

k = 4 (m = 2, y′ = (y1, y3)) : Q∗(y′) = a1(y1)4, a1 > 0;

k = 6 (m = 3, y′ = (y1, y3, y5)) : Q∗(y′) = a1(y1)6 + a2(y3)2, a1 > 0, a2 > 0.

The cases k = 2 and k = 4 are not very interesting, because we can calculate
the distribution function FT for these cases by elementary methods.

Consider the case k = 6, a1 = a2 = 1, and 0 < α < 2. In this case,

T = Y6
1 + Y2

3 ,

and
u∗Y(x1, x3) =

∫ ∞

0
(1− cos(x1ξ + x3ξ3))ξ−1−αdξ .

The function G∗(x1, x3) corresponding to the polynomial

Q∗(y1, y3) = y6
1 + y2

3

can be expressed by using the density q(ξ ; 2, 0) of the normal law with mean 0
and variance 2, and the transstable function q(ξ ; 6, 0) (Section 6.10) as follows:

G∗(x1, x3) = q(x1; 6, 0)q(x3; 2, 0).

The function q(z; 6. 0) is an analytic entire function with the series expression

q(z; 6, 0) =
1

6π

∑

n≥0

(−1)n Γ((2n + 1)/6)
Γ(2n + 1)

z2n.
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Thus,

pT(ξ ) =
∫∫

R2
q(ξ ; α/6, 1, u∗Y)q(x1; 6, 0)q(x3; 2, 0) dx1 dx3,

where
q(ξ ; α/6, 1, u∗Y) = (u∗Y)−6/αq((u∗Y)−6/αξ ; α/6, 1).



17

Financial applications

17.1. Introduction
Explanation of Brownian motion in terms of random thermal motions of flu-
id molecules striking the microscopic particle and causing it to undergo a
random walk was made by Einstein and many famous physicists and math-
ematicians began systematic investigations in this field. A less known fact
noted in (Klafter et al., 1996) is that Bachelier, a student of Poincaré, devel-
oped a theory of Brownian motion in his 1900 thesis (Bachelier, 1900). Because
Bachelier’s work was in the context of price and stock market fluctuations, it
did not attract the attention of physicists. Having derived a diffusion equa-
tion for random processes, he said that probability could diffuse in the same
manner as heat.

A more specific assertion by Bachelier is that any competitive price follows,
in the first approximation, a one-dimensional Brownian motion. Mandelbrot
(Mandelbrot, 1983) brought an anti-Brown arguments based on experimental
observations and following reasons: we know that Brownian motion’s sam-
ple functions are almost surely, almost everywhere continuous. But prices
on competitive markets need not be continuous, and they are conspicuously
discontinuous. The only reason for assuming continuity is that many sciences
tend, knowingly or not, to copy the procedures that prove successful in New-
tonian physics. Continuity should prove a reasonable assumption for diverse
quantities and rates that enter into economics but are defined in purely phys-
ical terms. But prices are different: mechanics involves nothing comparable,
and gives no guidance on this account.

The typical mechanism of price formation involves both knowledge of the
present and anticipation of the future. Even when the exogenous physical
determinants of a price vary continuously, anticipations change drastically, ‘in
a flash’.

Combining his favorite scaling principle with the walking model having
large increments with infinite variance, Mandelbrot (Mandelbrot, 1963c) ar-
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rived at the Lévy process (see Chapter 12) for the price changes. This approach
developed also in (Fama, 1963; Roll, 1970), etc. In (Stanley et al., 1996), where,
among others, the behavior of industrial firm sales and their employment was
studied, it was emphasized that the diagram of the process can be mapped
exactly onto the diagram of the DNA walk model considered above.

The following presentation draws heavily on (McCulloch, 1996).
Financial asset returns are the cumulative outcome of a vast number of bits

of information arriving continuously in time. According to the central limit
theorem, if the sum of a large number of independent identically distributed
random variables has a limiting distribution after appropriate shifting and
scaling, the limiting distribution must belong to the stable class (Lévy, 1925;
Feller, 1966). It is therefore natural to assume that asset returns are at
least approximately governed by a stable distribution if the accumulation is
additive, or by a log-stable distribution if the accumulation is believed to be
multiplicative.

The normal or Gaussian distribution is the most familiar and computa-
tionally tractable stable distribution, and therefore either it or the log-normal
has routinely been postulated to govern the actual distribution. However,
asset returns often appear to be much more leptokurtic or thick-tailed than
is consistent with a Gaussian distribution. This naturally leads one to con-
sider also the non-Gaussian stable distributions, as proposed by Mandelbrot
(Mandelbrot, 1963b; Mandelbrot, 1963c) and Fama (Fama, 1963).

If asset returns are truly governed by the infinite-variance stable distribu-
tions, life is fundamentally riskier than in a purely Gaussian world. Sudden
price movements like the stock market crash turn into real-world possibili-
ties, and the risk immunization promised by ‘programmed trading’ becomes
mere wishful thinking, at best. These price discontinuities render the arbi-
trage argument of the celebrated Black–Scholes (1973) option pricing model
inapplicable, so that we must look elsewhere in order to value options.

Nevertheless, we will see that the capital asset pricing model works as well
in the infinite-variance stable cases as it does in the normal case. Further-
more, the Black–Scholes formula may be extended to the non-Gaussian stable
cases by means of a utility maximization argument. Two serious empirical
objections that have been raised against the stable hypothesis are shown to be
inconclusive.

17.2. More on stable processes
Because stable distributions are infinitely divisible, they are particularly at-
tractive for continuous time modeling, as emphasized by Samuelson (Samuel-
son, 1965); see also (McCulloch, 1978a). The stable generalization of the fa-
miliar Brownian motion or Wiener process considered in Section 10.4 is often
called an α-stable Lévy motion, and is the subject of two recent monographs
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(Samorodnitsky & Taqqu, 1994; Janicki & Weron, 1994).
Recall that it is a continuous time stochastic process X(t) ≡ X(t; α, β) whose

increments X(t + ∆t)− X(t) are distributed by the stable law with parameters
α, β , zero drift and scale λ = ∆t1/α , and whose non-overlapping increments
are independently distributed. Such a process may be thought of as having
infinitesimal increments dX(t) = X(t + dt)−X(t), with infinitesimal scale dt1/α .
The process itself may then be reconstructed as the integral of these incre-
ments:

X(t) = X(0) +
∫ t

0
dX(τ).

Such a process may easily be generalized to have scale c0 over unit time incre-
ments and drift δ per unit time, as Y(t) = c0X(t) + δ t. The scale of dY is then
cdt = c0dt1/α .

Unlike a Brownian motion, which is almost surely everywhere continuous,
an α-stable Lévy motion is almost surely dense with discontinuities. It is not
hard to see that the probability that dY > x is (in form A)

P{dY > x} ∼ kαβ (x/cdt)−α = kαβ cα
0 x−αdt, x →∞, (17.2.1)

where

kαβ = π−1(1 + β)Γ(α) sin(απ)/2. (17.2.2)

Equation (17.2.1), in turn, implies that values of dY greater than any threshold
x0 > 0 occur with frequency

λ = kαβ (c0/x0)α , (17.2.3)

and that conditional on their occurrence, they have a Pareto distribution:

P{dY < x | dY > x0} ∼ 1− (x0/x)α , x� x0. (17.2.4)

Likewise, negative discontinuities dY < −x0 also have a conditional Pareto
distribution, and occur with frequency determined by (17.2.3), but with kαβ
replaced by kα ,−β .

In the Brownian motion case α = 2, kαβ = 0, so that discontinuities almost
surely never occur. With α just under 2, large discontinuities are very rare,
but the frequency of discontinuities greater than x0 in absolute value always
approaches infinity as x0 → 0 for α < 2. If β = ±1, discontinuities almost
surely occur only in the direction of the Paretian tail.

Because c∆t → 0 as ∆t → 0, an α-stable Lévy motion is everywhere almost
surely continuous, despite the fact that it is not almost surely everywhere
continuous. That is to say, every individual point t is almost surely a point
of continuity, even though on any finite interval, there will almost surely be
an infinite number of points for which this is not true. Even though they
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are almost surely dense, the points of discontinuity almost surely constitute
only a set of measure zero, so that with probability one any point chosen at
random will in fact be a point of continuity. Such a point of continuity will
almost surely be a limit point of discontinuity points, but whose discontinuities
approach zero in size as the t in question is approached.

The scale of ∆X/∆t is (∆t)1/α−1, so that if α > 1, X(t) is everywhere almost
surely not differentiable, just as in the case of a Brownian motion. If α < 1,
X(t) is everywhere almost surely differentiable, though of course there will be
an infinite number of points (the discontinuities) for which this will not be
true.

As noted in (McCulloch, 1978a), the discontinuities in an α-stable Lévy
motion imply that the bottom may occasionally fall out of the market faster
than trades can be executed, as occurred, most spectacularly, in October of
1987. When such events have a finite rate of occurrence, the portfolio risk
insulation promised by ‘programmed trading’ becomes wishful thinking, at
best. Furthermore, the arbitrage argument of the Black–Scholes model (1973)
cannot be rigorously used to price options, and options will no longer be the
redundant assets they are in the absence of price discontinuities.

17.3. Multivariate stable processes
Multivariate stable distributions are, in general, much richer than multivari-
ate normal distributions. This is because the sets of independent identically
distributed and of spherically symmetric random vectors are not equivalent
for α < 2, and because multivariate stable distributions are not in general
completely characterized by a simple covariation matrix as are multivariate
normal distributions. If Y1 and Y2 are independent identically distributed
stable with α < 2, their joint distribution will not have circular density con-
tours. Near the center of the distribution the contours will be approximately
circular, but as we move away from the center, the density will have bulges in
the directions of the axes.

Great strides have been made in the past few years in our understanding of
multivariate stable distributions (Hardin et al., 1991; Cambanis & Wu, 1991).
The newly developed ‘spectral representation’ of multivariate stable distribu-
tions provides a general and unique method of specifying these distributions
not. available to early researchers.

Let Y = (Y1(α, 1), …, Ym(α, 1)) be an m-vector of independent identically
distributed random variables, each of whose components is distributed by a
stable law with parameters α, β = 1, unit scale and zero drift, and let A = (aij)
be a d × m matrix of rank d ≤ m. The d-vector Z = AY then has a ‘truly
d-dimensional’ multivariate stable distribution with ‘atoms’ in the directions
of each of the columns aj of A. If any two of these columns are of the same
direction, say a2 = λa1 for some λ > 0, they may, with no loss of generality,
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be merged into a single column equal to (1 + λ α )1/αa1. If the columns come
in pairs that have opposite directions but equal norms, Z will be symmetric
stable, but this is only a special case. Each atom will create a bulge in the joint
density in the direction of aj.

The (discrete) spectral representation represents aj as cjsj, where cj = |aj|
and sj = aj/cj is the point on the unit sphere Sd ⊂ Rd in the direction of aj.
Then Z may be written as

Z =
m∑

j=1

cjsjYj, (17.3.1)

and

ln EeikZ′ =
m∑

j=1

γjψ(s′jk; α, 1), (17.3.2)

where the prime stands for transposition, γj = cα
j , and ψ(k; α, 1) = ln qA(k; α, 1)

is the second characteristic of the reduced stable distribution introduced in
Section 3.6.

The most general multivariate stable distributions (abstracting from lo-
cation, which may easily be added on as a vector δδδ ) may be generated by
contributions coming from all conceivable directions, with most or perhaps all
of cj in (17.3.1) becoming infinitesimal. In this case,

ln EeikZ′ =
∫

Sd

ψ(s′k; α, 1)Γ(ds), (17.3.3)

where Γ is a finite spectral measure defined on the Borel subsets of Sd.
In the case d = 2, (17.3.3) may be simplified to

ln EeikZ′ =
∫ 2π

0
ψ(s′θk; α, 1)dΓ(θ), (17.3.4)

where sθ = (cos θ , sin θ)′ is the point on the unit circle at angle θ and Γ is a
non-decreasing, left-continuous function with Γ(0) = 0 and Γ(2π) <∞.

Such a random vector Z = (Z1, Z2)′ may be constructed from a maximal-
ly positively skewed (β = 1) α-stable Lévy motion X(θ), whose independent
identically distributed increments dX(θ) have zero drift and scale (dθ)1/α , by

Z =
∫ 2π

0
sθ

(dΓ(θ))1/αdX(θ)
(dθ)1/α . (17.3.5)

This integrand has the following interpretation. If Γ′(θ) exists, θ contributes
sθΓ′(θ))1/αdX(θ) to the integral. If Γ instead jumps by ∆Γ at θ, θ contributes an
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atom sθ (∆Γ)1/αZθ to the integral, where Zθ = (dθ)−1/αdX(θ), distributed by the
stable law with A-parameters α, 1, 1, 0, is independent of dX(θ ′) for all θ ′ ≠ θ.

If Z has such a bivariate stable distribution, and a = (a1, a2)′ is a vector of
constants,

a′Z =
∫ 2π

0
(a1 cos θ + a2 sin θ)

(dΓ(θ))1/αdX(θ)
(dθ)1/α (17.3.6)

is univariate stable. In particular,

Z1 =
∫ 2π

0
cos θ

(dΓ(θ))1/αdX(θ)
(dθ)1/α , (17.3.7)

Z2 =
∫ 2π

0
sin θ

(dΓ(θ))1/αdX(θ)
(dθ)1/α . (17.3.8)

Then, a′Z will have scale determined by

cα(a′Z) =
∫ 2π

0
|a1 cos θ + a2 sin θ|αdΓ(θ). (17.3.9)

In (Kanter, 1972) it was shown that if dΓ is symmetric and α > 1, then

E(Z2, | Z1) = κ21Z1, (17.3.10)

where

κ21 =
1

cα(Z1)

∫ 2π

0
sin θ sign(cos θ)| cos θ|α−1dΓ(θ),

(17.3.11)

cα(Z1) =
∫ 2π

0
| cos θ|αdΓ(θ). (17.3.12)

The integral in this equation is called the covariation of Z2 on Z1. In (Hardin
et al., 1991), it was demonstrated that if dΓ is asymmetric, then E(Z2 | Z1) is
non-linear in Z1, but still is a simple function involving κ21. They note that
(17.3.10) may be valid in the symmetric cases even for α < 1.

If dΓ, and therefore the distribution of Z, is symmetric, ψ(s′k; α, 1) in
(17.3.3) and (17.3.4) may be replaced by ψ(s′k; α, 0) = −|s′k|α , and X(θ) in
(17.3.5) taken to be symmetric. In this case, the integrals may, if desired, be
taken over any half of the unit sphere, provided that Γ is replaced by Γ∗ = 2Γ.

One particularly important special case of multivariate stable distributions
is the elliptical class proposed by Press (Press, 1982). The particular case
presented here is Press’ order m = 1. His higher order cases (with his m > 1)
are probably not so useful, not even as an ad hoc approximation to a smooth
spectral density. In (Press, 1972), Press asserted that these were the most



17.4. Stable portfolio theory 469

general multivariate symmetric stable distributions, but later concedes that
this is not the case.

If dΓ(s) in (17.3.3) simply equals a constant times ds, all directions will
make equal contributions to Z. Such a distribution will, after appropriate
scaling to give the marginal distribution of each component the desired scale,
have spherically symmetric joint density p(x) = ƒd(r; α), for some function
ƒd(r; α) depending only on r = |Z|, α, and the dimensionality d of Z. The loga-
rithm of the characteristic function of such a distribution must be proportional
to ψ(|k|; α, 0) = −(k′k)α/2.

Press prefers to select the scale factor for his spherical multivariate stable
distributions in such a way that in the standard spherical normal case, the
variance of each component is unity:

ln EeikZ = −(k′k)α/2/2. (17.3.13)

In the case d = 2 of (17.3.4) and (17.3.5), the requisite constant value of dΓ is,
by (17.3.12),

dΓ(θ) =
(

2
∫ 2π

0
| cos ϕ|αdϕ

)−1

dθ . (17.3.14)

If Y has such a d-dimensional spherical stable distribution, and Z = HY
for some non-singular d × d matrix H, then Z will have a d-dimensional (nor-
malized) elliptical stable distribution with

ln E exp(ikZ′) = −(k′Σk)α/2/2 (17.3.15)

and joint density

p(x) = |Σ|−1/2ƒd((Z′Σ−1Z)1/2; α), (17.3.16)

where Σ = (σij) = HH′. The component Zi of Z will then have the normalized
scale σ(xi) = σ1/2

ii = 21/αc(Zi). This Σ thus acts very much like the multivariate
normal covariance matrix, which indeed it is for α = 2. For α > 1, E(Zi | Zj)
exists and equals (σij/σjj)Zj, just as with normality. In (Cambanis & Wu, 1991),
it was demonstrated that Var(Zi | Zj) actually exists in cases like this. If Σ is
diagonal, the components of Z will be uncorrelated, in the sense E(Zi | Zj) = 0,
but not independent unless α = 2.

17.4. Stable portfolio theory
Tobin (Tobin, 1958) noted that preferences over probability distributions for
random consumable wealth W can be expressed in terms of a two-parameter
indirect utility function if all distributions under consideration are indexed by
these two parameters. He further demonstrated that if the utility U(W) is a
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concave function of wealth and this two-parameter class is affine, i.e., indexed
by a location and scale parameter like the stable λ and γ , the indirect utility
function V(γ , λ ) generated by expected utility maximization must be quasi-
concave, while the opportunity sets generated by portfolios of risky assets and
a risk-free asset will be straight lines. Furthermore, if such a two-parameter
affine class is closed under addition, the returns on convex portfolios of as-
sets will be evaluable by the same quasi-concave indirect utility function. If
the class is symmetric, even non-convex portfolios, with short sales (negative
holdings) of some assets, may be thus compared.

Originally it was believed that only the normal distribution had this closure
property, but Fama (Fama, 1965) quickly pointed out that it was shared by the
stable distributions.

Fama and Miller demonstrate that the conclusions of the traditional
Sharpe–Lintner–Mossin capital asset pricing model (CAPM) carry over to the
special class of multivariate symmetric stable distributions in which the time
t relative arithmetic return

Ri = (Pi(t + 1)− Pi(t))/Pi(t)

on asset i is generated by the ‘market model’:

Ri = ai + biM + εi, (17.4.1)

where ai and bi are asset-specific constants, M, distributed by a symmetric
reduced stable law with parameter α, is a market-wide factor affecting the
returns on all assets, and εi, distributed by a symmetric stable law with pa-
rameter α, zero drift and scale ci, is an asset-specific disturbance independent
of M and independent across assets, with ci > 0.

Under this market model, the returns R = (R1, …, RN)′ on N assets have
an (N + 1)-atom multivariate symmetric stable distribution generated by

R = a +
(
b IN

) (M
εεε

)
, (17.4.2)

where IN is the N × N unity matrix, a = (a1, …, aN)′, etc. This distribution has
N (symmetric) atoms in the direction of each axis, as well as in the (N + 1)st,
representing the common market factor M, extending into the positive orthant.

Fama and Miller show that when α > 1, diversification will reduce the
effect of the firm-specific risks, just as in the normal case, though at a slower
rate. They note that if two different portfolios of such assets are mixed in
proportions x and (1 − x), the scale of the mixed portfolio will be a strictly
convex function of x and therefore (providing the two portfolios have different
expected returns) of its mean return. On the efficient set of portfolios, where
mean is an increasing function of scale, maximized mean return will therefore
be a concave function of scale, just as in the normal case. Given Tobin’s quasi-
concavity of the indirect utility function, a tangency between the efficient
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frontier and an indirect utility indifference curve then implies a global expected
utility maximum for an individual investor.

When trading in an artificial, zero-sum asset paying a riskless real return
Rƒ is introduced, all agents will choose to mix positive or negative quantities
of the risk-free asset with the market portfolio, just as in the normal case.
Letting θi, i = 1, …, N, be the value-weighted share of asset i in the market
portfolio, the market return will be given by

Rm = θθθ ′R = am + bmM + εm,

where

am =
N∑

i=1

θiai, bm =
N∑

i=1

θibi, εm =
N∑

i=1

θiεi. (17.4.3)

Thus, (Rm, Ri)′ will have a three-atom bivariate symmetric stable distribution
generated by

(
Rm
Ri

)
=
(

bm 1 θi
bi 0 1

)


M
εı̂
εi


 (17.4.4)

where εı̂ = εm − θiεi. The variability of Rm is

cα (Rm) = bα
m + cα(εm), (17.4.5)

where cα(εm) =
∑

θα
i cα

i is the contribution of the firm-specific risks to the risk
of the market portfolio.

The conventional CAPM predicts that the prices of the N assets, and there-
fore their mean returns ai will be determined by the market in such a way that

ERi − Rƒ = (ERm − Rƒ)βCAPM, (17.4.6)

where the CAPM ‘beta’ (not to be confused with the stable ‘beta’) is ordinarily
computed as

βCAPM = cov(Ri, Rm)/ Var Rm. (17.4.7)

This expression involves a covariance and variance that are both infinite for
α < 1. However, Fama and Miller point out that the market equilibrium
condition in fact only requires that

(a) the market portfolio be an efficient portfolio and therefore minimize its
scale given its mean return;

(b) in (E(R), c(R)) space, the slope of the efficient set at the market portfolio
equal (ERm − Rƒ)/c(Rm).
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They note that these in turn imply (17.4.6), with

βCAPM =
1

c(Rm)
∂c(Rm)

∂θi
. (17.4.8)

In the finite variance case, (17.4.8) happens to be equivalent to (17.4.7), but
the existence of the variance and covariance are in fact inessential. In the case
of the single market factor ‘market model’ of (17.4.1), Fama and Miller show
that (17.4.8) becomes

βCAPM =
bibα−1

m + θα−1
i cα

i

cα(Rm)
. (17.4.9)

As the number of comparably-sized firms becomes large, so that θi → 0,
c(Rm) → bm, and hence

βCAPM → bi/bm. (17.4.10)

Fama and Miller did not explore more general multivariate stable distri-
butions in detail, other than to note that it might be useful to consider adding
industry-specific factors to the single market factor model of (17.4.1). To the
extent these cannot be fully diversified away, they might contribute to the sys-
tematic risk of the individual stocks in the various industries in an important
way.

In (Press, 1982) it is demonstrated that portfolio analysis with his elliptical
class of multivariate stable distributions is even simpler than in the multi-
atom model of Fama and Miller. Let R−ER have a normalized elliptical stable
distribution with characteristic function satisfying (17.3.15) and covariation
matrix Σ. Then the covariation matrix Σ∗ of (Rm, Ri)′ will be

Σ∗ =
(

σ2
m σim

σim σ2
i

)
=
(

θθθ ′
e′i

)
Σ
(
θθθ ei

)
, (17.4.11)

where ei is the ith unit N-vector. Press did not quite solve for the CAPM
equilibrium, but it can easily be shown that (17.4.8) simply implies

βCAPM = σim/σ2
m. (17.4.12)

In the general symmetric multivariate stable case, not considered by either
Fama and Miller or Press, Z = (Rm − ERm, Ri − ERi)′ will have a bivariate
symmetric stable distribution of type (17.3.4). It then may easily be shown
that the Fama–Miller rule (17.4.8) implies

βCAPM = κim, (17.4.13)

where κim = E(Ri − ERi | Rm − ERm)/(Rm − ERm) is as given by Kanter’s
formula (17.3.11) above.
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The possibility that α < 2 therefore adds no new difficulties to the tradi-
tional CAPM. However, we are still left with its original problems. The first of
these is that it assumes that there is a single consumption good consumed at a
single point in time. If there are several goods with variable relative prices, or
several points in time with a non-constant real interest rate structure, there
may in effect be different CAPM ‘beta’s for different types of consumption risk,
regardless of whether α = 2 or α < 2.

The second problem with the CAPM is that if arithmetic returns really
have a stable distribution with α > 1 and positive scale parameter, there is a
positive probability that any individual stock price, or even wealth and there-
fore consumption as a whole, will go negative. Ziemba considers restrictions
on the utility function that will keep expected utility and expected marginal
utility finite under these circumstances, but a non-negative distribution would
be preferred, given free disposal and limited liability, not to mention the dif-
ficulty of negative consumption. A further complication is that it is more
reasonable to assume that relative, rather than absolute, arithmetic returns
are homoscedastic over time. Yet if relative one-period arithmetic returns have
any independent identically distributed distribution, then over multiple time
periods they will accumulative multiplicatively, not additively as required to
retain a stable distribution.

A normal or stable distribution for logarithmic asset returns,
ln(Pi(t + 1)/Pi(t)), would keep asset prices and therefore wealth non-negative,
and could easily arise from the multiplicative accumulation of returns. How-
ever, the log-normal or log-stable is no longer an affine two-parameter class of
distributions, and consequently Tobin’s demonstration of the quasi-concavity
of the indirect utility function may no longer be invoked.

Furthermore, while the closure property of stable distributions under ad-
dition implies that log-normal and log-stable distributions are closed under
multiplication, as may take place for an individual stock over time, it does
not imply that they are closed under addition, such as takes place under port-
folio formation. A portfolio of log-normal or log-stable stocks therefore does
not necessarily have a distribution in the same class. As a consequence, such
portfolios may not be precisely commensurate in terms of any two-parameter
indirect utility function, whether quasi-concave or not.

Conceivably, two random variables might have a joint distribution with
log-stable marginal distributions, whose contours are somehow deformed in
such a way that linear combinations of the two variables are nevertheless still
log-stable. However, in (McCulloch & Mityagin, 1991) it is shown that this
cannot be the case if the log-stable marginal distributions have finite mean,
i.e., α = 2 or β = −1. Mityagin’s result makes it highly unlikely that the more
general infinite mean cases would have the desired property, although this
remains to be rigorously demonstrated.

In the Gaussian case, the latter set of problems has been skirted by focus-
ing on continuous time Wiener processes, for which negative outcomes may
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be ruled out by a log-normal assumption, but for which instantaneous loga-
rithmic and relative arithmetic returns differ only by a drift term governed
by Itô’s lemma. With α < 2, however, the discontinuities in continuous-time
stable processes make even instantaneous logarithmic and relative arithmetic
returns behave fundamentally differently.

It therefore appears that the stable CAPM, like the Gaussian CAPM, pro-
vides at best only an approximation to the equilibrium pricing of risky assets.
There is, after all, nothing in economic theory that guarantees that asset pric-
ing will in fact have the simplicity and precision that was originally sought in
the two-parameter asset pricing model, or that actual asset returns will con-
veniently accommodate whatever distributional assumptions it may require.

17.5. Log-stable option pricing
This section draws heavily on (McCulloch, 1985b).

An option is a derivative financial security that gives its owner the right,
but not the obligation, to buy or sell a specified quantity of an underlying
asset at a contractual price called the striking price or exercise price, within a
specified period of time. An option to buy is a call option, while an option to
sell is a put option. If the option may only be exercised on its maturity date it
is said to be European, while if it may be exercised at any time prior to its final
maturity it is said to be American. In practice, most options, even those traded
on European exchanges, are ‘American’, but ‘European’ options are easier to
evaluate, and under some circumstances the two will be equivalent in value.

Black and Scholes (1973) find a precise formula for the value of a European
option on a stock whose price on maturity has a log-normal distribution, by
means of an arbitrage argument involving the almost surely everywhere con-
tinuous path of the stock price during the life of the option. Merton (Merton,
1976) noted early on that practitioners often claim that deep-in-the money,
deep-out-of-the money, and shorter maturity options tend to sell for more than
their Black–Scholes predicted value. Furthermore, if the Black–Scholes for-
mula were based on the true distributional assumption, the implicit volatility
calculated from it using synchronous prices for otherwise identical options
with different striking prices would be a constant across striking prices. Hull
(Hull, 1993) notes that in practice the resulting implicit volatility curve in-
stead often bends up at the ends, to form what is commonly referred to as the
‘volatility smile’. Rubinstein (Rubinstein, 1985) finds this effect to be high-
ly significant for almost all maturities for out-of-the-money calls during the
period 10/77–8/78, as predicted by the stable model. During 8/76–10/77, it
is highly significant for maturities under 120 days, but surprisingly, it is sig-
nificantly reversed for longer maturities. These related phenomena suggest
that the market, at least, believes that large price movements have a high-
er probability, relative to small price movements, than is consistent with the
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Black–Scholes formula.
Unfortunately the logic of the Black–Scholes model cannot be adapted to

the log-stable case, because of the (infinite number of) discontinuities that ap-
pear in the time path of an α-stable Lévy process. Rachev and Samorodnitskii
(Rachev & Samorodnitsky, 1993) attempt to price a log-symmetric stable op-
tion, using a hedging argument with respect to the directions of the jumps in
an underlying α-stable Lévy motion, but not with respect to their magnitudes.
Furthermore, their hedge ratio is computed as a function of the still unob-
served magnitude of the jumps. These drawbacks render their formula less
than satisfactory, even apart from its difficulty of calculation. Jones (Jones,
1984) calculates option values for a compound jump–diffusion process in which
the jumps, and therefore the process, have infinite variance, but this is neither
a stable nor a log-stable distribution. Furthermore, if the logarithm of the
price of a stock is stable with α < 2 and β > −1, the expected payoff on a call
option on it is infinite. This infinite expectation left Paul Samuelson (as quoted
in (Smith, 1976, p. 19)) inclined to believe in [Robert] Meton’s conjecture that a
strict Lévy–Pareto [stable] distribution on ln(S∗/S) would lead, with 1 < α < 2,
to a 5-minute warrant or call being worth 100 percent of the common. Merton
further conjectured (Merton, 1976) that an infinite expected future price for
stocks would require the risk-free interest rate to be infinite, in order for the
current price to be finite. We shall see in the present section that these fears
are unfounded, even in the extreme cases α < 1.

17.5.1. Spot and forward asset prices
Let there be two assets, A1 and A2, and let X be the random price of A2 in
terms of A1 at future time T. Let U1 and U2 be the marginal utilities of A1
and A2 for a representative individual. If ln U1 and ln U2 are both stable with
a common characteristic exponent, then the logarithm of

X = U2/U1 (17.5.1)

will also be stable, with the same exponent.
Let F be the forward price in the market at present time 0 on a contract to

deliver 1 unit of A2 at time T. Unconditional payment of F units of A1 is to be
made entirely at time T, with no ‘marking to market’ in the interim. The value
of F that sets the expected utility gain from a small position in this contract
equal to 0 is

F = EU2/EU1. (17.5.2)

The expectations in (17.5.2) are both conditional on present (time 0) informa-
tion.

In order for the expectations in (17.5.2) to be finite when ln Ui are both
stable with α < 2, they both must be maximally negatively skewed, i.e., have
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β = −1, and therefore no upper Paretian tail. In order to evaluate log-stable
options we presently see no alternative but to make this assumption. Note that
this constraint does not prevent ln X from being intermediately skew-stable,
or even symmetric stable.

Let V1 and V2 be independent asset-specific maximally positively skewed
stable variables contributing negatively to ln U1 and ln U2 respectively. In
order to add some generality, let V3 be a common component, contributing
negatively and equally to both ln U1 and ln U2, and which is independent of
V1 and V2, so that

ln U1 = −V1 − V3, (17.5.3)
ln U2 = −V2 − V3. (17.5.4)

Let (α, β , c, δ ) be the parameters of

ln X = V1 − V2, (17.5.5)

and let ci, δi, i = 1, 2, 3, be the scale and drift parameters of Vi. We assume
that α, β , c, and F are known, but that δ , c1, c2, c3, δ1, δ2, δ3 are not directly ob-
served. We can nevertheless infer all we need to know about these unobserved
parameters from the observed ones. We have

δ = δ1 − δ2, α ≠ 1, (17.5.6)
cα = cα

1 + cα
2 , (17.5.7)

βcα = cα
1 − cα

2 . (17.5.8)

We will return to the case α = 1 presently, but for the time being we assume
α ≠ 1.

Equations (17.5.7) and (17.5.8) may be solved for

c1 = ((1 + β)/2)1/αc, c2 = ((1− β)/2)1/αc. (17.5.9)

Using Zolotarev’s formula

ln Eex =

{
δ − cα sec(πα/2), α ≠ 1,
δ + 2

π c ln c, α = 1,
(17.5.10)

and setting θ = πα/2, we have

EUi = e−δi−δ3−(cα
i +cα

3 ) sec θ , i = 1, 2, (17.5.11)

hence (17.5.2) yields

F = eδ+βcα sec θ . (17.5.12)

If β = 0 (because c1 = c2), (17.5.12) implies Osborne’s (1964) special case
of a log-random walk: ln F = E ln X. Note that this case does not require
logarithmic utility, but only that U1 and U2 make equal contributions to the
uncertainty of X.
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17.5.2. Option pricing
Let C be the value, in terms of units of the numeraire asset A1 to be delivered
unconditionally at time 0, of a ‘European’ call option on 1 unit of asset A2
to be exercised at (but not before) time T, with striking price X0. Let r1 be
the default-free interest rate on loans denominated in A1 with maturity T.
A payment of C units of A1 at time 0 is thus equivalent to an unconditional
payment of C exp(r1T) units at time T.

If X > X0 at time T, the option will be exercised. Its owner will receive
1 unit of A2, in exchange for X0 units of A1. If X < X0, the option will not
be exercised. In either event, its owner will be out the interest-augmented
C exp(r1T) units of A1 originally paid for the option. In order for the expected
utility gain from a small position in this option to be zero, we must have

∫

X>X0

(U2 − X0U1) dP(U1, U2)− Cer1T
∫

all X
U1 dP(U1, U2) = 0,

(17.5.13)

or, using (17.5.2),

C = e−r1T
[

F
EU2

∫

X>X0

U2 dP(U1, U2)− X0

EU1

∫

X>X0

U1 dP(U1, U2)
]

.
(17.5.14)

In the above two equations, P(U1, U2) represents the joint probability distribu-
tion for U1 and U2. Relation (17.5.14) is valid for a European call option with
any joint distribution, stable or otherwise, for which the expectations exist.

It is not very difficult to see that for α ≠ 1, (17.5.14) becomes

C = Fe−r1T+cα
2 sec θI1 − X0e−r1T+cα

1 sec θI2, (17.5.15)

where

I1 =
∫ ∞

−∞
e−c2zsα1(z)

[
1− Sα1

((
c2z− ln

F
X0

+ βcα sec θ
)/

c1

)]
dz,
(17.5.16)

I2 =
∫ ∞

−∞
e−c1zsα1(z)Sα1

((
c1z− ln

F
X0

+ βcα sec θ
)/

c2

)
dz,

(17.5.17)

Sαβ , sαβ stand for the distribution function and density of the stable law
with parameters α, β . Relation (17.5.15) effectively gives C as a function
C(X0, F, α, β , c, r1, T)), since c1 and c2 are determined by (17.5.9), and θ = πα/2.
Note that δ is not directly required, since all we need to know about it is
contained in F through (17.5.12). Note also that the common component of
uncertainty, namely u3, completely drops out.

In (Rubinstein, 1976) it is demonstrated that (17.5.14) leads to the Black–
Scholes formula when ln U1 and ln U2 have a general bivariate normal distri-
bution. Relation (17.5.15) thus extends the Black–Scholes model to the case
α < 2.
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If the forward price F is not directly observed, we may use the spot price
S to construct a proxy for it if we know the default-free interest rate r2 on
A2-denominated loans, since arbitrage requires

F = Se(r1−r2)T . (17.5.18)

The value P of a European put option giving one the right to sell 1 unit of
A2 at striking price X0 at future time T may be evaluated with (17.5.15), in
conjunction with the put-call parity arbitrage condition

P = C + (X0 − F)e−r1T . (17.5.19)

Relations (17.5.12) and (17.5.15) are valid even for α < 1. When α = 1, (17.5.12)
becomes

F = eδ− 2
π βc ln c. (17.5.20)

and (17.5.15) becomes

C = Fe−r1T− 2
π c2 ln c2I1 − X0e−r1T− 2

π c1 ln c1I2, (17.5.21)

where c1 and c2 are as above, but

I1 =
∫ ∞

−∞
e−c2zsα1(z)

×
[
1− Sα1

((
c2z + ln

X0

F
+

2
π

(c2 ln c2 − c1 ln c1)
)/

c1

)]
dz,
(17.5.22)

I2 =
∫ ∞

−∞
e−c1zsα1(z)

× Sα1

((
c1z− ln

X0

F
+

2
π

(c1 ln c1 − c2 ln c2)
)/

c2

)
dz.

(17.5.23)

17.5.3. Applications
The stable option pricing formula (17.5.15) may be applied without modifi-
cation to options on commodities, stocks, bonds, and foreign exchange rates,
simply by appropriately varying the interpretation of the two assets A1 and
A2.

Commodities. Let A1 and A2 be two consumption goods, both of which are
available for consumption on some future date T; A1 could be a broad-based
numeraire aggregating all goods other than A2. Let r1 be the default-free real
interest rate on A1-denominated loans.
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Let U1 and U2 be the random future marginal utilities of A1 and A2, and
suppose that ln U1 and ln U2 have both independent (u1 and u2) and common
(u3) components, as in (17.5.3) and (17.5.4) above. The price X of A2 in terms
of A1, as determined by (17.5.1), is then intermediately skewed log-stable as in
(17.5.5), with forward price F as in (17.5.12). The shadow price C of a European
call option on 1 unit of A2 at time T that sets the expected marginal utility
gain of a small position in the option equal to zero is then given by (17.5.15)
above.

Such a scenario might, for example, arise from an additively separable
constant relative risk aversion (CRRA) utility function

U(A1, A2) =
1

1− η
(A1−η

1 + A1−η
2 ), η > 0, η ≠ 1, (17.5.24)

with the physical endowments given by Ai = evi+v3 , i = 1, 2, where v1, v2, and
v3 are independent stable variables with a common α and β = ±1.

Stocks. Suppose now that there is a single good G, which will serve as our
numeraire, A1. Let A2 be a share of stock in a firm that produces a ran-
dom amount y of G per share. Let r1 be the default-free interest rate on
G-denominated loans with maturity T. The firm pays continuous dividends,
in stock, at rate r2, and its stock has no valuable voting rights before time T, so
that one share for spot delivery is equivalent to exp(r2T) shares at T. Let UG
be the random future marginal utility of one unit of G at time T, and assume
that

ln UG = −u1 − u3, (17.5.25)
ln y = u1 − u2, (17.5.26)

where ui are independent stable variables as above.
The marginal utility of one share is then yUG = exp(−u2 − u3), and the

price per share using unconditional claims on G as numeraire, X = (yUG)/UG,
is as given in (17.5.5). The forward price of one share, F = E(yUG)/E(UG), is
as given in (17.5.12). The value of a European call option on 1 share of stock
is then given by (17.5.15). If the forward price of the stock is not directly
observed, it may be constructed from r1, r2, and the spot price S by means of
(17.5.18).

Relation (17.5.26) states that to the extent there is firm-specific good news
(−u2), it is assumed to have no upper Paretian tail. This means that the firm
will produce a fairly predictable amount if successful, but that it may still be
highly speculative, in the sense of having a significant probability of producing
much less or virtually nothing at all. To the extent there is firm non-specific
good news (u1), the marginal utility of G, given by (17.5.24), is assumed to be
correspondingly reduced.
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We make no attempt here to generalize (17.5.25) and (17.5.26) to more
complicated interactions. Despite this rather restrictive underlying scenario,
our stock price X can take on a completely general log-stable distribution.

Bonds. Now suppose that there is a single consumption good, G, that can be
available at either or both of two future dates, T2 > T1 > T0 = 0. Let A1 and
A2 be unconditional claims on one unit of G at T1 and T2, respectively, and
let U1 and U2 be the marginal utility of G at these two dates. Let E1U2 be
the expectation of U2 as of T1. As of present time 0, both U1 and E1U2 are
random variables. Assume ln U1 = −u1 − u3, and ln E1U2 = −u2 − u3, where
ui are independently distributed stable variables as above. The price at T1 of
a zero-coupon price level indexed bond that matures at time T2, X = E1U2/U1
is then given by (17.5.5), and the forward price F of such a bond implicit in the
term structure at present time 0, F = E0U2/E0U1 = E0(E1U2)/E0U1 is governed
by (17.5.12) above.

This model leads to the log expectation hypothesis ln F = E ln X in the
special case p = 0. Cox, Ingersoll and Ross (Cox et al., 1981) claim that this
necessarily violates a no-arbitrage condition in continuous time with α = 2,
but McCulloch in (McCulloch, 1993) demonstrates with a counterexample that
this claim is incorrect. The requisite forward price F may he computed as
exp(r1T1−R2T2), where R2 (not the same as r2 above) is the real interest rate
an loans maturing at T2.

The shadow price of a European call is then given by (17.5.15), where r1
is now the real interest rate on indexed loans maturing at time T1, and T is
replaced by T1.

Foreign exchange rates. The present subsection draws heavily on (McCul-
loch, 1987).

The log-stable-option pricing model has a particularly appealing interpre-
tation in terms of a purchasing power parity model of foreign exchange rate
determination. In practice, purchasing power parity performs rather poorly.
However, to the ex- tent that real exchange rates fluctuate, they may simply
be modeled as real commodity price fluctuations. Purchasing power parity
provides an instructive alternative interpretation of the stable option model,
in terms of purely nominal risk.

Let P1 and P2 be the price levels in countries 1 and 2, respectively, at future
time T. Price level uncertainty itself is generally positively skewed. Astro-
nomical inflations are very easily arranged, simply by throwing the printing
presses into high gear, and this policy has considerable fiscal appeal to it. Com-
parable deflations would be fiscally intolerable, and are in practice unheard of.
It is therefore particularly reasonable to assume that ln P1 and ln P2 are both
maximally positively skewed.
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Let u1 and u2 be independent ‘country specific’ components of ln P1 and
ln P2, respectively, and let u3 be an ‘international component’ of both price
levels, reflecting the ‘herd instincts’ of central bankers, that is independent of
both u1 and u2, so that ln Pi = ui + u3, i = 1, 2. Under purchasing power parity,
the exchange rate giving the value of currency 2 (A2) in terms of currency 1
(A1), X = P1/P2, is then as given in (17.5.5) above.

It can easily be shown that the lower Paretian tail of ln X will give the
density of X itself a mode (with infinite density but no mass) at 0, as well as
a second mode (unless c is large as compared to unity) near exp(E ln X). Thus
log-stable distributions achieve the bimodality sought by Krasker (Krasker,
1980), all in terms of a single story about the underlying process.

Assume that inflation uncertainty involves no systematic risk. In this case
the forward exchange rate F will have to equal E(1/P2)/E(1/P1) in order to set
the expected profit (in terms of purchasing power) from forward speculation
equal to zero, and will be determined by (17.5.12).

Let r1 and r2 be the default-free nominal interest rates in countries 1 and
2. Then the shadow price of a European call on one unit of currency 2 that
sets the expected purchasing power gain from a small position in the option
equal to zero is given by (17.5.15) above. The forward price F may, if necessary,
be inferred from the spot price S by means of the covered interest arbitrage
formula (17.5.18).

McCulloch in (McCulloch, 1985a) uses the results of this section, in the
short-lived limit, to evaluate deposit insurance in the presence of interest-rate
risk, as faced by traditional banks and thrift institutions who are short-funded.

Pseudo-hedge ratio. Although the arbitrage logic of Black and Scholes can-
not be used to evaluate log-stable options, the risk exposure from writing a call
option on one unit of an asset can be partially neutralized (to a first-order ap-
proximation) by simultaneously taking a long forward position on

∂(C exp(r1T))
∂F

= ecα
2 sec θI1 (17.5.27)

units of the underlying asset. Unfortunately, the discontinuities leave this
position imperfectly hedged if α < 2. At the same time, this imperfect ability
to hedge implies that options are not redundant financial instruments.

17.6. Low probability and short-lived options
This section draws heavily on (McCulloch, 1978b).

Assume X0 > F and that the scale parameter c is small relative to ln(X0/F).
Holding p constant, c1 and c2 are then small as well. Then (see (McCulloch,
1985b, Appendix B) for details) that the call value C behaves like

Fe−r1Tcα(1 + β)Ψ(α, X0/F), (17.6.1)
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where

Ψ
(

α,
X0

F

)
=

Γ(α) sin θ
π

[(
ln

X0

F

)−α
− α

X0

F

∫ ∞

ln X0
F

e−ζζ−α−1dζ

]
.
(17.6.2)

This function is tabulated in some detail in Table 17.1. It becomes infinite as
X0/F ↓ 1, and 0 as α ↑ 2. By the put/call inversion formula, P behaves as

Se−r1Tcα (1− β)Ψ(α, F/X0). (17.6.3)

In an α-stable Lévy motion, the scale that accumulates in T time units is
c0T1/α , where c0 is the scale that accumulates in 1.0 time unit. As T ↓ 0, the
forward price F converges on the spot price S. Therefore,

lim
T↓0

C
T

= (1 + β)cα
0 SΨ(α, X0/S), (17.6.4)

lim
T↓0

P
T

= (1− β)cα
0 X0Ψ(α, S/X0), (17.6.5)

The last formula has been employed in (McCulloch, 1981; McCulloch, 1985a)
to evaluate the put option implicit in deposit insurance for banks or thrift
institutions that are exposed to interest rate risk, using empirical estimates of
the stable parameters of returns on U.S. Treasury securities (with β assumed
to be 0) to quantify pure interest rate risk.

17.7. Parameter estimation and empirical issues
If α > 1, ordinary least squares method provides us with a consistent estimator
of the stable location parameter δ . However, it has an infinite variance stable
distribution with the same α as the observations, and does not tell us anything
about the deviation from normality. Furthermore, as Batchelor (Batchelor,
1981) has pointed out, expectations proxies based on a false normal assumption
will generate spurious evidence of irrationality if the true distribution is stable
with α < 2. It is therefore important to tailor estimation methods to the sub-
Gaussian cases.

17.7.1. Empirical objections to stable distributions
The initial interest in stable distributions has undeservedly waned, as a result
of two groups of statistical tests. The first group of tests is based on the
observation that if daily returns are independent identically distributed stable,
weekly and monthly returns must, by the basic stability property of stable
distributions, be stable with the same characteristic exponent. Blattberg and
Gonedes (Blattberg & Gonedes, 1974), and many subsequent investigators,
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notably Akgiray and Booth (Akgiray & Booth, 1988), have found evidence that
weekly and monthly returns have significantly higher characteristic exponent
estimates than do daily returns. This type of evidence ultimately led even
Fama (Fama, 1976) to abandon the stable distribution as a model for stock
prices.

However, as Diebold (Diebold, 1993) has pointed out, all that such evi-
dence really rejects is the compound hypothesis of i.i.d. stability. It demon-
strates either that returns are not identically distributed, or that they are
not independently distributed, or that they are not stable distributed. If re-
turns are not independent identically distributed, then it should come as no
surprise that they are not independent identically distributed stable, either.
It is now generally acknowledged that most time series on financial returns
exhibit strong serially conditional heteroscedasticity of the type characterized
by ARCH (autoregressive conditional heteroscedasticity) or GARCH (general-
ized ARCH) models. The unconditional distribution of such disturbances will
be much more leptokurtic, and therefore would tend to generate misleadingly
low a estimates under a false i.i.d. stable assumption, than will the underlying
conditional distribution.

Baillie in (Baillie, 1993) wrongly characterizes ARCH and GARCH models
as ‘competing’ with the stable hypothesis. In fact, if conditional heteroscedas-
ticity is present, as it often clearly is, it is as desirable to remove it in the
infinite variance stable case as in the Gaussian case. And if after removing
it there is still leptokurtosis, it is as desirable to model the adjusted residuals
correctly as it is in the independent identically distributed case. McCulloch in
(McCulloch, 1985b) thus fits GARCH-like and GARCH models, respectively, to
monthly bond returns by symmetric stable ML, and find significant evidence
both conditional heteroscedasticity and residual non-normality. Liu and Brors-
en similarly find, contrary to the findings of Gribbin, Harris and Lau, that a
stable model for commodity and foreign exchange futures returns cannot be
rejected, once GARCH effects are removed. Their observations apply also to
the objections of (Lau et al., 1990) to a stable model for stock price returns.

Day-of-the-week effects are also well known to be present in both stock
market (Gibbons & Hess, 1981) and foreign exchange (McFarlandet al., 1982)
data. Such hebdomodalities may be present in the mean and/or the volatility.
Either way, they imply that daily data is not identically distributed, and will
therefore also contribute to a rejection of independent identically distributed
stability. It is again as important to remove these, along with any annually
recurring seasonals that may be present, in the infinite variance stable case
as in the normal case.

A second group of tests that purport to reject a stable model of asset returns
is based on estimates of the Paretian exponent of the tails, using either the
Pareto distribution itself (Hill, 1975), or the generalized Pareto distribution
proposed in (DuMouchel, 1983). Numerous investigators have applied this
type of test to data that includes interest rate changes, stock returns, and
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foreign exchange rates, and typically have found an exponent that appears
to be significantly greater than 2. A distribution with such a Paretian tail
will have a finite variance and lie in the domain of attraction of the Gaussian
distribution rather than of a sub-Gaussian stable distribution.

However, in (McCulloch, 1994) it is demonstrated that tail index estimates
greater than 2 are to be expected from stable distributions with α greater than
approximately 1.65. These estimates may even appear to be be significantly
greater than 2, relative to the class of truly Pareto- or generalized Pareto-
tailed distributions, for a sufficiently large sample. These tests are therefore
in no way inconsistent with a non-normal stable distribution. Mittnik and
Rachev (Mittnik & Rachev, 1993b) similarly find that Weibull distribution is
consistent with tail index estimators in the range 2.5–5.5, even though the
Weibull distribution has no Paretian tail. Wade Brorsen has had some success
testing these non-nested hypotheses against one another by means of Monte-
Carlo tabulations of the LR statistic under each null.

In view of this apparent evidence against stable distributions, several al-
ternative distributions have been proposed to account for the conspicuously
leptokurtic behavior of financial returns. Blattberg and Gonedes (Blattberg
& Gonedes, 1974) thus propose the Student’s distributions, which may be
computed for fractional degrees of freedom, and which, like the stable distri-
butions, include the Cauchy (1DOF) and the normal (∞DOF). Others consider
a mixture of normals. In (DuMouchel, 1973b) it is shown that it is often very
hard to distinguish between such leptokurtic distributions. To the extent this
is true, these alternative models cannot have importantly different practical
implications about mean returns, etc. The choice among them may in the end
simply depend on whatever desirable properties these distributions may have,
including divisibility, parsimony, and central limit attributes.

Mittnik and Rachev (Mittnik & Rachev, 1993a) generalize the concept of
‘stability’ beyond the stability under summation and multiplication that leads
to the stable and log-stable distributions, respectively, to include ‘stability’
under the maximum and minimum operators, as well as ‘stability’ under a
random repetition of these accumulation and extremum operations, with the
number of repetitions governed by a geometric distribution. They find that the
Weibull distribution has two of these generalized stability properties. Since it
has only positive support, they therefore propose a ‘double Weibull’ distribution
(with two Weibull distributions back-to-back) as a model for asset returns.
This distribution has the unfortunate property that its density is, with only
one exception, either infinite or zero at the origin. The only exception is the
special case of a back-to-back exponential distribution, which still has a cusp
at the origin. The stable densities, on the other hand, are finite, unimodal,
absolutely differentiable, and have a closed support.
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17.7.2. Estimation of multivariate stable distributions
The estimation of multivariate stable distribution parameters is still in its
infancy, despite the great importance of these distributions for financial theory
and practice. In (Mittnik & Rachev, 1993b), a method is suggested to estimate
the general bivariate spectral measure for a vector whose distribution lies in
this domain of attraction. Cheng and Rachev apply this method to the $/DM
and $/U exchange rates, with the interesting result that there is considerable
density near the center of the first and third quadrants, as would be expected if
a un- specific factor were affecting both exchange rates equally, but very little
along the axes. The latter effect seems to indicate that there are negligible
DM- or U -specific shocks. However, the Mittnik and Rachev method employs
only a small subset of the data, drawn from the extreme tails of the sample.

We propose an alternative method based on likelihood maximization, which
uses the entire data set. This method does not necessitate the often arduous
task of actually computing the MV stable density, but relies only on the stan-
dard univariate stable density. Unlike Mittnik and Rachev, we expressly as-
sume that x actually has a bivariate stable distribution, rather than that it lies
in its domain of attraction. As is customary in the normal case, one may hope
that this assumption will approximately capture the important properties of a
distribution which in fact merely lies in the domain of attraction.

Let x have a general bivariate stable distribution with spectral measure
Γ(θ), as in (17.3.4) and (17.3.5), but possibly with a non-zero location vector
δδδ = (δ1, δ2)′. For each ω ∈ [0, π), let

y(ω) = s′θx = s′θδδδ +
∫ 2π

θ=0
cos(θ − ω)

(dΓ(θ))1/αdz(θ)
(dθ)1/α . (17.7.1)

This has scale c(ω), where

cα(ω) =
∫ 2π

θ=0
| cos(θ − ω)|αdΓ(θ). (17.7.2)

By breaking the integral in (17.7.1) in half at ω + π/2 and ω − π/2 (dΓ is cyclic
by definition), y(ω) may be decomposed into its location parameter plus the
sum of two maximally skewed zero-location stable variables, one with β = 1
and scale C(ω), and the other with β = −1 and scale C(ω + π), where

Cα (ω) =
∫ ω+π/2

ω−π/2
| cos(θ − ω)|αdΓ(θ), ω ∈ [0, 2π), (17.7.3)

so that

cα(ω) = Cα (ω) + Cα (ω + π). (17.7.4)

Hence the skewness of y(ω) is given by

β(ω) = (Cα (ω)− Cα (ω + π))/cα (ω); (17.7.5)
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therefore,

Cα (ω) = cα(ω)(1 + β(ω))/2,
Cα (ω + π) = cα(ω)(1− β(ω))/2. (17.7.6)

Now let xi = (x1i, x2i)′ be a set of n independent identically distributed
observations on x. The components x1 and x2 of x are each univariate stable
with a common α. The parameters α, β1, c1, and δ1 of x1 may therefore be
estimated consistently by univariate maximum likelihood from the n observa-
tions on x1. Similarly, α, β2, c2, and δ2 may be consistently estimated from the
n observations on x2. These two estimates of α will ordinarily not precisely
agree. However, if the two log likelihoods are pooled by averaging them to-
gether, and the resulting function maximized subject to the restriction that x1
and x2 have a common exponent, an even more efficient common estimate of
α may be obtained. This is not a true ML estimate unless x1 and x2 happen
to be independent, but it will share the consistency of univariate ML, and will
be far more reliable than the Mittnik and Rachev tail estimator of u when the
true distribution is bivariate stable.

Next, center the xi by subtracting out the pooled ML estimates of δi. Set
θj = ωj = 2πj/m, j = 0, …, m − 1, for some large integer m divisible by 4. For
j = 0, …, m/2−1, calculate yi(ωj) by rotating the centered xi as in (17.7.1) above,
and then use these to estimate β(ωj) and c(ωj) by univariate ML, constraining
α to the pooled ML estimate, and δ to 0. Because c(ω) is continuous, the
estimates for each j are good initial values for j + 1. Next estimate C(ωj),
j = 0, …, m− 1 using (17.7.6).

Relation (17.7.3) states that Cα (ω) is a moving average of dΓ(θ). This
moving average may be numerically approximated by

γj = Cα(ωj) ≈
j+m/4∑

h=j−m/4

| cos(ωj − θh)|α∆h, (17.7.7)

where

∆h = Γ(θh + π/m)− Γ(θh − π/m); (17.7.8)

(17.7.7) is a system of m equations in m unknowns of the form γ ≈ B∆∆∆. It may
be solved for ∆∆∆ ≈ B−1γγγ so long as B is non-singular. The matrix B is cyclic, as
is B−1, i.e., each row is an image of the row above, offset by one, and wrapped.
The inverse may therefore be stored as its first row, thus alleviating storage
constraints with large m. The same inverse works for every problem involving
the same α and m.

Having thus estimated ∆∆∆ from γγγ , Γ(θj + π/m) may be estimated by summing
∆h from 0 to j. The offset of π/m is desirable, because the axes are ordinarily
prime candidates for atoms. With the offset, these will show up uniquely in
∆0, ∆m/4, ∆m/2, and ∆3m/4, rather than being split in two .
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Due to sampling error, some of the ∆h estimates may be negative, par-
ticularly if m is high and/or the true value is zero. This may be prevented,
if desired, by instead solving the quadratic program: Find ∆∆∆ > 0 such that
(γγγ − B∆∆∆)′(γγγ − B∆∆∆) = min.

Because the matrix B does not depend on the data, m is not limited by the
sample size n, and ordinarily may be set as high as desired without B becoming
singular. However, in the Gaussian case α = 2, two atoms are always sufficient
to generate the joint distribution, and there is an infinite number of ways in
which these may be selected. In this case Γ is not identified. In itself this is
not a problem, since we then simply have a bivariate normal distribution to
estimate. However, it does suggest that ∆h will behave increasingly erratically
as α → 2 with any fixed m and sample size n. In such a case, it may be desirable
to impose some prior discreteness or smoothness restrictions on the spectral
measure, such as the ‘market model’ (17.4.1), with or without industry-specific
factors, a state-space model such as that considered in (Oh, 1994), or the
elliptical restriction (Press, 1982) in (17.3.16). In the elliptical case, a fast
numerical approximation to ƒd(r; α) would make numerical full information
ML quite feasible.

The general bivariate method described above may readily be extended to
the general multivariate case (17.3.3) by approximating the spectral measure
defined on the unit sphere in n-space by a discrete measure in which a large
but finite number of points on the unit sphere represent a small adjacent
region. This may be done most efficiently by repeated geodesic triangulation
and hexagonal regions, though a system based on rectangular regions in polar
coordinates would give essentially the same results with simpler calculations.



18

Miscellany

This chapter is devoted to the use of stable laws in the fields beyond the exact
sciences. Being no experts in these fields, we confine ourselves to expound-
ing a few more or less simple examples from different sciences, mainly as
demonstration of great potentialities of stable laws in these fields.

18.1. Biology
In the 1960s, stable laws began to attract the attention of scholars working in
the area of economics, biology, sociology, and mathematical linguistics, due to
a series of publications by the American mathematician Mandelbrot and his
disciples. The fact is that statistical principles described by the so-called Zipf–
Pareto distributions were empirically discovered fairly long ago in all these
areas of knowledge. Discrete distributions of this type are of the form

pk = ck−1−α , k ≥ 1, α > 0,

while their continuous analogues (densities) are

p(x) = cx−1−α , x ≥ a > 0.

Mandelbrot called attention to the fact that the use of the extremal stable
distributions (corresponding to β = 1) to describe empirical principles was
preferable to the use of Zipf–Pareto distributions for a number of reasons.
It can be seen from many publications, both theoretical and applied, that
Mandelbrot’s ideas received ample recognition of experts. In this way, the
hope arose to confirm empirically established principles in the framework of
mathematical models and, at the same time, to clear up the mechanism of
formation of these principles.

In 1922, the English biologist Willis in (Willis, 1922) studied statistical
principles lying in the heart of evolution. One of the basic results in his
investigations was the discovery of the following principle.

489
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Biological species are commonly taken as the primary elements in the
classification of living organisms. The species are then combined into coarser
groups called genera.

We consider a sequence of genera in the animal or plant life, ordering
them according to the number of species occurring in them. Then we calculate
how many genera in the total number contain a single species, two species,
etc.; let these numbers be M1, M2, …, etc., and let M = M1 + M2 + … be the
total number of genera involved. Next, we form the sequence of frequencies
pk = Mk/M (k = 1, 2, …), which allows us to represent the probability of finding
exactly k species in a randomly chosen genus.

In the language of probability theory, the discovery of Willis consisted in
seeing that for genera containing sufficiently many species, i.e., for n ≥ n0

∑

k>n

pk ≈ An−1/2, (18.1.1)

where A is a constant.
In other words, the probability of finding in a genus at least n species

decreases as 1/
√

n, as n increases.
In 1924, the English mathematician Yule (Yule, 1925) was able to find a

theoretical basis for the relation (3.3.1) in the framework of a stochastic model
that can be included in the theory of branching processes.

We demonstrate below (in a way different from that of (Yule, 1925)) how
the Willis–Yule law could be explained. The most interesting point is the
occurrence in our model of a stable law and its connection with the principle
(18.1.1), which is traditionally associated with the Zipf–Pareto distribution.

A model of a random branching process with two types of particles will be
taken as a basis for the reasoning.

Let us consider the reproduction process for particles of two types as time
passes. This process goes as follows. At the beginning of the process, we
have a single particle of type T1. During a unit time, this particle produces
µ10 particles of type T0 and µ11 particles of type T1. The particles of type T0
remain unchanged, while the particles of type T1 can be further transformed.
The numbers µ10 and µ11 are random variables. We impose some conditions
on this random process of reproduction of particles.

(1) The transformation of each of the particles of type T1 takes place in-
dependently of its history and independently of what happens with the
other particles.

(2) The joint probability distribution of the random variables µ10 and µ11
at the time of transformation of a particle of type T1 remains the same
for all particles of this type and, does not depend on the time when
the transformation happens. Furthermore, the progeny µ10 + µ11 in the
course of a single transformation cannot exceed some constant h.
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(3) The mean number δ = Eµ10 of particles of type T0 produced in a single act
of transformation is positive, while the mean number of particles of type
T1 is equal to one. Moreover, c = Var µ11 > 0. The last condition, in par-
ticular, does not permit a particle of type T1 to produce with probability
one only a single particle of type T1 at the time of transformation. To-
gether with the condition Eµ11 = 1, this means that with some non-zero
probability a particle of type T1 produces no particles of the same type.
Since particles of type T0 are not transformed, further transformation of
the given branch is thereby terminated.

It is well known that transformations of a single particle of type T1 under
the above conditions ultimately (with probability one) terminate. Its transfor-
mation process gives a certain random number U of particles of type T0 called
the final particles.

Let us assume that there are n initial particles of type T1. In the process of
their transformation and the transformation of their offspring (this process, as
mentioned, stops with probability one) there appear U1, …, Un final particles
produced by the first, second, etc., initial particles of type T1.

According to conditions 1 and 2, the random variables Uj are independent
and identically distributed. Let us form a normalized sum of these random
variables

Vn = (U1 + … + Un)(2δn2/c)−1.

It can be proved that the distributions of the random variables Vn converge as
n → ∞ to the stable distribution with parameters α = 1/2, β = 1, γ = 0, and
λ = 1 (that is, to the Lévy law).

In the opinion of recognized experts, the diversity of biological species
stems from evolution of living beings in the course of strict natural selection.
The Earth climate has changed, both globally and in regional parts, and this
created new requirements on plants and animals—to survive, they had to
acquire new qualities.

This was accomplished due to the variability of characteristics in new
generations and to natural selection of the most well-suited of their represen-
tatives. If we attempt to formalize this selection, in simplified form the picture
reminds us of the random branching process described above. We distinguish
some portion of the population united by some important from the viewpoint of
survival characteristic, and we understand transformations of parts to be the
changes arising in a long series of generations; the fractional parts of type T0
(the final parts) should be interpreted as the offspring able to secure qualities
needed for stable existence, while the parts of type T1 should be interpreted
as the offspring lacking such qualities and thus doomed either to extinction or
to relatively rapid change.

Of course, the model with final particles is somewhat idealized. Even
well-adapted species are subjected to subsequent changes. But this happens
much more rarely and slowly than with the groups which ‘feel’ discomfort in
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their condition and are pressed toward further variability. Therefore, a model
where fractional parts of both types T0 and T1 are transformed is in more close
correspondence with the actual situation: at the end of its existence, the T0-
particle produces µ00 T0-particles and µ01 T1-particles, whereas a T1-particle
gives birth to µ10 T0-particles and µ11 T1-particles. It is assumed that

Eµ00 = 1, Eµ11 = 1, 0 < c1 < c = Var µ11 < c2,
∑

µij < h,

as in the original model, and that δ = Eµ10, ε = Eµ01, and σ = Var µ00 are
positive but small in absolute value.

In this version of the process, the transformations of the distinguished
parts do not die with probability one, as was the case in the original pro-
cess. Changes take place over an arbitrarily long period of time with positive
probability. This property of the process corresponds more closely to actual
evolutionary processes. At the same time, if the value of ε is small, then the
average lifetime of particles of type T0 becomes large. The total number of
particles in this model increases on the average. However, on any bounded
interval of time this growth depends on the value of the sum η = ε + δ and can
be arbitrary slow if this sum is small.

All the foregoing agrees well with our ideas about the flow of evolutionary
processes.

Before passing to an explanation of the Willis–Yule law we dwell further
on a certain feature of the new version of the model.

There are no final distinguished particles. Therefore, one can speak only
of the number Vn(∆) = U1(∆) + … + Un(∆) of long-lived particles of type T0 at a
time ∆ sufficiently long after the initial time.

The principal way in which we see the second model as differing from the
first is that the T0-particles are not final but long-lived. The quantity ε = Eµ01
is regarded as the basic parameter of the second model, because the first model
is obtained by fixing h, δ and c, and setting ε → 0. In other words, in a certain
sense the second model exhibits continuity with respect to variation of ε.

Therefore, it seems quite likely (and is actually corroborated by compu-
tations) that the distribution of the sum Vn(∆) depends continuously on ε as
ε → 0. This can serve as a base for replacing the second model, which better
reflects the evolutionary process in progress, by the first model in computa-
tions, since the latter is more convenient on the analytic level. The analysis of
the behavior of the distribution of the sum Vn(∆) in the first model can, in turn,
be replaced by an analysis of the behavior of this sum corresponding to ∆ =∞.
The last condition means that we are considering the distribution of the total
number of final particles generated by the initial n particles of type T1.

The validity of this replacement in analyzing the asymptotic behavior of
the distribution can be justified. Of course, the error is the smaller, the greater
∆ is. Thus, for our purposes we can use the limit theorem given for the first
model with respect to the distributions of the variables Vn. In refined form, it
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asserts that, as n →∞,

P {Vn > x} = P {Y < x} (1 + o(1)),

where Y = Y(1/2, 1, 0, 1) and o(1) tends to zero uniformly in x.
Considering a set of species (particles of type T0) within the scope of a

single genus, it is natural to assume that they all have a common root (i.e.,
are generated by a single particle of type T1). Between species and genus,
of course, there were also intermediate forms not constituting independent
units of classification. We regard them as n − 1 initial particles of type T1
that in the final analysis produce U2 + … + Un particles of type T0. The initial
part of type T1 also produces U1 particles of type T0. Together they produce
W = U1 + … + Un particles of type T0. The distribution of this sum is exactly
the distribution of the number of species in a genus.

Since δ is small while the quantity c is above-bounded and separated from
zero, the ratio B2 = 2δn2/c can be regarded as both above and below bounded
(for an appropriate n). Then the number of species in a genus has a distribution
that can be approximated by the stable Lévy law

P
{

W > xB2
}

= P {Vn > x} ≈ P {Y > x} .

If we assume that for large x

P {Y > x} = 1− G(x; 1/2, 1) ≈ 1√
π

x−1/2,

then we obtain the Willis–Yule principle (18.1.1)

P {W > x} ≈ P
{

Y > xB−2
}
≈ B√

π
x−1/2.

18.2. Genetics
A few approaches are developed in order to shed light on the following funda-
mental problems (Allegrini et al., 1995):

• establishing the role of the non-coding regions in DNA sequences (in-
trons) in the hierarchy of biological functions;

• finding simple methods of statistical analysis of such sequences to dis-
tinguish the non-coding regions from the coding ones (exons);

• discovering the constraints and regularities beyond the DNA evolution
and their connection to Darwin’s theory or to modern evolution theories;

• extracting new global information on DNA and its function;
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• establishing the roles of chance and determinism in genetic evolution
and coding regarded as the ‘program’ underlying the development and
life of every organism.

One of the model we would like to refer here is based on a diffusion process.
It is used as a tool of the statistical description of correlations in DNA sequences
(West, 1994; Stanley et al., 1994; Stanley et al., 1996). Omitting particular
details, we can say that all molecules incoming into DNA are divided into two
groups, say A (purine) and B (pyrimidine), and the difference

X(t) = NA(t)−NB(t)

is investigated, where NA(t) and NB(t) denote the numbers of A- and B-
molecules, respectively, occurring in a segment of length t along a DNA se-
quence. Thus the random variable X(t) with increase of ‘time’ t describes a
trajectory similar to that of diffusional one-dimensional motion. Assigning in-
teger values to t, i.e., expressing it in terms of a distance between neighboring
molecules, we can issue the stochastic relation

X(t + 1) = X(t) + Y (18.2.1)

where Y is a random variable taking the value +1 if a purine occurs and −1 if
a pyrimidine occurs at the position t + 1.

In (Allegrini et al., 1995), (18.2.1) is presented in the form of the differential
equation

•
X(t) = Y(t). (18.2.2)

Under the equilibrium assumption

〈Y(t)〉eq = 0, 〈Y2(t)〉eq = const,

the second moment

〈X2(t)〉 = 〈X2(0)〉 + 2〈Y2〉eq

∫ t

0
dt′
∫ t′

0
dt′′ΦY(t′′),

was introduced, where ΦY(t) denotes the equilibrium correlation function

ΦY (t) = 〈Y(0)Y(t)〉/〈Y2〉. (18.2.3)

Taking the large-range correlations observed in DNA into account, they choose
the function asymptotically behaving as

ΦY (t) ∝ t−β , t →∞, (18.2.4)
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with

0 < β < 1. (18.2.5)

The correlation function is connected with another important statistical func-
tion, namely the waiting time distribution ψ(t)

ΦY(t) =
∫ ∞

t
(t− t′)ψ(t′) dt′

/∫ ∞

0
tψ(t) dt . (18.2.6)

The ψ(t) dt determines the probability that Y changed its state in the interval
(t, t+dt), where t is counted off from the moment of preceding transition. From
(18.2.4) and (18.2.5), one can see that condition (18.2.5) is fulfilled, provided
that

ψ(t) ∝ t−µ , t →∞,

with

2 < µ < 3. (18.2.7)

This constraint on the index µ arises from (18.2.5), since it follows from (18.2.6)
that

β = µ − 2.

It is easy to prove that in the case where (18.2.7) applies, the asymptotic
behavior of the second moment of the diffusing variable X is given by

〈X2〉 ∝ t2H , (18.2.8)

with

H = 2− µ/2 (18.2.9)

which therefore ranges from 1/2 to 1. The relation between the indices (18.2.9)
can be easily obtained by twice differentiating (18.2.8) and (18.2.3) and equat-
ing the resulting expressions. Much more exciting is the fact that the distribu-
tion of X is not Gaussian and is characterized by long-range tails. These tails
cannot result in diverging moments, a fact that would be incompatible with the
dynamic realization of the process, where the diffusing particle cannot travel
with a velocity faster than that of the limiting trajectory |X| = t. However,
if this unavoidable truncation is ignored, the distribution is indistinguishable
from that of a Lévy process with the Lévy index α = µ − 1.

This means that we are observing an α-stable Lévy process with an index
in the interval 1 < α < 2. In principle, the α-stable Lévy process concerns the
wider range 0 < α < 2. However, the condition α < 1 refers to a process faster
than the ballistic diffusion and thus is incompatible with the dynamic nature
of the process described by (18.2.2).
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Figure 18.1. Walk model representing DNA structure

The conclusion is certainly valid, but the reasoning can be made more
rigorous without the use of the mean square 〈X2〉, which diverges for α < 2.
To do this, we look at Fig. 18.1. As one can see, the random trajectory of the
process under consideration can be represented as a sequence of segments of
different length and varying (at times TAB, TBA, …) slope. In other words, we
deal with a walker performing one-dimensional walk with the unit velocity
and the free path distribution density

p(ξ ) = ψ(ξ ) ∝ ξ−µ = ξ−α−1.

This process is described by the two-state model considered in Section 12.8
which indeed leads us to symmetric stable distributions.

18.3. Physiology
There exist numerous instances in nature when a system is characterized by
a number of states and when a specific state is attained for the first time
the system changes its properties or perhaps activates mechanisms to change
the properties of another system that is controlled by the first. A neuron’s
membrane charge under conditions of spontaneous activity is activated in
an analogous manner. The membrane charge is subjected to instantaneous
changes due to excitatory and inhibitory input of a neuron arriving randomly
in time and that can be modeled by a random walk. If its membrane charge
attains a barrier of a certain height (threshold), the neuron excites and then
returns to its resting state (the ‘all and none’ law). The excitation distribution
is then determined by the distribution of times at which the membrane charge
attains this threshold for the first time from its resting state.

Taking the normal diffusion approximation for a random walk between
the states, in (Gerstein & Mandelbrot, 1964) they described the spike activity
of a single neuron in terms of the Lévy distribution connected with the first
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Figure 18.2. A fit to the inter-spike histograms for excitation of a neuron in the
cochlear nucleus of a cat under moderate dial-urethane anesthesia
using the Gerstein and Mandelbrot model (taken from (West, 1994))

passage time (see Section 8.3). In order to reach the quantitative agreement
with the experimental data, they modified the model to allow for difference in
the rates of excitation and inhibition. The associated diffusion admits of some
drift. In this case, the first passage time distribution becomes

pT(t) = At−3/2 exp {−bt− a/t} .

Here a is a parameter associated with the difference between the threshold and
resting potentials, b is a parameter connected with the difference in the arrival
rates of excitatory and inhibitory inputs, and A is the normalization constant.
Thus pT(t) dt is the probability that the neuron excites for the first time in the
time interval (t, t + dt). It is called the inter-spike interval distribution. The
parameters a and b are adjusted to fit the experimental distributions and the
fit in some cases is quite good (see Fig. 18.2).

One more model called the fractal shot noise is developed in connection
with simulations of functional systems (Lowen & Teich, 1989).

The total mass within a specified volume at limit t is written as the sum of
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impulse response functions

M(t) =
N∑

i=1

m(t− Ti), 0 < T1 < T2 < … < TN < t,

where

m(t) =

{
m0t−µ , 0 ≤ t ≤ A,
0 otherwise;

m0 = const > 0, 0 < µ < 1,

and the random times Ti constitute a homogeneous Poisson process of rate ρ.
The characteristic function of the random variable M(t) is

ƒ(k) = exp
{

ρ
∫ t

0
[eikm(τ) − 1]dτ

}
, k > 0.

Recalling the known explicit expression for m(τ), we obtain

ƒ(k) = exp

{
ρ
∫ A

0
[eikm0τ−µ − 1]dτ

}
, k > 0,

or, after changing the variables,

ƒ(k) = exp
{

(ρ/µ)(m0k)1/µ
∫ ∞

m0kA−µ
[eix − 1]x−1/µ−1dx

}
, k > 0.

Making use of the asymptotic expressions (2.3.17)–(2.3.19) as A → ∞, we
arrive at

ln ƒ(k) = −λ |k|α [1− i tan(απ/2) sign k],

where α = 1/µ and

λ = ρC(α)mα
0 , C(α) = Γ(1− α) cos(απ/2).

Hence the random mass M(t) in the limit as A < t → ∞ and A → ∞ is
distributed by the one-sided stable law with parameters α = 1/µ and β = 1.
But it is worthwhile to notice that the conclusion about the symmetric form
of the distribution made in (West, 1994), which serves as the source of both of
the above examples, contradicts the abovesaid reasoning.

18.4. Ecology
The following experiment was performed with Diomedea exulans (Stanley
et al., 1996). Electronic recording devices were attached to the legs of 19 birds
in order to measure durations of uninterrupted flights between consecutive
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landing points on the water surface. It was established that the probability to
find a flight with duration t decays as

p(t) ∝ t−α−1

with α close to one. If we assume that the bird selects the direction of each
flight at random and then flies with constant speed which does not depend on
the direction of flight, then each flight corresponds to a portion of a straight
line that connects two consecutive landing points. The distribution of these
segments again follows a power law with the same exponent. The above
scheme is consistent with the Lévy flight model described in Chapter 10.

Assuming that the density of landing points is proportional to the density
of food, they are able to conclude that the plankton forms a fractal set on the
surface of the ocean.

18.5. Geology
In (Vlad, 1994), random distributions of rare minerals, say gold, on Earth
crust are studied under the assumption that the spatial concentration of the
mineral is described by a field produced by a random number of sources obeying
inhomogeneous Poisson statistics. We consider one of the models suggested
there.

The contribution of the source placed at a position xi in a n-dimensional
Euclidean space to the concentration field Z at the position x = 0 depends on
the distance |xi|:

ni = c(|xi|).
The random concentration generated by N points placed at random positions
X1, …, XN is

Z =
N∑

i=1

c(|Xn|).

Assuming that

(1) N is distributed by the Poisson law;

(2) Xi are independent of each other and of N;

(3) each of Xi is distributed in a fractal manner, i.e., with the density

p(x) = a|x|dƒ−n,

where dƒ < n is the fractal dimension, dƒ < n;

(4) the contribution function c(|x|) is of the form

c(|x|) = Mb|x|−γ , γ > 0,

where M is a positive random variable with a given distribution;
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one studies the Laplace transform

p̃Z(λ ) =
∫ ∞

0
e−λzpZ(z) dz

of the distribution density pZ(z) of the random concentration Z at the observa-
tion point; it was presented in the form

p̃Z(λ ) = exp {−(Cλ )α} (18.5.1)

where

C = a〈Mα〉1/α

[
πdƒ/2Γ(1− α)
ρΓ(1 + dƒ/2)

]1/α

,

ρ is a constant average density of sources on the fractal set, and positive

α = dƒ < γ (18.5.2)

should be less than one. Thus, we arrive at the one-sided stable law.
First we analyze the significance of the Lévy distribution (18.5.1). At first

sight it might seem that the occurrence of the positive Lévy law (18.5.1) is due
to the geometrical fractal structure with fractal dimension dƒ. However, this
is not true; (18.5.1) is also valid for an average homogeneous distribution of
the sources in the Euclidean space, i.e., for dƒ = n. In this case, α = dƒ/γ = n/γ .
For the distribution of minerals n = 2, and inequality (18.5.2) shows that the
Lévy distribution (18.5.1) is valid for any γ > n = 2. The true cause for the
existence of the Lévy laws is the assumption that the system is approximately
infinite, that is, that sources are very dense.

We would like to make here some remarks.
First, this is a particular case of the general model described in Section 9.3,

so the restriction α < 1 is not necessary to solve the problem.
Second, it seems to us that the model of a deterministic fractal is not a case

here, and more appropriate would be a stochastic fractal with non-Poisson
fluctuations described in Section 11.6–11.8.
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A.1. One-dimensional densities qA(x; α, β)
(Holt & Crow, 1973)

α = 0. 25
x β = 0. 00 0.25 -0.25 0.50 -0.50 0.75 -0.75 1.00
0.000 7.6394 6.8502 6.8502 4.8079 4.8079 2.2737 2.2737 0.0000
.1 .3995 .5117 .2899 .6233 .1854 .7310 .0882 .8309
.2 .2157 .2766 .1567 .3384 .1005 .3997 .0481 .4592
.3 .1477 .1894 .1074 .2320 .0691 .2747 .0331 .3169
.4 .1120 .1437 .0815 .1761 .0525 .2088 .0253 .2413
.5 .0912 .1155 .0656 .1416 .0423 .1680 .0204 .1944
.6 .0752 .0964 .0548 .1181 .0354 .1402 .0171 .1624
.7 .0644 .0826 .0470 .1012 .0304 .1202 .0147 .1393
.8 .0563 .0721 .0411 .0884 .0266 .1050 .0128 .1217
.9 .0500 .0640 .0365 .0784 .0236 .0931 .0114 .1080
1 .0449 .0574 .0328 .0704 .0212 .0836 .0103 .0969
1.1 .0407 .0521 .0297 .0638 .0192 .0757 .0093 .0879
1.2 .0372 .0476 .0272 .0583 .0176 .0692 .0085 .0803
1.3 .0342 .0438 .0250 .0536 .0162 .0637 .0078 .0739
1.4 .0317 .0405 .0231 .0496 .0150 .0589 .0073 .0684
1.5 .0295 .0377 .0215 .0461 .0140 .0548 .0068 .0636
1.6 .0275 .0352 .0201 .0431 .0131 .0512 .0063 .0594
1.7 .0258 .0330 .0189 .0404 .0123 .0480 .0059 .0557
1.8 .0243 .0311 .0178 .0381 .0115 .0452 .0056 .0525
1.9 .0230 .0293 .0168 .0359 .0109 .0427 .0053 .0495
2 .0217 .0278 .0159 .0340 .0103 .0404 .0050 .0469
2 .0217 .0278 .0159 .0340 .0103 .0404 .0050 .0469
2.1 .0206 .0264 .0151 .0323 .0098 .0383 .0048 .0445
2.2 .0197 .0251 .0144 .0307 .0094 .0365 .0045 .0423
2.3 .0187 .0239 .0137 .0293 .0089 .0348 .0043 .0404
2.4 .0176 .0229 .0131 .0280 .0085 .0332 .0041 .0386
2.5 .0171 .0219 .0126 .0268 .0082 .0318 .0040 .0369
2.6 .0164 .0210 .0121 .0257 .0078 .0305 .0038 .0354
2.7 .0158 .0201 .0116 .0246 .0075 .0293 .0037 .0340
2.8 .0152 .0194 .0111 .0237 .0072 .0281 .0035 .0327
2.9 .0146 .0186 .0107 .0228 .0070 .0271 .0034 .0314
3 .0141 .0180 .0103 .0220 .0067 .0261 .0033 .0303
3.1 .0136 .0174 .0100 .0212 .0065 .0252 .0032 .0292
3.2 .0131 .0168 .0096 .0205 .0063 .0243 .0030 .0282
3.3 .0127 .0162 .0093 .0198 .0061 .0235 .0030 .0273
3.4 .0123 .0157 .0090 .0192 .0059 .0228 .0029 .0264
3.5 .0119 .0152 .0087 .0186 .0057 .0221 .0028 .0256
3.6 .0116 .0148 .0085 .0180 .0055 .0214 .0027 .0248
3.7 .0112 .0143 .0082 .0175 .0054 .0208 .0026 .0241
3.8 .0109 .0139 .0080 .0170 .0052 .0202 .0025 .0234
3.9 .0106 .0135 .0078 .0165 .0051 .0196 .0025 .0228
4 .0103 .0131 .0076 .0161 .0049 .0191 .0024 .0221
4.1 .0100 .0128 .0074 .0156 .0048 .0186 .0023 .0215
4.2 .0098 .0125 .0072 .0152 .0047 .0181 .0023 .0210
4.3 .0095 .0121 .0070 .0148 .0046 .0176 .0022 .0204
4.4 .0093 .0118 .0068 .0145 .0045 .0172 .0022 .0199
4.5 .0091 .0115 .0067 .0141 .0043 .0167 .0021 .0194
4.6 .0088 .0113 .0065 .0138 .0042 .0163 .0021 .0190
4.7 .0086 .0110 .0063 .0135 .0041 .0160 .0020 .0185
4.8 .0084 .0108 .0062 .0131 .0040 .0156 .0020 .0181
4.9 .0083 .0105 .0061 .0129 .0040 .0152 .0019 .0177
5 .0081 .0103 .0059 .0126 .0039 .0149 .0019 .0173
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α = 0. 50

x β = 0. 00 0.25 -0.25 0.50 -0.50 0.75 -0.75 1.00
0.000 .6366 .5287 .5287 .3056 .3056 .1141 .1141 0.0000
.1 .4764 .5841 .3190 .5585 .1743 .3628 .0678 .0850
.2 .3411 .4582 .2218 .5323 .1221 .5126 .0488 .3661
.3 .2597 .3590 .1680 .4461 .0935 .4907 .0381 .4586
.4 .2071 .2895 .1342 .3706 .0753 .4326 .0312 .4518
.5 .1708 .2397 .1110 .3115 .0628 .3753 .0263 .4151
.6 .1443 .2028 .0942 .2658 .0537 .3261 .0227 .3731
.7 .1243 .1746 .0814 .2299 .0467 .2854 .0199 .3335
.8 .1087 .1526 .0715 .2014 .0412 .2518 .0177 .2984
.9 .0963 .1349 .0635 .1782 .0368 .2240 .0159 .2681
1 .0861 .1205 .0570 .1592 .0332 .2007 .0144 .2420
1.1 .0777 .1085 .0516 .1434 .0301 .1812 .0131 .2195
1.2 .0706 .0984 .0470 .1300 .0276 .1645 .0121 .2001
1.3 .0646 .0898 .0431 .1186 .0254 .1502 .0111 .1832
1.4 .0594 .0825 .0397 .1088 .0235 .1379 .0103 .1685
1.5 .0549 .0761 .0368 .1003 .0218 .1271 .0096 .1556
1.6 .0509 .0705 .0342 .0929 .0203 .1177 .0090 .1442
1.7 .0475 .0656 .0319 .0863 .0190 .1094 .0084 .1341
1.8 .0444 .0612 .0299 .0805 .0179 .1020 .0079 .1251
1.9 .0416 .0574 .0281 .0753 .0168 .0954 .0075 .1171
2 .0391 .0539 .0265 .0707 .0159 .0895 .0071 .1098
2.1 .0369 .0507 .0250 .0665 .0150 .0841 .0067 .1033
2.2 .0349 .0479 .0237 .0627 .0142 .0793 .0064 .0974
2.3 .0331 .0453 .0225 .0593 .0135 .0749 .0061 .0920
2.4 .0314 .0430 .0214 .0562 .0129 .0709 .0058 .0871
2.5 .0298 .0408 .0204 .0533 .0123 .0673 .0055 .0826
2.6 .0284 .0389 .0194 .0507 .0117 .0640 .0053 .0785
2.7 .0271 .0370 .0186 .0483 .0112 .0609 .0051 .0747
2.8 .0259 .0354 .0178 .0461 .0108 .0581 .0049 .0712
2.9 .0248 .0338 .0170 .0440 .0103 .0554 .0047 .0680
3 .0238 .0324 .0163 .0421 .0099 .0530 .0045 .0650
3.1 .0228 .0311 .0157 .0404 .0095 .0508 .0044 .0622
3.2 .0219 .0298 .0151 .0387 .0092 .0487 .0042 .0596
3.3 .0211 .0286 .0145 .0372 .0089 .0467 .0040 .0572
3.4 .0203 .0275 .0140 .0357 .0086 .0449 .0039 .0549
3.5 .0196 .0265 .0135 .0344 .0083 .0432 .0038 .0528
3.6 .0189 .0256 .0130 .0331 .0080 .0415 .0036 .0508
3.7 .0182 .0247 .0126 .0319 .0077 .0400 .0035 .0490
3.8 .0176 .0238 .0122 .0308 .0075 .0386 .0034 .0472
3.9 .0170 .0230 .0118 .0298 .0072 .0373 .0033 .0456
4 .0165 .0223 .0114 .0288 .0070 .0360 .0032 .0440
4.1 .0160 .0216 .0111 .0278 .0068 .0348 .0031 .0425
4.2 .0155 .0209 .0107 .0270 .0066 .0337 .0030 .0412
4.3 .0150 .0203 .0104 .0261 .0064 .0326 .0030 .0398
4.4 .0146 .0196 .0101 .0253 .0062 .0316 .0029 .0386
4.5 .0142 .0191 .0098 .0246 .0061 .0307 .0028 .0374
4.6 .0138 .0185 .0096 .0238 .0059 .0298 .0027 .0363
4.7 .0134 .0180 .0093 .0232 .0058 .0289 .0027 .0352
4.8 .0130 .0175 .0091 .0225 .0056 .0281 .0026 .0342
4.9 .0127 .0170 .0088 .0219 .0055 .0273 .0025 .0332
5 .0123 .0166 .0086 .0213 .0053 .0265 .0025 .0323
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α = 0. 75

x β = 0. 00 0.25 -0.25 0.50 -0.50 0.75 -0.75 1.00
0.00 .3790 .2308 .2308 .0808 .0808 .0214 .0214 0.0000
.1 .3669 .2760 .1929 .0969 .0688 .0244 .0189 0.0000
.2 .3367 .3227 .1627 .1189 .0594 .0283 .0170 0.0000
.3 .2995 .3583 .1388 .1502 .0521 .0335 .0153 0.0000
.4 .2627 .3720 .1197 .1939 .0461 .0409 .0139 0.0000
.5 .2296 .3646 .1045 .2478 .0412 .0520 .0127 0.0000
.6 .2010 .3435 .0920 .2997 .0371 .0709 .0117 0.0000
.7 .1768 .3159 .0817 .3365 .0336 .1046 .0108 0.0000
.8 .1564 .2868 .0731 .3536 .0307 .1553 .0100 .0004
.9 .1391 .2588 .0659 .3537 .0281 .2135 .0093 .0047
1 .1245 .2330 .0597 .3421 .0259 .2660 .0087 .0226
1.1 .1120 .2098 .0544 .3237 .0239 .3042 .0082 .0605
1.2 .1013 .1894 .0499 .3021 .0222 .3263 .0077 .1140
1.3 .0921 .1714 .0459 .2796 .0207 .3343 .0072 .1718
1.4 .0841 .1556 .0423 .2576 .0193 .3318 .0068 .2237
1.5 .0771 .1417 .0392 .2367 .0181 .3221 .0064 .2640
1.6 .0709 .1295 .0365 .2175 .0170 .3080 .0061 .2913
1.7 .0655 .1187 .0340 .1998 .0160 .2915 .0058 .3067
1.8 .0607 .1092 .0318 .1838 .0151 .2740 .0055 .3125
1.9 .0564 .1007 .0298 .1694 .0143 .2565 .0053 .3109
2 .0526 .0932 .0280 .1563 .0135 .2394 .0050 .3042
2.1 .0491 .0865 .0264 .1446 .0129 .2232 .0048 .2941
2.2 .0460 .0804 .0249 .1340 .0122 .2080 .0046 .2818
2.3 .0432 .0750 .0236 .1245 .0116 .1938 .0044 .2683
2.4 .0407 .0701 .0224 .1158 .0111 .1807 .0042 .2544
2.5 .0383 .0657 .0212 .1080 .0106 .1686 .0040 .2405
2.6 .0362 .0617 .0202 .1010 .0101 .1575 .0039 .2270
2.7 .0343 .0580 .0192 .0945 .0097 .1473 .0037 .2139
2.8 .0325 .0547 .0183 .0887 .0093 .1380 .0036 .2014
2.9 .0309 .0517 .0175 .0834 .0089 .1294 .0035 .1897
3 .0293 .0489 .0167 .0785 .0086 .1215 .0033 .1786
3.1 .0279 .0463 .0160 .0740 .0082 .1143 .0032 .1683
3.2 .0266 .0439 .0153 .0699 .0079 .1076 .0031 .1587
3.3 .0254 .0417 .0147 .0661 .0076 .1015 .0030 .1497
3.4 .0243 .0397 .0141 .0626 .0073 .0959 .0029 .1413
3.5 .0232 .0378 .0135 .0594 .0071 .0907 .0028 .1336
3.6 .0223 .0360 .0130 .0564 .0068 .0858 .0027 .1263
3.7 .0213 .0344 .0125 .0537 .0066 .0814 .0027 .1196
3.8 .0205 .0329 .0121 .0511 .0064 .0773 .0026 .1134
3.9 .0197 .0315 .0116 .0487 .0062 .0734 .0025 .1076
4 .0189 .0302 .0112 .0465 .0060 .0699 .0024 .1022
4.1 .0182 .0289 .0108 .0445 .0058 .0665 .0023 .0971
4.2 .0175 .0278 .0105 .0425 .0056 .0635 .0023 .0924
4.3 .0169 .0267 .0101 .0407 .0054 .0606 .0022 .0880
4.4 .0163 .0257 .0098 .0390 .0053 .0579 .0022 .0839
4.5 .0157 .0247 .0095 .0374 .0051 .0554 .0021 .0801
4.6 .0152 .0238 .0092 .0359 .0050 .0530 .0020 .0765
4.7 .0147 .0229 .0089 .0345 .0049 .0508 .0020 .0731
4.8 .0142 .0221 .0086 .0332 .0047 .0487 .0019 .0700
4.9 .0138 .0213 .0084 .0319 .0046 .0467 .0019 .0670
5 .0133 .0206 .0081 .0308 .0045 .0449 .0018 .0642
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α = 1. 00

x β = 0. 00 -0.25 0.25 -0.50 0.50 -0.75 0.75 -1.00 1.00
0.0 .3183 .3096 .3096 .2925 .2925 .2761 .2761 .2622 .2622
.1 .3152 .3147 .2999 .3011 .2814 .2849 .2657 .2702 .2532
.2 .3061 .3143 .2867 .3061 .2685 .2915 .2543 .2768 .2434
.3 .2920 .3077 .2711 .3069 .2545 .2954 .2423 .2814 .2332
.4 .2744 .2953 .2543 .3025 .2400 .2958 .2301 .2836 .2228
.5 .2547 .2776 .2369 .2926 .2254 .2921 .2178 .2830 .2123
.6 .2340 .2562 .2197 .2772 .2111 .2838 .2057 .2789 .2020
.7 .2136 .2327 .2030 .2568 .1973 .2705 .1940 .2710 .1919
.8 .1941 .2087 .1872 .2325 .1841 .2523 .1827 .2588 .1820
.9 .1759 .1855 .1724 .2061 .1716 .2297 .1719 .2424 .1726
1 .1591 .1640 .1587 .1793 .1599 .2036 .1617 .2218 .1635
1.1 .1440 .1447 .1461 .1537 .1490 .1754 .1520 .1974 .1549
1.2 .1305 .1277 .1346 .1306 .1389 .1469 .1430 .1701 .1467
1.3 .1183 .1130 .1241 .1107 .1295 .1197 .1344 .1411 .1389
1.4 .1075 .1002 .1145 .0939 .1208 .0955 .1265 .1120 .1315
1.5 .0979 .0892 .1058 .0801 .1128 .0751 .1190 .0845 .1246
1.6 .0894 .0798 .0979 .0689 .1054 .0589 .1121 .0599 .1180
1.7 .0818 .0716 .0907 .0597 .0986 .0465 .1056 .0396 .1119
1.8 .0751 .0646 .0842 .0522 .0923 .0374 .0996 .0240 .1061
1.9 .0691 .0585 .0783 .0460 .0865 .0307 .0940 .0132 .1006
2 .0637 .0531 .0729 .0409 .0812 .0258 .0887 .0065 .0955
2.1 .0588 .0485 .0680 .0365 .0763 .0220 .0838 .0028 .0907
2.2 .0545 .0444 .0636 .0329 .0718 .0191 .0793 .0010 .0862
2.3 .0506 .0408 .0595 .0298 .0676 .0168 .0751 .0003 .0820
2.4 .0471 .0376 .0557 .0271 .0637 .0150 .0711 .0780
2.5 .0439 .0348 .0523 .0247 .0602 .0134 .0674 .0742
2.6 .0410 .0322 .0492 .0227 .0568 .0121 .0640 .0707
2.7 .0384 .0300 .0463 .0209 .0538 .0110 .0608 .0674
2.8 .0360 .0279 .0437 .0193 .0509 .0101 .0578 .0643
2.9 .0338 .0261 .0412 .0179 .0483 .0092 .0550 .0614
3 .0318 .0244 .0390 .0166 .0458 .0085 .0523 .0586
3.1 .0300 .0229 .0369 .0155 .0435 .0079 .0499 .0560
3.2 .0283 .0215 .0349 .0145 .0414 .0073 .0476 .0536
3.3 .0268 .0202 .0331 .0136 .0394 .0068 .0454 .0513
3.4 .0253 .0191 .0315 .0128 .0375 .0064 .0434 .0491
3.5 .0240 .0180 .0299 .0120 .0358 .0060 .0415 .0471
3.6 .0228 .0171 .0285 .0113 .0341 .0056 .0397 .0451
3.7 .0217 .0162 .0271 .0107 .0326 .0053 .0380 .0433
3.8 .0206 .0153 .0259 .0101 .0312 .0050 .0364 .0416
3.9 .0196 .0146 .0247 .0096 .0298 .0047 .0349 .0399
4 .0187 .0139 .0236 .0091 .0285 .0045 .0335 .0384
4.1 .0179 .0132 .0226 .0086 .0273 .0042 .0321 .0369
4.2 .0171 .0126 .0216 .0082 .0262 .0040 .0309 .0355
4.3 .0163 .0120 .0207 .0078 .0252 .0038 .0297 .0342
4.4 .0156 .0115 .0199 .0075 .0242 .0036 .0285 .0329
4.5 .0150 .0110 .0191 .0072 .0232 .0035 .0275 .0317
4.6 .0144 .0105 .0183 .0068 .0223 .0033 .0264 .0306
4.7 .0138 .0101 .0176 .0065 .0215 .0032 .0255 .0295
4.8 .0132 .0097 .0169 .0063 .0207 .0030 .0246 .0285
4.9 .0127 .0093 .0163 .0060 .0199 .0029 .0237 .0275
5 .0122 .0089 .0157 .0058 .0192 .0028 .0228 .0266
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α = 1. 25

x β = 0. 00 0.25 -0.25 0.50 -0.50 0.75 -0.75 1.00 -1.00
0.0 .2965 .2375 .2375 .1578 .1578 .1090 .1090 .0808 .0808
.1 .2949∗ .2237 .2507 .1472 .1690 .1022 .1163 .0763 .0856
.2 .2901 .2097 .2629 .1371 .1807 .0958 .1241 .0721 .0907
.3 .2827 .1957 .2738 .1277 .1928 .0899 .1323 .0681 .0962
.4 .2727 .1821 .2828 .1188 .2025 .0843 .1410 .0644 .1020
.5 .2606 .1689 .2896 .1105 .2177 .0791 .1502 .0609 .1082
.6 .2469 .1563 .2937 .1029 .2301 .0743 .1599 .0577 .1147
.7 .2320 .1444 .2950 .0957 .2422 .0699 .1700 .0547 .1216
.8 .2166 .1333 .2933 .0891 .2537 .0657 .1805 .0518 .1290
.9 .2009 .1229 .2884 .0830 .2643 .0618 .1913 .0491 .1367
1 .1854 .1133 .2806 .0774 .2736 .0582 .2023 .0466 .1448
1.1 .1703 .1044 .2700 .0722 .2813 .0549 .2134 .0443 .1533
1.2 .1560 .0962 .2570 .0674 .2869 .0517 .2245 .0421 .1621
1.3 .1424 .0887 .2421 .0630 .2903 .0488 .2354 .0400 .1713
1.4 .1298 .0819 .2259 .0589 .2910 .0461 .2459 .0381 .1808
1.5 .1182 .0757 .2089 .0552 .2889 .0436 .2557 .0362 .1905
1.6 .1075 .0699 .1915 .0517 .2838 .0412 .2646 .0345 .2004
1.7 .0979 .0647 .1744 .0485 .2758 .0391 .2723 .0329 .2104
1.8 .0891 .0600 .1579 .0455 .2650 .0370 .2784 .0314 .2203
1.9 .0811 .0557 .1422 .0428 .2516 .0351 .2828 .0300 .2300
2 .0740 .0517 .1276 .0403 .2361 .0333 .2850 .0286 .2394
2.1 .0676 .0481 .1142 .0379 .2189 .0316 .2849 .0274 .2483
2.2 .0618 .0448 .1021 .0357 .2007 .0301 .2821 .0262 .2565
2.3 .0566 .0418 .0912 .0337 .1820 .0286 .2767 .0250 .2637
2.4 .0519 .0390 .0815 .0319 .1633 .0272 .2684 .0240 .2697
2.5 .0477 .0365 .0729 .0301 .1452 .0260 .2575 .0230 .2743
2.6 .0440 .0342 .0653 .0285 .1281 .0248 .2440 .0220 .2772
2.7 .0406 .0321 .0587 .0270 .1123 .0236 .2282 .0211 .2782
2.8 .0375 .0301 .0528 .0256 .0980 .0226 .2106 .0203 .2770
2.9 .0348 .0283 .0476 .0243 .0852 .0215 .1917 .0195 .2734
3 .0323 .0267 .0431 .0231 .074 .0206 .172 .0187 .2674
3.1 .0300 .0251 .0391 .0220 .0643 .0197 .1522 .0180 .2588
3.2 .0280 .0237 .0356 .0209 .0559 .0189 .1327 .0173 .2476
3.3 .0261 .0224 .0325 .0199 .0488 .0181 .1142 .0166 .2340
3.4 .0244 .0212 .0298 .0190 .0427 .0173 .0971 .0160 .2182
3.5 .0228 .0201 .0273 .0181 .0376 .0166 .0816 .0154 .2005
3.6 .0214 .0190 .0251 .0173 .0333 .0160 .0679 .0149 .1813
3.7 .0201 .0180 .0232 .0165 .0296 .0153 .0562 .0143 .1612
3.8 .0189 .0171 .0215 .0158 .0264 .0147 .0463 .0138 .1407
3.9 .0178 .0163 .0199 .0151 .0237 .0142 .0382 .0133 .1203
4 .0168 .0155 .0185 .0145 .0213 .0136 .0315 .0129 .1007
4.1 .0158 .0148 .0172 .0139 .0193 .0131 .0262 .0124 .0824
4.2 .0150 .0141 .0161 .0133 .0176 .0126 .0219 .0120 .0657
4.3 .0142 .0134 .0150 .0128 .0161 .0122 .0186 .0116 .0510
4.4 .0134 .0128 .0141 .0123 .0147 .0117 .0159 .0113 .0385
4.5 .0128 .0123 .0132 .0118 .0135 .0113 .0137 .0109 .0282
4.6 .0121 .0117 .0124 .0113 .0125 .0109 .0120 .0105 .0200
4.7 .0115 .0112 .0117 .0109 .0116 .0105 .0106 .0102 .0137
4.8 .0110 .0108 .0110 .0105 .0107 .0102 .0094 .0099 .0090
4.9 .0105 .0103 .0104 .0101 .0100 .0098 .0085 .0096 .0057
5 .0100 .0099 .0099 .0097 .0093 .0095 .0077 .0093 .0035
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α = 1. 50

x β = 0. 00 0.25 -0.25 0.50 -0.50 0.75 -0.75 1.00 -1.00
0.0 .2873 .2778 .2778 .2541 .2541 .2252 .2252 .1975 .1975
.1 .2863 .2712 .2828 .2442 .2630 .2144 .2356 .1872 .2078
.2 .2831 .2629 .2858 .2334 .2707 .2034 .2455 .1770 .2180
.3 .2780 .2533 .2868 .2221 .2769 .1923 .2546 .1669 .2280
.4 .2710 .2426 .2857 .2104 .2815 .1812 .2627 .1572 .2375
.5 .2623 .2310 .2824 .1986 .2843 .1704 .2697 .1477 .2465
.6 .2521 .2189 .2772 .1867 .2851 .1598 .2754 .1386 .2548
.7 .2408 .2063 .2700 .1749 .2839 .1495 .2795 .1299 .2621
.8 .2285 .1936 .2610 .1634 .2806 .1397 .2819 .1216 .2683
.9 .2155 .1808 .2505 .1522 .2753 .1303 .2825 .1137 .2733
1 .2020 .1683 .2386 .1415 .2680 .1214 .2811 .1062 .2769
1.1 .1884 .1561 .2257 .1313 .2589 .1129 .2777 .0992 .2788
1.2 .1748 .1443 .2119 .1216 .2481 .1050 .2724 .0926 .2790
1.3 .1615 .1331 .1977 .1124 .2359 .0975 .2650 .0865 .2774
1.4 .1486 .1224 .1832 .1038 .2225 .0905 .2559 .0807 .2738
1.5 .1361 .1124 .1688 .0958 .2082 .0840 .2450 .0753 .2684
1.6 .1243 .1031 .1546 .0884 .1933 .0780 .2325 .0702 .2610
1.7 .1133 .0944 .1409 .0815 .1781 .0723 .2188 .0655 .2518
1.8 .1029 .0863 .1278 .0751 .1628 .0671 .2041 .0612 .2408
1.9 .0933 .0789 .1154 .0692 .1478 .0623 .1887 .0571 .2283
2 .0845 .0721 .1038 .0638 .1333 .0579 .1729 .0534 .2145
2.1 .0765 .0660 .0931 .0589 .1194 .0538 .1569 .0499 .1995
2.2 .0692 .0603 .0833 .0543 .1064 .0500 .1412 .0467 .1838
2.3 .0625 .0551 .0743 .0501 .0942 .0465 .1259 .0437 .1675
2.4 .0565 .0505 .0663 .0463 .0831 .0433 .1112 .0409 .1510
2.5 .0511 .0462 .0590 .0428 .0729 .0403 .0974 .0383 .1346
2.6 .0463 .0424 .0526 .0396 .0639 .0376 .0847 .0359 .1186
2.7 .0420 .0389 .0468 .0367 .0558 .0351 .0730 .0337 .1033
2.8 .0381 .0358 .0418 .0341 .0486 .0328 .0625 .0317 .0888
2.9 .0346 .0329 .0373 .0316 .0423 .0306 .0531 .0298 .0753
3 .0315 .0303 .0333 .0294 .0369 .0287 .0450 .0280 .0631
3.1 .0287 .0280 .0299 .0274 .0322 .0268 .0378 .0264 .0521
3.2 .0262 .0258 .0268 .0255 .0281 .0252 .0318 .0248 .0424
3.3 .0240 .0239 .0242 .0238 .0246 .0236 .0266 .0234 .0340
3.4 .0220 .0222 .0218 .0222 .0216 .0222 .0223 .0221 .0269
3.5 .0203 .0206 .0197 .0208 .0190 .0209 .0186 .0209 .0209
3.6 .0186 .0191 .0179 .0194 .0168 .0196 .0157 .0197 .0160
3.7 .0172 .0178 .0163 .0182 .0149 .0185 .0132 .0187 .0121
3.8 .0159 .0166 .0149 .0171 .0133 .0174 .0112 .0177 .0089
3.9 .0147 .0155 .0136 .0161 .0120 .0165 .0095 .0167 .0065
4 .0137 .0145 .0125 .0151 .0107 .0156 .0082 .0159 .0047
4.1 .0127 .0136 .0115 .0142 .0097 .0147 .0071 .0151 .0033
4.2 .0118 .0128 .0106 .0134 .0088 .0139 .0062 .0143 .0023
4.3 .0110 .0120 .0098 .0127 .0080 .0132 .0055 .0136 .0015
4.4 .0103 .0113 .0091 .0120 .0073 .0125 .0048 .0130 .0010
4.5 .0097 .0106 .0084 .0113 .0067 .0119 .0043 .0123 .0007
4.6 .0091 .0100 .0078 .0107 .0062 .0113 .0039 .0118 .0004
4.7 .0085 .0094 .0073 .0102 .0057 .0107 .0035 .0112 .0003
4.8 .0080 .0089 .0068 .0096 .0053 .0102 .0032 .0107 .0002
4.9 .0075 .0084 .0064 .0092 .0049 .0097 .0029 .0102 .0001
5 .0071 .0080 .0060 .0087 .0046 .0093 .0027 .0098



A.1. 509

α = 1. 75

x β = 0. 00 0.25 -0.25 0.50 -0.50 0.75 -0.75 1.00 -1.00
0.0 .2835 .2821 .2821 .2782 .2782 .2720 .2720 .2642 .2642
.1 .2824 .2793 .2833 .2736 .2813 .2660 .2768 .2569 .2703
.2 .2800 .2750 .2828 .2677 .2828 .2587 .2801 .2486 .2752
.3 .2761 .2692 .2807 .2604 .2827 .2503 .2819 .2395 .2787
.4 .2706 .2621 .2770 .2520 .2809 .2410 .2821 .2297 .2808
.5 .2636 .2537 .2717 .2427 .2775 .2310 .2807 .2193 .2813
.6 .2553 .2443 .2649 .2325 .2725 .2204 .2776 .2086 .2802
.7 .2459 .2340 .2568 .2216 .2660 .2094 .2730 .1976 .2775
.8 .2355 .2229 .2474 .2103 .2581 .1981 .2668 .1865 .2731
.9 .2244 .2114 .2371 .1986 .2489 .1866 .2591 .1754 .2672
1 .2126 .1994 .2258 .1868 .2385 .1751 .2501 .1644 .2599
1.1 .2003 .1872 .2138 .1750 .2272 .1637 .2399 .1536 .2511
1.2 .1878 .1750 .2013 .1632 .2152 .1526 .2286 .1431 .2411
1.3 .1752 .1628 .1885 .1516 .2025 .1417 .2165 .1330 .2299
1.4 .1626 .1508 .1755 .1404 .1894 .1312 .2037 .1232 .2178
1.5 .1502 .1392 .1626 .1295 .1761 .1212 .1904 .1139 .2050
1.6 .1381 .1279 .1498 .1191 .1628 .1116 .1768 .1051 .1915
1.7 .1265 .1172 .1373 .1092 .1495 .1025 .1632 .0968 .1777
1.8 .1153 .1070 .1252 .0999 .1366 .0940 .1495 .0890 .1637
1.9 .1047 .0973 .1136 .0911 .1241 .0860 .1362 .0817 .1498
2 .0948 .0883 .1026 .0830 .1121 .0785 .1232 .0749 .1360
2.1 .0855 .0799 .0923 .0754 .1007 .0716 .1107 .0685 .1225
2.2 .0768 .0721 .0827 .0683 .0899 .0653 .0989 .0627 .1096
2.3 .0689 .0650 .0738 .0619 .0800 .0594 .0877 .0573 .0973
2.4 .0616 .0585 .0656 .0560 .0707 .0540 .0773 .0524 .0857
2.5 .0549 .0525 .0581 .0506 .0623 .0491 .0678 .0478 .0749
2.6 .0489 .0471 .0514 .0457 .0546 .0446 .0590 .0437 .0649
2.7 .0435 .0422 .0453 .0413 .0477 .0405 .0511 .0399 .0558
2.8 .0386 .0378 .0398 .0372 .0415 .0368 .0440 .0364 .0477
2.9 .0343 .0339 .0350 .0336 .0360 .0334 .0377 .0333 .0403
3 .0304 .0303 .0307 .0303 .0312 .0304 .0321 .0305 .0338
3.1 .0270 .0272 .0269 .0274 .0269 .0276 .0273 .0279 .0282
3.2 .0239 .0244 .0235 .0248 .0232 .0252 .0230 .0255 .0232
3.3 .0213 .0219 .0206 .0224 .0199 .0229 .0194 .0234 .0190
3.4 .0189 .0197 .0181 .0203 .0172 .0209 .0163 .0215 .0154
3.5 .0168 .0177 .0159 .0185 .0148 .0191 .0136 .0197 .0124
3.6 .0150 .0159 .0139 .0168 .0127 .0175 .0113 .0181 .0099
3.7 .0134 .0144 .0123 .0153 .0110 .0160 .0095 .0167 .0078
3.8 .0120 .0130 .0108 .0139 .0095 .0147 .0079 .0154 .0061
3.9 .0108 .0118 .0096 .0127 .0082 .0135 .0066 .0142 .0047
4 .0097 .0107 .0085 .0116 .0071 .0124 .0055 .0131 .0036
4.1 .0087 .0098 .0076 .0106 .0062 .0114 .0046 .0121 .0028
4.2 .0079 .0089 .0068 .0098 .0055 .0106 .0039 .0113 .0021
4.3 .0072 .0081 .0061 .0090 .0048 .0098 .0033 .0104 .0016
4.4 .0065 .0075 .0055 .0083 .0042 .0090 .0028 .0097 .0012
4.5 .0060 .0069 .0049 .0077 .0038 .0084 .0024 .0090 .0008
4.6 .0054 .0063 .0045 .0071 .0034 .0078 .0021 .0084 .0006
4.7 .0050 .0058 .0041 .0066 .0030 .0072 .0018 .0079 .0004
4.8 .0046 .0054 .0037 .0061 .0027 .0068 .0016 .0073 .0003
4.9 .0042 .0050 .0034 .0057 .0025 .0063 .0014 .0069 .0002
5 .0039 .0046 .0031 .0053 .0023 .0059 .0013 .0064 .0001
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A.2. One-sided distribution functions GB(x; α, 1)
multiplied by 104 (Bolshev et al., 1970)

x α x α
0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.3 0.4 0.5 0.6 0.7

.01 963 179 0 0 0 0 .51 3594 3522 3409 3221 2893 2264

.02 1328 433 33 0 0 0 .52 3608 3546 3442 3268 2958 2358

.03 1563 658 104 0 0 0 .53 3623 3563 3475 3314 3023 2452

.04 1749 854 203 4 0 0 .54 3637 3591 3508 3359 3087 2544

.05 1895 1026 315 16 0 0 .55 3651 3613 3539 3404 3149 2635

.06 2018 1178 434 39 0 0 .56 3665 3635 3571 3447 3210 2724

.07 2124 1316 555 75 0 0 .57 3679 3656 3601 3490 3270 2812

.08 2217 1440 675 124 0 0 .58 3692 3677 3631 3532 3329 2898

.09 2300 1555 792 184 0 0 .59 3705 3697 3661 3573 3387 2983
.1 2375 1660 906 253 6 0 .6 3718 3718 3690 3613 3443 3067
.11 2444 1757 1046 330 13 0 .61 3739 3737 3718 3653 3499 3148
.12 2507 1848 1122 412 25 0 .62 3743 3757 3746 3692 3554 3229
.13 2565 1933 1224 499 44 0 .63 3755 3776 3774 3730 3607 3307
.14 2619 2013 1323 588 71 0 .64 3767 3795 3801 3768 3660 3385
.15 2670 2089 1417 679 105 0 .65 3779 3813 3827 3805 3712 3461
.16 2718 2160 1509 771 146 0 .66 3790 3832 3854 3841 3762 3535
.17 2763 2228 1596 863 195 0 .67 3802 3850 3879 3877 3812 3608
.18 2805 2292 1681 956 251 1 .68 3813 3867 3905 3912 3861 3680
.19 2845 2354 1762 1048 313 3 .69 3824 3885 3930 3946 3909 3750
.2 2884 2412 1841 1138 381 7 .7 3835 3902 3954 3980 3956 3819
.21 2920 2463 1917 1228 453 14 .71 3846 3919 3978 4014 4003 3837
.22 2955 2522 1990 1317 530 24 .72 3857 3936 4002 4047 4048 3953
.23 2989 2574 2061 1404 610 39 .73 3867 3952 4026 4079 4093 4018
.24 3021 2623 2129 1489 693 59 .74 3877 3968 4049 4111 4137 4081
.25 3052 2671 2196 1573 778 85 .75 3888 3984 4072 4142 4180 4144
.26 3081 2717 2260 1655 865 118 .76 3898 4000 4094 4173 4223 4205
.27 3110 2762 2322 1736 953 158 .77 3908 4016 4116 4203 4265 4265
.28 3137 2804 2382 1815 1042 205 .78 3917 4031 4138 4233 4306 4324
.29 3464 2846 2441 1892 1131 259 .79 3927 4046 4160 4263 4346 4381
.3 3190 2886 2498 1967 1221 319 .8 3937 4061 4181 4292 4386 4438
.31 3214 2925 2553 2041 1310 385 .81 3946 4076 4202 4321 4425 4494
.32 3239 2963 2606 2113 1399 457 .82 3955 4090 4222 4349 4464 4548
.33 3262 3000 2659 2184 1488 534 .83 3965 4105 4243 4377 4502 4601
.34 3285 3035 2709 2253 1576 616 .84 3974 4119 4263 4404 4539 4654
.35 3307 3070 2759 2320 1663 702 .85 3983 4133 4283 4431 4576 4705
.36 3328 3104 2807 2386 1749 791 .86 3991 4147 4302 4458 4612 4756
.37 3349 3136 2854 2450 1834 883 .87 4000 4161 4322 4484 4647 4805
.38 3369 3168 2900 2513 1918 978 .88 4009 4174 4341 4510 4682 4854
.39 3389 3200 2945 2575 2001 1075 .89 4017 4187 4359 4535 4716 4901
.4 3408 3230 2988 2636 2082 1173 .9 4026 4201 4378 4561 4750 4948
.41 3427 3260 3031 2695 2162 1272 .91 4034 4214 4396 4585 4784 4994
.42 3446 3289 3072 2752 2241 1372 .92 4043 4227 4415 4610 4817 5039
.43 3464 3317 3112 2809 2319 1473 .93 4051 4239 4433 4634 4849 5083
.44 3481 3345 3153 2864 2395 1573 .94 4059 4252 4450 4658 4881 5127
.45 3498 3372 3192 2918 2470 1674 .95 4067 4264 4468 4682 4912 5169
.46 3515 3398 3230 2971 2544 1774 .96 4075 4277 4485 4705 4943 5211
.47 3531 3424 3267 3023 2616 1874 .97 4033 4289 4502 4728 4974 5253
.48 3547 3449 3304 3074 2687 1973 .98 4090 4301 4519 4750 5004 5293
.49 3563 3474 3339 3124 2757 2071 .99 4098 4313 4536 4773 5033 5333
.5 3579 3498 3374 3173 2825 2168 1 4106 4324 4552 4795 5063 5372
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A.3. One-sided distributions represented by
function F(y; α) = 104GB(y−1/α ; α, 1)

(F(y; 0) ≡ 104e−y) (Bolshev et al., 1970)
y α

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
.00 10000 10000 10000 10000 10000 10000 10000 10000
.01 9900 9907 9914 9923 9933 9944 9955 9966
.02 9802 9815 9830 9847 9866 9887 9909 9933
.03 9704 9723 9745 9771 9800 9831 9864 9899
.04 9608 9632 9662 9695 9733 9774 9818 9864
.05 9512 9543 9579 9620 9667 9718 9772 9829
.06 9418 9454 9497 9546 9601 9662 9726 9795
.07 9324 9366 9415 9472 9535 9605 9680 9759
.08 9231 9278 9334 9398 9470 9549 9634 9724
.09 9139 9192 9254 9325 9405 9493 9588 9688
.10 9048 9106 9174 9252 9340 9436 9541 9652
.11 8958 9021 9095 9180 9275 9380 9494 9616
.12 8869 8937 9016 9108 9210 9324 9447 9579
.13 8781 8853 8938 9036 9146 9268 9400 9542
.14 8694 8771 8861 8965 9082 9211 9353 9505
.15 8607 8689 8785 8895 9018 9155 9305 9468
.16 8521 8608 8709 8824 8955 9099 9258 9430
.17 8437 8527 8633 8755 8891 9043 9210 9392
.18 8353 8448 8558 8685 8828 8987 9163 9354
.19 8270 8369 8484 8616 8765 8931 9115 9315
.20 8187 8290 8411 8548 8703 8875 9067 9277
.21 8106 8213 8338 8480 8640 8820 9018 9237
.22 8025 8136 8265 8412 8578 8764 8970 9198
.23 7945 8060 8193 8345 8516 8708 8922 9158
.24 7866 7985 8122 8278 8455 8652 8873 9119
.25 7788 7910 8051 8212 8393 8597 8824 9078
.26 7711 7836 7981 8146 8332 8541 8776 9038
.27 7634 7763 7911 8080 8271 8486 8727 8997
.28 7558 7690 7842 8015 8211 8431 8678 8956
.29 7483 7618 7774 7951 8150 8375 8629 8915
.30 7408 7547 7706 7886 8090 8320 8579 8873
.31 7334 7476 7638 7823 8030 8265 8530 8831
.32 7261 7406 7572 7759 7971 8210 8481 8789
.33 7189 7337 7505 7696 7912 8155 8431 8746
.34 7118 7268 7439 7634 7853 8100 8381 8704
.35 7047 7200 7374 7571 7794 8045 8332 8661
.36 6977 7132 7309 7510 7735 7991 8282 8617
.37 6907 7065 7245 7448 7677 7936 8232 8574
.38 6839 6999 7182 7387 7619 7882 8182 8530
.39 6771 6934 7118 7327 7516 7827 8132 8486
.40 6703 6869 7056 7267 7504 7773 8082 8441
.41 6637 6804 6994 7207 7447 7719 8032 8397
.42 6570 6740 6932 4147 7390 7665 7981 8352
.43 6505 6677 6871 7088 7333 7611 7931 8307
.44 6440 6614 6810 7029 7276 7557 7881 8261
.45 6376 6552 6750 6971 7220 7503 7830 8215
.46 6313 6491 6690 6913 7164 7450 7780 8169
.47 6250 6430 6631 6856 7109 7396 7729 8123
.48 6188 6369 6572 6799 7053 7343 7678 8076
.49 6126 6310 6514 6742 6998 7290 7628 8030
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y α
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

.50 6065 6250 6456 6686 6944 7237 7577 7983

.51 6005 6192 6399 6630 6889 7184 7526 7935

.52 5945 6133 6342 6575 6835 7131 7475 7883

.53 5886 6076 6286 6519 6781 7078 7425 7840

.54 5827 6019 6230 6465 6727 7026 7374 7792

.55 5769 5962 6175 6410 6674 6973 7323 7744

.56 5712 5906 6120 6356 6620 6921 7272 7695

.57 5655 5851 6065 6303 6563 6869 7221 7646

.58 5599 5795 6011 6249 6513 6817 7170 7597

.59 5543 5741 5958 6196 6461 6765 7119 7548

.60 5488 5687 5904 6144 6415 6714 7068 7498

.61 5434 5633 5852 6092 6359 6672 7017 7449

.62 5379 5580 5799 6040 6307 6611 6966 7399

.63 5326 5528 5148 5988 6256 6560 6915 7348

.64 5273 5476 5696 5937 6205 6509 6864 7298

.65 5220 5424 5645 5887 6154 6458 6813 7247

.66 5169 5373 5595 5836 6104 6407 6762 7197

.67 5117 5323 5544 5786 6054 6357 6711 7145

.68 5066 5272 5495 5736 6004 6206 6660 7094

.69 5016 5223 5445 5687 5954 6256 6609 7043

.70 4966 5174 5396 5638 5905 6206 6559 6991

.71 4916 5125 5348 5590 5856 6156 6508 6939

.72 4868 5076 5300 5541 5807 6107 6457 6887

.73 4819 5029 5252 5493 5759 6057 6406 6835

.74 4771 4981 5205 5446 5710 6008 6355 6783

.75 4724 4934 5158 5399 5662 5959 6305 6730

.76 4677 4888 5111 5352 5615 5910 6254 6677

.77 4630 4841 5065 5305 5567 5861 6203 6624

.78 4584 4796 5020 5259 5520 5813 6153 6571

.79 4538 4751 4974 5213 5473 5764 6102 6518

.80 4493 4706 4929 5168 5427 5716 6052 6464

.81 4449 4661 4885 5122 5380 5668 6002 6411

.82 4404 4617 4840 5078 5334 5620 5952 6357

.83 4360 4574 4797 5033 5289 5573 5901 6303

.84 4317 4530 4753 4989 5243 5525 5851 6250

.85 4274 4488 4710 4945 5198 5478 5801 6195

.86 4232 4445 4667 4901 5153 5431 5751 6141

.87 4190 4403 4625 4858 5108 5384 5701 6086

.88 4148 4362 4583 4815 5064 5338 5651 6032

.89 4107 4320 4541 4773 5020 5291 5602 5977

.90 4066 4280 4500 4730 4976 5245 5552 5923

.91 4025 4239 4459 4688 4932 5199 5503 5868

.92 3985 4199 4418 4647 4889 5153 5453 5813

.93 3946 4159 4378 4605 4846 5108 5404 5758

.94 3906 4120 4338 4564 4803 5063 5355 5703

.95 3867 4081 4299 4524 4761 5017 5306 5648

.96 3829 4042 4259 4483 4718 4973 5257 5593

.97 3791 4004 4220 4443 4676 4928 5208 5538

.98 3753 3966 4182 4403 4635 4883 5160 5482

.99 3716 3929 4144 4364 4593 4839 5111 5427
1.00 3679 3891 4106 4325 4552 4795 5063 5372



A.4. 513

A.4. The function α1/αq(α1/αx; α), where q(x; α) is the
one-dimensional symmetric stable density

(Worsdale, 1976)
x α

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
.00 .3183 .3349 .3485 .3597 .3689 .3765 .3828 .3881 .3924 .3960 .3989
.10 .3152 .3320 .3458 .3571 .3664 .3742 .3806 .3859 .3903 .3939 .3970
.20 .3061 .3234 .3377 .3494 .3591 .3671 .3738 .3794 .3840 .3878 .3910
.30 .2920 .3100 .3249 .3371 .3473 .3558 .3629 .3688 .3737 .3779 .3814
.40 .2744 .2928 .3082 .3210 .3317 .3407 .3482 .3545 .3599 .3644 .3683
.50 .2546 .2731 .3886 .3018 .3129 .3224 .3304 .3371 .3429 .3479 .3521
.60 .2340 .2519 .2674 .2806 .2919 .3017 .3100 .3172 .3233 .3286 .3332
.70 .2136 .2305 .2453 .2582 .2695 .2793 .2879 .2953 .3017 .3074 .3123
.80 .1941 .2095 .2233 .2350 .2465 .2561 .2646 .2721 .2787 .2846 .2897
.90 .1759 .1896 .2021 .2134 .2236 .2328 .2410 .2484 .2550 .2608 .2661
1.00 .1592 .1711 .1821 .1921 .2014 .2098 .2176 .2246 .2310 .2367 .2420
1.05 .1514 .1624 .1726 .1820 .1907 .1987 .2061 .2129 .2191 .2247 .2299
1.10 .1440 .1542 .1635 .1722 .1803 .1878 .1948 .2013 .2073 .2128 .2179
1.15 .1370 .1463 .1548 .1628 .1703 .1773 .1839 .1900 .1957 .2010 .2059
1.20 .1304 .1389 .1466 .1538 .1606 .1671 .1732 .1790 .1844 .1895 .1942
1.25 .1242 .1318 .1388 .1453 .1514 .1573 .1629 .1683 .1734 .1781 .1826
1.30 .1183 .1251 .1313 .1371 .1426 .1479 .1530 .1579 .1626 .1671 .1714
1.35 .1128 .1188 .1243 .1294 .1343 .1390 .1435 .1480 .1523 .1564 .1604
1.40 .1075 .1129 .1177 .1221 .1263 .1304 .1344 .1384 .1424 .1461 .1497
1.45 .1026 .1073 .1114 .1115 .1188 .1223 .1258 .1293 .1327 .1361 .1394
1.50 .0979 .1020 .1056 .1087 .1117 .1146 .1176 .1205 .1235 .1265 .1295
1.55 .0936 .0971 .1000 .1026 .1050 .1074 .1098 .1123 .1148 .1174 .1200
1.60 .0894 .0924 .0948 .0969 .0987 .1006 .1025 .1044 .1065 .1087 .1109
1.65 .0855 .0880 .0899 .0915 .0928 .0942 .0955 .0970 .0987 .1004 .1023
1.70 .0818 .0839 .0853 .0864 .0873 .0881 .0891 .0901 .0913 .0926 .0940
1.75 .0783 .0800 .0810 .0816 .0821 .0825 .0830 .0835 .0843 .0852 .0863
1.80 .0751 .0763 .0769 .0772 .0772 .0772 .0773 .0774 .0777 .0783 .0790
1.85 .0720 .0729 .0731 .0730 .0727 .0723 .0720 .0717 .0716 .0717 .0721
1.90 .0690 .0696 .0696 .0691 .0685 .0677 .0670 .0664 .0659 .0657 .0656
1.95 .0663 .0665 .0662 .0655 .0645 .0634 .0624 .0614 .0606 .0600 .0596
2.00 .0637 .0636 .0630 .0620 .0608 .0595 .0581 .0568 .0557 .0547 .0540
2.05 .0612 .0609 .0601 .0588 .0574 .0557 .0541 .0525 .0511 .0498 .0488
2.10 .0588 .0584 .0573 .0558 .0541 .0523 .0504 .0486 .0469 .0453 .0440
2.15 .0566 .0559 .0547 .0530 .0511 .0491 .0470 .0449 .0430 .0412 .0396
2.20 .0545 .0536 .0522 .0504 .0483 .0461 .0438 .0416 .0394 .0373 .0355
2.25 .0525 .0515 .0499 .0479 .0457 .0433 .0409 .0385 .0361 .0338 .0317
2.30 .0506 .0494 .0477 .0456 .0433 .0408 .0382 .0356 .0331 .0306 .0283
2.35 .0488 .0475 .0456 .0434 .0410 .0384 .0357 .0330 .0303 .0277 .0252
2.40 .0471 .0456 .0437 .0414 .0388 .0361 .0334 .0305 .0277 .0250 .0224
2.45 .0453 .0439 .0418 .0395 .0368 .0341 .0312 .0283 .0254 .0226 .0198
2.50 .0439 .0422 .0401 .0376 .0350 .0322 .0292 .0263 .0233 .0204 .0175
2.55 .0424 .0407 .0385 .0360 .0332 .0304 .0274 .0244 .0214 .0184 .0154
2.60 .0410 .0392 .0369 .0344 .0316 .0287 .0257 .0227 .0196 .0166 .0136
2.65 .0397 .0378 .0354 .0329 .0301 .0272 .0242 .0211 .0180 .0150 .0119
2.70 .0384 .0364 .0341 .0314 .0286 .0257 .0227 .0197 .0166 .0135 .0104
2.75 .0372 .0351 .0327 .0301 .0273 .0244 .0214 .0183 .0152 .0122 .0091
2.80 .0360 .0339 .0315 .0288 .0260 .0231 .0201 .0171 .0140 .0110 .0079
2.85 .0349 .0328 .0303 .0276 .0248 .0219 .0190 .0160 .0130 .0099 .0068
2.90 .0338 .0317 .0292 .0265 .0237 .0205 .0179 .0149 .0120 .0090 .0060
2.95 .0328 .0306 .0281 .0255 .0227 .0198 .0169 .0140 .0111 .0081 .0051
3.00 .0318 .0296 .0271 .0245 .0217 .0189 .0160 .0131 .0102 .0073 .0044
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A.5. Radial functions ρ2(r; α) of two-dimensional
axially symmetric densities

r α
0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

0.0 2.888E+5 9.549E+0 7.369E-1 2.645E-1 1.197E-1 1.007E-1 9.016E-2 8.373E-2
.1 1.019E+0 1.166E+0 5.653E-1 2.531E-1 1.188E-1 1.002E-1 8.983E-2 8.348E-2
.2 2.737E-1 4.240E-1 3.623E-1 2.244E-1 1.161E-1 9.875E-2 8.885E-2 8.275E-2
.3 1.253E-1 2.178E-1 2.380E-1 1.891E-1 1.118E-1 9.635E-2 8.724E-2 8.154E-2
.4 7.155E-2 1.320E-1 1.641E-1 1.551E-1 1.062E-1 9.311E-2 8.504E-2 7.988E-2
.5 4.622E-2 8.816E-2 1.183E-1 1.258E-1 9.949E-2 8.913E-2 8.231E-2 7.780E-2
.6 3.228E-2 6.287E-2 8.838E-2 1.020E-1 9.210E-2 8.456E-2 7.911E-2 7.533E-2
.7 2.380E-2 4.698E-2 6.804E-2 8.302E-2 8.434E-2 7.953E-2 7.550E-2 7.252E-2
.8 1.827E-2 3.635E-2 5.367E-2 6.806E-2 7.649E-2 7.418E-2 7.157E-2 6.942E-2
.9 1.445E-2 2.891E-2 4.322E-2 5.627E-2 6.881E-2 6.866E-2 6.739E-2 6.607E-2

1 1.172E-2 2.350E-2 3.541E-2 4.691E-2 6.147E-2 6.309E-2 6.305E-2 6.253E-2
1.1 9.685E-3 1.946E-2 2.944E-2 3.945E-2 5.461E-2 5.759E-2 5.863E-2 5.885E-2
1.2 8.138E-3 1.635E-2 2.478E-2 3.344E-2 4.831E-2 5.224E-2 5.419E-2 5.509E-2
1.3 6.932E-3 1.392E-2 2.110E-2 2.857E-2 4.261E-2 4.714E-2 4.979E-2 5.128E-2
1.4 5.974E-3 1.198E-2 1.814E-2 2.459E-2 3.749E-2 4.233E-2 4.550E-2 4.748E-2
1.5 5.200E-3 1.041E-2 1.573E-2 2.130E-2 3.296E-2 3.785E-2 4.137E-2 4.374E-2
1.6 4.567E-3 9.125E-3 1.375E-2 1.857E-2 2.895E-2 3.372E-2 3.743E-2 4.008E-2
1.7 4.042E-3 8.057E-3 1.210E-2 1.628E-2 2.545E-2 2.996E-2 3.371E-2 3.655E-2
1.8 3.602E-3 7.161E-3 1.071E-2 1.436E-2 2.238E-2 2.655E-2 3.023E-2 3.316E-2
1.9 3.229E-3 6.403E-3 9.538E-3 1.272E-2 1.971E-2 2.349E-2 2.701E-2 2.995E-2

2 2.911E-3 5.755E-3 8.537E-3 1.133E-2 1.739E-2 2.076E-2 2.405E-2 2.692E-2
2.1 2.638E-3 5.199E-3 7.677E-3 1.013E-2 1.537E-2 1.834E-2 2.135E-2 2.409E-2
2.2 2.401E-3 4.717E-3 6.934E-3 9.091E-3 1.361E-2 1.619E-2 1.890E-2 2.147E-2
2.3 2.194E-3 4.298E-3 6.287E-3 8.193E-3 1.209E-2 1.430E-2 1.669E-2 1.906E-2
2.4 2.013E-3 3.930E-3 5.722E-3 7.410E-3 1.076E-2 1.264E-2 1.471E-2 1.685E-2
2.5 1.853E-3 3.606E-3 5.226E-3 6.724E-3 9.599E-3 1.118E-2 1.295E-2 1.484E-2
2.6 1.711E-3 3.320E-3 4.787E-3 6.121E-3 8.586E-3 9.900E-3 1.139E-2 1.303E-2
2.7 1.585E-3 3.065E-3 4.399E-3 5.588E-3 7.700E-3 8.781E-3 1.001E-2 1.141E-2
2.8 1.472E-3 2.838E-3 4.053E-3 5.116E-3 6.922E-3 7.802E-3 8.799E-3 9.956E-3
2.9 1.370E-3 2.634E-3 3.744E-3 4.696E-3 6.239E-3 6.946E-3 7.733E-3 8.668E-3

3 1.279E-3 2.450E-3 3.467E-3 4.321E-3 5.637E-3 6.195E-3 6.799E-3 7.530E-3
3.1 1.196E-3 2.285E-3 3.217E-3 3.986E-3 5.105E-3 5.537E-3 5.983E-3 6.529E-3
3.2 1.121E-3 2.135E-3 2.992E-3 3.684E-3 4.635E-3 4.960E-3 5.270E-3 5.652E-3
3.3 1.053E-3 1.999E-3 2.789E-3 3.413E-3 4.217E-3 4.453E-3 4.649E-3 4.888E-3
3.4 9.911E-4 1.875E-3 2.604E-3 3.168E-3 3.846E-3 4.007E-3 4.107E-3 4.224E-3
3.5 9.342E-4 1.762E-3 2.436E-3 2.946E-3 3.514E-3 3.613E-3 3.635E-3 3.648E-3
3.6 8.820E-4 1.659E-3 2.283E-3 2.744E-3 3.219E-3 3.265E-3 3.224E-3 3.151E-3
3.7 8.340E-4 1.564E-3 2.143E-3 2.561E-3 2.953E-3 2.958E-3 2.865E-3 2.723E-3
3.8 7.898E-4 1.477E-3 2.014E-3 2.394E-3 2.715E-3 2.685E-3 2.552E-3 2.355E-3
3.9 7.489E-4 1.396E-3 1.896E-3 2.241E-3 2.501E-3 2.443E-3 2.279E-3 2.039E-3

4 7.112E-4 1.322E-3 1.788E-3 2.101E-3 2.308E-3 2.227E-3 2.039E-3 1.768E-3
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A.6. Radial functions ρ3(r; α) of three-dimensional
spherically symmetric densities (Gusarov, 1998)

r α
0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

0.0 2.208E+10 2.370E+2 2.026E+0 2.801E-1 5.612E-2 3.869E-2 3.019E-2 2.541E-2
.1 4.908E+0 4.641E+0 1.244E+0 2.618E-1 5.560E-2 3.847E-2 3.007E-2 2.533E-2
.2 6.682E-1 9.320E-1 5.903E-1 2.179E-1 5.408E-2 3.783E-2 2.972E-2 2.510E-2
.3 2.053E-1 3.331E-1 3.029E-1 1.685E-1 5.167E-2 3.679E-2 2.914E-2 2.472E-2
.4 8.834E-2 1.552E-1 1.708E-1 1.256E-1 4.852E-2 3.539E-2 2.835E-2 2.420E-2
.5 4.580E-2 8.440E-2 1.040E-1 9.252E-2 4.483E-2 3.368E-2 2.737E-2 2.355E-2
.6 2.672E-2 5.079E-2 6.727E-2 6.826E-2 4.081E-2 3.173E-2 2.623E-2 2.278E-2
.7 1.693E-2 3.285E-2 4.565E-2 5.080E-2 3.665E-2 2.959E-2 2.494E-2 2.190E-2
.8 1.138E-2 2.242E-2 3.220E-2 3.826E-2 3.252E-2 2.734E-2 2.355E-2 2.094E-2
.9 8.019E-3 1.595E-2 2.345E-2 2.920E-2 2.855E-2 2.503E-2 2.207E-2 1.989E-2
1 5.858E-3 1.174E-2 1.753E-2 2.259E-2 2.485E-2 2.272E-2 2.054E-2 1.879E-2

1.1 4.408E-3 8.875E-3 1.341E-2 1.769E-2 2.148E-2 2.046E-2 1.898E-2 1.765E-2
1.2 3.398E-3 6.865E-3 1.045E-2 1.403E-2 1.845E-2 1.829E-2 1.742E-2 1.648E-2
1.3 2.675E-3 5.415E-3 8.283E-3 1.126E-2 1.578E-2 1.624E-2 1.589E-2 1.530E-2
1.4 2.142E-3 4.342E-3 6.662E-3 9.125E-3 1.346E-2 1.433E-2 1.441E-2 1.412E-2
1.5 1.742E-3 3.532E-3 5.428E-3 7.470E-3 1.145E-2 1.259E-2 1.299E-2 1.297E-2
1.6 1.435E-3 2.909E-3 4.472E-3 6.171E-3 9.736E-3 1.100E-2 1.164E-2 1.184E-2
1.7 1.196E-3 2.424E-3 3.723E-3 5.141E-3 8.276E-3 9.574E-3 1.037E-2 1.076E-2
1.8 1.007E-3 2.039E-3 3.128E-3 4.316E-3 7.040E-3 8.306E-3 9.200E-3 9.719E-3
1.9 8.562E-4 1.731E-3 2.650E-3 3.650E-3 5.995E-3 7.187E-3 8.123E-3 8.737E-3
2 7.337E-4 1.481E-3 2.262E-3 3.107E-3 5.114E-3 6.206E-3 7.141E-3 7.815E-3

2.1 6.334E-4 1.276E-3 1.944E-3 2.661E-3 4.372E-3 5.351E-3 6.253E-3 6.956E-3
2.2 5.506E-4 1.107E-3 1.681E-3 2.293E-3 3.747E-3 4.611E-3 5.456E-3 6.162E-3
2.3 4.815E-4 9.662E-4 1.463E-3 1.986E-3 3.220E-3 3.971E-3 4.746E-3 5.435E-3
2.4 4.235E-4 8.480E-4 1.279E-3 1.729E-3 2.774E-3 3.420E-3 4.118E-3 4.772E-3
2.5 3.744E-4 7.480E-4 1.124E-3 1.512E-3 2.398E-3 2.948E-3 3.564E-3 4.172E-3
2.6 3.326E-4 6.629E-4 9.926E-4 1.328E-3 2.078E-3 2.543E-3 3.079E-3 3.634E-3
2.7 2.967E-4 5.901E-4 8.802E-4 1.172E-3 1.807E-3 2.197E-3 2.656E-3 3.153E-3
2.8 2.658E-4 5.274E-4 7.837E-4 1.037E-3 1.576E-3 1.900E-3 2.289E-3 2.726E-3
2.9 2.391E-4 4.731E-4 7.003E-4 9.221E-4 1.379E-3 1.647E-3 1.971E-3 2.349E-3
3 2.158E-4 4.260E-4 6.280E-4 8.224E-4 1.210E-3 1.430E-3 1.697E-3 2.018E-3

3.1 1.954E-4 3.848E-4 5.650E-4 7.359E-4 1.065E-3 1.245E-3 1.462E-3 1.729E-3
3.2 1.775E-4 3.486E-4 5.099E-4 6.605E-4 9.398E-4 1.086E-3 1.259E-3 1.478E-3
3.3 1.617E-4 3.168E-4 4.616E-4 5.945E-4 8.319E-4 9.492E-4 1.086E-3 1.261E-3
3.4 1.477E-4 2.887E-4 4.189E-4 5.367E-4 7.384E-4 8.320E-4 9.373E-4 1.074E-3
3.5 1.353E-4 2.638E-4 3.812E-4 4.857E-4 6.572E-4 7.310E-4 8.103E-4 9.128E-4
3.6 1.242E-4 2.416E-4 3.478E-4 4.407E-4 5.865E-4 6.440E-4 7.016E-4 7.754E-4
3.7 1.143E-4 2.218E-4 3.180E-4 4.008E-4 5.247E-4 5.687E-4 6.086E-4 6.583E-4
3.8 1.054E-4 2.040E-4 2.914E-4 3.654E-4 4.705E-4 5.035E-4 5.290E-4 5.587E-4
3.9 9.742E-5 1.881E-4 2.676E-4 3.338E-4 4.230E-4 4.469E-4 4.609E-4 4.742E-4
4 9.022E-5 1.737E-4 2.463E-4 3.056E-4 3.811E-4 3.977E-4 4.025E-4 4.027E-4

4.1 8.370E-5 1.608E-4 2.803E-4 3.547E-4 3.523E-4 3.423E-4
4.2 7.779E-5 1.491E-4 2.576E-4 3.171E-4 3.092E-4 2.914E-4
4.3 7.243E-5 1.385E-4 2.371E-4 2.842E-4 2.720E-4 2.484E-4
4.4 6.754E-5 1.288E-4 2.187E-4 2.552E-4 2.400E-4 2.122E-4
4.5 6.308E-5 1.200E-4 2.020E-4 2.298E-4 2.122E-4 1.817E-4
4.6 5.900E-5 1.120E-4 1.869E-4 2.073E-4 1.882E-4 1.560E-4
4.7 5.527E-5 1.047E-4 1.732E-4 1.874E-4 1.673E-4 1.343E-4
4.8 5.184E-5 9.794E-5 1.608E-4 1.697E-4 1.491E-4 1.159E-4
4.9 4.869E-5 9.178E-5 1.494E-4 1.540E-4 1.333E-4 1.004E-4
5 4.579E-5 8.611E-5 1.391E-4 1.401E-4 1.194E-4 8.731E-5



516 Appendix

A.7. Strictly stable densities expressed via
elementary functions, special functions and

quadratures
ONE-DIMENSIONAL DISTRIBUTIONS qC(x; α, δ )

q(x; 1/4, 1/4) =
1

2π
x−4/3

∫ ∞

0
exp

{
−1

4
x−1/3

(
y4 + y−2

)}
dy;

(A.7.1)

q(x; 1/3, 1/3) =
1

2π
x−3/2

∫ ∞

0
exp

{
− 1

3
√

3x

(
y3 + y−3

)}
dy

=
1

3π
x−3/2K1/3

(
2

3
√

3
x−1/2

)
, (A.7.2)

where x > 0, and K1/3(z) is the Macdonald function (modified Bessel
function of the third kind);

q(x; 1/2, 1/2) =
1

2
√

π
x−3/2 exp{−1/(4x)}, x > 0; (A.7.3)

q(x; 1/2, 0) =
1

2
√

2π
x−3/2

{
cos

[
1
4x

(
1
2
− C

(√
2/(πx)

))]

+ sin
[

1
4x

(
1
2
− S

(√
2/(πx)

))]}
, (A.7.4)

where
C(z) =

∫ z

0
cos

(
πt2/2

)
dt

and
S(z) =

∫ z

0
sin

(
πt2/2

)
dt

are the Fresnel integrals;

q(x; 1/2, δ ) =
1
π

x−3/2ℜ
{√

πζe−ζ2 − 2iζw(ζ)
}

, (A.7.5)

where
ζ = −iz/2 = −i

1
2
√

x
exp{i(δ + 1/2)π/2}

and

w(ζ) = e−ζ2
∫ ζ

0
et2

dt

is the function tabulated for complex-valued ζ in (Karpov, 1965);

q(x; 2/3, 2/3) =
1√
3π

x−1 exp
(
− 2

27
x−2

)
W1/2,1/6

(
4
27

x−2
)

, x > 0;
(A.7.6)
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q(x; 2/3, 0) =
1

2
√

3π
|x|−1 exp

(
2
27

x−2
)

W−1/2,1/6

(
4

27
x−2

)
;

(A.7.7)

q(x; 1, 0) =
1

π(1 + x2)
; (A.7.8)

q(x; 3/2,−1/2) =
1

2
√

3π
x−1 exp

(
2

27
x3
)

W−1/2,1/6

(
4
27

x3
)

, x > 0;
(A.7.9)

q(x; 3/2, 1/2) =
1√
3π

x−1 exp
(
− 2

27
x3
)

W1/2,1/6

(
4
27

x3
)

, x > 0;
(A.7.10)

q(x; 2, δ ) =
1

2
√

π
exp{−x2/4}; (A.7.11)

q(x; α, α) = (1/α)x−2H10
11

(
1
x

∣∣∣∣
(−1, 1)

(−1/α, 1/α)

)
, α < 1, x > 0;

(A.7.12)

q(x; α, 2− α) = (1/α)H10
11

(
x
∣∣∣∣
(1− 1/α, 1/α)

(0, 1)

)
, α > 1, x > 0;

(A.7.13)

q(x; α, δ ) = (1/α)x−2H11
22

(
1
x

∣∣∣∣
(−1, 1), (−γ , γ )

(−1/α, 1/α), (−γ , γ )

)
,

(A.7.14)

γ = (1 + δ /α)/2, α < 1, |δ | < α, x > 0;

q(x; α, δ ) = (1/α)H11
22

(
x
∣∣∣∣
(1− 1/α, 1/α), (1− γ , γ )

(0, 1), (1− γ , γ )

)
;

(A.7.15)

γ = (1 + δ /α)/2, α > 1, δ < 2− α, x > 0.

RADIAL FUNCTIONS ρN(r; α)

ρN(r; 2/3) =
Γ(N/2 + 1/3)Γ(N/2 + 2/3)

2
√

3πNΓ(5/6)Γ(7/6)

× r−N exp
(

2
27

r−2
)

W−N/2,1/6

(
4

27
r−2
)

;
(A.7.16)

qN(r; 1) =
Γ((N + 1)/2)

[π(1 + r2)](N+1)/2 ; (A.7.17)

qN(r; 2) = (4π)−N/2 exp{−r2/4}; (A.7.18)

qN(r; α) = (1/2)(r
√

π)−NH11
21

(
2
r

∣∣∣∣
(1−N/2, 1/2), (1, 1/2)

(1, 1/α)

)
, α < 1;

(A.7.19)

qN(r; α) = (2/α)(2
√

π)−NH11
12

(
r2

4

∣∣∣∣
(1−N/α, 2/α)

(0, 1) (1−N/2, 1)

)
, α ≥ 1.

(A.7.20)
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A.8. Fractional integro-differential operators
RIEMANN–LIOUVILLE FRACTIONAL INTEGRALS (α > 0):

(
Iα
+ ƒ
)

(x) =
1

Γ(α)

∫ x

−∞

ƒ(ξ ) dξ
(x− ξ )1−α , (A.8.1)

(
Iα
0+ƒ
)

(x) =
1

Γ(α)

∫ x

0

ƒ(ξ ) dξ
(x− ξ )1−α , (A.8.2)

(
Iα
−ƒ
)

(x) =
1

Γ(α)

∫ ∞

x

ƒ(ξ ) dξ
(ξ − x)1−α ,

(Iαƒ)(x) = (e−iπαIα
−)(x). (A.8.3)

RIEMANN–LIOUVILLE FRACTIONAL DERIVATIVES (0 < α < 1):

(
Dα

+ ƒ
)

(x) =
1

Γ(1− α)
d
dx

∫ x

−∞

ƒ(ξ ) dξ
(x− ξ )α , (A.8.4)

(
Dα

0+ƒ
)

(x) =
1

Γ(1− α)
d
dx

∫ x

0

ƒ(ξ )dξ
(x− ξ )α , (A.8.5)

(
Dα
−ƒ
)

(x) = − 1
Γ(1− α)

d
dx

∫ ∞

x

ƒ(ξ ) dξ
(ξ − x)α .

MARCHAUD FRACTIONAL DERIVATIVES (0 < α < 1):

(
D

α
+ ƒ
)

(x) =
α

Γ(1− α)

∫ ∞

0

ƒ(x)− ƒ(x− ξ )
ξ1+α dξ

=
α

Γ(1− α)

∫ x

−∞

ƒ(x)− ƒ(ξ )
(x− ξ )1+α dξ , (A.8.6)

(
D

α
−ƒ
)

(x) =
α

Γ(1− α)

∫ ∞

0

ƒ(x)− ƒ(x + ξ )
ξ1+α dξ . (A.8.7)

RIESZ POTENTIAL (α > 0, α ≠ 1, 3, 5, …):

(
Iαƒ
)

(x) =
1

2 cos(απ/2)
((

Iα
+ ƒ
)

(x) +
(
Iα
−ƒ
)

(x)
)

=
1

2Γ(α) cos(απ/2)

∫ ∞

−∞

ƒ(ξ ) dξ
|x− ξ |1−α . (A.8.8)

where Iα
+ and Iα

− are defined by (A.8.1) and (A.8.3) respectively.

RIESZ DERIVATIVE (0 < α < 1):

Dαƒ ≡
(
Iα)−1 ƒ =

α
2Γ(1− α) cos(απ/2)

∫ ∞

−∞

ƒ(x)− ƒ(x− ξ )
|ξ |1+α dξ



A.8. Fractional integro-differential operators 519

=
α

2Γ(1− α) cos(απ/2)

∫ ∞

0

2ƒ(x)− ƒ(x− ξ )− ƒ(x + ξ )
ξ1+α dξ

= [2 cos(απ/2)]−1 (
D

α
+ ƒ + Dα

−ƒ
)

, (A.8.9)

where Dα
+ and Dα

− are given by (A.8.6) and (A.8.7).

FELLER POTENTIAL (0 < α < 1):
(
Mα

u,vƒ
)

(x) = u
(
Iα
+ ƒ
)

(x) + v
(
Iα
−ƒ
)

(x)

=
∫ ∞

−∞

u + v + (u− v)sign(x− ξ )
|x− ξ |1−α ƒ(ξ ) dξ , (A.8.10)

where u2 + v2 ≠ 0. In particular,

Mα
u,v = 2u cos(απ/2)Iα ,

where Iα is given by (A.8.8).

INVERSE FELLER POTENTIAL (0 < α < 1):

(
Mα

u,v
)−1 ƒ =

α
2AΓ(1− α)

∫ ∞

−∞

u + v + (u− v) sign(x− ξ )
|x− ξ |1+α [ƒ(x)−ƒ(ξ )] dξ

=
α

2AΓ(1− α)

∫ ∞

0

[
(u + v)ƒ(x)− uƒ(x− ξ )− vƒ(x + ξ )

]
ξ−1−α dξ ,

(A.8.11)

where
A = [(u + v) cos(απ/2)]2 + [(u− v) sin(απ/2)]2.

In particular,
(
Mα

1,0
)−1 = Dα

+ ,
(
Mα

0,1
)−1 = Dα

−,
(
Mα

u,u
)−1 ƒ = [2u cos(απ/2)]−1Dαƒ,

where Dα is defined by (A.8.9).

n-DIMENSIONAL RIESZ INTEGRO-DIFFERENTIAL OPERATOR

(−∆n)−α/2 ƒ =
1

γn(α)

∫

Rn

ƒ(ξ ) dξ
|x− ξ |n−α , (A.8.12)

where

α > 0, α ≠ n, n + 2, n + 4, …,

γn(α) = 2απn/2Γ(α/2)/Γ((n− α)/2),
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and

(−∆n)α/2 ƒ =
1

dn,l(α)

∫

Rn

l∑

k=0

(−1)k

(
l
k

)
ƒ(x− kξ )|ξ |−n−αdξ (A.8.13)

where

α > 0, l = [α] + 1,

dn,l(α) =
π1+n/2

2αΓ(1 + α/2)Γ((n + α)/2) sin(απ/2)

l∑

k=0

(−1)k

(
l
k

)
kα .

In particular, if n = 1, then

γ1(α) = 2Γ(α) cos(απ/2),
d1,1(α) = −2Γ(−α) cos(απ/2), α < 1,

and operators (A.8.12), (A.8.13) coincide with (A.8.8), (A.8.9) respectively.

FOURIER TRANSFORMS F̂nƒ ≡
∫

Rn
eik⋅xƒ(x) dx, F̂1 ≡ F̂:

F̂
(
Iα

± ƒ
)

= |k|−α exp{±iα(π/2) sign k}F̂ƒ, 0 < α < 1;
(A.8.14)

F̂
(
Dα

± ƒ
)

= |k|α exp{∓iα(π/2) sign k}F̂ƒ, α ≥ 0;
(A.8.15)

F̂
(
Mα

u,vƒ
)

= [(u + v) cos(απ/2) + i(u− v) sin(απ/2) sign k]

× |k|−α F̂ƒ, 0 < α < 1; (A.8.16)

F̂n

(
(−∆n)α/2ƒ

)
= |k|α F̂nƒ. (A.8.17)

In particular,

F̂1((−∆1)−α/2ƒ) ≡ F̂1(Iαƒ) = |k|−α F̂1ƒ. (A.8.18)

LAPLACE TRANSFORM L̂ƒ ≡
∫ ∞

0
e−λxƒ(x) dx:

L̂
(
Iα
0+ƒ
)

= λ−α
(

L̂ƒ
)

, (A.8.19)

L̂
(
Dα

0+ƒ
)

= λ α
(

L̂ƒ
)

. (A.8.20)
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For any ƒ(x), x ∈ RN, satisfying the condition

‖ƒ‖p =
{∫

RN
|ƒ(x)|pdx

}1/p
, 1 < p < N/α,

the relation

(Iα ƒ)(x) =
1

Γ(α/µ)

∫ ∞

0
dttα/µ−1

∫

RN
ƒ(x− x′)p(x′, t; µ) dx′

is true, where
p(x, t; µ) = t−N/µqN(xt−1/µ ; µ)

is the distribution density of the spherically symmetric N-dimensional stable
process with the characteristic parameter µ:

∫

RN
p(x, t; µ)ei(k,x)dx = e−t|k|µ .

The special cases of this relation with µ = 1 and µ = 2 were considered in
(Stein & Weiss, 1960; Johnson, 1973) respectively.
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A.9. Approximation of inverse distribution
function r(x) = F−1(x) for simulation of

three-dimensional random vectors with
density q3(r; α) (Uchaikin & Gusarov, 1998)

r(x) =

{
(x/A)1/3 + x[B/(1− x)]1/α P(α)

n (x), α ≤ 1,
(x/A)1/3 + (5/9)(C/A)2(x/A)5/3 + g(x)− xP(α)

n (x), α > 1,

where

A = 2Γ(3/α)/(3απ), B = Γ(α + 2) sin(απ/2)/(απ/2),
C = 8Γ(5/α)/(5!απ), D = Γ(2α + 2)| sin(απ)|/(απ),

g(x) =
[√

(B/D)2 + 2(1− x)/D− B/D
]−1/α

−
[√

(B/D)2 + 2/D− B/D
]−1/α

,

xP(α)
n (x) = c0x + c1x2 + … + cnxn+1.

P(0.2)
3 (x) = 0.04310 + 0.47961x + 0.43761x2 + 0.03968x3,

P(0.3)
3 (x) = 0.36633 + 0.68591x− 0.09155x2 + 0.03931x3,

P(0.4)
2 (x) = 0.77792 + 0.27989x− 0.05781x2,

P(0.5)
2 (x) = 1.01155 + 0.09253x− 0.10407x2,

P(0.6)
2 (x) = 1.06878 + 0.14079x− 0.20957x2,

P(0.7)
2 (x) = 1.02330 + 0.28358x− 0.30687x2,

P(0.8)
2 (x) = 0.94223 + 0.39823x− 0.34046x2,

P(0.9)
3 (x) = 0.86897 + 0.43915x− 0.36207x2 + 0.05395x3,

P(1.0)
3 (x) = 0.80193 + 0.44032x− 0.34080x2 + 0.09855x3,

P(1.1)
3 (x) = 0.39456 + 3.54231x− 3.06908x2 + 2.55379x3,

P(1.2)
3 (x) = 0.34583 + 2.37756x− 1.18707x2 + 0.47064x3,

P(1.3)
3 (x) = 0.26378 + 1.95839x− 1.08096x2 + 0.53840x3,

P(1.4)
3 (x) = 0.16540 + 1.84557x− 1.42423x2 + 0.89226x3,

P(1.5)
3 (x) = 0.05993 + 1.96872x− 2.24189x2 + 1.57409x3,

P(1.6)
5 (x) = 0.04606 + 1.59258x− 3.18405x2 + 7.19358x3

− 8.69865x4 + 4.37779x5,

P(1.7)
6 (x) = 0.00210 + 0.84060x + 2.58118x2 − 16.69826x3 + 39.86698x4

− 43.13309x5 + 17.89178x6,
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P(1.8)
9 (x) = −0.34685 + 6.66547x− 41.66960x2 + 133.46730x3 − 189.59325x4

+ 22.42745x5 + 241.46185x6 − 222.98818x7

+ 18.19747x8 + 33.83475x9.
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A.10. Some statistical terms
CONFIDENCE p-PERCENT INTERVAL for parameter α is the interval (c1, c2) such

that P{α ∈ (c1, c2)} = (1− p)/100.

CONVERGENCE IN PROBABILITY: a sequence X1, X2, … converges in probability
to a constant c, Xn

p
→ c, if P{|xn − c| > 0} → 0 as n →∞ for any ε > 0.

It is equivalent to the weak convergence of the distribution function
FXn (x) to the degenerate distribution function e(x − c):
FXn (x) ⇒ e(x− c), n →∞.

ASYMPTOTIC EFFICIENCY of the estimator α̂ = α̂(X1, …, Xn) is the limit eas(ᾱ) =
limn→∞ e(α̂(X1, …, Xn)).

EFFICIENCY OF AN ESTIMATOR α̂ is the ratio e(α̂) = min Var α̂/ Var α̂ where
min Var α̂ is the lowest variance of the estimator and Var α̂ is its true
variance.

ASYMPTOTICALLY EFFICIENT ESTIMATOR is an estimator α̂ with asymptotic ef-
ficiency eas(ᾱ) = 1.

CONSISTENT ESTIMATOR of a parameter α is an estimator α̂ = α̂(X1, …, Xn)
converging in probability to α as n →∞: α̂

p
→ α.

1/
√

n-CONSISTENT ESTIMATOR of a parameter α is a consistent estimator α̂ for
which P{|α̂(X1, …, Xn)− α| > 0} ∝ 1/

√
n as n →∞.

EFFICIENT ESTIMATOR is an estimator having the lowest variance for a sample
with a given finite size, i.e., an estimator with efficiency e(α̂) = 1.

MAXIMUM LIKELIHOOD ESTIMATOR (MLE) for parameter α is the solution of
the equation ∂ ln L(α)/∂α = 0 depending on the sample X1, …, Xn. Here
L(α) is the likelihood function.

UNBIASED ESTIMATOR of parameter α of distribution function FX (x; α) is an
estimator α̂ = α̂(X1, …, Xn) satisfying the condition Eα̂ = α.

FRACTILE (QUANTILE) xp is the solution of equation FX (xp) = p, 0 < p < 1.

LIKELIHOOD FUNCTION for a sample X1, …, Xn of random variables with a com-
mon probability density PX (x; α) is L(x1, …, xn; α) = pX (x1; α)…pX (xn; α).

A p PERCENT TRUNCATED SAMPLE MEAN is the arithmetical mean of the middle
p percent of the ranked observations.
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A.11. Some auxiliary formulae for statistical
estimators

We introduce the abbreviated notation

U = sign YE(ν, θ , τ), U0 = U − EU, (A.11.1)
V = ln |YE(ν, θ , τ)|, V0 = V − EV, (A.11.2)

and present formulae obtained in (Zolotarev, 1986) by means of characteristic
transformation applied to form E:

EU0 = EV0 = EU2 = 1, EU = θ , EV = τ, (A.11.3)
EUV = θτ = EUEV, (A.11.4)

EV2 = τ2 + π2[2ν − 3θ2 + 1]/12, (A.11.5)

EUr
0 = (−1)r

[
∑

0

(
r
j

)
θr−j −

∑
1

(
r
j

)
θr−j+1

]
, (A.11.6)

EUr
0V2

0 =
[
π2(1− θ2)/6

]∑
0

(
r
j

)
θr−j + [π2(2ν − θ2 − 1)/12](−1)rEUr

0,
(A.11.7)

EUr
0V4

0 = [π4(1− θ4)/20]
∑

0

(
r
j

)
θr−j + [π4(8ν2 − θ4 − 7)/120](−1)rEUr

0,
(A.11.8)

where
∑

0 and
∑

1 denote summation over even and odd values of j, respec-
tively, not exceeding r.

Let X1, …, Xn be a collection of independent and identically distributed
random variables with finite fourth moment, and set

a = EX1, b2 = Var X1, c4 = E(X1 − a)4,

X =
1
n

n∑

j=1

Xj, S2
X =

1
n− 1

n∑

j=1

n∑

j=1

(Xj − X)2.

Then

EX = a, Var X = b2/n, ES2
X = b2, (A.11.9)

Var S2
X = (c4 − b4)/n + 2b4/[n(n− 1)]. (A.11.10)

The proofs can be found in (Kendall & Stuart, 1967).
Let (L, M) be a pair of uncorrelated random variables with zero means and

finite fourth moments and (L1, M1), …, (Ln, Mn) be a collection of mutually in-
dependent pairs of random variables, each distributed as (L, M). Constructing
from the n-tuples (L1, …, Ln) and (M1, …, Mn) the sample variances S2

L and S2
M

one can prove (see (Zolotarev, 1986)) that for any n ≥ 2

cov(S2
L, S2

M) = E(S2
LS2

M)− (ES2
L)(ES2

M) = (1/n) cov(L2, M2). (A.11.11)
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A.12. Functional derivatives
Let

F = F(u(⋅))

be the value of a functional of argument u(x), and let δu(x) be the variation of
the function u(x) in some domain ∆x0 about x0; outside this domain, δu = 0.
We say that the functional (or variational) derivative of the functional F(u(⋅))
at a point x0 is the limit

δF(u(⋅))
δu(x0)

= lim
|∆x|→0

max |δu|→0

F(u(⋅) + δu(⋅))− F(u(⋅))∫
∆x0

δu(x) dx

under the condition that this limit exists and depends on neither the form of
δu(x), nor how the domain ∆x0 shrinks to a point, nor how |δu| tends to zero.

The rules of functional differentiation given below immediately follow from
the definition.

(1) If A1 and A2 are constants, and F1(u(⋅)) and F2(u(⋅)) are functionals, then

δ
δu(x)

[
A1F1(u(⋅)) + A2F2(u(⋅))

]
= A1

δF1(u(⋅))
δu(x)

+ A2
δF2(u(⋅))

δu(x)

and

δ
δu(x)

[
F1(u(⋅))F2(u(⋅))

]
=

δF1(u(⋅))
δu(x)

F2(u(⋅)) + F1(u(⋅))
δF2(u(⋅))

δu(x)
.

(2) If z = F(u(⋅)), and ƒ(z) is an ordinary function, then

δƒF(u(⋅))
δu(x)

= ƒ′(F(u(⋅)))
δF(u(⋅))

δu(x)
,

where ƒ′(z) stands for the ordinary derivative.

(3) If Φ(u(⋅)) and G(x; u(⋅)) are functionals, and the latter depends on a pa-
rameter x, then

δΦ(G(⋅; u(⋅)))
δu(x)

=
∫ δΦ(G(⋅; u(⋅)))

δG(x′; u(⋅))
δG(x′; u(⋅))

δu(x)
dx′
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We will present here a derivation of the formula for the functional deriva-
tive of arbitrary order n of a product of an arbitrary number of functionals
Qi(u(⋅)), whose particular case was used in Section 11.4:

D(n)
u (1, …, n)

k∏

1

Qk(u(⋅))

= Sn(1, …, n)
∑

Nk=n

(
n

n1…nk

) k∏

i=1

D(ni)
u (Ni−1 + 1, …, Ni)Qi(u(⋅)), (A.12.1)

where

D(n)
u (1, …, n)Q(u(⋅)) ≡ δnQ(u(⋅))

δu(x1)…δu(xn)
, (A.12.2)

Nk = n1 + … + nk, ni = 0, 1, 2, …, N0 = 0, (A.12.3)

and

Sn(1, …, n) =
1
n!

n∑′

i1…in

is the symmetrization operator:

Sn(1, …, n)1 = 1,

Sn(1, …, n)ƒ1(1) =
1
n

n∑

i=1

ƒ1(i),

Sn(1, …, n)ƒ2(1, 2) =
1

n(n− 1)

n∑

i≠j

ƒ2(i, j),

and so on. Sometimes it is convenient to take

gn(1, …, n) s= ƒn(1, …, n)

instead of
gn(1, …, n) = Sn(1, …, n)ƒn(1, …, n).

Because (A.12.1) is true for k = 1, we consider the case k = 2. The validity
of (A.12.1) is obvious for n = 1 and n = 2. Let us assume that (A.12.1) holds
true for some n > 2:

D(n)
u (1, …, n) [Q1Q2] = Sn(1, …, n)

∑

n1+n2=2

(
n

n1n2

)

× Q(n1)
1 (1, …, n1)Q(n2)

2 (n1 + 1, …, n1 + n2). (A.12.4)
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Here we use the notation Q(n)(1, …, n) instead of (A.12.2). Applying D(1)
u (n + 1)

to both sides of (A.12.4), we obtain

D(n+1)
u (1, …, n + 1) [Q1Q2] = Sn(1, …, n)

{
n!

0!n!

[
Q(1)

1 (n + 1)Q(n)
2 (1, …, n)

+ Q1Q(n+1)
2 (1, …, n, n + 1)

]
+

n!
1!(n− 1)!

[
Q(2)

1 (1, n + 1)Q(n−1)
2 (2, …, n)

+ Q(1)
1 (1)Q(n)

2 (2, …, n + 1)
]

+
n!

2!(n− 2)!

[
Q(3)

1 (1, 2, n + 1)Q(n−2)
2 (3, …, n)

+ Q(2)
1 (1, 2)Q(n−1)

2 (3, …, n + 1)
]

+ …

+
n!

n!0!

[
Q(n+1)

1 (1, …, n + 1)Q2 + Q(n)
1 (1, …, n)Q(1)

2 (n + 1)
]}

The left-hand side of this equation is a symmetric function of n + 1 arguments,
and we can make the change Sn(1, …, n) → Sn+1(1, …, n + 1). Since

Sn(1, …, n + 1)
[
Q(1)

1 (n + 1)Q(n)
2 (1, …, n)

]

= Sn(1, …, n + 1)
[
Q(1)

1 (1)Q(n)
2 (2, …, n + 1)

]
,

Sn(1, …, n + 1)
[
Q(2)

1 (1, n + 1)Q(n−1)
2 (2, …, n)

]

= Sn(1, …, n + 1)
[
Q(2)

1 (1, 2)Q(n−1)
2 (3, …, n + 1)

]

etc., we rewrite the expression as

D(n+1)
u (1, …, n + 1) [Q1Q2] = Sn+1(1, …, n + 1)

×
{

(n + 1)!
0!(n + 1)!

Q1Q(n+1)
2 (1, …, n + 1) +

(n + 1)!
1!n!

Q(1)
1 (1)Q(n+1)

2 (2, …, n + 1) + …

+
(n + 1)!

(n + 1)!0!
Q(n+1)

1 (1, …, n + 1)Q2

}
. (A.12.5)

It is easy to see that equation (A.12.5) coincides with (A.12.4) after changing
n to n + 1. Therefore, (A.12.4) holds true for any integer n.

Let (A.12.1) be true for some integer k > 2:

D(n)
u (1, …, n)[Q1, …, Qk] = Sn(1, …, n)

∑

n1+…+nk=n

(
n

n1…nk

)
Q(n1)

1 (1, …, n1)

× Q(n2)
2 (n1 + 1, …, n1 + n2)…Q(nk)

k (n1 + … + nk−1 + 1, …, n). (A.12.6)

Introducing Pk ≡ Q1…Qk, we consider the expression

D(n)
u (1, …, n)[Q1, …, QkQk+1] = D(n)

u (1, …, n)[PkQk+1]
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which can be rewritten as

D(n)
u (1, …, n)[PkQk+1] = Sn(1, …, n)

∑

n1+n2=n

(
n

n1n2

)
P(n)

k (1, …, n1)

× Q(n1)
k+1(n1 + 1, …, n1 + n2) (A.12.7)

which immediately follows from (A.12.4). Applying formula (A.12.6) to the
expression

P(n1)
k (1, …, n1) ≡ D(n)

u (1, …, n1)[Q1…Qk],

from (A.12.7) we obtain

D(n)
u (1, …, n)[Q1…Qk+1] = Sn(1, …, n)

∑

n1+n2=n

(
n

n1n2

)

×



Sn1(1, …, n1)

∑

n′1+…+n′k=n1

(
n1

n′1…n′k

)
Q(n′1)

1 (1, …, n′1)…

… Q(n′k)
k (n′1 + … + n′k−1, …, n1)

}
Q(n2)

k+1(n′1 + 1, …, n1 + n2).

Replacing n2 by n′k+1, removing the unnecessary symmetrizing operator from
the braces, recalling that

∑

n1+n2=n

∑

n′1+…+n′k=n1

≡
∑

n′1+…+n′k+1=n

,

(
n

n1n2

)(
n1

n′1…n′k

)
=

(
n

n′1…n′k+1

)
,

and dropping the primes about the sum indices n′1, …, n′k, we finally arrive to
the formula which differs from (A.12.6) only in k replaced by k + 1, which we
have to prove.
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Conclusion

Thus, we have had an opportunity to admire the elegance of the theory of
stable laws, which also turns out to be helpful while solving various actual
problems. The latter witnesses that it is worthwhile to consider the densities
of stable laws as a somewhat useful class of special functions. This assertion
becomes even better grounded if we observe that a great body of well-known
special functions appear to be closely related to stable laws.

The former, theoretical part of this book contains a large pile of informa-
tion concerning stable laws, which, surely, are interesting enough to attract
attention to them and to searching for new, yet unknown to us, properties of
these objects.

We tried to make the latter part of the book cover a wide spectrum of
examples of occurrence of stable laws in many problems of physics, technics,
astronomy, and economics, which should inspire searching for new applications
of these interesting probability laws. Of course, the success of such a search
depends, to a great extent, on the choice of a mathematical model, which, on
the one hand, should be assumed to be adequate to the phenomenon under
investigation, and, on the other hand, should be convenient to investigate,
because we are able to make use of the vast toolbox of known mathematical
methods.

The wealth of features of stable laws inspire specialists to search for various
analogues and extensions, which, they hope, possess as intriguing and useful
properties as stable laws do. In the last 2–3 decades, new classes of distribu-
tions appeared both in the theory of limit theorems and beyond it, in the frames
of the general theory of special functions. In this connection, it is worthwhile
to mention the so-called semi-stable laws introduced by V.M. Kruglov (1979)
as a subclass of infinitely divisible laws in a certain scheme of summation
of independent random variables, and the pseudo-stable laws introduced by
A.R. Zinger (1965) in the course of solving the well-known problem due to
B.V. Gnedenko. Later, Kruglov established that semi-stable laws can, in some
special cases, be treated as a particular case of pseudo-stable ones.

Moreover, the analytic extension of the series representing the densities
of stable laws beyond the usual domains leaded V.M. Zolotarev (1986) to the
consideration of, in essence, a new subclass of special functions, which were
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referred to as trans-stable. These functions, as concerns their mathematical
properties and manifestations, behave as the densities of stable laws, but in
addition, can be valuable tools in those cases where stable laws themselves,
due to usual restrictions on their characterizing parameters, cannot be applied.
An interesting generalization of one-sided stable densities was suggested by
Schneider in 1987.

Speaking about the construction of mathematical models, we naturally
dwell upon mathematical modelling as a whole. It is generally agreed that
mathematics recently has become a universal tool to carry out theoretical
investigations in various fields of human practice. It is worthwhile to notice
that mathematics has passed a way from a science about formulas, as profanes
thought, to a science about models of various actual phenomena. We are
witnesses of somewhat peculiar counterflow of tendencies: on the one hand,
more and more facts accumulated by mathematics find applications; and on
the other hand, they exaggerate towards formalization of those fields of our
practice where no or very little mathematics was used before.

Mathematical models, as an adequate reflection of actual reality, phenom-
ena and processes, can evolve in two ways.

First, a mathematical model can appear to be a formalization of some
qualitative (‘soft’) model of a phenomenon where causal relationships exist of
the following kind: something grows at the sacrifice of decrease of some other
factor, but no quantitative expressions exist. If some factors can be partially
expressed in quantitative terms, then this model, as passing from ‘soft’ to
‘hard’ kind, is naturally referred to as ‘semi-soft’, and in the case where all
quantitative characteristics entering into the model are ‘computable’, we say
that such a model is ‘hard’.

Second, having a bulk of experimental observation at our disposal, we are
able to make an attempt to describe mathematically this flow of experimental
data by means of some known model. For example, flows of observations of
logarithms of stock exchange rates resemble realizations of stable stochastic
processes with independent increments. Parameters of these processes should
be chosen appropriately to give a good fit to observed data. The advantage
of such an approach to constructing a model consists of the fact that, being a
‘hard’ model, it allows us to judge the mechanism of formation of the model
and therefore, of the qualitative effects in the corresponding ‘soft’ model.

As an example of a ‘hard’ model created with the use of logical reasoning,
we can consider the model (Section 18.1) of diffusion of cosmic rays; the whole
Chapter 17 serves as an example of making a model fit the observed data by an
appropriate choice of parameters. This approach was first used by Mandelbrot
(1960).

The concept of a ‘soft’ model is illustrated by the model of asymmetry
phenomenon suggested by V. Geodakyan (1993).
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Hayot, F. (1991). Lévy walk in lattice-gas hydrodynamics. Phys. Rev. A43,
806–810.

Hellemann, R.H.G. (1980). Self-generated chaotic behavior in non-linear me-
chanics. In: Fundamental Problems in Statistical Mechanics (Cohen,
E.G.D, Ed.), 5. North–Holland, Amsterdam, p. 165.
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Loève, M. (1955). Probability Theory. Van Nostrand, New York.

Lokshin, A.A., and Suvorova, Yu.V. (1982). Mathematical Theory of Wave Prop-
agation in Media with Memory. Moscow Univ. Press, Moscow (in Russian).

Lorentz, H.A. (1906). The absorption and emission lines of gaseous bodies.
Proc. Amer. Acad. Sci. 8, 591.

Lorentz, H.A. (1909). The Theory of Electrons. Dover, New York.

Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Amer. Sci. 20, 130.

Lowen, S.B., and Teich, M.C. (1989). Fractal shot noise. Phys. Rev. Lett. 63,
1755–1759.

Lukacs, E. (1960). Characteristic Functions. Griffin, London.

Lukacs, E. (1969a). Stable distributions and their characteristic functions.
Jahresber. Deutsch. Math. Verein, 71, 84–114.

Lukacs, E. (1969b). Some properties of stable frequency functions. Bull. Inst.
Internat. Statist. 42, 1213–1224.

Lukacs, E. (1969c). A characterization of stable processes. J. Appl. Prob. 6,
409–418.

Lukacs, E. (1977). On some properties of symmetric stable distributions. In:
Analytic Function Mefthods in Probability Theory (Gyires, B., Ed.). North–
Holland, 1979, pp. 227-241.

Lukacs, E. (1978). Sur quelqués propriétés des lois stables et symétriques. C.
R. Acad. Sci. Paris 286, A1213-A1214.

MacKay, J., Jan, N. (1984). Forest fires as critical phenomena. J. Phys. A17,
L757.

Makhnovsky, Yu.A., Bogachyov, L.V., and Berezhkovsky, A.M. (1995). The in-
fluence of the trap clustering on the death kinetics of the Brownian par-
ticles, Khimicheskaya Fizika 14, 114–130 (in Russian).



550 BIBLIOGRAPHY

Mandelbrot, B. (1956). La distribution de Willis–Yule, relative aux nombres
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1, 516–518.

Medgyessy, P. (1958). Partial integro-differential equations for stable density
functions and their applications, Publ. Math. Debrecen 5, 288–293.

Menon, M.V. (1962). A characterization of the Cauchy distribution. Ann. Math.
Statist. 33, 1267–1271.

Merton, R.C. (1976). Option pricing when underlying stock returns are discon-
tinuous. J. Financial Economics 3, 125–144.

Mesoscopic and Strongly Correlated Electron Systems. ‘Chernogolovka’97
Phys. Uspekhi 41, 113–248

Miller, K.S., and Ross, B. (1993). An Introduction to the Fractional Calculus
and Fractional Differential Equations. Wiley, New York.

Mittnik, S., and Rachev, S.T. (1993a). Modeling asset returns with alternative
stable distributions. Econometric Rev. 12, 261–330.

Mittnik, S., and Rachev, S.T. (1993b). Reply to comments on ‘Modeling as-
set returns with alternative stable distributions,’ and some extensions.
Econometric Rev. 12, 347–389.

Molière, G. (1947). Theorie der Streuung schneller geladener Teilchen I. Einzel-
streuung am abgeschirmten Coulomb-Feld. Z. Naturforsch. 2A, 133–145.

Molière, G. (1948). Theorie der Streuung schneller geladener Teilchen II.
Mehrfach- und Vielfachstreuung. Z. Naturforsch. 3A, 78–97.

Monin, A.S. (1955). Equations of turbulent diffusion. Dokl. Akad. Nauk SSSR
105, 256–259 (in Russian).

Monin, A.S. (1956). Horizontal intermingling in atmosphere. Izv. Akad. Nauk
SSSR, Ser. Geofiz. 3, 327–345 (in Russian).

Monin, A.S., Yaglom, A.M. (1975). Statistical Fluid Mechanics of Turbulence.
MIT, Cambridge, MA.



BIBLIOGRAPHY 553

Moran, P.A.P. (1968). An Introduction to Probability Theory. Oxford University
Press, Oxford.

Montroll, E.W., and Bendler, J.T. (1984). On Lévy (or stable) distributions and
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Physics 113A, 203–216.

Westerfield, J.M. (1977). An examination of foreign exchange risk under fixed
and floating rate regimes. J. Internat. Economics 7, 181–200.



564 BIBLIOGRAPHY

Williams, E.J. (1977). Some representations of stable random variables as
products. Biometrika 64, 167–169.

Willis, J.C. (1922). Age and Area, Cambridge Univ. Press, Cambridge.

Wilson, K.G. (1979). Problems in physics with many scales of length. Scientific
American 241, 158–179.

Wintner, A. (1933). On the stable distribution laws, Amer. J. Math. 55, 335–339.

Wintner, A. (1956). Stable distributions and Laplace transforms. Ann. Scuola
Norm. Sup. Pisa Sci. Fis. Mat. 10 (3), 127–134.

Wintner, A. (1956). Stable distributions and the transforms of Stieltjes and Le
Roy. Boll. Un. Mat. Ital. 13 (3), 24–33.

Wong, P.-z., and Bray, A.J. (1988). Scattering by rough surfaces. Phys. Rev.
37B, 7751–7758.

Worsdale, G.J. (1975). Tables of cumulative distribution functions for sym-
metric stable distributions. J. Roy Statist. Soc. Ser. C: Appl. Statist. 24,
123–131.

Worsdale, G.J. (1976). The estimation of the symmetric stable distribution
parametres. In: COMPSTAT 1976. Physica, Vienna, pp. 55–63.

Wright, E.M. (1935). The asymptotic expansion of the generalized hypergeo-
metric function. J. London Math. Soc. 10, 287–293.

Wyss, W. (1986). The fractional diffusion equation. J. Math. Phys. 27, 2782–
2785.

Yakubo, K., and Nakayama, T. (1989). Fracton dynamics of percolating elastic
networks: Energy spectrum and localized nature. Phys. Rev. B40, 517–
523.

Yule, G.U. (1925). A mathematical theory of evolution, based on the conclusions
of Dr. J.C. Willis, F.R.S. Philos. Trans. Roy. Soc. London B213, 21–87.

Yushmanov, P.N. (1990). Two-dimensional diffusion in a shear system, JETP
Lett. 52, 217.

Zaslavsky, G.M. (1992). Anomalous transport and fractal kinetics. In: Topo-
logical Aspects of the Dynamics of Fluids and Plasmas (Moffatt H.K.,
Zaslavsky, G.M., et al., Eds.). Kluwer, Dordrecht, pp. 481–000.

Zaslavsky, G.M. (1994a). Renormalization group theory of anomalous transport
in systems with Hamiltonian chaos. Chaos 4, 25–33.



BIBLIOGRAPHY 565

Zaslavsky, G.M. (1994b). Fractional kinetic equation for Hamiltonian chaos.
Physica D76, 110–122.
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Lévy flight, 357
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